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ABSTRACT

Automatic medical image segmentation converts subjective visual interpretation
into objective, pixel-level quantitative indicators with high precision and repeata-
bility, providing essential morphological evidence for early disease detection and
surgical planning. However, current segmentation networks universally follow
an ”equal-pixel” paradigm: every spatial location consumes the same amount of
parameters regardless of its semantic saliency. Consequently, a large portion of
computational resources are expended on lesion-free regions, leading to unnec-
essary GPU and memory overhead, and increasing the risk of overlooking tiny
pathological areas. Human vision solves this problem through an active saccade-
fixation strategy by first performing a rapid, low-resolution saccade to localize
suspicious regions, then applying high-resolution fixation only where necessary.
Inspired by this mechanism, we propose SaccadeFixationNet (SF-Net), a med-
ical image segmentation framework that integrates biologically motivated gaze
behaviors into an end-to-end trainable U-shaped architecture. SF-Net consists of
a Saccade–Fixation Encoder (SFE) that combines global saccadic scanning with
fixation-driven feature refinement, a Fixation Connectivity Module (FCM) that
generates a Gaze ROI Map by modeling inter-fixation relations, and a Gaze-MoE
Decoder (GMD) that adaptively routes fixation-relevant tokens to high-capacity
experts while assigning peripheral regions to lightweight experts. This design en-
ables ROI-guided selective computation, closely mimicking the allocation of neu-
ral resources in human vision. Extensive experiments on four heterogeneous med-
ical datasets demonstrate that our model achieves significant performance gains
and substantially outperforms baselines.

1 INTRODUCTION

Medical image segmentation is the cornerstone of precision medicine; by delineating organs and le-
sions at the pixel level it provides quantitative morphological evidence for surgical planning, therapy
evaluation and early screening, and its accuracy directly affects subsequent dose calculation, surgical
navigation and prognosis assessment, making it an indispensable core component of personalized
healthcare. In recent years, medical image segmentation has achieved remarkable progress driven
by deep learning. The CNN family effectively captures local textures and context through encoder-
decoder skip connections, while Vision Transformer and its variants model long-range dependencies
with self-attention, further improving global-structure understanding (Isensee et al., 2021).

However, these models universally follow an ”equal-pixel” paradigm, applying homogeneous com-
putation to every pixel or token, causing FLOPs to be wasted on regions without obvious pathology
and exhibiting expensive quadratic complexity on ultra-high-resolution 3-D volumes (Shaker et al.,
2024). Moreover, existing attention mechanisms usually make the ”where to look” decision in a sin-
gle forward pass, lacking the iterative refinement characteristic of human vision and easily missing
tiny, low-contrast or diffuse lesions (Borji, 2024; Wang et al., 2025).

Human vision overcomes these bottlenecks through an active ”saccade-fixation” cycle: a saccade
quickly browses the entire scene at low resolution, while a fixation performs high-resolution scrutiny
only within the fovea on locations of high uncertainty (Wloka et al., 2018). This cycle is uncertainty-
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Figure 1: Analogy between human vision and SaccadeFixationNet. (a) Human vision uses saccades
to rapidly scan a scene, fixations to focus on salient regions, and integration to recognize objects. (b)
SF-Net mimics this cycle: the Saccade–Fixation Encoder captures global sweeps and local details,
the Fixation Connectivity Module generates a Gaze ROI Map, and the Gaze-MoE Decoder allocates
expert capacity to accurately reconstruct lesion regions.

driven—regions with large prediction error or low confidence trigger additional fixations—thus
achieving accurate scene parsing with minimal samples (Samonds et al., 2018). Eye-tracking studies
have shown that radiologists are more prone to false positives when their attention is overly diverted
during X-ray reading (Good et al., 1990). Experts, in contrast, exhibit fewer fixations, shorter fixa-
tion durations, smaller saccadic amplitudes, and more efficient scan paths, enabling them to focus on
lesion regions more quickly (Bertram et al., 2016). Therefore, it is crucial to rationally incorporate a
“saccade-fixation” paradigm into the design of deep-model architectures for automatic and accurate
medical image segmentation.

