
Under review as submission to TMLR

Towards Undistillable Models by Minimizing Conditional Mu-
tual Information

Anonymous authors
Paper under double-blind review

Abstract

A deep neural network (DNN) is said to be undistillable if, when used as a black-box input-
output teacher, it cannot be distilled through knowledge distillation (KD). In this case, the
distilled student (referred to as the knockoff student) does not outperform a student trained
independently with label smoothing (LS student) in terms of prediction accuracy. To protect
intellectual property of DNNs, it is desirable to build undistillable DNNs. To this end, it is
first observed that an undistillable DNN may have the trait that each cluster of its output
probability distributions in response to all sample instances with the same label should be
highly concentrated to the extent that each cluster corresponding to each label should ideally
collapse into one probability distribution. Based on this observation and by measuring
the concentration of each cluster in terms of conditional mutual information (CMI), a new
training method called CMI minimized (CMIM) method is proposed, which trains a DNN
by jointly minimizing the conventional cross entropy (CE) loss and the CMI values of all
temperature scaled clusters across the entire temperature spectrum. The resulting CMIM
model is shown, by extensive experiments, to be undistillable by all tested KD methods
existing in the literature. That is, the knockoff students distilled by these KD methods
from the CMIM model underperform the respective LS students. In addition, the CMIM
model is also shown to performs better than the model trained with the CE loss alone in
terms of their own prediction accuracy. The code for the paper is publicly available at
https://anonymous.4open.science/r/CMIM-605C/README.md.

1 Introduction

Originally aiming for model compression, knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015)
(KD) has received significant attention from both academia and industry in recent years due to its remarkable
effectiveness. The essence of KD is to transfer the knowledge of a pre-trained large model (teacher) to a
smaller model (student). Building on the work of Hinton et al. (2015), numerous follow-up works have
endeavored to enhance the performance of KD (Romero et al., 2014; Anil et al., 2018; Park et al., 2019) and
to gain deeper insights into why distillation is effective (Phuong & Lampert, 2019; Mobahi et al., 2020; Ye
et al., 2024; Allen-Zhu & Li, 2020; Menon et al., 2021; Borup & Andersen, 2021).

In the scenario where the teacher does not want its knowledge to be transferred, however, KD is undesirable
and indeed poses a threat to intellectual property (IP) of the teacher (Shokri & Shmatikov, 2015). Developing
and training a high-quality large DNN requires significant investments of time, effort, finances, and resources,
including extensive data annotation and computational infrastructure. Developers of the large DNN may
want to prevent the knowledge of the large DNN from being transferred by their competitors. However, once
the large DNN is released as a “black box”, anyone can apply a logit-based KD method (or equivalently a
distribution-based KD method (Zheng & YANG, 2024)) to distill the DNN as a teacher. The goal is to train
a student, referred to as a knockoff student in the context of DNN IP protection, that mimics the teacher’s
behavior to gain competitive advantages. As such, in this case, it would be desirable for the developers to
build the large DNN so that it is undistillable. The question, of course, is how.

1

https://anonymous.4open.science/r/CMIM-605C/README.md

Under review as submission to TMLR

Before delving deeper into the above question, let us first clarify what we mean by saying that a DNN is
undistillable. At this point, we invoke the concept of distillable DNN introduced recently in Yang & Ye
(2024):

Definition 1. [Distillability of a DNN (Yang & Ye, 2024)] When used as a black-box input-output teacher,
a DNN is said to be distillable1 with respect to a student if there exists a KD method which, when applied
to the teacher and student, yields a knockoff student outperforming the student trained alone with label
smoothing (LS student) in terms of prediction accuracy.

Therefore, a DNN is undistillable if no knockoff student can outperform the respective LS student regardless
of which logit-based KD method is used. Since there are so many logit-based KD methods and so many
students, what type of a DNN is undistillable? In comparison with the training of LS student, Definition 1
provides some insight into a trait that an undistillable DNN may possess. For each label, consider the cluster
of the output probability distributions of the DNN in response to all input sample instances with that label. If
each cluster corresponding to each label is highly concentrated to the extent that all probability distributions
within the cluster more or less collapse into one probability distribution, then the student training within KD
is similar to that of the respective LS student regardless of which logit-based KD method and which student
are applied. In this case, one would expect that no knockoff student would perform significantly better than
the respective LS student. Therefore, a DNN possessing this trait will likely be undistillable.

From a theoretical perspective, KD relies on the diversity within the teacher’s predicted distributions to
convey richer contextual information to the student. The greater the diversity in the cluster of predictions for
a given class, the more nuanced guidance the student can receive (see Ye et al. (2024)). Conversely, when the
teacher’s outputs become highly concentrated—meaning predictions for inputs with the same label converge
to a single probability vector—this contextual richness is lost. The student, in this case, receives largely
redundant information, rendering the distillation process as ineffective as direct training with label smoothing.

