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Abstract

Image recontextualization, the task of placing a subject from an image into a new
context to serve a specific purpose, has become increasingly important in fields like
art, media, marketing, and e-commerce. Recent advancements in deep generative
modeling, such as text-to-image and image-to-image synthesis via diffusion mod-
els, have significantly improved recontextualization capabilities. However, current
methods, like DreamBooth and LoRA, require time-consuming fine-tuning per
individual image, resulting in inefficiencies and often suboptimal outputs. Other ap-
proaches to recontextualization, like MagicClothing, require reorganization of the
architecture of the base model and a time-consuming training process in a particular
domain. In this work, we propose HyperLoRA, a novel framework that leverages
hypernetworks to predict LoRA parameters, allowing for more efficient image
recontextualization without the need for image-specific fine-tuning. HyperLoRA
utilizes domain pairs of context images and target objects, enabling instant adapta-
tion to new contexts while significantly reducing computational costs. Our method
outperforms traditional techniques by offering more accurate adjustments, broader
applicability across multiple modalities (e.g., text, video, sound, and structured
data), and scalable deployment. Experimental results demonstrate the effectiveness
of our approach in garment-to-model recontextualization, highlighting the potential
for broader applications.

1 Introduction

Image recontextualization is a task that involves taking an image from its original context and pre-
senting it in a new or different setting to serve a new purpose. This problem is typically encountered
in art, media, and communication, and it is relevant to marketing and e-commerce. For instance,
putting a photo of a purse captured by a seller in the context of a luxurious brand shopping window.
In recent years, the concept of image recontextualization has gained more momentum due to deep
generative modeling [1], particularly image-to-image and text-to-image synthesis models like diffu-
sion models. An example of such an approach is DreamBooth [2] which fine-tunes a large pre-trained
text-to-image diffusion model to enable personalization and subject recontextualization. This model
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takes a few images of a subject and then generates new images contextualizing the subject in different
environments, views, or poses while preserving key visual features.

The problem in image recontextualization with pre-trained diffusion models is the necessity of fine-
tuning. Fine-tuning of foundation models to specific tasks is a ubiquitous practice in machine learning,
particularly in domains such as computer vision [3, 4, 5, 6] and natural language processing [7, 8].
Existing methods that tackle this problem, such as already mentioned DreamBooth [2], or LoRA [7],
require fine-tuning per single image, which requires significant time and extensive prompting, while
the results are often of low quality or do not match a given prompt.

Recent techniques, such as IP Adapter [9], enhance base architectures with additional, trainable
cross-attention layers to preserve contextual details during recontextualization. However, these layers
do not integrate context image information with textual features. Other methods, like MagicClothing
[10], necessitate the design of specialized architectures to address the problem.

Here, we focus on improving fine-tuning of foundation models for image recontextualization. Unlike
traditional methods that fine-tune models individually for each task or image, our approach leverages
domain pairs comprising context images and target objects in desired contexts. For this purpose,
we propose to utilize hypernetworks [11, 12] to predict LoRA [7] parameters, thus, we refer to our
approach as HyperLora. The use of hypernetwork allows us to keep a single, shared neural network
for outputting weights of a diffusion model. As a result, we eliminate the need for fine-tuning
individual images, thereby significantly reducing computational costs and time requirements.

Our approach offers several advantages over existing methods. Firstly, it enables instant adaptation to
new context images without the need for fine-tuning, resulting in more efficient and scalable model
deployment. Secondly, we demonstrate how to effectively combine features from both text and
context image modalities without requiring additional architectural designs or training in the base
model. Additionally, our method is not limited to image data but can be applied across multiple
modalities, including text, videos, sound, and structured data (e.g., point clouds [13]). Eventually, our
hypernetwork provides a shared and unified representation for multiple contexts and data modalities.

The contributions of the paper are as follows: (i) we propose a new framework for predicting LoRA
parameters in a parallel manner for new contexts, (ii) we outline how to formulate and train hypernet-
works for image recontextualization, (iii) we show how to effectively combine textual and context
image features without modifying the base model architecture, (iv) we present experimental results
demonstrating the effectiveness of our approach on garment-to-model image recontextualization.