Inspired by the human saccade–fixation mechanism, we propose SaccadeFixationNet (SF-Net),
which embeds the biological cycle of rapid scanning, focused fixation, and selective resource alloca-
tion into a U-shaped framework. As illustrated in Figure 1, SF-Net draws an analogy between human
vision and computational design: (a) human perception alternates between coarse saccadic sweeps
and fine fixations to recognize objects, while (b) SF-Net instantiates this cycle through dedicated
modules. Specifically: (1) the Saccade–Fixation Encoder (SFE) mimics human vision by combining
DINOv3-based (Siméoni et al., 2025) saccadic scanning with convolutional and Tok-KAN-based Li
et al. (2025) fixation encoding, capturing both global semantic priors and fine structural details in a
single forward pass; (2) the Fixation Connectivity Module (FCM) models inter-fixation relations to
generate a Gaze ROI Map (G-Map), providing a structured prior that highlights regions most likely
to be fixated and clinically relevant; (3) the Gaze-MoE Decoder (GMD) allocates heterogeneous
expert capacity according to the G-Map: high-capacity experts (KAN-Expert, Hybrid-Expert) pro-
cess fixation-relevant tokens, while lightweight experts handle peripheral tokens, enabling adaptive
computation that mirrors selective neural resource allocation in human vision. The contributions of
this paper are summarized as follows:

• To the best of our knowledge, this is the first work to formalize the human saccade–fixation
mechanism into a U-shaped framework, with a Saccade–Fixation Encoder (SFE) that com-
bines DINOv3-based scanning with convolutional and Tok-KAN-based fixation encoding.

• We introduce a Fixation Connectivity Module (FCM) that generates a Gaze ROI Map,
and a Gaze-MoE Decoder (GMD) that allocates high-capacity experts to fixation regions
and lightweight experts to peripheral regions, enabling ROI-guided selective computation
without extra inference cost.

• We validate SF-Net on four heterogeneous 2D and 3D medical benchmarks, where it con-
sistently outperforms state-of-the-art CNN-, Transformer-, Mamba-, and KAN-based mod-
els in accuracy and provides a new paradigm for high-precision, low-energy medical AI.
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2 RELATED WORK

2.1 THE “EQUAL-PIXEL” PARADIGM IN MEDICAL IMAGE SEGMENTATION

U-Net (Ronneberger et al., 2015) and its derivatives (Attention U-Net (Oktay et al., 2018), U-Net++
(Zhou et al., 2018)) achieve robust results across modalities via encoder-decoder skip connections,
yet they still adhere to the “equal-pixel” paradigm: every pixel shares the same number of con-
volutional kernels during forward-backward passes, causing > 90 % of FLOPs to be expended on
lesion-free regions. Vision Transformer variants (Swin-UNETR (Hatamizadeh et al., 2021), SegRes-
Net (Myronenko, 2018)) incorporate global self-attention but treat all tokens equally; their quadratic
complexity with image size hampers real-time inference of high-resolution 3-D volumes. Channel-
or spatial-attention modules such as CBAM (Woo et al., 2018) and SE-Net (Hu et al., 2018) only
re-weight features after a uniform backbone and do not prune redundant operations. Consequently,
these methods exhibit low recall for small lesions in breast ultrasound and colorectal polyp datasets,
confirming the inherent deficiency of “equal computation” in medically sparse-saliency scenes.

2.2 “NON-EQUAL-PIXEL” STRATEGIES AND THE ACCURACY-VS-FLOPS TRADE-OFF

Two research lines have been explored to mitigate computational redundancy. (1) Static lightweight
designs: DeepMedic (Kamnitsas et al., 2016) employs multi-scale 3-D separable convolutions, re-
ducing parameters by 5× but sacrificing 1.5–2.0 Dice points; HarDNet-MSEG (Huang et al., 2021)
achieves 86 FPS at 0.9 mean Dice, yet lags behind heavy networks by 3–4 pp on glandular bound-
aries. (2) Dynamic inference / early-exit schemes: PointRend (Kirillov et al., 2020) iteratively
samples MLPs on low-confidence pixels for re-segmentation, computing only 10 % of the region
and boosting boundary IoU by 1.8 on Cityscapes; after porting to polyp data, overall Dice improves
by 0.7, yet tiny-polyp recall shows no significant gain. SparseR-CNN (Sun et al., 2021) replaces
dense anchors with 100 learnable proposals, cutting 35 % FLOPs on COCO; fine-tuned on a 2-D
ultrasound breast dataset, IoU rises by 0.9 while recall for lesions <5 mm drops by 2.4 %.