To quantify this notion of concentration, we turn to conditional mutual information (CMI) (Yang et al.,
2023). Specifically, let X denote the random input sample to the DNN, and Y be the ground truth label of
X. Let Ŷ denote the random label predicted by the DNN in response to input X. It was shown in Yang et al.
(2023) that for each label y, the label specific CMI I(X; Ŷ | Y = y) measures the concentration of the cluster
corresponding to label y, and the CMI I(X; Ŷ | Y) measures the average concentration across all clusters. To
build an undistillable DNN, one then is motivated to minimize jointly the conventional cross entropy (CE)
loss and the CMI I(X; Ŷ | Y).

In this paper, we will go one step further. In KD (Hinton et al., 2015), temperature scaling of logits is often
applied. It was shown in Zheng & YANG (2024) that logit temperature scaling with temperature T can
be equivalently achieved by power transform of the output probability distribution with power α = 1/T .
Further, it was demonstrated in Ye et al. (2024) that the purpose of temperature scaling or power transform
is to enlarge the CMI values of temperature scaled (or power transformed) clusters, and enlarging CMI
values in turn improves the performance of distilled students. Since here we want to achieve the opposite, we
want to make sure that all CMI values of all power transformed clusters can be made small. To this end,
we further extend the label specific CMI I(X; Ŷ | Y = y) and the CMI I(X; Ŷ | Y) to I(X; Ŷ α| Y = y) and
I(X; Ŷ α[Y]| Y), respectively, so that I(X; Ŷ α| Y = y) measures the concentration of the power transformed
cluster corresponding to label y with power α, and I(X; Ŷ α[Y]| Y) measures the average concentration across
all power transformed clusters with power α[Y], where different clusters may be power transformed with
different power α. Notably, allowing separate temperature scaling (i.e., power transformation) for each class
is essential, as an adaptive adversary may apply class-specific scaling to selectively alter cluster concentration
and improve the knockoff student’s performance.

1There are two reasons for us to adopt this definition of distillability. First, as shown theoretically in Zheng & YANG (2024),
knowledge distillation reduces to label smoothing in the limit as the temperature approaches infinity. Therefore, if the teacher is
distillable, the distilled student should perform no worse than the LS student. Second, if a knockoff student cannot outperform
the LS student, then there is no incentive for the teacher to be leveraged since the LS student can be trained on its own.

2

Under review as submission to TMLR

Based on the above discussion and towards building undistillable DNNs, we then propose a new training
method called CMI minimized method, which trains a DNN by jointly minimizing the CE loss and all CMI
values of all power transformed clusters, i.e., jointly minimizing the CE loss and I(X; Ŷ α[Y]| Y), ∀α[Y] > 0.

The resulting trained DNN is referred to as the CMI minimized (CMIM) DNN. The contributions of the
paper are summarized as follows:

• An insight is provided that in order for a DNN to be undistillable, it is desirable for the DNN to possess
the trait that each cluster of the DNN’s output probability distributions corresponding to each label is highly
concentrated to the extent that all probability distributions within the cluster more or less collapse into one
probability distribution close to the one-hot probability vector of that label.

• We extend the label specific CMI I(X; Ŷ | Y = y) and the CMI I(X; Ŷ | Y) to I(X; Ŷ α| Y = y) and
I(X; Ŷ α[Y]| Y), respectively, so that I(X; Ŷ α| Y = y) measures the concentration of the power transformed
cluster corresponding to label y with power α, and I(X; Ŷ α[Y]| Y) measures the average concentration across
all power transformed clusters with power α[Y], where different clusters may be power transformed with
different power α.

• We develop a novel training method dubbed CMI minimized method to train a DNN by jointly minimizing
the CE loss and all CMI values of all power transformed clusters with the resulting trained DNN referred to
as the CMIM DNN.

• To the best of our knowledge, our method is the first in the literature capable of training undistillable
DNNs that remain robust against a wide range of KD methods. Furthermore, for the notion of undistillability,
we are the first to employ the formal definition introduced in Yang & Ye (2024).

• We show, by extensive experiments over three popular image classification datasets, namely CIFAR-100
(Krizhevsky et al., 2012), TinyImageNet (Le & Yang, 2015) and ImageNet (Deng et al., 2009), that CMIM
DNNs have very small CMI values and are indeed undistillable by all tested KD methods existing in the
literature. That is, the knockoff students distilled by these KD methods from the CMIM models underperform
the respective LS students. On the other hand, models trained by defense training methods proposed in the
literature are all distillable.

• In addition, we show that the CMIM models achieve a higher classification accuracy compared to those
trained with the conventional CE loss.

2 Related Works

In this section, we mention some defense methods against the threat posed by knockoff students attempting
to steal the IP of pre-trained DNNs via logit-based KD methods. For a thorough review of related works,
including detailed discussions about recent logit-based KD methods, please refer to Appendix B. These
defense methods can be mainly categorized into two groups: (i) model stealing resistant training methods
that specifically train DNNs to reduce the accuracy of knockoff students while maintaining the original
classification accuracy of the model (Ma et al., 2021; Wang et al., 2022); and (ii) post-training defense
methods that perform minimal perturbations to the pre-trained model’s predictions to mislead the knockoff
student (Lee et al., 2019; Orekondy et al., 2020; Cheng & Cheng, 2023). Nonetheless, in Section 5, we will
show that models trained by all these defense methods are indeed distillable.

