

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

BRIDGING HUMAN VISION AND DEEP PERCEPTION WITH A SACCADE-FIXATION ROI PRIOR FOR MEDI- CAL IMAGE SEGMENTATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Automatic medical image segmentation converts subjective visual interpretation into objective, pixel-level quantitative indicators with high precision and repeatability, providing essential morphological evidence for early disease detection and surgical planning. However, current segmentation networks universally follow an "equal-pixel" paradigm: every spatial location consumes the same amount of parameters regardless of its semantic saliency. Consequently, a large portion of computational resources are expended on lesion-free regions, leading to unnecessary GPU and memory overhead, and increasing the risk of overlooking tiny pathological areas. Human vision solves this problem through an active saccade-fixation strategy by first performing a rapid, low-resolution saccade to localize suspicious regions, then applying high-resolution fixation only where necessary. Inspired by this mechanism, we propose SaccadeFixationNet (SF-Net), a medical image segmentation framework that integrates biologically motivated gaze behaviors into an end-to-end trainable U-shaped architecture. SF-Net consists of a Saccade–Fixation Encoder (SFE) that combines global saccadic scanning with fixation-driven feature refinement, a Fixation Connectivity Module (FCM) that generates a Gaze ROI Map by modeling inter-fixation relations, and a Gaze-MoE Decoder (GMD) that adaptively routes fixation-relevant tokens to high-capacity experts while assigning peripheral regions to lightweight experts. This design enables ROI-guided selective computation, closely mimicking the allocation of neural resources in human vision. Extensive experiments on four heterogeneous medical datasets demonstrate that our model achieves significant performance gains and substantially outperforms baselines.

1 INTRODUCTION

Medical image segmentation is the cornerstone of precision medicine; by delineating organs and lesions at the pixel level it provides quantitative morphological evidence for surgical planning, therapy evaluation and early screening, and its accuracy directly affects subsequent dose calculation, surgical navigation and prognosis assessment, making it an indispensable core component of personalized healthcare. In recent years, medical image segmentation has achieved remarkable progress driven by deep learning. The CNN family effectively captures local textures and context through encoder-decoder skip connections, while Vision Transformer and its variants model long-range dependencies with self-attention, further improving global-structure understanding (Isensee et al., 2021).

However, these models universally follow an "equal-pixel" paradigm, applying homogeneous computation to every pixel or token, causing FLOPs to be wasted on regions without obvious pathology and exhibiting expensive quadratic complexity on ultra-high-resolution 3-D volumes (Shaker et al., 2024). Moreover, existing attention mechanisms usually make the "where to look" decision in a single forward pass, lacking the iterative refinement characteristic of human vision and easily missing tiny, low-contrast or diffuse lesions (Borji, 2024; Wang et al., 2025).

Human vision overcomes these bottlenecks through an active "saccade-fixation" cycle: a saccade quickly browses the entire scene at low resolution, while a fixation performs high-resolution scrutiny only within the fovea on locations of high uncertainty (Wloka et al., 2018). This cycle is uncertainty-

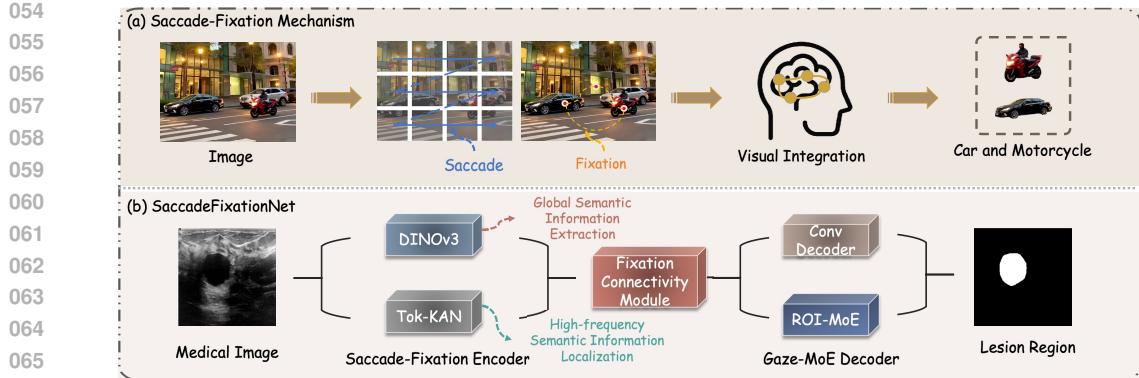


Figure 1: Analogy between human vision and SaccadeFixationNet. (a) Human vision uses saccades to rapidly scan a scene, fixations to focus on salient regions, and integration to recognize objects. (b) SF-Net mimics this cycle: the Saccade–Fixation Encoder captures global sweeps and local details, the Fixation Connectivity Module generates a Gaze ROI Map, and the Gaze-MoE Decoder allocates expert capacity to accurately reconstruct lesion regions.

driven—regions with large prediction error or low confidence trigger additional fixations—thus achieving accurate scene parsing with minimal samples (Samonds et al., 2018). Eye-tracking studies have shown that radiologists are more prone to false positives when their attention is overly diverted during X-ray reading (Good et al., 1990). Experts, in contrast, exhibit fewer fixations, shorter fixation durations, smaller saccadic amplitudes, and more efficient scan paths, enabling them to focus on lesion regions more quickly (Bertram et al., 2016). Therefore, it is crucial to rationally incorporate a “saccade-fixation” paradigm into the design of deep-model architectures for automatic and accurate medical image segmentation.