These results show that merely trimming computation often compromises clinically critical metrics
and still falls short of “seeing all while seeing well.” In contrast, our SF-Net retains the overall
budget but concentrates compute on the most uncertain regions via a learnable saccade-fixation
cycle, simultaneously improving accuracy and efficiency.

2.3 MIXTURE-OF-EXPERTS (MOE) FRAMEWORK AND ITS POTENTIAL TO BREAK THE
EQUAL-PIXEL PARADIGM

Recently, sparsely activated MoE has offered a “large-params-small-compute” alternative. Noisy
Top-K gating (Shazeer et al., 2017) first reduced a 137 B-parameter network’s inference cost to
that of a 1 B dense model, validating sparse routing. GShard (Lepikhin et al., 2020) and Switch
Transformer (Fedus et al., 2022) replace every other FFN with an MoE layer, training 600 B–1.6
T-parameter models while activating only 10–20 % experts, establishing the “sparse-is-efficient”
paradigm. In vision, V-MoE (Riquelme et al., 2021) and Soft MoE (Puigcerver et al., 2023) intro-
duce token-level routing to image classification, maintaining > 90 % ImageNet Top-1 accuracy with
40 % fewer FLOPs.

In medical imaging, MoE’s sparsity and specialization directly address the equal-pixel bottleneck:
Background tokens are handled by a lightweight shared path, cutting GPU memory and latency sig-
nificantly (Fedus et al., 2022). Modality- or organ-specific experts can be optimized independently,
alleviating the “one-kernel-fits-all” contrast problem. The gating network can recall experts on de-
mand according to uncertainty, realizing a “scan first, scrutinize later” second look and reducing
false negatives from single-shot saliency (Puigcerver et al., 2023). Nevertheless, medical MoE still
faces routing collapse, expert homogenization, and small-sample expert forgetting. By incorporat-
ing an uncertainty-driven fixation reward, SF-Net further lowers expert activation while maintaining
high recall for tiny lesions, offering a scalable and interpretable sparse-expert route away from the
equal-pixel paradigm.
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Figure 2: Architecture of SaccadeFixationNet (SF-Net). (a) Overall framework with Sac-
cade–Fixation Encoder, Fixation Connectivity Module, and Gaze-MoE Decoder. (b) Conv Encoder
with DINO adapter for token–spatial fusion. (c) Conv Decoder with progressive upsampling and
skip connections. (d) Fixation Connectivity Module generating the G-Map from multi-level token
relations. (e) ROI-guided Mixture of Experts with KAN, Hybrid (KAN–Mamba), and Light experts
for adaptive decoding.

3 METHOD

3.1 OVERVIEW

We propose SaccadeFixationNet (SF-Net), a novel segmentation framework inspired by the human
saccade–fixation mechanism. As illustrated in Figure 2, SF-Net consists of three major components:
(1) Saccade–Fixation Encoder (SFE) that jointly captures saccade-level scanning and fixation-level
refinement, (2) a Fixation Connectivity Module (FCM) that produces a Gaze ROI Map (G-Map) by
modeling relations among fixation points, and (3) a Gaze-MoE Decoder (GMD) that allocates expert
capacity adaptively according to the G-Map. Together, these components form a computational
analogue of human vision: rapid saccades establish a broad perceptual prior, fixations refine salient
details, and downstream neural pathways allocate resources preferentially to fixated regions.