3 Notation and Preliminaries

3.1 Notation

The set of real numbers is denoted by R. Vectors are denoted by bold-face letters (e.g., w). The i-th element
of vector w is denoted by w[i]. For two vectors u, v ∈ RC , the inequality u ≤ v implies that u[i] ≤ v[i],
∀i ∈ [C]. For a positive integer K, let [K] ≜ {1, ...K}. Assume that there are C class labels with [C] as the
set of class labels. Let P([C]) denote the set of all C dimensional probability distributions. For any two
probability distributions P1, P2 ∈ P([C]), the CE and Kullback-Leibler (KL) divergence between P1 and P2

3

Under review as submission to TMLR

are denoted by H(P1, P2) and KL(P1, P2), respectively. For any y ∈ [C] and P ∈ P([C]), write the CE of the
one-hot probability distribution corresponding to y and P as H(y, P).

For any differentiable function f(·), ∇wf(·) denotes its gradient vector w.r.t. vector w.

For any pair of random variables (X, Y), denote its joint probability distribution by PX,Y (x, y) or simply
P (x, y) whenever there is no ambiguity, the marginal distribution of Y by PY (y), and the conditional
distribution of Y given X = x by PY |X(·|x). The mutual information between two random variables X and
Y is denoted by I(X, Y), and the CMI of X and Y given a third random variable Z is I(X, Y |Z).

We regard a classification DNN as a mapping from raw data x ∈ Rd to a probability distribution qx ∈ P([C]).
Given a DNN: x ∈ Rd → qx, let θ denote its weight vector consisting of all its connection weights; whenever
there is no ambiguity, we also write qx as qx,θ.

3.2 Label Smoothing

Label smoothing (LS) (Pereyra et al., 2017) is a regularization technique that prevents peaked output
probability distributions, leading to better generalization, by minimizing the objective function:

LLS = (1 − ϵ)H(y, qx) + ϵH(u, qx), (1)

where u is the uniform distribution over C classes, and ϵ controls the strength of the regularization.

3.3 Power Transform of Probability Distribution

In a “black-box” teacher setting, where only the output probability vectors (and not the logits) of the teacher
are accessible to the public, applying temperature scaling directly over the logits of the teacher is not feasible
in training knockoff students. In this case, KD training can resort to applying “power transformation of
probability distribution” directly to the output probability vectors (Zheng & YANG, 2024). Specifically, given
P ∈ P([C]), and a non-negative real number α, the power transform of P is another probability distribution
define as

P α[i] = (P [i])α∑
j∈[C](P [j])α

, ∀i ∈ [C]. (2)

It is not hard to verify that the power transformed probability distribution P α is equal to the softmax of the
logits scaled by temperature T = 1/α. Therefore, temperature scaling can be equivalently operated directly
on the output probability distribution through power transform.

3.4 CMI value of a DNN

As discussed in Yang et al. (2023), for a classifier f : x ∈ Rd → qx, let Ŷ be the random label predicted by the
f with probability qX [Ŷ] in respond to the input X. For each cluster corresponding to label y ∈ [C], we have

I(X; Ŷ |Y = y) =
∑

x

PX|Y (x|y)
[

C∑
i=1

PŶ |XY (Ŷ = i|x, y) ln
PŶ |XY (Ŷ = i|x, y)
PŶ |Y (Ŷ = i|Y = y)

]
(3)

= EX|Y

[(
C∑

i=1
qX [i] ln qX [i]

PŶ |Y (Ŷ = i|Y = y)

)
|Y = y

]
= EX|Y [KL (qX , sy) |Y = y] , (4)

where PŶ |XY (Ŷ = i|x, y) = qx[i] follows from the Markov chain Y → X → Ŷ , and sy = PŶ |Y (·|y) =
EX|Y [qX |Y = y]. I(X; Ŷ |Y = y) measures the concentration of the cluster corresponding to label y ∈ [C].
Averaging over all clusters corresponding to all labels y, we get

I(X; Ŷ |Y) =
∑

y∈[C]

PY (y)I(X; Ŷ |Y = y) = EXY [KL (qX , sY)] . (5)

4

Under review as submission to TMLR

I(X; Ŷ |Y) measures the average concentration across all clusters.

When the distribution PX,Y is unknown, we can approximate the CMI of f by its empirical value
from a data sample (a training dataset or mini-batch thereof) D = {(xi, yi)}m

i=1. To this end, let
Dy = {1 ≤ j ≤ m : yj = y}. Denote the size of Dy by |Dy|. The empirical values of each label specific
CMI and the CMI can be calculated as follows

Iemp(X; Ŷ |Y = y) = 1
|Dy|

∑
i∈Dy

KL(qxi , semp
y), (6)

Iemp(X; Ŷ |Y) = 1
m

m∑
i=1

KL(qxi , semp
yi

), (7)

where semp
y = 1

|Dy|
∑

i∈Dy

qxi
, ∀y ∈ [C]. (8)

4 CMI Minimized Method

In this section, we present our CMI minimized method. We begin with extending I(X; Ŷ |Y = y) and
I(X; Ŷ |Y) to the case of power transformed clusters.