Inspired by the human saccade–fixation mechanism, we propose SaccadeFixationNet (SF-Net), which embeds the biological cycle of rapid scanning, focused fixation, and selective resource allocation into a U-shaped framework. As illustrated in Figure 1, SF-Net draws an analogy between human vision and computational design: (a) human perception alternates between coarse saccadic sweeps and fine fixations to recognize objects, while (b) SF-Net instantiates this cycle through dedicated modules. Specifically: (1) the Saccade–Fixation Encoder (SFE) mimics human vision by combining DINOv3-based (Siméoni et al., 2025) saccadic scanning with convolutional and Tok-KAN-based Li et al. (2025) fixation encoding, capturing both global semantic priors and fine structural details in a single forward pass; (2) the Fixation Connectivity Module (FCM) models inter-fixation relations to generate a Gaze ROI Map (G-Map), providing a structured prior that highlights regions most likely to be fixated and clinically relevant; (3) the Gaze-MoE Decoder (GMD) allocates heterogeneous expert capacity according to the G-Map: high-capacity experts (KAN-Expert, Hybrid-Expert) process fixation-relevant tokens, while lightweight experts handle peripheral tokens, enabling adaptive computation that mirrors selective neural resource allocation in human vision. The contributions of this paper are summarized as follows:

- To the best of our knowledge, this is the first work to formalize the human saccade–fixation mechanism into a U-shaped framework, with a Saccade–Fixation Encoder (SFE) that combines DINOv3-based scanning with convolutional and Tok-KAN-based fixation encoding.
- We introduce a Fixation Connectivity Module (FCM) that generates a Gaze ROI Map, and a Gaze-MoE Decoder (GMD) that allocates high-capacity experts to fixation regions and lightweight experts to peripheral regions, enabling ROI-guided selective computation without extra inference cost.
- We validate SF-Net on four heterogeneous 2D and 3D medical benchmarks, where it consistently outperforms state-of-the-art CNN-, Transformer-, Mamba-, and KAN-based models in accuracy and provides a new paradigm for high-precision, low-energy medical AI.

108
109
110
2 RELATED WORK111
112
2.1 THE “EQUAL-PIXEL” PARADIGM IN MEDICAL IMAGE SEGMENTATION113
114
115
116
117
118
119
120
121
122
U-Net (Ronneberger et al., 2015) and its derivatives (Attention U-Net (Oktay et al., 2018), U-Net++ (Zhou et al., 2018)) achieve robust results across modalities via encoder-decoder skip connections, yet they still adhere to the “equal-pixel” paradigm: every pixel shares the same number of convolutional kernels during forward-backward passes, causing $> 90\%$ of FLOPs to be expended on lesion-free regions. Vision Transformer variants (Swin-UNETR (Hatamizadeh et al., 2021), SegResNet (Myronenko, 2018)) incorporate global self-attention but treat all tokens equally; their quadratic complexity with image size hampers real-time inference of high-resolution 3-D volumes. Channel- or spatial-attention modules such as CBAM (Woo et al., 2018) and SE-Net (Hu et al., 2018) only re-weight features after a uniform backbone and do not prune redundant operations. Consequently, these methods exhibit low recall for small lesions in breast ultrasound and colorectal polyp datasets, confirming the inherent deficiency of “equal computation” in medically sparse-saliency scenes.123
124
125
126
2.2 “NON-EQUAL-PIXEL” STRATEGIES AND THE ACCURACY-vs-FLOPs TRADE-OFF127
128
129
130
131
132
133
134
135
136
Two research lines have been explored to mitigate computational redundancy. (1) Static lightweight designs: DeepMedic (Kamnitsas et al., 2016) employs multi-scale 3-D separable convolutions, reducing parameters by $5\times$ but sacrificing 1.5–2.0 Dice points; HarDNet-MSEG (Huang et al., 2021) achieves 86 FPS at 0.9 mean Dice, yet lags behind heavy networks by 3–4 pp on glandular boundaries. (2) Dynamic inference / early-exit schemes: PointRend (Kirillov et al., 2020) iteratively samples MLPs on low-confidence pixels for re-segmentation, computing only 10 % of the region and boosting boundary IoU by 1.8 on Cityscapes; after porting to polyp data, overall Dice improves by 0.7, yet tiny-polyp recall shows no significant gain. SparseR-CNN (Sun et al., 2021) replaces dense anchors with 100 learnable proposals, cutting 35 % FLOPs on COCO; fine-tuned on a 2-D ultrasound breast dataset, IoU rises by 0.9 while recall for lesions <5 mm drops by 2.4 %.137
138
139
140
These results show that merely trimming computation often compromises clinically critical metrics and still falls short of “seeing all while seeing well.” In contrast, our SF-Net retains the overall budget but concentrates compute on the most uncertain regions via a learnable saccade-fixation cycle, simultaneously improving accuracy and efficiency.141
142
143
144
2.3 MIXTURE-OF-EXPERTS (MoE) FRAMEWORK AND ITS POTENTIAL TO BREAK THE
EQUAL-PIXEL PARADIGM145
146
147
148
149
150
151
152
Recently, sparsely activated MoE has offered a “large-params-small-compute” alternative. Noisy Top-K gating (Shazeer et al., 2017) first reduced a 137 B-parameter network’s inference cost to that of a 1 B dense model, validating sparse routing. GShard (Lepikhin et al., 2020) and Switch Transformer (Fedus et al., 2022) replace every other FFN with an MoE layer, training 600 B–1.6 T-parameter models while activating only 10–20 % experts, establishing the “sparse-is-efficient” paradigm. In vision, V-MoE (Riquelme et al., 2021) and Soft MoE (Puigcerver et al., 2023) introduce token-level routing to image classification, maintaining $> 90\%$ ImageNet Top-1 accuracy with 40 % fewer FLOPs.153
154
155
156
157
158
159
160
161
In medical imaging, MoE’s sparsity and specialization directly address the equal-pixel bottleneck: Background tokens are handled by a lightweight shared path, cutting GPU memory and latency significantly (Fedus et al., 2022). Modality- or organ-specific experts can be optimized independently, alleviating the “one-kernel-fits-all” contrast problem. The gating network can recall experts on demand according to uncertainty, realizing a “scan first, scrutinize later” second look and reducing false negatives from single-shot saliency (Puigcerver et al., 2023). Nevertheless, medical MoE still faces routing collapse, expert homogenization, and small-sample expert forgetting. By incorporating an uncertainty-driven fixation reward, SF-Net further lowers expert activation while maintaining high recall for tiny lesions, offering a scalable and interpretable sparse-expert route away from the equal-pixel paradigm.