2 Related work

Fine-tuning Low-rank adaptation LoRA [7] is one of the most common fine-tuning techniques,
initially adopted to Large Language Models. The idea behind this approach is to utilize two trainable
low-rank matrices, that create the high-rank matrix after multiplication. This matrix is further added to
the frozen matrices used in transformer layers and trained in a gradient-based manner. Thanks to the
special initialization of the low-ranked matrices, the initial values of the matrix components are equal
to 0, which implies that the values do not have an impact on the model at the beginning of the training.
VeRA [8] is one of the possible extensions of LoRA, where thanks to specific decomposition, it is
sufficient to train vectors, instead of low-rank matrices. Various extensions of VeRA are extensively
studied in the work presented in [14].

Textual inversion [3] is a basic technique for fine-tuning diffusion models like Stable Diffusion
[15]. The main idea behind this approach is to train the text embedding that represents a specific
concept represented by a given image in a gradient-based procedure. Extended textual inversion
[4] enriches the idea with multiple textual embeddings injected into different attention layers of the
U-Net architecture. NeTI [5] is another method based on textual inversion that optimizes the mapping
network instead of directly training the textual embeddings. One of the most common techniques
for model fine-tuning is DreamBooth [2]. This method uses a unique textual token to represent the
concept of the image and fine-tunes the entire U-Net architecture. In addition, the model uses specific
regularization to preserve the generalization features. In a follow-up, [9] proposed HyperDreamBooth
to adapt the idea of DreamBooth to fast personalization. This approach utilizes hypernetworks but
differs from our method by a large margin. First, we formulate a parallelized hypernetwork, while
the HyperDreamBooth uses transformer-based architecture. Second, our approach does not need a
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fine-tuning stage of LoRA parameters after training the hypernetwork. Finally, HyperDreamBooth
is focused on personalization aspects, while our approach is more general and can utilize various
modalities as context information.

Recontextualization IP Adapter [6] is a multitask approach that can also be applied for recontex-
tualization applications. The authors introduce effective and lightweight adapter to achieve image
prompt capability for the pre-trained text-to-image diffusion models. The key design of our IP-
Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features
and image features. Another approach, MagicFusion [16], incorporates saliency-aware noise blending
to preserve the details from contextual image during the fine-tuning approach. To preserve the details
of the item, MagicClothing [10] uses two parallel UNets, one for processing garment features and the
other for model generation. Compared to the described reference methods, our approach does not
require problem-specific architectures and effectively combines textual and contextual information
within a single cross-attention layer with no further fine-tuning.

3 Background

3.1 Diffusion Models

Diffusion models Diffusion models [17, 18, 15] have risen to prominence within the generative
model area, setting new baselines in the field of image generation [19, 20, 21]. Their utility extends
to various practical applications such as enhancing image quality [22, 23], compressing images [24],
image manipulation [25, 26], colorization [27, 28], style transfer [29, 30, 28], among others.

Diffusion models are a class of generative models designed to closely approximate the original data
(images, or images conditioned on some additional information) distribution q(x0) from image space
I with model’s distribution pθ(x0):

pθ(x0) =

∫ [
pθ(xT )

T∏
t=1

ptθ(xt−1|xt)

]
dx1:T , (1)

where x1:T = x1, . . . ,xT are variables of a forward Markov chain such that xt =
√
αtx0 +√

1− αtε, where αt is a so-called noise scheduler (a hyperparameter) such that 0 = αT < αT−1 <
· · · < α1 < α0 = 1 assuring that xt converges to a Gaussian noise ε ∼ N (0, I) as t approaches T .