4.1 Information Quantities for Power Transformed Clusters

Consider a classification DNN: f : x ∈ Rd → qx which maps input sample instances x with different labels into
clusters of probability distributions qx in the space P([C]), with one cluster per label. For each label y ∈ [C],
apply the power transform with power α to each probability distribution qx within the cluster corresponding
to the label y. Then, we obtain a power transformed cluster. To measure the concentration of the power
transformed cluster, we extend I(X; Ŷ |Y = y) to the following information quantity

I(X; Ŷ α|Y = y) = EX|Y [KL (qα
X , sy,α) |Y = y] , (9)

where sy,α = EX|Y [qα
X |Y = y]. Note that if we regard Ŷ α as the random label predicted by f with probability

qα
X(Ŷ α) in response to the input sample X, i.e., given X, Ŷ α is equal to a label c with probability qα

X(c),
∀c ∈ [C], then I(X; Ŷ α|Y = y) is exactly the CMI between X and Ŷ α given Y = y. Thus, I(X; Ŷ α|Y = y)
measures the concentration of the power transformed cluster corresponding to y.

Now, we go one step further and allow different clusters to be power transformed with different powers.
Suppose that the cluster corresponding to label y is power transformed with power α[y]. Let Ŷ α[Y] be the
random label predicted by f with probability q

α[Y]
X (Ŷ α[Y]) in response to the input sample X given Y . That

is, given Y = y and X = x, Ŷ α[Y] is equal to c with probability q
α[y]
x (c) for any c ∈ [C]. We can then extend

I(X; Ŷ |Y) to I(X; Ŷ α[Y]|Y)

I(X; Ŷ α[Y]|Y) = EXY

[
KL
(

q
α[Y]
X , sY,α[Y]

)]
, (10)

=
∑

y∈[C]

PY (y)
[
EX|Y

[
KL
(

q
α[y]
X , sy,α[y]

)
|Y = y

]]
(11)

=
∑

y∈[C]

PY (y)I(X; Ŷ α[y]|Y = y), (12)

where for each y ∈ [C],

sy,α[y] = PŶ α[Y]|Y (·|y) =
∑

x

PX|Y (x|y)qα[y]
x = EX|Y

[
q

α[y]
X |Y = y

]
. (13)

Note that I(X; Ŷ α[Y]|Y) is exactly the CMI between X and Ŷ α[Y] given Y and measures the average
concentration across all power transformed clusters with power function α[Y]. However, Y , X, and Ŷ α[Y] do
not form a Markov chain anymore.

5

Under review as submission to TMLR

When the distribution PX,Y is unknown, we can approximate I(X; Ŷ α[Y]|Y = y) and I(X; Ŷ α[Y]|Y) by their
respective empirical values from a data sample (a training dataset or mini-batch thereof) D = {(xi, yi)}m

i=1:

Iemp(X; Ŷ α[Y]|Y = y) = 1
|Dy|

∑
i∈Dy

KL(qα[y]
xi

, semp
y,α[y]), (14)

Iemp(X; Ŷ α[Y]|Y) = 1
m

m∑
i=1

KL(qα[yi]
xi

, semp
yi,α[yi]), (15)

where semp
y,α[y] = 1

|Dy|
∑

i∈Dy

qα[y]
xi

, ∀y ∈ [C]. (16)

As discussed in Section 1, an undistillable DNN should exhibit the trait that each of these clusters is highly
concentrated and ideally collapses into a single probability distribution that closely resembles the one-hot
probability vector for that label.
Remark 1. While we leverage the concept of CMI from Yang et al. (2023), the way it is calculated in our
work significantly differs from how it is calculated in Yang et al. (2023). In Yang et al. (2023), I(X; Ŷ |Y)
is calculated under the assumption of a Markov chain Y → X → Ŷ . In contrast, we quantify cluster
compactness using I(X; Ŷ α[Y]|Y), where Ŷ α[Y] explicitly depends on Y , violating the Markov assumption.
Moreover, minimizing I(X; Ŷ α[Y]|Y) over all possible values of α introduces additional challenges, which we
address in the next subsection.

4.2 Framework for Minimizing CMI Values of Power Transformed Clusters

0.00 0.25 0.50 0.75 1.00

α

0.00

0.02

0.04

0.06

0.08
C

M
I

beaver

orchids

motorcycle

Figure 1: The CMI value
I(X; Ŷ α[Y]|Y = y) for three
randomly selected classes
y = {beaver, orchids, motorcycle} vs
the power transform factor α; the
model is ResNet-50 pre-trained on
CIFAR-100. As observed, as α grows,
the CMI value becomes larger, peaks,
and then gradually becomes smaller.

Towards building an undistillable DNN, we now train a DNN f : x ∈
Rd → qx by jointly minimizing the CE loss and all CMI values of all
power transformed clusters. Let

α =
[
α[1], α[2], . . . , α[C]

]
,

and write each qx as qx,θ. In our CMI minimized method, the objective
function we want to minimize is

EXY

[
H(Y, qX,θ)

]
+ λ max

α
I(X; Ŷ α[Y]|Y), (17)

where λ > 0 is a hyper-parameter trading the CE loss with the
maximum CMI, and the maximization over α is taken over the region
0 ≤ α[i] ≤ β, 1 ≤ i ≤ C. The optimization problem then becomes

min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λ max

α
I(X; Ŷ α[Y]|Y)

}
= min

θ

{
EXY

[
H(Y, qX,θ)

]
+ λ max

α

∑
y

PY [y]I(X; Ŷ α[y]|Y = y)
}

(18)

= min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λ

∑
y

PY [y] max
α[y]

I(X; Ŷ α[y]|Y = y)
}

.