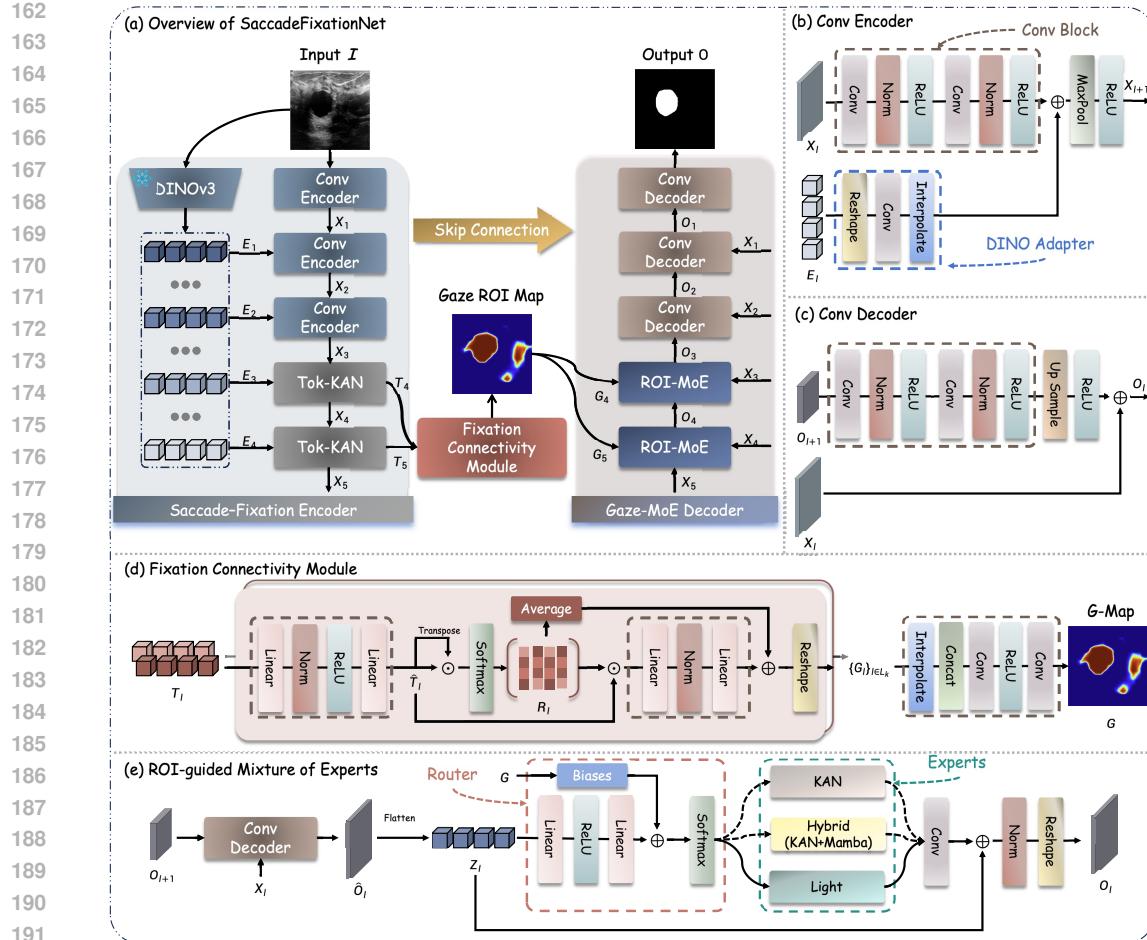


Figure 2: Architecture of SaccadeFixationNet (SF-Net). (a) Overall framework with Saccade–Fixation Encoder, Fixation Connectivity Module, and Gaze-MoE Decoder. (b) Conv Encoder with DINO adapter for token–spatial fusion. (c) Conv Decoder with progressive upsampling and skip connections. (d) Fixation Connectivity Module generating the G-Map from multi-level token relations. (e) ROI-guided Mixture of Experts with KAN, Hybrid (KAN+Mamba), and Light experts for adaptive decoding.

3 METHOD

3.1 OVERVIEW

We propose SaccadeFixationNet (SF-Net), a novel segmentation framework inspired by the human saccade–fixation mechanism. As illustrated in Figure 2, SF-Net consists of three major components: (1) Saccade–Fixation Encoder (SFE) that jointly captures saccade-level scanning and fixation-level refinement, (2) a Fixation Connectivity Module (FCM) that produces a Gaze ROI Map (G-Map) by modeling relations among fixation points, and (3) a Gaze-MoE Decoder (GMD) that allocates expert capacity adaptively according to the G-Map. Together, these components form a computational analogue of human vision: rapid saccades establish a broad perceptual prior, fixations refine salient details, and downstream neural pathways allocate resources preferentially to fixated regions.

3.2 SACCADE–FIXATION ENCODER (SFE)

The encoder is designed as a dual pathway that mirrors the complementary functions of saccade and fixation in human vision. The saccade path employs a DINOv3 Vision Transformer (Siméoni

et al., 2025) backbone to rapidly scan the input image and produce saccade features analogous to low-resolution visual sweeps. The fixation path consists of stacked convolutional encoders and Tok-KAN blocks (Li et al., 2025), which generate fixation features by attending to structural details during sustained viewing.

We adopt a pretrained DINOv3 as the saccade path and freeze all its parameters during training. Given an input image $I \in \mathbb{R}^{H \times W \times C}$, the backbone divides I into $N = (H/p) \times (W/p)$ patch tokens and processes them through Transformer blocks to obtain d -dimensional token representations. To capture information across the visual sweep, we collect intermediate features from a subset of blocks

$$E_i = \text{DINO}_{M_i}(I), \quad E_i \in \mathbb{R}^{N \times d}, \quad i = 1, \dots, D \quad (1)$$

where M_i denotes the index of the selected Transformer block and D is the number of extracted layers. These tokens serve as broad saccadic sweeps, providing semantic priors that roughly localize important structures.