Latent Diffusion Models Latent Diffusion Models (LDMs) [15, 31] improve the efficiency (and the
quality) of diffusion models by operating in a latent space. LDMs use some (variational) autoencoder
pre-trained on a large collection of images, with an encoder E that maps an image x into latents,
z = E(x), and a decoder D such that D(E(x)) ≈ x. The diffusion model is then trained to produce
representations of images in a latent space and could be seen as a marginal distribution over latents.
For an image x0, the diffusion process adds noise to latent image z0 = E(x0) producing a noisy
latent image zt. The amount of noise increases with t ∈ {1, . . . , T}. The input image x = x0 can be
conditioned on some additional information y, e.g., text prompt (text instruction), other image(s),
etc. from space C. By Dtrain we denote a training set o pairs (x,y) ∈ I × C. Let τθ(y) be a model
that maps conditioning input information y from space C into a vector of predefined dimension. The
model’s loss is defined as:

LLDM = E(x0,y)∼Dtrain,z0=E(x0),t∼Unif({1,2,...,T}),ε∼N (0,I)||ε− εθ(zt, t, τθ(y))||22, (2)

where ε is a Guassian noise, t is a time step, zt is the latent noised up to time t, i.e., zt =
√
αt +√

1− αtε and εθ is a denoising network. Roughly speaking, the objective is to correctly remove the
noise which was added. Networks τθ and εθ are jointly optimized to minimize LLDM. At inference
time, a random noise zT ∼ N (0, I) is sampled and iteratively denoised to produce latent image z0,
which is afterward transformed into an image via decoder, i.e., x = D(z0).

3.2 Fine-tuning of LDMs for recontextualization

Problem formulation In the case of a task for which only a few samples are available, e.g.,
generating images of a given style represented by a set of a few images, we could train a diffusion
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model from scratch. However, especially if the number of images is limited, fine-tuning a large
diffusion models outperforms training the model from scratch. Roughly speaking, the procedure starts
with a pre-trained model with parameters θ and gradually changes their values to θ′. The rationale
is to adjust the model to the task at hand to improve its performance. This approach leverages the
general capabilities learned during the initial training phase and adjusts the model’s parameters mildly
to better capture the nuances of the new data, thus, enhancing its ability to generate or process data.

Fine-tuning as explained above is widely used to tailor generic models to specialized applications
without the need for training a model from scratch. In this paper, we focus on a specific example,
namely, we fine-tune a diffusion model for recontextualization using a collection of garments. Our
goal is then to generate a realistic image of a human model wearing a specific garment keeping all
the details (fabric, color, logos, etc.) of the garment. Formally, let us denote a number of new pairs
(x,y) as DFT

train, then the fine-tuning loss can be defined as follows:

LFT = E(x′
0,y

′)∼DFT
train,z

′
0=E(x′

0),t∼Unif({1,2,...,T}),ε∼N (0,I)||ε− εθ(z
′
t, t, τθ(y

′))||22. (3)

Losses LLDM and LFT are almost identical, the difference lies in the used empirical distribution and
the initial weight values of the model. We assume that when optimizing the objective (3), we start
with a pre-trained model, namely, θ resulting from (2), however, not all weights are optimized. For
instance, DreamBooth [2] fine-tunes all parameters of the U-Net model εθ, whereas Textual Inversion
[3] (where the space C of conditional additional information is a set of prompts) fine-tunes a special
token (not present in C) – its embedding to be more precise – in the CLIP text encoder.

Attention-based methods An interesting line of research aims at modifying the text-to-image
diffusion process through adjustments in cross-attention layers, allowing for more precise control
over the images produced. In [32], the capabilities of this approach are demonstrated in an example
of editing actual images in various scenarios. More specifically, the cross-attention block adjusts
the network’s latent features based on conditional features, such as text features in text-to-image
diffusion models. For given text features c ∈ Rs×d and latent image features f ∈ Rh×w×l, a
single cross-attention operation consists of Q = Wqf ,K = Wkc,V = Wvc. The operation then
computes a weighted sum over the value features:

Attention(Q,K,V) = Sofmtax
(
QKT

√
d′

)
V, (4)

where projection matrices Wq, Wk and Wv map the inputs to a query, key and value feature
respectively. Here d′ is the output dimension of key and query features. The output of the attention
layer is further transformed using the output linear projection layer parameterized by Wo:

Z = WoAttention(Q,K,V). (5)

The aim of fine-tuning is to update mappings from a given prompt to image distribution, and text-based
features appear only in Wk and Wv , that is why in [32] it is proposed to update only parameters of
these two matrices.

