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Abstract

In this paper, we investigate the question: Given a small number of datapoints, for
example N = 30, how tight can PAC-Bayes and test set bounds be made? For
such small datasets, test set bounds adversely affect generalisation performance by
withholding data from the training procedure. In this setting, PAC-Bayes bounds
are especially attractive, due to their ability to use all the data to simultaneously
learn a posterior and bound its generalisation risk. We focus on the case of i.i.d.
data with a bounded loss and consider the generic PAC-Bayes theorem of Germain
et al. While their theorem is known to recover many existing PAC-Bayes bounds,
it is unclear what the tightest bound derivable from their framework is. For a
fixed learning algorithm and dataset, we show that the tightest possible bound
coincides with a bound considered by Catoni; and, in the more natural case of
distributions over datasets, we establish a lower bound on the best bound achievable
in expectation. Interestingly, this lower bound recovers the Chernoff test set bound
if the posterior is equal to the prior. Moreover, to illustrate how tight these bounds
can be, we study synthetic one-dimensional classification tasks in which it is
feasible to meta-learn both the prior and the form of the bound to numerically
optimise for the tightest bounds possible. We find that in this simple, controlled
scenario, PAC-Bayes bounds are competitive with comparable, commonly used
Chernoff test set bounds. However, the sharpest test set bounds still lead to better
guarantees on the generalisation error than the PAC-Bayes bounds we consider.

1 Introduction

Generalisation bounds are of both practical and theoretical importance. Practically, tight bounds
provide certificates that algorithms will perform well on unseen data. Theoretically, the bounds
and underlying proof techniques can help explain the phenomenon of learning. Among the tightest
known bounds are PAC-Bayes (McAllester, 1999) and test set bounds (Langford, 2002). In this paper,
we investigate their numerical tightness when applied to small datasets (N ≈ 30–60 datapoints).
The comparison between PAC-Bayes and test set bounds is particularly interesting in this setting
as one cannot discard data to compute a test set bound without significantly harming post-training
performance due to a reduced training set size. PAC-Bayes on the other hand provides valid bounds
while using all of the data for learning, since it provides bounds that hold uniformly. The small
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data setting can also be quite different from the big data setting, as lower-order terms in PAC-Bayes
bounds have a non-negligible contribution, and the detailed structure of the bound becomes important.

Fortunately, we do not have to study each PAC-Bayes bound separately: remarkably, Germain et al.
(2009) showed that a wide range of bounds can be obtained as special cases of a single generic
PAC-Bayes theorem that captures the central ideas of many PAC-Bayes proofs (see also Bégin et al.
(2016)). This theorem has a free parameter: it holds for any convex function, ∆. By choosing
∆ appropriately, one can recover the well-known bounds of Langford and Seeger (2001), Catoni
(2007) and other bounds. We focus on two questions related to this set-up. First, what is the tightest
bound achievable by any convex function ∆? An answer would characterise the limits of the generic
PAC-Bayes theorem, and thereby of a wide range of bounds, by telling us how much improvement
could be obtained before new ideas or assumptions are needed. Second, since test set bounds are
the de facto standard for larger datasets, but PAC-Bayes has benefits when N is small, we ask: in
the small data regime, can PAC-Bayes be tighter than test set bounds?

In Section 3, Theorem 4, we show that in the (artificial) case when ∆ can be chosen depending on
the dataset (without taking a union bound), the tightest version of the generic PAC-Bayes theorem
is obtained by one of the Catoni bounds (Catoni, 2007). In the more realistic case when ∆ must
be chosen before sampling the dataset, we do not fully characterise the tightest bound, but in
Corollary 3 we lower bound the tightest bound achievable (in expectation) with any ∆. We also
provide numerical evidence in Figure 2 that suggests this lower bound can in some cases be attained,
by flexibly parameterising a convex function ∆ with a constrained neural network. Interestingly,
this lower bound coincides with removing a lower-order term from the Langford and Seeger (2001)
bound (something that Langford (2002) conjectured was possible), and relaxes to the well-known
Chernoff test set bound (see Theorem 2 below) when the PAC-Bayes posterior is equal to the prior.

In Section 4, we investigate the tightness of PAC-Bayes and test set bounds in synthetic 1D
classification. The goal of this experiment is to find out how tight the bounds could be made
in principle. We use meta-learning to adapt all aspects of the bounds and learning algorithms,
producing meta-learners that are trained to optimise the value of the bounds on this task distribution.
We find that, in this setting, PAC-Bayes can be competitive with the Chernoff test set bound,
but is outperformed by the binomial tail test set bound, of which the Chernoff bound is a
relaxation. This suggests that, for standard PAC-Bayes to be quantitatively competitive with the
best test set bounds on small datasets, a new proof technique leading to bounds that gracefully
relax to the binomial tail bound is required. Code to reproduce all experiments can be found at
https://github.com/cambridge-mlg/pac-bayes-tightness-small-data.