(19)

In order to get a better understanding about the behavior of the second term in the objective function of
(18) w.r.t. α, we depict in Figure 1 I(X; Ŷ α[Y]|Y = y) vs α[y] for three randomly-selected classes y using a
pre-trained ResNet-50 on CIFAR-100. In Figure 1, maxα I(X; Ŷ α|Y = y) is achieved at a value of α which is
between 0.25 and 0.75. In Theorem 2 of Appendix D, we further show that for each label y, I(X; Ŷ α|Y = y)
as a function of α is continuously differentiable.

However, finding an algorithmic solution to the min-max problem in (18) to (19) is challenging. To overcome
this difficulty, we next develop a more tractable expression for maxα I(X; Ŷ α|Y = y). At this point, we
invoke the following theorem, which will be proved in Appendix E.

6

Under review as submission to TMLR

Theorem 1. For any label y,

max
α

I(X; Ŷ α|Y = y) = lim
ω→∞

1
ω

ln 1
β

∫ β

0
exp {ωI(X; Ŷ α|Y = y)}dα. (20)

Therefore, when ω is large, maxα I(X; Ŷ α|Y = y) can be approximated by

max
α

I(X; Ŷ α|Y = y) ≈ 1
ω

ln 1
β

∫ β

0
exp {ωI(X; Ŷ α|Y = y)}dα (21)

≈ 1
ω

ln
[

1
N

N∑
i=1

exp {ωI(X; Ŷ αi |Y = y)}
]

, (22)

where N is relatively large, and αi = iβ/N .

Now plugging (22) into (19), we have

min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λ

ω

∑
y

PY [y] ln
[

1
N

N∑
i=1

exp {ωI(X; Ŷ αi |Y = y)}
]}

. (23)

Note that the second term in the objective function of (23) is not amenable to parallel computation via GPU
due to the dependency of KL divergence on sy,αi , the centroid of the power transformed cluster corresponding
to Y = y with power αi. To get around this difficulty, we follow the approach in Yang et al. (2023) and
introduce dummy distributions Qy,i ∈ P([C]) for each (y, i) to rewrite I(X; Ŷ αi |Y = y) as follows

I(X; Ŷ αi |Y = y) = EX|Y
[
KL
(

qαi

X,θ, sy,αi

)
| Y = y

]
= min

Qy,i

EX|Y
[
KL
(

qαi

X,θ, Qy,i

)
| Y = y

]
, (24)

where the minimum in the above is achieved when

Qy,i = sy,αi = EX|Y

[
qαi

X,θ|Y = y
]

. (25)

Combining (24) with (23), we are led to solve the double minimization problem 2

min
θ

{
EXY

[
H(Y, qX,θ)

]
+ λ

ω

∑
y

PY [y] ln
[

1
N

N∑
i=1

exp {ω min
Qy,i

EX|Y
[
KL
(

qαi

X,θ, Qy,i

)
| Y = y

]
}

]}
(26)

= min
θ

min
{Qy,i}y∈[C],i∈[N]

{
EXY

[
H(Y, qX,θ)

]
+ λ

ω

∑
y

PY [y] ln
[

1
N

N∑
i=1

exp {ωEX|Y
[
KL
(

qαi

X,θ, Qy,i

)
| Y = y

]
}

]}
(27)

When the distribution PX,Y is unknown, it can be approximated by its empirical distribution from a data
sample (a training dataset or mini-batch thereof) D = {(xi, yi)}m

i=1. The objective function in the double
minimization (27) then becomes

JD(θ, {Qy,i}y∈[C],i∈[N]) = 1
|D|

∑
(x,y)∈D

H(y, qx,θ)+

λ

ω

∑
y

|Dy|
|D|

ln

 1
N

N∑
i=1

exp { ω

|Dy|
∑

j∈Dy

KL
(

qαi

Xj ,θ, Qy,i

)
}

 . (28)

2In practice, solving the double minimization problem introduces only minor runtime overhead, as the inner optimization
problem has an analytic solution and can be parallelized efficiently on modern GPUs. To demonstrate the efficiency of CMIC,
we report the wall-clock training time and compare the computational overhead of CMIM and CE in Appendix J.

7

Under review as submission to TMLR

Algorithm 1: Conditional Mutual Information Minimized (CMIM) Method.
Input: Training set T , mini-batches {Bb}b∈[B], number of epochs T , λ, β, ω, N
Initialization: Initialize θ0 and Q0

y,i y∈[C],i∈[N].
for t = 1 to T do

[Sampling αi] Randomly select N samples {αi}i∈[N] from interval [0, β].
for b = 1 to B do

[Updating Qy,i] For each class y, construct mini-batch {By}y∈[C]. Update Qt
y,i, ∀y ∈ [C]; ∀i ∈ [N],

according to Equation (29).
[Updating θ] Fix Qt

y,i y∈[C],i∈[N]. Update θt
b−1 to θt

b by stochastic gradient descent over the objective
function 28.

end
end
Output: Global model θT .