3.2 SACCADE–FIXATION ENCODER (SFE)

The encoder is designed as a dual pathway that mirrors the complementary functions of saccade
and fixation in human vision. The saccade path employs a DINOv3 Vision Transformer (Siméoni
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et al., 2025) backbone to rapidly scan the input image and produce saccade features analogous to
low-resolution visual sweeps. The fixation path consists of stacked convolutional encoders and Tok-
KAN blocks (Li et al., 2025), which generate fixation features by attending to structural details
during sustained viewing.

We adopt a pretrained DINOv3 as the saccade path and freeze all its parameters during training.
Given an input image I ∈ RH×W×C , the backbone divides I into N = (H/p)×(W/p) patch tokens
and processes them through Transformer blocks to obtain d-dimensional token representations. To
capture information across the visual sweep, we collect intermediate features from a subset of blocks

Ei = DINOMi(I), Ei ∈ RN×d, i = 1, ..., D (1)
where Mi denotes the index of the selected Transformer block and D is the number of extracted
layers. These tokens serve as broad saccadic sweeps, providing semantic priors that roughly localize
important structures.

The fixation path is defined as an encoder with L stages, analogous to sustained fixations. The first
Lc stages are convolutional blocks (Conv+BN+ReLU+Pooling), which progressively downsample
the input and capture structural details. The remaining stages adopt Tok-KAN blocks to model richer
nonlinear dependencies. We set X0 = I , and for each subsequent stage ℓ ∈ {1, . . . , L} the fixation
representation Xℓ ∈ RHℓ×Wℓ×Cℓ is updated as

Xℓ =

{
Pool(Conv(Xℓ−1)), ℓ ≤ Lc,

Tok-KAN(Xℓ−1), ℓ > Lc,
(2)

To integrate the two pathways, each saccade token set Ei is projected into a spatial feature map that
can be aligned with fixation features by a DINO Adapter. This Adapter is achieved by a transforma-
tion

ϕℓ : RN×d → RHℓ×Wℓ×Cℓ ,

which consists of reshaping tokens into the corresponding spatial shape, applying a convolution
layer for channel adaptation, and interpolating to the resolution of the fixation stage.

Since the fixation path has L stages while the saccade path provides D outputs with D < L, align-
ment is performed only for the deeper fixation stages. Specifically, the i-th saccade output is aligned
to fixation stage L−D + i:

Xj ← Xj + ϕi(Ei), j = L−D + i, i = 1, . . . , D. (3)

This SFE ensures that saccade features, which act as broad semantic sweeps, are progressively in-
jected into deeper fixation stages that carry higher-level structural detail. Compared to conventional
encoder–decoder designs where features are concatenated across scales, our additive integration pro-
vides a lightweight yet effective way to merge saccadic priors with fixation-driven representations,
closely mimicking how human vision refines rapid sweeps into sustained fixations.

3.3 FIXATION CONNECTIVITY MODULE (FCM)

In human vision, fixations are not isolated events but exhibit structured connectivity, where attended
points reinforce one another to form coherent gaze patterns. Inspired by this principle, we design the
fixation connectivity module (FCM) to transform fixation tokens from the encoder into a structured
prior, denoted as the Gaze ROI Map (G-Map).

We take the token outputs of selected Tok-KAN stages Lk. Each Tℓ ∈ RNℓ×Cℓ , ℓ ∈ Lk is first
projected to enhance representational capacity and normalized to compute a relation matrix

T̂ℓ = P (Tℓ), Rℓ = softmax
(

T̂ℓT̂
⊤
ℓ

τ

)
, (4)

where P (·) is a learnable projection and τ a temperature parameter. Rℓ ∈ RNℓ×Nℓ quantifies
fixation connectivity by measuring token-to-token similarity.

From Rℓ, fixation importance is derived by combining the average attention weight of each token
and an aggregated relational score. Formally, the fixation score is

s(i) = 1
Nℓ

Nℓ∑
j=1

Rℓ,ij + σ
(
Γ(RℓT̂ℓ)

)
, (5)
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where Γ(·) is a lightweight aggregation network and σ(·) the sigmoid function. Reshaping {s(i)}Nℓ
i=1

into (Hℓ,Wℓ) yields a stage-level G-Map Gℓ.