2 Background and Related Work

We consider supervised learning. Let X and Y denote the input space and output space, and let
Z = X×Y . Assume there is an (unknown) probability measure2 D over Z , with the dataset S ∼ DN .
Denote the hypothesis space by H ⊆ YX . A learning algorithm is then a map ZN → H. In PAC-
Bayes, we also consider maps ZN → M1(H), where M1 is the set of probability measures on its
argument. The performance of a hypothesis h ∈ H is measured by a loss function ℓ : Z ×H → [0, 1].
The (generalisation) risk of h is RD(h) := E(x,y)∼D[ℓ((x, y), h)] and its empirical risk on S is
RS(h) :=

1
N

∑

(x,y)∈S ℓ((x, y), h). For Q ∈ M1(H) its (generalisation Gibbs) risk is RD(Q) :=
Eh∼Q[RD(h)] and its empirical (Gibbs) risk is RS(Q) := Eh∼Q[RS(h)]. In PAC-Bayes, we usually
fix a prior P ∈ M1(H), chosen without reference to S and learn a posterior Q ∈ M1(H) which

can depend on S. The KL-divergence between Q and P is defined as KL(Q‖P ) =
∫

log dQ
dP dQ

if Q ≪ P and ∞ otherwise. Let C denote the set of proper, convex, lower semicontinuous (l.s.c.)
functions R2 → R ∪ {+∞}; if a convex function’s domain is a subset of R2, extend it to all of R2

with the value +∞. See Appendix C for more details on convex analysis, which we use in Section 3.

Test Set Bounds. Test set bounds rely on a subset of data which is not used to select the hypothesis,
called a test set or held-out set. Let S = Strain ∪ Stest, with |S| = N , |Strain| = Ntrain and
|Stest| = Ntest. In Theorems 1 and 2, we assume h is chosen independently of Stest. For the zero-
one loss, ℓ((x, y), h) := ✶[h(x) 6= y], we have that NtestRStest

(h) is a binomial random variable
with parameters (Ntest, RD(h)). This leads to the following simple bound, which, for ℓ ∈ {0, 1}, is
tight among test set bounds:

2We will colloquially refer to measures on sets without specifying a σ-algebra. We implicitly assume
functions are measurable with respect to the σ-algebras on which the relevant measures are defined.
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Theorem 1 (Binomial tail test set bound, Langford, 2005, Theorem 3.3).

Let e(M,k, δ) := sup
{

p : δ ≤ ∑k
i=0

(

M
i

)

pi(1−p)M−i
}

. For any h ∈ H, ℓ ∈ {0, 1} and δ ∈ (0, 1),

Pr
(

RD(h) ≤ e(Ntest, NtestRStest
(h), δ)

)

≥ 1− δ. (1)

Often, looser bounds with a simpler form are applied. These can be obtained via the Chernoff method:

Theorem 2 (Chernoff test set bound, Langford, 2005, Corollary 3.7).

For q, p ∈ [0, 1], let kl(q, p) := q log q
p + (1− q) log 1−q

1−p . For any h ∈ H, ℓ ∈ [0, 1], and δ ∈ (0, 1),

Pr
(

kl(RStest
(h), RD(h)) ≤ 1

Ntest
log 1

δ

)

≥ 1− δ. (2)

PAC-Bayes Bounds. The PAC-Bayes approach bounds the generalisation Gibbs risk of stochastic
classifiers, and does not require discarding data, as all the data can be used to choose the posterior,
while still obtaining a valid generalisation bound. Since the seminal paper of McAllester (1999), a
large variety of PAC-Bayes bounds have been derived. Germain et al. (2009) prove a very general
form of the PAC-Bayes theorem which encompasses many of these (see also Bégin et al. (2016)
and Rivasplata et al. (2020)). Their proof technique consists of a series of inequalities shared by
PAC-Bayes proofs (Jensen’s, change of measure, Markov’s, supremum over risk3), and reveals their
common structure. Thus understanding the properties of this generic theorem can give insight into
many PAC-Bayes bounds at once:

Theorem 3 (Generic PAC-Bayes theorem, Bégin et al. (2016) and Germain et al. (2009)).4 Fix
P ∈ M1(H), ℓ ∈ [0, 1], δ ∈ (0, 1), and ∆ a proper, convex, l.s.c. function [0, 1]2 → R ∪ {+∞}.
Then

Pr
(

(∀Q) ∆(RS(Q), RD(Q)) ≤ 1
N

[

KL(Q‖P ) + log I∆(N)
δ

])

≥ 1− δ, (3)

where I∆(N) := supr∈[0,1]

∑N
k=0

(

N
k

)

rk(1− r)N−keN∆(k/N,r).

Remark 1. We lose no generality in assuming ∆(q, ·) is monotonically increasing for all q ∈ [0, 1],
i.e. for any convex ∆ we can define a ∆′ that is monotonically increasing in its second argument and
produces a bound that is at least as tight as the bound produced by ∆. See Appendix D for a proof.

Note that the PAC-Bayes bound holds simultaneously for all posteriors Q, and hence is valid even
when Q is chosen by minimising the bound. For completeness, we provide a proof of Theorem 3
in Appendix B. Following Germain et al. (2009), we briefly recap some of the bounds that can
be recovered as special cases (or looser versions) of Theorem 3. Setting ∆(q, p) = Cβ(q, p) :=
− log(1 + p(e−β − 1))− βq for β > 0, we recover the Catoni bounds:

Corollary 1 (Catoni, 2007, Theorem 1.2.6). For any β > 0,

Pr
(

(∀Q) RD(Q) ≤ 1
1−e−β

[

1− exp
(

−βRS(Q)− 1
N

(

KL(Q‖P ) + log 1
δ

))])

≥ 1− δ. (4)

This specifies a bound for every value of β > 0. If we instead choose ∆(q, p) = kl(q, p), we obtain
the bound of Langford and Seeger (2001), also called the PAC-Bayes-kl bound, but with the slightly
sharper dependence on N established by Maurer (2004):

Corollary 2 (Langford and Seeger, 2001, Theorem 3, Maurer, 2004, Theorem 5).