LoRA. Many recent approaches, like LoRA [7], show the benefits of modifying all four
Wq,Wk,Wv,Wo matrices instead of fine-tuning the parameters of W ∈ Rd×s by updating
their lower-dimensional representations (a product of two low rank matrices). LoRA keeps the pre-
trained weights frozen and injects trainable decomposition matrices (into each layer). Formally, let
i = 1, . . . , L be the layer number. At layer i we have four pre-trained matrices Wj

i , j ∈ {q, k, v, o}.
Let r ≪ min(d, s). The update is constrained by representing the latter with a low-rank decomposi-
tion, namely:

Wj
i +∆Wj

i = Wj
i +Bj

iA
j
i , i = 1, . . . , N, j ∈ {q, k, v, o}, (6)

where Bj
i ∈ Rd×r,Aj

i ∈ Rr×s. During training weights Wj
i are frozen, only Aj

i and Bj
i are

trainable. For hj
i = Wj

ix, the modified forward pass is the following:

hj
i = Wj

ix+∆Wj
ix = Wj

ix+Bj
iA

j
ix.

Moreover, Bj
i are initialized with zeros, i.e., Aj

i are initialized with random Gaussian noise, so that
∆Wj

i = 0 initially. In other words, the model kicks off from the original pre-trained matrices.
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Figure 1: The overview of the image generation process using HyperLoRA. The context image
is transformed using a trainable CLIP encoder. The output is further transformed by small-sized,
parallel, shallow hypernetworks that predict the values of matrices Aj

i and Bj
i (LoRA parameters)

for i-th layer and j-th matrix for cross-attention layers of a foundation model like Stable Diffusion.
The textual description of the context image is generated using a pre-trained text-to-image model.
Next, the semantic description of the target context (attributes of the model) and the context image
are merged and tokenized with a frozen clip encoder. The predicted LoRA parameters are further
used together with the embedded prompt containing the tokenized description of the image in the
new context to generate the target image using Stable Diffusion.

4 Our Method

4.1 HyperModels

This work introduces HyperLoRA, a novel approach for recontextualization. Compared to reference
approaches, like MagicClothing [10], our method works like a plug-in model and does not require
modifying the parameters of the base diffusion model. Our solution also does not require additional
cross-attention mechanisms like the IP Adapter [6], which injects the features of context image
separately from the textual information. Instead, we utilize LoRA parameters to combine the textual
and image context features together in the attention layers of the base diffusion model.

In our approach, we postulate the use of hypernetworks, the networks that predict the parameters
of the other model to adapt it to a particular context. The hypernetwork takes a context image as
input and predicts the parameters that are usually fine-tuned using standard procedures like LoRA.
Thanks to this approach, the set of parameters is adjusted to the new context image without needing a
fine-tuning procedure, reducing time significantly.

The rest of this subsection is organized as follows. First, we provide the architectural details of our
approach. Second, we focus on how the model is trained using domain data. Finally, we describe
how the trained model is utilized for recontextualization.

4.2 Architecture of HyperLoRA

The architecture of the proposed HyperLoRA model is provided in Figure 1. The contextual image
xc is fed to a hypernetwork Hϕ(·) parameterized by ϕ. Hϕ(·) is composed of a trainable CLIP
image encoder and shallow parallelized hypernetwork layers that predict individual LoRA low-ranked
matrices Aj

i ,B
j
i for each of cross-attention matrices j ∈ {q, k, v, o} on each layer i ∈ {1, . . . , N}

of the denoising network. During training, all Wj
i are frozen. The predicted matrices Aj

i ,B
j
i are

added to frozen Wj
i to the attention layers in the same manner as in LoRA-based fine-tuning, given

by Eq. (6). The prompt for the target image is generated by merging the textual description of the
context image with the description of the target context, e.g., attributes of a human model wearing a
desired item given by the context image. For both image-to-text and merging operations, we use a
pre-trained large language model, e.g., ChatGPT-4. The target image is generated using the input
prompt in the same manner as the fine-tuned LoRA model.
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4.3 Training HyperLoRA

To train HyperLoRA, we use a paired set composed of context images describing a concept and its
corresponding target image, together with conditioning textual description (prompt). The training
set Dtrain consists of triples (xc,xtg,ytg), where xc is the context image, xtg is the corresponding
target image and ytg is the target prompt.