4.3 Algorithm for Solving the Optimization in (27)

The double minimization optimization problem in (27) naturally lends us an alternating algorithm that
optimizes θ and {Qy,i}y∈[C],i∈[N] alternatively to minimize the objective function in (27) or Equation (28),
given the other is fixed.

Given {Qy,i}y∈[C],i∈[N], θ can be updated using the same first-order optimization method as in conventional
deep learning, such as stochastic gradient descent applied over mini-batches.

Following Yang et al. (2023), given θ, for each class y, {Qy,i}i∈[N] can be updated according to (25) in the
following manner: (1) we randomly sample a mini-batch of samples |By| instances from the training set with
ground truth label y; (2) {Qy,i}i∈[N] can be updated as

Qy,i =
∑

x∈By
qαi

x,θ

|By|
∀i ∈ [N]. (29)

The proposed alternating algorithm for optimization problem (27) is summarized in Algorithm 1 3. To
simplify our notation, we use (·)t

b to indicate parameters at the b-th batch updation during the t-th alternating
iteration of the algorithm. We further write (·)t

B as (·)t whenever needed, set (·)t
0 = (·)t−1.

Remark 2. The compactness of output clusters alone is insufficient to ensure an undistillable DNN.
Undistillability is a significantly stronger property. For instance, LS can improve the compactness of the
feature space of a DNN, which may make the output probability of the DNN more compact (Müller et al.,
2019). However, this compactness is not enough to make the DNN undistillable (see Section 5)

5 Experiments

In this section, we demonstrate the effectiveness of CMIM by comparing it with several state-of-the-art
alternatives. Specifically, we first report the accuracy that a knockoff student can achieve by deploying
different logit-based KD (attack) methods in Section 5.1. In all the experiments, when testing the distillibality
of the trained DNNs using the benchmark defense methods and CMIM, we compare the knockoff student’s
accuracy (i) when it attempts to steal the IP of protected DNN using logit-based (attack) methods with (ii)
when it trains its model using the LS. If the former outperforms the latter, we conclude that the knockoff
makes the underlying DNN distillable. Next, in Section 5.2, we report the classification accuracy of the
protected models trained by the different defense methods. Lastly, in Section 5.3, we visualize the output
cluster of models trained by CMIM, CE and NT.

3If the impact of the random mini-batch sampling and stochastic gradient descent is ignored, the alternating algorithm is
guaranteed to converge in theory since given θ, the optimal {Qy,i}y∈[C],i∈[N] can be found analytically via (29), although it
may not converge to a global minimum.

8

Under review as submission to TMLR

Table 1: Top-1 accuracy (%) of the knockoff student on CIFAR-100, TinyImageNet and ImageNet dataset
(the results for CIFAR-100 and TinyImageNet are averaged over 3 runs). Green upward arrows (↑) and
red downward arrows (↓) indicate whether the knockoff student was able to render the underlying DNN
distillable.

CIFAR-100
Defense Model K-student LS KD MKD DKD DIST HTC AVG Knockoff Best

MAD
VGG16 VGG11 71.94 68.55 ↓ 72.08 ↑ 53.32 ↓ 69.21 ↓ 71.19 ↓ 70.03 ↓ 61.44 ↓ 72.08 ↑

SNV2 72.65 72.50 ↓ 72.46 ↓ 7.64 ↓ 69.91 ↓ 71.37 ↓ 72.86 ↑ 70.87 ↓ 72.86 ↑

RN50 VGG11 71.94 72.00 ↑ 72.04 ↑ 54.29 ↓ 71.57 ↓ 70.76 ↓ 70.73 ↓ 61.73 ↓ 72.04 ↑
RN18 78.76 77.76 ↓ 78.79 ↑ 43.73 ↓ 73.76 ↓ 77.89 ↓ 78.61 ↓ 73.92 ↓ 78.79 ↑

APGP
VGG16 VGG11 71.94 71.92 ↑ 72.27 ↑ 27.24 ↓ 69.25 ↓ 70.08 ↓ 72.01 ↓ 45.98 ↓ 72.27 ↑

SNV2 72.65 73.10 ↑ 73.75 ↑ 12.52 ↓ 71.04 ↓ 71.66 ↓ 73.20 ↑ 9.48 ↓ 73.75 ↑

RN50 VGG11 71.94 71.91 ↓ 72.11 ↑ 9.74 ↓ 69.48 ↓ 71.36 ↓ 71.92 ↑ 34.71 ↓ 72.11 ↑
RN18 78.76 78.04 ↓ 79.06 ↑ 62.71 ↓ 77.32 ↓ 77.82 ↓ 77.90 ↓ 2.57 ↓ 79.06 ↑