The fixation path is defined as an encoder with L stages, analogous to sustained fixations. The first L_c stages are convolutional blocks (Conv+BN+ReLU+Pooling), which progressively downsample the input and capture structural details. The remaining stages adopt Tok-KAN blocks to model richer nonlinear dependencies. We set $X_0 = I$, and for each subsequent stage $\ell \in \{1, \dots, L\}$ the fixation representation $X_\ell \in \mathbb{R}^{H_\ell \times W_\ell \times C_\ell}$ is updated as

$$X_\ell = \begin{cases} \text{Pool}(\text{Conv}(X_{\ell-1})), & \ell \leq L_c, \\ \text{Tok-KAN}(X_{\ell-1}), & \ell > L_c, \end{cases} \quad (2)$$

To integrate the two pathways, each saccade token set E_i is projected into a spatial feature map that can be aligned with fixation features by a DINO Adapter. This Adapter is achieved by a transformation

$$\phi_\ell : \mathbb{R}^{N \times d} \rightarrow \mathbb{R}^{H_\ell \times W_\ell \times C_\ell},$$

which consists of reshaping tokens into the corresponding spatial shape, applying a convolution layer for channel adaptation, and interpolating to the resolution of the fixation stage.

Since the fixation path has L stages while the saccade path provides D outputs with $D < L$, alignment is performed only for the deeper fixation stages. Specifically, the i -th saccade output is aligned to fixation stage $L - D + i$:

$$X_j \leftarrow X_j + \phi_i(E_i), \quad j = L - D + i, \quad i = 1, \dots, D. \quad (3)$$

This SFE ensures that saccade features, which act as broad semantic sweeps, are progressively injected into deeper fixation stages that carry higher-level structural detail. Compared to conventional encoder-decoder designs where features are concatenated across scales, our additive integration provides a lightweight yet effective way to merge saccadic priors with fixation-driven representations, closely mimicking how human vision refines rapid sweeps into sustained fixations.

3.3 FIXATION CONNECTIVITY MODULE (FCM)

In human vision, fixations are not isolated events but exhibit structured connectivity, where attended points reinforce one another to form coherent gaze patterns. Inspired by this principle, we design the fixation connectivity module (FCM) to transform fixation tokens from the encoder into a structured prior, denoted as the Gaze ROI Map (G-Map).

We take the token outputs of selected Tok-KAN stages L_k . Each $T_\ell \in \mathbb{R}^{N_\ell \times C_\ell}$, $\ell \in L_k$ is first projected to enhance representational capacity and normalized to compute a relation matrix

$$\hat{T}_\ell = P(T_\ell), \quad R_\ell = \text{softmax}\left(\frac{\hat{T}_\ell \hat{T}_\ell^\top}{\tau}\right), \quad (4)$$

where $P(\cdot)$ is a learnable projection and τ a temperature parameter. $R_\ell \in \mathbb{R}^{N_\ell \times N_\ell}$ quantifies fixation connectivity by measuring token-to-token similarity.

From R_ℓ , fixation importance is derived by combining the average attention weight of each token and an aggregated relational score. Formally, the fixation score is

$$s(i) = \frac{1}{N_\ell} \sum_{j=1}^{N_\ell} R_{\ell,ij} + \sigma(\Gamma(R_\ell \hat{T}_\ell)), \quad (5)$$

270 where $\Gamma(\cdot)$ is a lightweight aggregation network and $\sigma(\cdot)$ the sigmoid function. Reshaping $\{s(i)\}_{i=1}^{N_\ell}$
 271 into (H_ℓ, W_ℓ) yields a stage-level G-Map G_ℓ .

272 To exploit fixation connectivity across scales, FCM generates fixation maps $\{G_\ell\}_{\ell \in L_k}$ and resizes
 273 them to a common resolution. These maps are concatenated and fused by a shallow convolutional
 274 head,

$$276 \quad G = \sigma \left(\text{Conv} \left(\text{Concat} \{G_\ell\}_{\ell \in L_k} \right) \right). \quad (6)$$

277 The resulting G-Map G serves as a biologically inspired prior, highlighting spatial regions with high
 278 fixation probability. It is subsequently used to guide decoding and expert allocation, ensuring that
 279 computational resources are focused on fixation-relevant regions.

282 3.4 GAZE-MOE DECODER (GMD)

284 The decoder progressively reconstructs the segmentation mask by alternating convolutional upsample-
 285 pling blocks and ROI-guided mixture-of-experts (MoE). At each stage, the feature map is first up-
 286 sampled and processed by a convolutional decoder block, fused with the corresponding skip con-
 287 nection, and then selectively refined by a token-level MoE guided by the G-Map.

288 Formally, let O_ℓ be the fused feature map at decoding stage ℓ . It is first processed by a convolutional
 289 decoder block and bilinearly upsampled:

$$290 \quad \tilde{O}_\ell = U(\text{Conv}(O_{\ell+1})) + X_\ell, \quad (7)$$

292 where $U(\cdot)$ denotes bilinear upsampling and X_ℓ is the skip feature from the encoder. The resulting
 293 feature $\tilde{O}_\ell \in \mathbb{R}^{C_\ell \times H_\ell \times W_\ell}$ is then flattened into tokens $Z_\ell \in \mathbb{R}^{N_\ell \times C_\ell}$ with $N_\ell = H_\ell W_\ell$. Given the
 294 fixation prior G_ℓ , the MoE update is defined as

$$295 \quad w_\ell = \text{softmax} \left(\frac{Q(Z_\ell) + \Delta(G_\ell)}{\tau} \right), \quad (8)$$

$$297 \quad \hat{Z}_\ell = Z_\ell + \sum_{e=1}^E w_{\ell,e} \odot \text{Expert}_e(Z_\ell), \quad (9)$$

$$300 \quad O_\ell = \text{Reshape}(\hat{Z}_\ell), \quad (10)$$

301 where $Q(\cdot)$ is a linear projection mapping tokens to the routing space, $\Delta(G_\ell)$ provides ROI-
 302 dependent biases. We instantiate three heterogeneous experts: (i) a spline expert based on KAN (Liu
 303 et al., 2024b) blocks for nonlinear modeling, (ii) a hybrid expert combining Mamba (Gu & Dao,
 304 2023) and KAN to capture sequential and structural dependencies, and (iii) a lightweight expert
 305 with linear and depthwise convolution for efficient background processing. Thus each stage consists
 306 of convolutional upsampling followed by ROI-guided expert refinement.