We apply training with respect to the parameters ϕ of Hϕ(·) by minimizing the following loss
function:

LHyperLoRA = E(xc,xtg
0 ,ytg)∼D,ztg

0 =E(xtg
0 ),t∼Unif({1,2,...,T}),ε∼N (0,I)||ε− εθ||22, (7)

where εθ ≡ εθ(z
tg
t , t, τθ(y

tg),Hϕ(x
c)), and Hϕ(x

c) provides the LoRA parameters to the denoising
model εθ.

Moreover, to emulate the zero-value condition for initialization of Bj
i matrices (Bj

i = 0), we
incorporate additional, trainable scaling parameter γ (the same for all matrices, initially close to 0)
and scale the matrices’ values, i.e., in Eq. (6) the update is as follows:

∆Wj
i = γBj

iA
j
i . (8)

Thus, the trainable parameters of the model are: CLIP image encoder, shallow hypernetworks (each
predicting values of matrices Aj

i and Bj
i ) and γ ∈ R. The initial values of γ are set close to 0. With

such initialization, the values of Bj
i do not affect the model performance at the early stage of the

training.

4.4 Recontextualization using HyperLoRA

Assuming a trained hypernetwork Hϕ(·) and the context image xc together with semantic description
of target context, ytgc, we aim at generating the target image xtg. The hypernetwork takes the context
image xc, Hϕ(x

c), and predicts the LoRA parameters as it was described in Sect. 4.2. The semantic
description extracted from context image xc and the description of target context, ytgc are merged
together to create the prompt for the target image ytg. Finally, the target image is generated using the
prompt ytr with the stable diffusion model with the LoRA weights predicted by hypernetwork Hϕ(·).

5 Experiments

We evaluate our approach empirically and compare the results with selected reference methods
adapted to contextualization tasks. First, we make the quantitative evaluation using metrics that are
focused on maintaining consistency of generated and ground true images, comparing the results with
reference approaches. Second, we focus on qualitative evaluation using both model variants with and
without pose guidance.

Dataset. We use the VITON HD [33] dataset that contains image pairs representing a top clothing
image and a frontal-view human model wearing the corresponding item. The original dataset
comprises 11, 647 training and 2, 032 testing pairs.

Evaluation Metrics. Following the methodology from [2], we use the following evaluation metrics,
which are mainly focused on preserving consistency between ground truth and generated photos,
namely:

• Context to generated. (C2G). This metric represents the cosine similarity between the CLIP
[34] embeddings of the context and the generated target images.

• Target to generated. (T2G). This metric is calculated similarly as C2G, but a ground-truth
target image is used instead of a context one.

• Target to generated difference (T2Gdiff). This metric represents the absolute value of
the difference between C2G and C2T, where C2T is the CLIP cosine similarity between
ground-true context and target images.
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Table 1: Quantitative comparison of HyperLoRa, Text HyperLoRA, and reference methods on
VITON HD test set (best in bold, and ↑, ↓ represent whether we aim for maximizing or minimizing,
respectively).

Without Poses With Poses
T2G ↑ C2G ↑ T2Gdiff ↓ T2G ↑ C2G ↑ T2Gdiff ↓

HyperLoRA 0.8893 0.7738 0.0535 0.8899 0.7758 0.0497
HyperLoRA + IP Adapter 0.8495 0.8510 0.0658 0.8497 0.7991 0.0478
IP-Adapter 0.8060 0.8157 0.0693 0.8150 0.7968 0.0579
Magic Clothing 0.7504 0.6414 0.1278 0.8048 0.6745 0.1382

Methods. We compare our approach against selected reference methods, such as IP Adapter and
MagicClothing. We selected those baselines because they utilize the entire training set to train the
recontextualization method for a particular domain unlike standard fine-tuning methods (e.g., LoRA
or Dreambooth) that utilize few images to fine-tune for a single item.