RSP
VGG16 VGG11 71.94 71.42 ↓ 72.04 ↑ 70.22 ↓ 70.80 ↓ 70.40 ↓ 71.56 ↓ 31.04 ↓ 72.04 ↑

SNV2 72.65 73.55 ↑ 72.95 ↑ 67.45 ↓ 72.19 ↓ 71.46 ↓ 72.27 ↓ 26.09 ↓ 73.55 ↑

RN50 VGG11 71.94 71.97 ↑ 72.01 ↑ 69.53 ↓ 72.18 ↑ 70.87 ↓ 70.85 ↓ 46.68 ↓ 72.18 ↑
RN18 78.76 77.78 ↓ 77.79 ↓ 77.01 ↓ 78.88 ↑ 78.00 ↓ 78.13 ↓ 55.86 ↓ 78.88 ↑

NT
VGG16 VGG11 71.94 71.40 ↓ 73.44 ↑ 71.47 ↓ 71.33 ↓ 70.77 ↓ 71.58 ↓ 63.56 ↓ 73.44 ↑

SNV2 72.65 72.44 ↓ 72.70 ↑ 6.24 ↓ 72.04 ↓ 70.75 ↓ 72.83 ↑ 6.32 ↓ 72.83 ↑

RN50 VGG11 71.94 72.01 ↑ 72.03 ↑ 71.55 ↓ 71.88 ↓ 70.16 ↓ 71.94 ↓ 62.94 ↓ 72.03 ↑
RN18 78.76 78.41 ↓ 78.92 ↑ 79.26 ↑ 78.99 ↑ 77.94 ↓ 78.33 ↓ 68.96 ↓ 79.26 ↑

SNT
VGG16 VGG11 71.94 72.06 ↑ 72.28 ↑ 4.92 ↓ 71.98 ↑ 70.60 ↓ 71.63 ↓ 64.08 ↓ 72.06 ↑

SNV2 72.65 72.94 ↑ 73.17 ↑ 72.78 ↑ 72.22 ↓ 71.22 ↓ 72.74 ↑ 6.22 ↓ 73.17 ↑

RN50 VGG11 71.94 72.02 ↑ 72.12 ↑ 72.32 ↑ 71.70 ↓ 70.66 ↓ 71.65 ↓ 62.94 ↓ 72.32 ↑
RN18 78.76 78.25 ↓ 78.48 ↓ 78.82 ↑ 78.14 ↓ 78.45 ↓ 78.38 ↓ 67.71 ↓ 78.82 ↑

ST
VGG16 VGG11 71.94 72.09 ↑ 72.01 ↑ 71.63 ↓ 71.93 ↓ 71.16 ↓ 71.63 ↓ 63.32 ↓ 72.09 ↑

SNV2 72.65 72.64 ↓ 72.67 ↑ 70.53 ↓ 72.24 ↓ 71.32 ↓ 72.42 ↓ 69.46 ↓ 72.67 ↑

RN50 VGG11 71.94 72.00 ↑ 72.13 ↑ 71.62 ↓ 71.76 ↓ 70.54 ↓ 71.73 ↓ 65.43 ↓ 72.13 ↑
RN18 78.76 78.96 ↑ 79.02 ↑ 78.35 ↓ 78.31 ↓ 78.36 ↓ 78.81 ↑ 72.87 ↓ 79.02 ↑

LS
VGG16 VGG11 71.94 71.90 ↓ 72.00 ↑ 71.57 ↓ 70.89 ↓ 70.66 ↓ 71.76 ↓ 63.49 ↓ 72.00 ↑

SNV2 72.65 72.87 ↑ 73.52 ↑ 70.01 ↓ 71.49 ↓ 71.70 ↓ 73.01 ↑ 65.20 ↓ 73.52 ↑

RN50 VGG11 71.94 71.82 ↓ 71.99 ↑ 71.95 ↓ 70.77 ↓ 70.86 ↓ 71.88 ↓ 62.29 ↓ 71.99 ↑
RN18 78.76 77.72 ↓ 77.82 ↓ 79.37 ↑ 78.33 ↓ 78.31 ↓ 77.91 ↓ 63.36 ↓ 79.37 ↑

CMIM
VGG16 VGG11 71.94 71.87 ↓ 71.64 ↓ 71.56 ↓ 70.34 ↓ 71.71 ↓ 71.42 ↓ 66.89 ↓ 71.87 ↓

SNV2 72.65 72.53 ↓ 71.44 ↓ 72.46 ↓ 71.45 ↓ 71.59 ↓ 71.94 ↓ 64.45 ↓ 72.53 ↓

RN50 VGG11 71.94 71.54 ↓ 71.34 ↓ 71.77 ↓ 71.86 ↓ 69.32 ↓ 71.70 ↓ 60.58 ↓ 71.86 ↓
RN18 78.76 78.21 ↓ 78.16 ↓ 78.13 ↓ 77.56 ↓ 77.23 ↓ 78.64 ↓ 65.88 ↓ 78.64 ↓

TinyImageNet

RSP RN34 RN18 63.56 63.54 ↓ 64.32 ↑ 64.01 ↑ 63.27 ↓ 63.54 ↓ 62.15 ↓ 55.43 ↓ 64.32 ↑
RN50 SNV2 60.61 60.18 ↓ 60.76 ↑ 56.26 ↓ 56.43 ↓ 60.96 ↑ 60.15 ↓ 54.01 ↓ 60.96 ↑