Pr
(

(∀Q) kl(RS(Q), RD(Q)) ≤ 1
N

[

KL(Q‖P ) + log 2
√
N

δ

])

≥ 1− δ. (5)

Corollary 2 is actually very slightly looser than Theorem 3 with ∆ = kl, since Maurer (2004) upper
bounds Ikl(N) by 2

√
N using Stirling’s formula.5 The Catoni and PAC-Bayes-kl bounds are among

the tightest PAC-Bayes bounds known and have been applied in settings where numerical tightness
is key, such as obtaining generalisation bounds for stochastic neural networks (Dziugaite & Roy,
2017; Zhou et al., 2019). Many other bounds can be obtained by loosening these bounds. Applying
Pinsker’s inequality kl(q, p) ≥ 2(q − p)2 to Equation (5) yields the “square-root” version of the

3The supremum over risk step was introduced in Bégin et al. (2016), although for certain ∆ it can be omitted.
4We state a simpler version of their result WLOG, absorbing a free parameter into the function ∆.
5Maurer (2004) only proves this bound for N ≥ 8, but the cases where 1 ≤ N ≤ 7 can be easily verified

numerically (Germain et al., 2015, Lemma 19).
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∆

E[p
∆
]

(Theorem 3)

∃∆?

conjectured PAC-B.-kl
(Corollary 3)

≥
Chernoff
(Theorem 2)

Binomial tail
(Theorem 1)

Potential limits of the generic PAC-Bayes theorem (Theorem 3)
Test set bounds

Catoni: ∆ = Cβ

(Corollary 1)

PAC-B.-kl: ∆ = kl
(Corollary 2)

≥
Q=P

∄∆

Q=P

Figure 1: Illustration of the relationship between various PAC-Bayes and test set bounds; see Section 3. It
is unclear if there always exists a ∆ that recovers the conjectured PAC-Bayes-kl bound (and hence the Chernoff
bound when Q=P ; see Open Problem 1), but there certainly does not exist a ∆ that recovers the Binomial tail
bound when Q=P .

PAC-Bayes theorem (McAllester, 1999, 2003). The “PAC-Bayes-λ” (Thiemann et al., 2017) and
“PAC-Bayes-quadratic” bounds (Rivasplata et al., 2019) can be derived as loosened versions of the
PAC-Bayes-kl bound using the inequality kl(q, p) ≥ (q − p)2/(2p), valid for q < p. The “linear”
bound in McAllester (2013) can be derived by loosening the Catoni bound using: Cβ(q, p) ≤ A =⇒
p ≤ 1

1−β/2 (q +
1
βA), which is valid for β ∈ (0, 2).

How Tight Are PAC-Bayes Bounds? A fundamental question we can ask about a generalisation
bound is how tight it is, and whether it can be tightened. Comparing the PAC-Bayes-kl and Chernoff
test set bounds when Q = P (so the PAC-Bayes bound essentially becomes a test set bound) shows
they are identical except for a log(2

√
N)/N on the RHS of the PAC-Bayes-kl bound. Whether this

term (or similar discrepancies between PAC-Bayes and Occam bounds (Langford, 2002, Corollary
4.6.2); see Appendix A) can be removed has been an open question since Langford (2002, Problem
6.1.2). Maurer (2004) reduced this term to its current form, improving on work by Langford and
Seeger (2001). Interestingly, Germain et al. (2009, Proposition 2.1) shows that the expression obtained
by dropping log (2

√
N)/N from the PAC-Bayes-kl bound is identical to that obtained by illegally6

minimising the Catoni bound with respect to β; Catoni (2007, Theorem 1.2.8) shows that a union
bound can be used to, in a legal way, approximately optimise with respect to β at the cost of an
additional lower order term. The Chernoff test set bound is itself a looser version of the binomial tail
bound, raising the question of whether a PAC-Bayes bound can be found that reduces to the binomial
tail bound when Q = P . We provide new insights into these problems in Section 3.

Researchers have also compared PAC-Bayes bounds numerically on actual learning problems. Lang-
ford (2005) and Germain et al. (2009) were able to obtain reasonable guarantees on small datasets.
However, Langford (2005) found that on datasets with N ≈ 145, PAC-Bayes was outperformed
by test set bounds. Dziugaite and Roy (2017), Langford and Caruana (2001), and Pérez-Ortiz et al.
(2021) provide non-vacuous bounds for neural networks using PAC-Bayes. Even so, Dziugaite et al.
(2021) states that tighter bounds would be obtained using a test set instead. In Section 4 we find that
if the bounds and learning algorithms are optimised for a task distribution, PAC-Bayes can be tight
enough to compete with the Chernoff test set bound, but not the binomial tail test set bound.

3 Characterising the Limits of the Generic PAC-Bayes Proof Technique

This section establishes our main theoretical contributions, which characterise the limits of the generic
PAC-Bayes theorem (Theorem 3). For a convex ∆ ∈ C, Theorem 3 gives a high-probability upper

bound on ∆(RS(Q), RD(Q)). Define B[f, y] := sup {p ∈ [0, 1] : f(p) ≤ y} for f : [0, 1] → R
and y ∈ R, where we take sup∅ = 1. This upper bound (Theorem 3) can be “inverted” to obtain a

high-probability upper bound on RD(Q): with probability at least 1− δ, for all Q ∈ M1(H),

RD(Q) ≤ p∆ where p∆ := B
[

∆(RS(Q), · ), 1
N

(

KL(Q‖P ) + log I∆(N)
δ

)]

. (6)

Since (6) holds for all ∆ ∈ C, a natural question is: Which ∆ minimises p∆? This would characterise
how tight, numerically, PAC-Bayes theorems can be made without introducing ideas beyond those
needed to prove the bounds stated in Section 2. Before considering the case when ∆ is selected
before observing S ∼ DN , we first characterise the optimal ∆ in the simplified scenario where ∆
can depend on the dataset S and the posterior Q (Theorem 4). This setting is artificial, since choosing