307 At later stages, when the resolution approaches the input size, only convolutional decoder blocks are
 308 used without MoE to refine boundary details. Finally, the output is resized to the original resolution
 309 (H, W) and projected to segmentation logits:

$$310 \quad \hat{Y} = \text{Conv}(O_1), \quad \hat{Y} \in \mathbb{R}^{H \times W \times C_{out}}. \quad (11)$$

312 This design ensures that convolutional decoding provides stable upsampling and skip fusion, while
 313 the ROI-guided MoE selectively enhances semantic features at intermediate scales. In this way,
 314 fixation-relevant regions are assigned to high-capacity experts, while peripheral regions are handled
 315 by lightweight experts, mimicking the resource allocation mechanism of human vision.

316 The training objective of SF-Net consists of two parts. First, we adopt a standard segmentation
 317 (cross-entropy) loss to supervise the final prediction \hat{Y} against the ground-truth mask Y . Second, to
 318 regularize the fixation prior, we introduce ROI loss, which constrains the G-Map (G) to align with
 319 the foreground regions. Since Y may contain multiple classes, we define a foreground mask function
 320 $F(Y)$ that maps all non-background pixels to 1 and background pixels to 0. The regularization is
 321 then written as

$$322 \quad \mathcal{L} = \text{CE}(Y, \hat{Y}) + \lambda \text{BCE}(F(Y), G) \quad (12)$$

323 where $\text{BCE}(\cdot)$ denotes binary cross-entropy and λ is a balancing weight.

324
 325 **Table 1:** Comparison with state-of-the-art segmentation models on three heterogeneous medical
 326 scenarios. The average results with standard deviation over three random runs are reported.

327 Methods	328 BUSI (Al-Dhabyani et al., 2020)		329 GlaS (Valanarasu et al., 2021)		330 CVC (Bernal et al., 2015)	
	331 IoU↑	332 F1↑	333 IoU↑	334 F1↑	335 IoU↑	336 F1↑
337 U-Net (Ronneberger et al., 2015)	338 57.22±4.74	339 71.91±3.54	340 86.66±0.91	341 92.79±0.56	342 83.79±0.77	343 91.06±0.47
344 Att-UNet (Oktay et al., 2018)	345 55.18±3.61	346 70.22±2.88	347 86.84±1.19	348 92.89±0.65	349 84.52±0.51	350 91.46±0.25
351 U-Net++ (Zhou et al., 2018)	352 57.41±4.77	353 72.11±3.90	354 87.07±0.76	355 92.96±0.44	356 84.61±1.47	357 91.53±0.88
358 U-NeXt (Valanarasu & Patel, 2022)	359 59.06±1.03	360 73.08±1.32	361 84.51±0.37	362 91.55±0.23	363 74.83±0.24	364 85.36±0.17
365 Rolling-UNet (Liu et al., 2024a)	366 61.00±0.64	367 74.67±1.24	368 86.42±0.96	369 92.63±0.62	370 82.87±1.42	371 90.48±0.83
372 U-Mamba (Ma et al., 2024)	373 61.81±3.24	374 75.55±3.01	375 87.01±0.39	376 93.02±0.24	377 84.79±0.58	378 91.63±0.39
379 U-KAN (Li et al., 2025)	380 63.38±2.83	381 76.40±2.90	382 87.64±0.32	383 93.37±0.16	384 85.05±0.53	385 91.88±0.29
386 SF-Net	387 68.41±4.02	388 80.52±3.04	389 88.68±0.54	390 93.98±0.28	391 86.02±0.44	392 92.41±0.26

334 4 EXPERIMENTS AND RESULTS

335 4.1 DATASETS AND IMPLEMENTATION DETAILS

336
 337 We evaluate SF-Net on four heterogeneous medical segmentation datasets. The 2D benchmarks in-
 338 clude **BUSI** (Al-Dhabyani et al., 2020) with 647 breast ultrasound images covering normal, benign,
 339 and malignant cases (resized to 256×256), **GlaS** (Valanarasu et al., 2021) with 165 annotated histol-
 340 ogy images (resized to 512×512), and **CVC-ClinicDB** (Bernal et al., 2015) with 612 colonoscopy
 341 frames extracted from 31 video sequences (resized to 256×256). For 3D volumetric segmenta-
 342 tion, we adopt **BraTS2025**, which is evaluated under two configurations: (i) *Pre-only*, including
 343 1,251 pre-treatment training cases with four MRI modalities (T1, T1ce, T2, FLAIR) and annota-
 344 tions for three tumor subregions—enhancing tumor (ET), tumor core (TC), and whole tumor (WT);
 345 and (ii) *Pre+Post*, extending to both pre- and post-treatment volumes, totaling 2,818 training cases
 346 and covering four tumor-related structures—ET, TC, WT, and resection cavity (RC).

347
 348 For 2D datasets, we follow the implementation and evaluation setting in U-KAN (Li et al., 2025).
 349 The dataset was randomly split into 80% training and 20% validation subsets. Results are reported
 350 over three random runs. For BraTS2025, following the experimental protocol of SegMamba (Xing
 351 et al., 2024), we split those datasets into training/validation/testing sets using a 70%/10%/20% ratio.
 352 We adopt a 3D crop size of $(64 \times 64 \times 64)$ and a batch size of 2. Training runs for 1,000 epochs with
 353 data augmentations including brightness, gamma, rotation, scaling, mirror, and elastic deformation

354
 355 Unless otherwise specified, SF-Net is configured with $L_c = 3$ convolutional blocks in the fixation
 356 path ($L = 5$), and $D = 4$ saccade outputs from DINOv3. In the Gaze-MoE decoder, we employ
 357 three heterogeneous experts (KAN, Hybrid Mamba-KAN, and Light), with Top-1 routing as the
 358 default setting. For 2D tasks, standard 2D convolutions are used throughout the network, while for
 359 3D volumetric tasks, all convolutional layers are replaced by their 3D counterparts without altering
 360 the overall architecture.