To exploit fixation connectivity across scales, FCM generates fixation maps {Gℓ}ℓ∈Lk
and resizes

them to a common resolution. These maps are concatenated and fused by a shallow convolutional
head,

G = σ
(

Conv
(
Concat{Gℓ}ℓ∈Lk

))
. (6)

The resulting G-Map G serves as a biologically inspired prior, highlighting spatial regions with high
fixation probability. It is subsequently used to guide decoding and expert allocation, ensuring that
computational resources are focused on fixation-relevant regions.

3.4 GAZE-MOE DECODER (GMD)

The decoder progressively reconstructs the segmentation mask by alternating convolutional upsam-
pling blocks and ROI-guided mixture-of-experts (MoE). At each stage, the feature map is first up-
sampled and processed by a convolutional decoder block, fused with the corresponding skip con-
nection, and then selectively refined by a token-level MoE guided by the G-Map.

Formally, let Oℓ be the fused feature map at decoding stage ℓ. It is first processed by a convolutional
decoder block and bilinearly upsampled:

Õℓ = U(Conv(Oℓ+1)) +Xℓ, (7)

where U(·) denotes bilinear upsampling and Xℓ is the skip feature from the encoder. The resulting
feature Õℓ ∈ RCℓ×Hℓ×Wℓ is then flattened into tokens Zℓ ∈ RNℓ×Cℓ with Nℓ = HℓWℓ. Given the
fixation prior Gℓ, the MoE update is defined as

wℓ = softmax
(

Q(Zℓ)+∆(Gℓ)
τ

)
, (8)

Ẑℓ = Zℓ +

E∑
e=1

wℓ,e ⊙ Experte(Zℓ), (9)

Oℓ = Reshape(Ẑℓ), (10)

where Q(·) is a linear projection mapping tokens to the routing space, ∆(Gℓ) provides ROI-
dependent biases. We instantiate three heterogeneous experts: (i) a spline expert based on KAN (Liu
et al., 2024b) blocks for nonlinear modeling, (ii) a hybrid expert combining Mamba (Gu & Dao,
2023) and KAN to capture sequential and structural dependencies, and (iii) a lightweight expert
with linear and depthwise convolution for efficient background processing. Thus each stage consists
of convolutional upsampling followed by ROI-guided expert refinement.

At later stages, when the resolution approaches the input size, only convolutional decoder blocks are
used without MoE to refine boundary details. Finally, the output is resized to the original resolution
(H,W ) and projected to segmentation logits:

Ŷ = Conv(O1), Ŷ ∈ RH×W×Cout . (11)

This design ensures that convolutional decoding provides stable upsampling and skip fusion, while
the ROI-guided MoE selectively enhances semantic features at intermediate scales. In this way,
fixation-relevant regions are assigned to high-capacity experts, while peripheral regions are handled
by lightweight experts, mimicking the resource allocation mechanism of human vision.

The training objective of SF-Net consists of two parts. First, we adopt a standard segmentation
(cross-entropy) loss to supervise the final prediction Ŷ against the ground-truth mask Y . Second, to
regularize the fixation prior, we introduce ROI loss, which constrains the G-Map (G) to align with
the foreground regions. Since Y may contain multiple classes, we define a foreground mask function
F (Y ) that maps all non-background pixels to 1 and background pixels to 0. The regularization is
then written as

L = CE(Y, Ŷ ) + λBCE(F (Y ), G) (12)

where BCE(·) denotes binary cross-entropy and λ is a balancing weight.

6
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Table 1: Comparison with state-of-the-art segmentation models on three heterogeneous medical
scenarios. The average results with standard deviation over three random runs are reported.