6That is, optimising β depending on the dataset S without taking a union bound.
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Figure 2: The tightest Catoni bound is the optimal generic PAC-Bayes bound for a fixed dataset, but not
the optimal expected bound for a random dataset. We optimise a convex function with H hidden units to
minimise p

∆
with δ = 0.1, N = 30. (a) and (b) consider fixed q and KL (precise values below) and show

the difference with the best Catoni bound (Theorem 4); (c) and (d) consider random q and KL and show the
expected difference with the conjectured PAC-Bayes-kl bound (Corollary 3). Shaded regions show the minimum
and maximum over ten initialisations. All plots show the PAC-Bayes-kl bound (dotted red) and (c) and (d)
show the optimal Catoni bound with parameter β∗ (dashed orange). All runs quickly converged to non-vacuous
values. (a): (q,KL) = (2%, 1), β∗ ≈ 2.24, H = 256. (b): (q,KL) = (5%, 2), β∗ ≈ 1.84, H = 256.
(c): (q,KL) ∈ {(2%, 1), (5%, 2)} uniformly, β∗ ≈ 1.99, H = 512. (d): (q,KL) ∈ {(30%, 1), (40%, 50)}
uniformly, β∗ ≈ 2.32, H = 1024.

∆ based on S (without taking a union bound) does not yield a valid generalisation bound. However,
using Theorem 4 as a building block, we later derive a lower bound on the best possible generic
PAC-Bayes bound (in expectation) in the more realistic case when we cannot choose ∆ based on S
(Corollary 3). We then connect this lower bound to various existing PAC-Bayes and test set bounds.
An overview is shown in Figure 1. We now state our first result:

Theorem 4. Given any fixed dataset S and any Q,P ∈ M1(H), the tightest Catoni bound is as
tight as the tightest bound possible within the generic PAC-Bayes theorem (Theorem 3). Precisely,
let ∆ ∈ C and δ ∈ (0, 1). Choose some fixed values for RS(Q) =: q ∈ [0, 1] and KL(Q‖P ) =:
KL ∈ [0,∞). If q > 0, then there exists a β ∈ (0,∞) such that p∆ ≥ pCβ

, where p is defined in

Equation (6). Moreover, if q = 0, then p∆ ≥ limβ→∞ pCβ
.

Remark 2. By Theorem 4, for all ∆ ∈ C, we have p∆ ≥ infβ>0 pCβ
, and, by Proposition 2.1 of

Germain et al. (2009), infβ>0 pCβ
= B[kl(q, · ), 1

N (KL+ log 1
δ )]. Hence, for all ∆ ∈ C, it holds

that p∆ ≥ B[kl(q, · ), 1
N (KL+ log 1

δ )], which is also shown directly in the proof of Theorem 4
(Equation (17)). Note that optimising β in this way is illegal in the general case when the dataset S
(and hence q and KL) is stochastic, and would typically require a union bound to be valid.

We defer the proof of Theorem 4 to the end of this section. We numerically verify Theorem 4 by
optimising p∆ with respect to an arbitrary convex ∆ for various settings of fixed q and KL. To
parametrise a convex ∆, we use a one-hidden-layer neural network with positive weights at the output
layer and softplus nonlinearities. The inversion performed by B is approximated numerically by
discretising the second argument of ∆ and detecting an upcrossing. Gradients are then approximated
using the inverse function theorem: d

dθB[fθ, c(θ)] = (∂θc(θ)− ∂θfθ(x))/∂xfθ(x). See Appendix F

for details.7 Figures 2a and 2b show the difference between the numerically optimised ∆ and the best
Catoni bound for two settings of fixed q ∈ [0, 1] and KL ∈ [0,∞). In both cases, p∆ − infβ>0 pCβ

appears to converge to zero from above, as expected from Theorem 4. Interestingly, Appendix F
shows that the learned ∆ can deviate substantially from Cβ , suggesting that there are choices for ∆
besides Catoni’s which achieve inf∆∈C p∆.

For any fixed dataset S, Theorem 4 states that the tightest bound is one of the Catoni bounds;
precisely: inf∆∈C p∆ = infβ>0 pCβ

. Note that the optimal value of β may depend on the dataset

S. The more interesting question is whether, when S ∼ DN is sampled randomly, one of the
Catoni bounds can still achieve the tightest bound (in expectation) for a single value of β that is
chosen before sampling S. The answer is no: Figure 2d gives a numerical counterexample where
inf∆∈C E[p∆] < E[pkl] < infβ>0 E[pCβ

]. Since the Catoni family of bounds cannot generally
achieve the tightest bound in expectation, which ∆ do? And how tight is inf∆∈C E[p∆]? Whilst we
do not have a full answer, we establish a simple lower bound on inf∆∈C E[p∆]. Define the conjectured

7Numerical inversion of ∆ when ∆ = kl has been considered by many authors, including Dziugaite and Roy
(2017) who use Newton’s method and Majumdar and Goldstein (2018) who propose using convex optimisation
methods. However, to our knowledge, the specific inversion algorithm we propose for general convex ∆, along
with the method for backpropagating through the inverse, are novel in the PAC-Bayes setting.
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PAC-Bayes-kl bound p as the quantity from Remark 2, which equals the PAC-Bayes-kl bound without
the 1

N log Ikl(N) term on the RHS:

p := B[kl(RS(Q), · ), 1
N (KL(Q‖P ) + log 1

δ )]. (7)

The conjectured PAC-Bayes-kl bound has not been proven to be a valid generalisation bound. When
S ∼ DN is random, Remark 2 tells us that inf∆∈C p∆ = p a.s. Taking expectations and interchanging
the expectation and infimum yields the following corollary:

Corollary 3. Consider the setting from Theorem 3. Then the expected conjectured PAC-Bayes-kl
bound E[p] gives a lower bound on all expected generalisation bounds obtained through the generic
PAC-Bayes theorem (Theorem 3). That is, for any distribution over datasets, any prior, and any
learning algorithm,

inf∆∈C E[p∆] ≥ E[p] (8)

Moreover, there exists a distribution over datasets, a prior, and a posterior such that equality holds.
For example, let (x, y) be constant almost surely, which reduces to the setting of Theorem 4. Note
that in (8), ∆ is chosen not depending on S, which leads to a valid generalisation bound on the LHS.