361 4.2 RESULTS ON 2D BENCHMARKS

362
 363 We compare SF-Net with representative segmentation models, including U-Net (Ronneberger et al.,
 364 2015), Attention U-Net (Oktay et al., 2018), U-Net++ (Zhou et al., 2018), U-NeXt (Valanarasu &
 365 Patel, 2022), Rolling-UNet (Liu et al., 2024a), U-Mamba (Ma et al., 2024), and U-KAN (Li et al.,
 366 2025). Quantitative results on BUSI, GlaS, and CVC are shown in Table 1.

367
 368 Across all datasets, SF-Net consistently achieves superior performance over existing methods. On
 369 BUSI, SF-Net obtains 68.41% IoU and 80.52% F1, clearly surpassing U-KAN, demonstrating the
 370 benefit of integrating fixation priors into breast ultrasound segmentation. On GlaS, SF-Net achieves
 371 88.68% IoU and 93.98% F1, improving over U-KAN by +1.0 IoU and +0.6 F1, which highlights
 372 its robustness on histology data. On CVC-ClinicDB, SF-Net reaches 86.02% IoU and 92.41% F1,
 373 again outperforming U-KAN by nearly +1 IoU and +0.5 F1, showing the ability of our gaze-inspired
 374 design to capture small and irregular polyp structures.

375
 376 Overall, SF-Net surpasses both classical baselines, as well as more advanced KAN- and Mamba-
 377 based designs. The most notable improvements are observed on BUSI and CVC, where fixation
 378 priors and ROI-guided decoding are particularly beneficial for segmenting small, heterogeneous
 379 lesions. Qualitative visualizations further demonstrate that SF-Net provides sharper boundaries and
 380 fewer false positives compared to existing methods.

378
 379 Table 2: Comparison of segmentation performance across different models on BraTS 2025
 380 (Pre+Post). Metrics include DSC (higher is better) and HD95 (lower is better) for RC, ET, TC,
 381 and WT.

382 Models	383 RC		384 ET		385 TC		386 WT	
	DSC \uparrow	383 HD95 \downarrow	DSC \uparrow	384 HD95 \downarrow	DSC \uparrow	385 HD95 \downarrow	DSC \uparrow	386 HD95 \downarrow
383 UNETR(Hatamizadeh et al., 2022)	51.05	22.44	384 72.33	10.01	385 71.75	11.17	386 85.95	8.21
384 SwinUNETR (Hatamizadeh et al., 2021)	67.27	14.62	385 74.99	8.93	386 75.81	9.30	387 89.42	5.63
385 SegResNet (Myronenko, 2018)	74.91	10.09	386 74.86	8.42	387 75.70	8.68	388 89.43	5.36
386 SegMamba (Xing et al., 2024)	76.16	10.25	387 77.20	7.50	388 78.20	7.79	389 90.02	4.75
SF-Net	84.41	5.28	80.29	5.99	81.14	6.34	91.63	3.69

387
 388 Table 3: Comparison of segmentation performance across different models on the BraTS 2025 (Pre).
 389 Metrics include Dice (higher is better) and HD95 (lower is better) for ET, TC, and WT.

391 Models	392 ET		393 TC		394 WT	
	Dice \uparrow	392 HD95 \downarrow	Dice \uparrow	393 HD95 \downarrow	Dice \uparrow	394 HD95 \downarrow
392 UNETR (Hatamizadeh et al., 2022)	83.69	5.85	393 89.36	5.43	394 91.93	5.64
393 SwinUNETR (Hatamizadeh et al., 2021)	85.52	4.48	394 91.73	4.02	395 93.11	5.02
394 SegResNet (Myronenko, 2018)	86.39	4.16	395 91.30	3.91	396 93.18	4.29
395 SegMamba (Xing et al., 2024)	86.69	4.53	396 91.90	4.27	397 93.32	4.67
SF-Net	87.52	3.79	91.79	3.27	93.83	3.46

399 4.3 RESULTS ON 3D BRAIN TUMOR BENCHMARK

400 To assess the generalizability of SF-Net beyond 2D images, we conduct experiments on the BraTS
 401 2025 3D brain tumor segmentation benchmark. We report Dice score (DSC) and Hausdorff distance
 402 (HD95) for tumor subregions. Results compared with UNETR (Hatamizadeh et al., 2022), Swin-
 403 UNETR (Hatamizadeh et al., 2021), SegResNet (Myronenko, 2018), and SegMamba (Xing et al.,
 404 2024) are summarized in Tables 2 and 3.

405 On the BraTS 2025 Pre+Post setting (Table 2), SF-Net substantially outperforms all baselines across
 406 all subregions. For the challenging RC class, SF-Net achieves 84.41% DSC and 5.28 mm HD95,
 407 outperforming SegMamba by +8.3 DSC and reducing HD95 by 5 mm. Consistent gains are also
 408 observed for ET, TC, and WT, with DSC improvements of 2–3 points and HD95 reduced by 2–4
 409 mm compared to the strongest baselines. On the BraTS 2025 Pre-only setting (Table 3), which
 410 contains only pre-treatment scans, SF-Net still delivers the best results. It achieves 87.52% DSC
 411 on ET, 91.79% on TC, and 93.83% on WT, while also obtaining the lowest HD95 values across all
 412 categories. These results demonstrate that SF-Net generalizes well across imaging protocols and
 413 remains robust even under modality constraints.

414 Overall, the BraTS 2025 results confirm that SF-Net is not limited to 2D tasks but extends effec-
 415 tively to 3D volumetric segmentation. The fixation connectivity prior and ROI-guided MoE decoder
 416 provide consistent improvements in both accuracy and boundary precision, particularly for complex,
 417 multi-component tumor structures.