Methods BUSI (Al-Dhabyani et al., 2020) GlaS (Valanarasu et al., 2021) CVC (Bernal et al., 2015)
IoU↑ F1↑ IoU↑ F1↑ IoU↑ F1↑

U-Net (Ronneberger et al., 2015) 57.22±4.74 71.91±3.54 86.66±0.91 92.79±0.56 83.79±0.77 91.06±0.47
Att-Unet (Oktay et al., 2018) 55.18±3.61 70.22±2.88 86.84±1.19 92.89±0.65 84.52±0.51 91.46±0.25
U-Net++ (Zhou et al., 2018) 57.41±4.77 72.11±3.90 87.07±0.76 92.96±0.44 84.61±1.47 91.53±0.88
U-NeXt (Valanarasu & Patel, 2022) 59.06±1.03 73.08±1.32 84.51±0.37 91.55±0.23 74.83±0.24 85.36±0.17
Rolling-UNet (Liu et al., 2024a) 61.00±0.64 74.67±1.24 86.42±0.96 92.63±0.62 82.87±1.42 90.48±0.83
U-Mamba (Ma et al., 2024) 61.81±3.24 75.55±3.01 87.01±0.39 93.02±0.24 84.79±0.58 91.63±0.39
U-KAN (Li et al., 2025) 63.38±2.83 76.40±2.90 87.64±0.32 93.37±0.16 85.05±0.53 91.88±0.29
SF-Net 68.41±4.02 80.52±3.04 88.68±0.54 93.98±0.28 86.02±0.44 92.41±0.26

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluate SF-Net on four heterogeneous medical segmentation datasets. The 2D benchmarks in-
clude BUSI (Al-Dhabyani et al., 2020) with 647 breast ultrasound images covering normal, benign,
and malignant cases (resized to 256×256), GlaS (Valanarasu et al., 2021) with 165 annotated histol-
ogy images (resized to 512× 512), and CVC-ClinicDB (Bernal et al., 2015) with 612 colonoscopy
frames extracted from 31 video sequences (resized to 256 × 256). For 3D volumetric segmenta-
tion, we adopt BraTS2025, which is evaluated under two configurations: (i) Pre-only, including
1,251 pre-treatment training cases with four MRI modalities (T1, T1ce, T2, FLAIR) and annota-
tions for three tumor subregions—enhancing tumor (ET), tumor core (TC), and whole tumor (WT);
and (ii) Pre+Post, extending to both pre- and post-treatment volumes, totaling 2,818 training cases
and covering four tumor-related structures—ET, TC, WT, and resection cavity (RC).

For 2D datasets, we follow the implementation and evaluation setting in U-KAN (Li et al., 2025).
The dataset was randomly split into 80% training and 20% validation subsets. Results are reported
over three random runs. For BraTS2025, following the experimental protocol of SegMamba (Xing
et al., 2024), we split those datasets into training/validation/testing sets using a 70%/10%/20% ratio.
We adopt a 3D crop size of (64×64×64) and a batch size of 2. Training runs for 1,000 epochs with
data augmentations including brightness, gamma, rotation, scaling, mirror, and elastic deformation

Unless otherwise specified, SF-Net is configured with Lc = 3 convolutional blocks in the fixation
path (L = 5), and D = 4 saccade outputs from DINOv3. In the Gaze-MoE decoder, we employ
three heterogeneous experts (KAN, Hybrid Mamba–KAN, and Light), with Top-1 routing as the
default setting. For 2D tasks, standard 2D convolutions are used throughout the network, while for
3D volumetric tasks, all convolutional layers are replaced by their 3D counterparts without altering
the overall architecture.

4.2 RESULTS ON 2D BENCHMARKS

We compare SF-Net with representative segmentation models, including U-Net (Ronneberger et al.,
2015), Attention U-Net (Oktay et al., 2018), U-Net++ (Zhou et al., 2018), U-NeXt (Valanarasu &
Patel, 2022), Rolling-UNet (Liu et al., 2024a), U-Mamba (Ma et al., 2024), and U-KAN (Li et al.,
2025). Quantitative results on BUSI, GlaS, and CVC are shown in Table 1.