Figure 1 shows how Corollary 3 fits into the picture so far. The conjectured PAC-Bayes-kl bound is
at least as tight as the bound achieved by any ∆, but Corollary 3 does not establish the existence of
a ∆ which achieves it. Corollary 3 has practical utility: the conjectured PAC-Bayes-kl bound can
be used to prove optimality of a choice of ∆. Specifically, if a practitioner computes a valid bound
based on the generic PAC-Bayes theorem, and finds that it is close to the conjectured PAC-Bayes-kl
bound, they can be assured by Corollary 3 that they would not have gotten a much better bound
(in expectation) with any other choice of ∆. Conversely, the conjectured PAC-Bayes-kl bound can
quantify potential slack in the bound due to a suboptimal choice of ∆. Appendix H considers an

example of this application of Corollary 3 in the simplified scenario where RS(Q) = 1
2 almost surely.

The conjectured PAC-Bayes-kl bound also recovers the Chernoff test set bound (Theorem 2) when
setting Q = P . Since the binomial tail bound (Theorem 1) is strictly tighter than the Chernoff bound,
this shows there does not exist a ∆ such that the generic PAC-Bayes bound (Theorem 3) recovers the
Binomial tail bound when Q = P ; this is illustrated in Figure 1. What is unclear, however, is whether
there always exists a ∆ such that Theorem 3 recovers the Chernoff test set bound; or, alternatively,
such that the conjectured PAC-Bayes-kl bound is attained. A positive answer to the latter would
establish that the conjectured PAC-Bayes-kl bound is a valid generalisation bound.8 As a first piece
of evidence, the traces from Figures 2c and 2d suggest that a convex function could actually achieve
E[p]; see Appendix G for more traces. We leave a full resolution of this question as an open problem;
see Section 5. Interestingly, Figure 2c shows that a Catoni bound is sometimes nearly optimal even
in the stochastic case; we will see another example of this in Figure 3.

We end this section with the proof of Theorem 4. Recall that the Catoni family of bounds follows from
Theorem 3 by considering ∆(q, p) = Cβ(q, p) := Fβ(p)−βq with Fβ(p) := − log(p(e−β −1)+1)
and β > 0. To simplify the notation, we denote α = 1

N (KL+ log 1
δ ) ∈ (0,∞).

Proof of Theorem 4. The proof proceeds in three steps. In the first two steps, we lower bound
1
N log I∆(N) and upper bound ∆. In the third step, we use these bounds to lower bound
B[∆(q, · ), α+ 1

N log I∆(N)] and identify the result with a particular Catoni bound.

Lower bound on 1
N log I∆(N): Since ∆ ∈ C, it is equal to its own double convex conjugate:

∆(q, p) = ∆∗∗(q, p) = supcq,cp∈R
(cqq + cpp−∆∗(cq, cp)), where ∗ denotes convex conjugation.

Let X ∼ Bin(r,N). Then

I∆(N) = supr∈[0,1] E[e
N∆(X/N,r)] = supr∈[0,1] E[e

supcq,cp∈R
(cqX+Ncpr−N∆∗(cq,cp))] (9)

≥ supr∈[0,1] supcq,cp∈R
eNcpr−N∆∗(cq,cp)E[ecqX ] (10)

where E[ecqX ] = (r(ecq − 1) + 1)N is the moment-generating function of X . Consequently, taking
log, dividing by N , and noting that 1

N logE[ecqX ] = −F−cq (r),

1
N log I∆(N) ≥ A where A := supcq,cp∈R

[−∆∗(cq, cp) + supr∈[0,1](cpr −F−cq (r))]. (11)

8By Remark 2, p
∆

≥ p, so E[p
∆
] = E[p] implies that p

∆
= p a.s., meaning that p is a valid gen. bound.
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Upper bound on ∆: We upper bound ∆ by making ∆∗ as small as possible without exceeding
the supremum from (11). Note that A is finite, because ∆∗ is proper. Define ∆̃∗ as follows:
∆̃∗(cq, cp) = −A + supr∈[0,1](cpr − F−cq (r)). Note that ∆̃∗ is proper, convex as a pointwise

supremum of convex functions, and l.s.c. as a supremum of l.s.c. functions. In fact, ∆̃∗ is finite for
all inputs. As the notation suggests, define ∆̃ := (∆̃∗)∗. Then ∆̃∗ is indeed the convex conjugate of
∆̃, because ∆̃∗ ∈ C, so it is equal to its own double convex conjugate. Moreover,

∆̃(q, p) = A+ supcq,cp∈R
[cqq + cpp− supr∈[0,1](cpr −F−cq (r))] (12)

= A+ supcq∈R
[cqq + supcp∈R

[cpp−F∗
−cq (cp)]] (13)

= A+ supcq∈R
[cqq + F−cq (p)], (14)

by observing that p 7→ F−cq (p) ∈ C, so it is equal to its own double convex conjugate. Therefore,

∆̃(q, p) = A+ supcq∈R
C−cq (q, p)

(i)
= A+ kl(q, p) (15)

where (i) follows from a direct computation; see Lemma E.1 (Appendix E). Claim: For all q, p ∈ [0, 1],

∆̃(q, p) ≥ ∆(q, p). This follows from the definitions and finiteness of ∆̃∗ and A: for all cq, cp ∈ R,

−∆̃∗(cq, cp)+supr∈[0,1](cpr −F−cq (r)) = A ≥ −∆∗(cq, cp)+supr∈[0,1](cpr −F−cq (r)), (16)

which means that ∆̃∗ ≤ ∆∗, so ∆̃ ≥ ∆ by the order-reversing property of the convex conjugate.