420 4.4 ABLATION STUDY

421 To assess the contribution of each component in SF-Net, we perform ablation experiments on the
 422 2D datasets, with results summarized in Table 4. Removing the saccade path (w/o DINO) leads to
 423 a noticeable performance drop across all benchmarks confirming that global semantic sweeps from
 424 DINO provide essential priors. Similarly, removing the fixation connectivity module (w/o FCM)
 425 consistently degrades results, especially on CVC, highlighting the importance of modeling fixation
 426 relations for accurate localization of small and irregular structures.

427 We also investigate different routing strategies in the Gaze-MoE decoder. While sparse Top- k rout-
 428 ing (w/ Top2 or w/ Top3) achieves competitive performance, it generally underperforms the default
 429 Top-1 routing. For example, on BUSI, Top-3 routing yields 66.78% IoU compared to 68.41% with
 430 Top-1 routing. This shows that assigning each token to its most relevant expert (Top-1) is more
 431 stable and better exploits fixation priors than distributing tokens across multiple experts.

432
433
434Table 4: Ablation study on the effect of the saccade path (DINO), fixation connectivity (FCM) and Top- k routing.

Methods	BUSI (Al-Dhabayni et al., 2020)		GlaS (Valanarasu et al., 2021)		CVC (Bernal et al., 2015)	
	IoU↑	F1↑	IoU↑	F1↑	IoU↑	F1↑
SF-Net	68.41±4.02	80.52±3.04	88.68±0.54	93.98±0.28	86.02±0.44	92.41±0.26
SF-Net w/o DINO	67.23±5.04	79.53±3.96	86.51±0.85	92.72±0.46	85.21±0.53	91.92±0.35
SF-Net w/o FCM	67.42±5.50	79.62±4.31	85.92±0.78	92.39±0.44	84.43±1.61	91.44±0.95
SF-Net w/ Top2	68.13±5.01	80.06±3.98	88.63±0.67	93.94±0.36	85.40±2.21	92.04±1.33
SF-Net w/ Top3	66.78±4.83	79.26±3.79	88.64±0.71	93.95±0.38	85.83±0.86	92.32±0.53

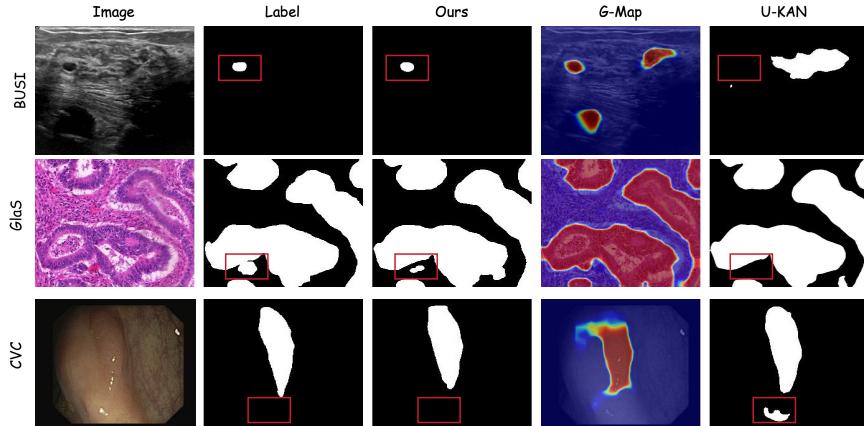
440
441

Overall, SF-Net achieves the best performance among all variants. These results verify that the saccade path, fixation connectivity, and ROI-guided MoE routing are complementary, and their integration is necessary to achieve consistent improvements across heterogeneous datasets.

445

446 4.5 VISUALIZATION

447



462

Figure 3: Qualitative comparison of segmentation results on BUSI, GlaS, and CVC datasets. From left to right: input image, ground-truth label, SF-Net prediction, G-Map, and U-KAN prediction.

463

To further illustrate the effectiveness of SF-Net, we provide qualitative comparisons on representative samples from 2D datasets, as shown in Figure 3. Columns correspond to the input image, ground-truth label, our segmentation results, the generated G-Map, and predictions from U-KAN.

464

Across three datasets, SF-Net produces more accurate and robust delineations than U-KAN, particularly in challenging regions highlighted by red boxes. On BUSI, our method captures small tumor regions with higher fidelity, while U-KAN tends to over-segment. On GlaS, SF-Net better preserves fine gland boundaries and detects small isolated structures that U-KAN misses. On CVC, our model eliminates false positives and provides tighter polyp contours. The G-Map visualizations further demonstrate that the fixation connectivity prior effectively highlights clinically relevant regions, guiding the decoder to focus computational resources where errors are most likely to occur.

465

466

5 CONCLUSION

467

468

In this paper, we presented SF-Net, a biologically inspired framework that embeds the saccade-fixation mechanism into a U-shaped architecture. SF-Net integrates a Saccade-Fixation Encoder, a Fixation Connectivity Module generating a Gaze ROI Map, and a Gaze-MoE Decoder for ROI-guided expert allocation. Experiments on four heterogeneous 2D and 3D medical benchmarks show that SF-Net consistently surpasses state-of-the-art CNN-, Transformer-, Mamba-, and KAN-based models, achieving more accurate lesion segmentation with improved efficiency. This work demonstrates the potential of gaze-inspired designs for advancing precise, efficient, and interpretable medical image analysis.

486 REFERENCES
487

488 Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset of breast ultra-
489 sound images. *Data in brief*, 28:104863, 2020.

490 Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Rodríguez, and
491 Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation
492 vs. saliency maps from physicians. *Computerized medical imaging and graphics*, 43:99–111,
493 2015.

494 Raymond Bertram, Johanna Kaakinen, Frank Bensch, Laura Helle, Eila Lantto, Pekka Niemi, and
495 Nina Lundbom. Eye movements of radiologists reflect expertise in ct study interpretation: a
496 potential tool to measure resident development. *Radiology*, 281(3):805–815, 2016.