Across all datasets, SF-Net consistently achieves superior performance over existing methods. On
BUSI, SF-Net obtains 68.41% IoU and 80.52% F1, clearly surpassing U-KAN, demonstrating the
benefit of integrating fixation priors into breast ultrasound segmentation. On GlaS, SF-Net achieves
88.68% IoU and 93.98% F1, improving over U-KAN by +1.0 IoU and +0.6 F1, which highlights
its robustness on histology data. On CVC-ClinicDB, SF-Net reaches 86.02% IoU and 92.41% F1,
again outperforming U-KAN by nearly +1 IoU and +0.5 F1, showing the ability of our gaze-inspired
design to capture small and irregular polyp structures.

Overall, SF-Net surpasses both classical baselines, as well as more advanced KAN- and Mamba-
based designs. The most notable improvements are observed on BUSI and CVC, where fixation
priors and ROI-guided decoding are particularly beneficial for segmenting small, heterogeneous
lesions. Qualitative visualizations further demonstrate that SF-Net provides sharper boundaries and
fewer false positives compared to existing methods.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of segmentation performance across different models on BraTS 2025
(Pre+Post). Metrics include DSC (higher is better) and HD95 (lower is better) for RC, ET, TC,
and WT.

Models RC ET TC WT
DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

UNETR(Hatamizadeh et al., 2022) 51.05 22.44 72.33 10.01 71.75 11.17 85.95 8.21
SwinUNETR (Hatamizadeh et al., 2021) 67.27 14.62 74.99 8.93 75.81 9.30 89.42 5.63
SegResNet (Myronenko, 2018) 74.91 10.09 74.86 8.42 75.70 8.68 89.43 5.36
SegMamba (Xing et al., 2024) 76.16 10.25 77.20 7.50 78.20 7.79 90.02 4.75
SF-Net 84.41 5.28 80.29 5.99 81.14 6.34 91.63 3.69

Table 3: Comparison of segmentation performance across different models on the BraTS 2025 (Pre).
Metrics include Dice (higher is better) and HD95 (lower is better) for ET, TC, and WT.

Models ET TC WT
Dice ↑ HD95 ↓ Dice ↑ HD95 ↓ Dice ↑ HD95 ↓

UNETR (Hatamizadeh et al., 2022) 83.69 5.85 89.36 5.43 91.93 5.64
SwinUNETR (Hatamizadeh et al., 2021) 85.52 4.48 91.73 4.02 93.11 5.02
SegResNet (Myronenko, 2018) 86.39 4.16 91.30 3.91 93.18 4.29
SegMamba (Xing et al., 2024) 86.69 4.53 91.90 4.27 93.32 4.67
SF-Net 87.52 3.79 91.79 3.27 93.83 3.46

4.3 RESULTS ON 3D BRAIN TUMOR BENCHMARK

To assess the generalizability of SF-Net beyond 2D images, we conduct experiments on the BraTS
2025 3D brain tumor segmentation benchmark. We report Dice score (DSC) and Hausdorff distance
(HD95) for tumor subregions. Results compared with UNETR (Hatamizadeh et al., 2022), Swin-
UNETR (Hatamizadeh et al., 2021), SegResNet (Myronenko, 2018), and SegMamba (Xing et al.,
2024) are summarized in Tables 2 and 3.

On the BraTS 2025 Pre+Post setting (Table 2), SF-Net substantially outperforms all baselines across
all subregions. For the challenging RC class, SF-Net achieves 84.41% DSC and 5.28 mm HD95,
outperforming SegMamba by +8.3 DSC and reducing HD95 by 5 mm. Consistent gains are also
observed for ET, TC, and WT, with DSC improvements of 2–3 points and HD95 reduced by 2–4
mm compared to the strongest baselines. On the BraTS 2025 Pre-only setting (Table 3), which
contains only pre-treatment scans, SF-Net still delivers the best results. It achieves 87.52% DSC
on ET, 91.79% on TC, and 93.83% on WT, while also obtaining the lowest HD95 values across all
categories. These results demonstrate that SF-Net generalizes well across imaging protocols and
remains robust even under modality constraints.

Overall, the BraTS 2025 results confirm that SF-Net is not limited to 2D tasks but extends effec-
tively to 3D volumetric segmentation. The fixation connectivity prior and ROI-guided MoE decoder
provide consistent improvements in both accuracy and boundary precision, particularly for complex,
multi-component tumor structures.