We adopt a two-stage training approach for our method. Initially, the model is trained using a static
prompt, ‘A woman wearing S*’. In the subsequent stage, the target prompt is generated by merging
the descriptions of the conditioning image and the target context (attributes of the model wearing
the item, see Figure 1). For tasks involving image-to-text conversion and text merging, we leverage
ChatGPT-4. Two evaluation variants are considered for each model used in the experiments. The first,
referred to as the standard approach, generates the target image based solely on the context image.
The second variant incorporates pose guidance, generating a target image of the model in a specified
pose while wearing the item from the context image. This is achieved by utilizing model weights
integrated into the ControlNet [35] architecture. Additionally, we evaluate a variant of our model
combined with IP Adapter to improve consistency between the generated and target images

5.1 Quantitative comparison

We employed the VITON HD test set [33], which consists of 2,032 images, for quantitative evaluation.
For these images, we calculated the C2G, T2G (where higher values indicate better performance),
and T2Gdiff (where lower values indicate better performance) metrics.

Table 1 presents a comparison of the computed metric values across all generated images. The results
show that the HyperLoRA variants consistently outperform the baseline methods across all metrics,
demonstrating superior performance. When utilizing poses aligned with the target images, we observe
a slight reduction in the T2Gdiff score and a marginal improvement in the T2G metric. Additionally,
the integration of the IP Adapter with the HyperLoRA model leads to an increase in consistency
between the context and generated images, as reflected by the improved C2G metric.

5.2 Qualitative comparison

In Tables 2 and 3, we provide qualitative results comparing the performance of different methods,
both without and with pose guidance. The methods based on HyperLoRA demonstrate superior
preservation of contextual information compared to other techniques, particularly in simpler cases,
and show mostly improved performance in moderately challenging cases. Additionally, the poses
generated by our proposed methods exhibit a more natural appearance. Notably, the combination of
HyperLoRA with the IP Adapter appears to offer enhanced preservation of item details. However,
it is important to acknowledge that all methods evaluated exhibit some degree of inconsistency in
preserving the details of certain logos across the experiments. This phenomenon is observed due
to the fact that HyperLoRA compresses the input image into a small embedding vector, which may
lead to losing important high-frequency details. Therefore, in future works, we will investigate
incorporating the parallel Unet concept provided in MagicClothing into our approach, in order to
preserve both high-level and low-level features.
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Generated Image
HyperLoRA

Context Image HyperLoRA + IP Adapter IPAdapter MagicClothing

Table 2: The visual comparison of images generated by HyperLoRA, HyperLoRA + IP Adapter, and
reference methods, conditioned on garments from the VITON test dataset.
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Generated Image
Context Estimated HyperLoRA
Image Pose HyperLoRA + IPAdapter IPAdapter MagicClothing

Table 3: The visual comparison of images generated by the models with additional pose guidance.

6 Conclusions

The research introduces a novel method for instant recontextualization in fine-tuning foundation
models, addressing shortcomings of existing approaches such as DreamBooth and LoRA. Unlike
traditional methods, which require fine-tuning per single image and extensive prompting, the proposed
approach leverages domain pairs and hypernetworks to predict parameters, eliminating the need for
fine-tuning individual images and significantly reducing computational costs and time requirements.
The method offers several advantages, including instant adaptation to new context images without
fine-tuning, more accurate adjustments, and applicability across multiple modalities. Compared to
methods that utilize context images like IP Adapter or MagicClothing our approach combines textual
and image features in one attention mechanism and does not require any modifications and training
of the base generative model. Experimental results demonstrate its effectiveness, particularly in
garment-to-model recontextualization, highlighting its contributions to the field.

For future work, we would like to extend our method using a variety of modalities, including text,
metadata, video, and speech. The adaptation of our model can be achieved simply by replacing the
trainable image CLIP encoder with another type of encoding network suitable for such data. We
also plan to extend the applications of HyperLoRA to other categories, considering the target and
contested images in more sophisticated concepts.

The other dimension, where our method can be extended, touches the representation of the predicted
parameters for our model. In our studies, we focus on predicting the values of matrices of low-rank
matrices used in LoRA-based decomposition. However, our framework can be successively applied
to other decomposition methods, like VeRA [8] or other approaches described in [14].
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