497 Ali Borji. Addressing a fundamental limitation in deep vision models: lack of spatial attention.
498 *arXiv preprint arXiv:2407.01782*, 2024.

499 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
500 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
501 2022.

502 BC Good, LA Cooperstein, GB DeMarino, LM Miketic, RC Gennari, HE Rockette, and D Gur.
503 Does knowledge of the clinical history affect the accuracy of chest radiograph interpretation?
504 *AJR. American journal of roentgenology*, 154(4):709–712, 1990.

505 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
506 preprint arXiv:2312.00752*, 2023.

507 Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth, and Daguang Xu.
508 Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In
509 *International MICCAI brainlesion workshop*, pp. 272–284. Springer, 2021.

510 Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko, Bennett Land-
511 man, Holger R Roth, and Daguang Xu. Unetr: Transformers for 3d medical image segmentation.
512 In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 574–
513 584, 2022.

514 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *Proceedings of the IEEE
515 conference on computer vision and pattern recognition*, pp. 7132–7141, 2018.

516 Chien-Hsiang Huang, Hung-Yu Wu, and Youn-Long Lin. Hardnet-mseg: A simple encoder-decoder
517 polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps. *arXiv preprint
518 arXiv:2101.07172*, 2021.

519 Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnunet:
520 a self-configuring method for deep learning-based biomedical image segmentation. *Nature
521 methods*, 18(2):203–211, 2021.

522 Konstantinos Kamnitsas, Enzo Ferrante, Sarah Parisot, Christian Ledig, Aditya V Nori, Antonio
523 Criminisi, Daniel Rueckert, and Ben Glocker. Deepmedic for brain tumor segmentation. In
524 *International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain
525 injuries*, pp. 138–149. Springer, 2016.

526 Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick. Pointrend: Image segmentation as
527 rendering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
528 tion*, pp. 9799–9808, 2020.

529 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
530 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
531 computation and automatic sharding. *arXiv preprint arXiv:2006.16668*, 2020.

532 Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, Yifan Liu, Zhen Chen, and Yix-
533 uan Yuan. U-kan makes strong backbone for medical image segmentation and generation. In
534 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4652–4660, 2025.

540 Yutong Liu, Haijiang Zhu, Mengting Liu, Huaiyuan Yu, Zihan Chen, and Jie Gao. Rolling-unet:
 541 Revitalizing mlp’s ability to efficiently extract long-distance dependencies for medical image
 542 segmentation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp.
 543 3819–3827, 2024a.

544

545 Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
 546 Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. *arXiv preprint*
 547 *arXiv:2404.19756*, 2024b.

548 Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
 549 image segmentation. *arXiv preprint arXiv:2401.04722*, 2024.

550

551 Andriy Myronenko. 3d mri brain tumor segmentation using autoencoder regularization. In *Interna-*
 552 *tional MICCAI brainlesion workshop*, pp. 311–320. Springer, 2018.

553

554 Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Matthias Heinrich, Kazunari Misawa,
 555 Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
 556 Learning where to look for the pancreas. *arXiv preprint arXiv:1804.03999*, 2018.

557

558 Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures
 559 of experts. *arXiv preprint arXiv:2308.00951*, 2023.

560

561 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
 562 Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
 563 *Advances in Neural Information Processing Systems*, 34:8583–8595, 2021.

564

565 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 566 ical image segmentation. In *International Conference on Medical image computing and computer-*
 567 *assisted intervention*, pp. 234–241. Springer, 2015.

568

569 Jason M Samonds, Wilson S Geisler, and Nicholas J Priebe. Natural image and receptive field
 570 statistics predict saccade sizes. *Nature neuroscience*, 21(11):1591–1599, 2018.

571

572 Abdelrahman Shaker, Muhammad Maaz, Hanooona Rasheed, Salman Khan, Ming-Hsuan Yang, and
 573 Fahad Shahbaz Khan. Unetr++: delving into efficient and accurate 3d medical image segmenta-
 574 tion. *IEEE Transactions on Medical Imaging*, 43(9):3377–3390, 2024.

575

576 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 577 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 578 *arXiv preprint arXiv:1701.06538*, 2017.

579

580 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 581 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 582 *preprint arXiv:2508.10104*, 2025.

583

584 Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka,
 585 Lei Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with
 586 learnable proposals. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 587 *recognition*, pp. 14454–14463, 2021.

588

589 Jeya Maria Jose Valanarasu and Vishal M Patel. Unext: Mlp-based rapid medical image segmen-
 590 tation network. In *International conference on medical image computing and computer-assisted*
 591 *intervention*, pp. 23–33. Springer, 2022.

592

593 Jeya Maria Jose Valanarasu, Poojan Oza, Ilker Hacihaliloglu, and Vishal M Patel. Medical trans-
 594 former: Gated axial-attention for medical image segmentation. In *International conference on*
 595 *medical image computing and computer-assisted intervention*, pp. 36–46. Springer, 2021.

596

597 Gui Wang, Yuexiang Li, Wenting Chen, Meidan Ding, Wooi Ping Cheah, Rong Qu, Jianfeng Ren,
 598 and Linlin Shen. S³-mamba: Small-size-sensitive mamba for lesion segmentation. In *Proceedings*
 599 *of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 7655–7664, 2025.

594 Calden Wloka, Iuliia Kotseruba, and John K Tsotsos. Active fixation control to predict saccade
595 sequences. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
596 pp. 3184–3193, 2018.

597 Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
598 attention module. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
599 3–19, 2018.

600 Zhaohu Xing, Tian Ye, Yijun Yang, Guang Liu, and Lei Zhu. Segmamba: Long-range sequential
601 modeling mamba for 3d medical image segmentation. In *International conference on medical*
602 *image computing and computer-assisted intervention*, pp. 578–588. Springer, 2024.

603 Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
604 A nested u-net architecture for medical image segmentation. In *International workshop on deep*
605 *learning in medical image analysis*, pp. 3–11. Springer, 2018.

606 A APPENDIX

607 You may include other additional sections here.