Conclusion: Assume that p∆<1; otherwise, any β>0 works. To begin with, use the previous steps:

p∆ = B[∆(q, · ), α+ 1
N log I∆(N)]

(11), claim

≥ B[∆̃(q, · ), α+A]
(15)
= B[kl(q, · ), α] = p. (17)

Since α > 0, clearly p > q, so 0 ≤ q < p < 1. Hence, if q > 0, then there exists a β > 0 such that

kl(q, p) = Cβ(q, p) (Lemma E.2; Appendix E). Using that p 7→ Cβ(q, p) is continuous and strictly

increasing for all β > 0, we have that p = B[Cβ(q, · ), α], so

p∆ ≥ B[Cβ(q, · ), α]
(i)
= B[Cβ(q, · ), α+ 1

N log ICβ
(N)] = pCβ

, (18)

where (i) uses that 1
N log ICβ

(N) = 0 (Lemma E.3; Appendix E). If q = 0, then kl(0, p) =
limβ→∞ Cβ(0, p) (Lemma E.2; Appendix E), so p∆≥B[ lim

β→∞
Cβ(0, ·), α], and conclude like in (18)

using Lemma E.4 (Appendix E).

4 Meta-Learning the Tightest Bounds for Synthetic Classification

We now consider, for a particular distribution over tasks, how tight each bound can be made in
expectation. Two questions naturally arise: Which PAC-Bayes bounds are tightest? and Can PAC-
Bayes bounds be tighter than test set bounds? While test set bounds have traditionally been considered
tighter than PAC-Bayes bounds, here we work in the small data regime where a substantial proportion
of the data must be removed to form a test set, which could impact generalisation performance and
hence lead to worse bounds. Our goal is not to compare these bounds when using standard practice,
but to see how tight they can be in principle if we use every tool in our toolbox to minimise the
expected bounds.9 While these optimisations will be impractical for large models and datasets, they
can provide some statistical insight.

Learning Algorithm. Certain learning algorithms may work better with test set bounds, and others
with PAC-Bayes bounds. Instead of choosing a fixed algorithm, we meta-learn (Schmidhuber, 1987;
Thrun & Pratt, 2012) separate algorithms to optimise each bound in expectation: we parametrise a
hypothesis space Hθ and a posterior map Qθ : ZN → M1(Hθ) by a finite dimensional vector θ,
which is trained to optimise the expected bound (we will amalgamate all meta-learnable parameters
into the single vector θ). This is explained in more detail below. This way, we obtain algorithms that
are optimised for each bound. After meta-learning, we can further refine each PAC-Bayes posterior
by minimising the PAC-Bayes bound, see Appendix I.4.

Task Distribution. In meta-learning, we refer to a data-generating distribution D and dataset
S ∼ DN as a task. We consider a distribution over tasks, D ∼ T , where T is a distribution over

9Our goal here is to minimise high probability PAC-Bayes and test set bounds in expectation. See Dziugaite
et al. (2021, Appendix J) for a relevant discussion.
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data-generating distributions, and aim to find the best expected bounds for this distribution achievable
by an optimised algorithm.10 We choose especially simple learning tasks — synthetic 1-dimensional
binary classification problems, generated by thresholding Gaussian process (GP) samples — which
allows us to fully control the task distribution and easily inspect predictive distributions visually to
diagnose learning. Appendix I.1 contains full details.

Priors. The choice of prior is crucial in PAC-Bayes, and the role of data-dependent priors (DDPs)
(Ambroladze et al., 2007; Parrado-Hernández et al., 2012; Pérez-Ortiz et al., 2021) has been gaining
increased attention. This involves splitting the dataset into N = Nprior + Nrisk datapoints. The
DDP is allowed to depend on the prior set of size Nprior (standard priors use Nprior = 0), and
the risk bound is computed on the risk set of size Nrisk. Crucially, the bound is valid when the
posterior depends on all N datapoints. Recently, Dziugaite et al. (2021) showed that DDPs can
lead to tighter expected bounds than the optimal non-data-dependent prior, and are sometimes even
required to obtain non-vacuous bounds. Pérez-Ortiz et al. (2021) also report much tighter bounds
when using DDPs. In our experiments we meta-learn a DDP as a map from the prior set to the
prior, Pθ : ZNprior → M1(H). To compare PAC-Bayes DDPs against test set bounds, we sweep the
prior/train set proportion from 0 to 0.8 and see what the tightest value obtained is. Strictly this would
require a union bound over the proportions, but here we are primarily interested in comparing the
various bounds against each other on an even footing and vary the proportion for illustrative purposes.