4.4 ABLATION STUDY

To assess the contribution of each component in SF-Net, we perform ablation experiments on the
2D datasets, with results summarized in Table 4. Removing the saccade path (w/o DINO) leads to
a noticeable performance drop across all benchmarks confirming that global semantic sweeps from
DINO provide essential priors. Similarly, removing the fixation connectivity module (w/o FCM)
consistently degrades results, especially on CVC, highlighting the importance of modeling fixation
relations for accurate localization of small and irregular structures.

We also investigate different routing strategies in the Gaze-MoE decoder. While sparse Top-k rout-
ing (w/ Top2 or w/ Top3) achieves competitive performance, it generally underperforms the default
Top-1 routing. For example, on BUSI, Top-3 routing yields 66.78% IoU compared to 68.41% with
Top-1 routing. This shows that assigning each token to its most relevant expert (Top-1) is more
stable and better exploits fixation priors than distributing tokens across multiple experts.
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Table 4: Ablation study on the effect of the saccade path (DINO), fixation connectivity (FCM) and
Top-k routing.

Methods BUSI (Al-Dhabyani et al., 2020) GlaS (Valanarasu et al., 2021) CVC (Bernal et al., 2015)
IoU↑ F1↑ IoU↑ F1↑ IoU↑ F1↑

SF-Net 68.41±4.02 80.52±3.04 88.68±0.54 93.98±0.28 86.02±0.44 92.41±0.26
SF-Net w/o DINO 67.23±5.04 79.53±3.96 86.51±0.85 92.72±0.46 85.21±0.53 91.92±0.35
SF-Net w/o FCM 67.42±5.50 79.62±4.31 85.92±0.78 92.39±0.44 84.43±1.61 91.44±0.95
SF-Net w/ Top2 68.13±5.01 80.06±3.98 88.63±0.67 93.94±0.36 85.40±2.21 92.04±1.33
SF-Net w/ Top3 66.78±4.83 79.26±3.79 88.64±0.71 93.95±0.38 85.83±0.86 92.32±0.53

Overall, SF-Net achieves the best performance among all variants. These results verify that the
saccade path, fixation connectivity, and ROI-guided MoE routing are complementary, and their in-
tegration is necessary to achieve consistent improvements across heterogeneous datasets.

4.5 VISUALIZATION

Figure 3: Qualitative comparison of segmentation results on BUSI, GlaS, and CVC datasets. From
left to right: input image, ground-truth label, SF-Net prediction, G-Map, and U-KAN prediction.

To further illustrate the effectiveness of SF-Net, we provide qualitative comparisons on represen-
tative samples from 2D datasets, as shown in Figure 3. Columns correspond to the input image,
ground-truth label, our segmentation results, the generated G-Map, and predictions from U-KAN.

Across three datasets, SF-Net produces more accurate and robust delineations than U-KAN, par-
ticularly in challenging regions highlighted by red boxes. On BUSI, our method captures small
tumor regions with higher fidelity, while U-KAN tends to over-segment. On GlaS, SF-Net better
preserves fine gland boundaries and detects small isolated structures that U-KAN misses. On CVC,
our model eliminates false positives and provides tighter polyp contours. The G-Map visualiza-
tions further demonstrate that the fixation connectivity prior effectively highlights clinically relevant
regions, guiding the decoder to focus computational resources where errors are most likely to occur.

5 CONCLUSION

In this paper, we presented SF-Net, a biologically inspired framework that embeds the sac-
cade–fixation mechanism into a U-shaped architecture. SF-Net integrates a Saccade–Fixation En-
coder, a Fixation Connectivity Module generating a Gaze ROI Map, and a Gaze-MoE Decoder for
ROI-guided expert allocation. Experiments on four heterogeneous 2D and 3D medical benchmarks
show that SF-Net consistently surpasses state-of-the-art CNN-, Transformer-, Mamba-, and KAN-
based models, achieving more accurate lesion segmentation with improved efficiency. This work
demonstrates the potential of gaze-inspired designs for advancing precise, efficient, and interpretable
medical image analysis.
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