The Meta-Learning Objective. We now discuss meta-learning in more detail. During meta-training,
θ is trained to optimise the expected PAC-Bayes generalisation bound over the task distribution:

ED∼T ES∼DN B
[

∆θ(RSrisk
(Qθ(S)), · ), 1

Nrisk

(

KL(Qθ(S)‖Pθ(Sprior)) + log
I∆θ

(Nrisk)

δ

)]

, (19)

where the θ in ∆θ denotes that some bounds (Catoni and learned convex function) have meta-learnable
parameters. Alternatively, for a meta-learner that minimises a test set bound, the objective is simply
ED∼T ES∼DN RStest

(Qθ(Strain)), since all test set bounds are monotonic in the test set risk. We
use the 0/1 loss. As the classifiers are stochastic, the empirical risk is still differentiable with
respect to θ. In contrast to PAC-Bayes, the predictor that minimises the test set bound can be made
deterministic after θ is learned, since it tends to eventually learn essentially deterministic classifiers;
see Appendix I.2. We sample T = 80 000 tasks Dt ∼ T , with associated datasets St ∼ DN

t . These
form the meta-trainset. Additionally, we sample 1024 tasks that form a meta-testset used to estimate
the average bounds over T after meta-training. For the PAC-Bayes bounds, we then Monte Carlo
estimate (19). Hence, the final objective for a PAC-Bayes meta-learner is (a minibatched version of):

1
T

∑T
t=1 B

[

∆θ(RSt,risk
(Qθ(St)), · ), 1

Nrisk

(

KL(Qθ(St)‖Pθ(St,prior)) + log
I∆θ

(Nrisk)

δ

)]

. (20)

Similarly, the objective for the test set bound meta-learner is 1
T

∑T
t=1 RSt,test

(Qθ(St,train)). The
bounds we compute on datasets in the meta-testset, after meta-training is complete and θ is frozen,
are valid even though θ was optimised on the meta-trainset. This highlights a contrast between
our procedure and the PAC-Bayes meta-learning in Amit and Meir (2018), Liu et al. (2021), and
Rothfuss et al. (2021) and Farid and Majumdar (2021). While those works use PAC-Bayes to analyse
generalisation of a meta-learner on new tasks, we use PAC-Bayes to analyse generalisation within
individual tasks.

Parametrising the Meta-Learner and Hypothesis Space. We now describe how to parametrise the
hypothesis space Hθ and the maps Qθ, Pθ. We meta-learn a feature map φθ : R → RK and choose11

Hθ = {hw : hw(x) = sign〈w, φθ(x)〉, w ∈ RK}. For Qθ and Pθ Gaussian, this hypothesis space
allows us to compute the empirical Gibbs risk without Monte Carlo integration; see Appendix I.3 for
details. For the form of Qθ, we take inspiration from Neural Processes (NPs) (Garnelo, Rosenbaum,
et al., 2018; Garnelo, Schwarz, et al., 2018; Kim et al., 2019). NPs use neural networks to flexibly
parametrise a map from datasets to predictive distributions that respects the permutation invariance of
datasets (Zaheer et al., 2017). They are regularly benchmarked on 1D meta-learning tasks, making
them ideally suited. We make a straightforward modification to NPs to make them output Gaussian
measures over weight vectors w ∈ RK . Hence, they act as parametrisable maps from ZN to the set
of Gaussian measures on RK .

10We could also consider drawing all datasets from a single task D, which would more directly match
Section 3. We regard this case as less interesting, since we would often want a bound to perform well on a
variety of tasks.

11The dimensionality K is fixed a priori.
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(a) N = 30 datapoints.
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Figure 3: Average generalisation bound and actual generalisation risk (± two standard errors) for CNN-NP
meta-learners trained to optimise Catoni (H), PAC-Bayes-kl (�), conjectured PAC-Bayes-kl (•), learned convex
(�), Chernoff test set (◭), and binomial tail test set (◮) bounds. Catoni, conjectured PAC-Bayes-kl, and learned
convex overlap. The generalisation risks for Chernoff and binomial tail test set bounds are identical as they
share the same meta-learner; only the bound computation differs. The bounds are valid with failure probability
δ = 0.1 except for conjectured PAC-Bayes-kl, which should be a lower bound on the best bound achievable
with Theorem 3. Corresponding plots for the MLP-NP are in Appendix J.2.
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(a) Binomial tail/Chernoff test set bounds, showing
the learned hypothesis (—), the train set (#) of size 12
and the test set (#) of size 18.
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(b) Learned convex bound with data-dependent prior,
showing the prior (—) and posterior (—) predictive,
prior set (#) of size 12 and risk set (#) of size 18.

Figure 4: Predictions on one of the 1D datasets in the meta-test set with N = 30 and prior/train proportion
0.4. For each method, we report the generalisation bound and actual generalisation risk. For the test set model,
we also show the risk on the test set, and for the PAC-Bayes model we show the KL-divergence. The learned
convex bound meta-learner has learned a DDP that provides a “first guess” given the prior set, which is then
refined by the posterior. Figures for other PAC-Bayes bounds and datasets are provided in Appendix J.1.

We considered two kinds of NP, one based on multilayer perceptrons (MLP-NP) and another based on
convolutional neural networks (CNN-NP) (detailed in Appendices I.5 and I.6) Although the MLP-NP
is very flexible, the state-of-the-art in NPs on 1D tasks is given by CNN-based NPs (Bruinsma et al.,
2021a; Foong et al., 2020; Gordon et al., 2020). We use an architecture closely based on the Gaussian
Neural Process (Bruinsma et al., 2021a), which outputs full-covariance Gaussians. As expected, we
found the CNN-NP to produce tighter (or comparable) average bounds to the MLP-NP, while using
far fewer parameters, and training much more reliably and quickly. This is because the CNN-NP is
translation equivariant, and hence exploits a key symmetry of the problem. Hence, we focus on the
CNN-NP, but report some results for the MLP-NP in Appendix J.2. Hyperparameter details are given
in Appendix I.7.

Results. We show example classification tasks and average bounds on the meta-test set in Figures 3
and 4. Note that the test set classifier became deterministic and makes hard predictions whereas the
PAC-Bayes classifier shows uncertainty; see Appendix I.2 for a discussion. The PAC-Bayes-kl bound
is loosest, which is unsurprising as it has no optimisable parameters to adapt to T .12 Surprisingly,
the results for Catoni, conjectured PAC-Bayes-kl, and learned convex are nearly identical. As long
as optimisation has succeeded reasonably, this suggests empirically that, in light of Corollary 3,
one of the Catoni bounds may be very nearly optimal among all convex functions for this task
distribution — there is not much “slack” from choosing suboptimal ∆ here. We also see that the
Catoni and learned convex bounds with prior proportion 0.4 are tighter than any Chernoff test set
bound. Hence, PAC-Bayes can provide slightly tighter (or comparable) generalisation bounds to a
Chernoff test set bound. However, we see that the binomial tail test set bound with 40% of the data
used for the selecting the predictor and the remaining 60% used for evaluating the bound leads to

12This is in contrast with usual applications of PAC-Bayes, where one does not have a meta-dataset with
which to optimise parameters of the bound. In that setting, it can be an advantage to not have tunable parameters.
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the tightest generalisation bounds overall. Corollary 3 sheds light on this behaviour: the optimal
generic PAC-Bayes bound reduces, at best, to the Chernoff test set bound when the posterior equals
the prior. However, the Chernoff bound is itself looser than the binomial tail bound. Of course, the
posterior does not equal the prior here, but Corollary 3 indicates there is an extra source of looseness
that PAC-Bayes has to overcome relative to the binomial tail bound. Finally, although the test set
meta-learner leads to the tightest generalisation bounds, its generalisation risk is roughly double that
of the PAC-Bayes meta-learner when the prior/train set proportion is 0.4.

5 Conclusions, Open Problems, and Limitations

PAC-Bayes presents a potentially attractive framework for obtaining tight generalisation bounds in the
small-data regime. We have investigated the tightness of PAC-Bayes and test set bounds in this regime
both theoretically and experimentally. Theoretically, we showed that the generic PAC-Bayes theorem
of Germain et al. (2009) and Bégin et al. (2016) which encompasses a wide range of PAC-Bayes
bounds, cannot produce tighter bounds in expectation than the expression obtained by discarding the
log(2

√
N)/N term in the Langford and Seeger (2001) bound (i.e., the conjectured PAC-Bayes-kl

bound; Corollary 3). Although we did not prove that the conjectured PAC-Bayes-kl bound is a valid
generalisation bound, numerical evidence suggests (Figures 2c and 2d) that there may exist a convex
function ∆ which achieves it, at least for the distributions over empirical risk and KL-divergence we
considered. This suggests the following open problem:

Open Problem 1. For an arbitrary distribution over datasets, does there exist a choice of ∆ such
that the expected conjectured PAC-Bayes-kl bound is attained (Corollary 3)? If not, how close can
one get to the expected conjectured PAC-Bayes-kl bound?

If such a ∆ exists, then that would imply the conjectured PAC-Bayes-kl bound is a valid generalisation
bound (see Section 3) and resolve Problem 6.1.2 of Langford (2002) in the affirmative.

We then considered, in a controlled experimental setting where meta-learning all parameters of the
bounds and learning algorithms was feasible, whether PAC-Bayes bounds could be tighter than test set
bounds. Although we found PAC-Bayes competitive with Chernoff bounds, both were outperformed
by the binomial tail test set bound. This motivates a second open problem:

Open Problem 2. Can a PAC-Bayes bound be found that relaxes gracefully to the binomial tail test
set bound (Theorem 1) when the posterior is equal to the prior?

Resolving these problems could have a significant impact on the tightness of PAC-Bayes applied to
small-data, and clarify our understanding of the relationship between PAC-Bayes and test set bounds.

Limitations. In this paper, we concern ourselves with understanding the tightness of bounds in what
might be called the standard PAC-Bayes setting of supervised learning: bounded losses, i.i.d. data,
and Gibbs risk. We also focus on bounds that are first order in the sense that they rely only on
the empirical Gibbs risk, though extending the analysis to consider other PAC-Bayes theorems
(e.g. Rivasplata et al. (2020) and Tolstikhin and Seldin (2013)) would be of interest, especially with
regards to Open Problems 1 and 2. For many practical applications in which performance guarantees
are needed (e.g. health care), the i.i.d. assumption should be considered carefully, as it is likely an
unrealistic simplification. Furthermore, Gibbs classifiers are less commonly used than deterministic
classifiers in practice. To address these and other concerns, PAC-Bayes has been generalised in
many directions beyond the scope of the standard setting we consider. Examples include bounds for
non-i.i.d. data (Alquier & Guedj, 2018; Rivasplata et al., 2020; Seldin et al., 2012), unbounded losses
(Germain et al., 2016), derandomised classifiers (Blanchard & Fleuret, 2007; Viallard et al., 2021),
and Bayes risk (Germain et al., 2015; Masegosa et al., 2020). Bounds based on other divergences
besides the KL have also been proposed (Alquier & Guedj, 2018; Bégin et al., 2016). As our proof
relies primarily on tools from convex analysis, and Jensen’s inequality is ubiquitous in PAC-Bayes
bounds, it would be interesting to see if our arguments can be extended beyond the limited setting we
focus on.

Finally, our meta-learning experiments only considered 1D classification, and the results might not
necessarily be representative of more realistic datasets. We also only consider Gaussian prior and
posterior distributions in our experiments for the sake of tractability. Scaling up the experiments and
considering more flexible distributions is an important, but potentially challenging, avenue for future
work.
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