ST RN34 RN18 63.56 63.96 ↑ 64.12 ↑ 63.25 ↓ 63.51 ↓ 63.49 ↓ 63.84 ↑ 57.42 ↓ 64.12 ↑
RN50 SNV2 60.61 61.23 ↑ 61.36 ↑ 60.43 ↓ 60.32 ↓ 60.22 ↓ 61.13 ↑ 55.84 ↓ 61.36 ↑

NT RN34 RN18 63.56 63.27 ↓ 64.49 ↑ 64.67 ↑ 63.43 ↓ 63.50 ↓ 64.43 ↑ 53.11 ↓ 64.67 ↑
RN50 SNV2 60.61 59.57 ↓ 61.55 ↑ 31.55 ↓ 60.03 ↓ 60.98 ↑ 60.31 ↓ 50.94 ↓ 61.55 ↑

LS RN34 RN18 63.56 63.74 ↑ 64.01 ↑ 64.23 ↑ 63.51 ↓ 64.20 ↑ 63.04↓ 57.43 ↓ 64.23 ↑
RN50 SNV2 60.61 60.32 ↓ 60.93 ↑ 60.74 ↑ 60.11 ↓ 60.46 ↓ 60.14 ↓ 52.96 ↓ 60.93 ↑

CMIM RN34 RN18 63.53 62.89 ↓ 63.15 ↓ 62.94 ↓ 63.28 ↓ 61.57 ↓ 62.96 ↓ 56.13 ↓ 63.28 ↓
RN50 SNV2 60.61 57.57 ↓ 59.32 ↓ 60.58 ↓ 59.41 ↓ 59.33 ↓ 60.42 ↓ 56.91 ↓ 60.58 ↓

ImageNet

ST RN34 RN18 70.89 70.74 ↓ 71.02 ↑ 70.02 ↓ 69.94 ↓ 70.91 ↑ 71.00 ↑ 63.24 ↓ 71.02 ↑
MNV2 70.93 71.03 ↑ 71.25 ↑ 69.32 ↓ 70.53 ↓ 70.69 ↓ 71.06 ↑ 54.53 ↓ 71.25 ↑

CMIM RN34 RN18 70.89 70.44 ↓ 70.69 ↓ 69.97 ↓ 70.59 ↓ 70.63 ↓ 70.53 ↓ 59.34 ↓ 70.69 ↓
MNV2 70.93 70.21 ↓ 70.72 ↓ 69.97 ↓ 70.44 ↓ 70.86 ↓ 70.20 ↓ 55.24 ↓ 70.86 ↓

9

Under review as submission to TMLR

5.1 Knockoff Student Accuracy

• Datasets: We conduct extensive experiments on three image classification dataset, namely CIFAR-100
(Krizhevsky et al., 2012) TinyImageNet (Le & Yang, 2015) and ImageNet (Deng et al., 2009). For description
of each dataset, please refer to Appendix F.

• Models: To show the effectiveness of CMIM, we use different model architectural families for teacher and
knockoff student models. To this end, we pick models from VGG family (Simonyan & Zisserman, 2015),
ResNet family (He et al., 2016) (shortened as RN), ShuffleNetV2 (Ma et al., 2018), shortened as SNV2, and
Mobilenetv2 (Sandler et al., 2018) shortened as MNV2. Particularly, we have conducted experiments on the
following (teacher-student) pairs for each dataset: (i) for CIFAR-100, we use four pairs {(VGG16-VGG11),
(VGG16-SNV2), (RN50-VGG11), (RN50-RN18)}; (ii) for TinyImageNet, we use two pairs {(RN34-RN18),
(RN50-SNV2)}; and for ImageNet we use two pairs {(RN34-RN18),(RN34-MNV2)}.

• Defense benchmark methods: For comprehensive comparisons, we benchmark CMIM with seven
recently published defense methods: MAD (Orekondy et al., 2020), APGP (Cheng & Cheng, 2023), RSP
(Lee et al., 2019), ST (Ma et al., 2022), NT (Ma et al., 2021), SNT (Wang et al., 2022), and LS4 (Müller
et al., 2019).

• Logit-based KD (attack) methods: We use three logit-based KD methods that are primarily designed
for when the teacher-student models are in cooperating mode, namely KD (Hinton et al., 2015), DKD (Zhao
et al., 2022), DIST (Huang et al., 2022a); and four logit-based KD attacks methods that a knockoff student
can deploy to make the protected DNNs possibly distillable, namely MKD (Yang & Ye, 2024), HTC (Jandial
et al., 2022), AVG (Keser & Toreyin, 2023), Knockoff (Orekondy et al., 2019). We report all the training
setups, including all the hyper-parameters used for both defense and attack methods in Appendix G.1.

• Results: The accuracy that a knockoff student can achieve using the various (defense-attack) combinations
is summarized in Table 1. For accuracy variances, please refer to Appendix I. In the table, we use the notation
“K-student” to denote a knockoff student. The numbers in the column titled “Best” represent the highest
accuracy obtained for each respective row, indicating the best possible performance a knockoff student can
achieve using any of the listed distillation methods.

As observed in Table 1, regardless of whether the teacher-student architectures are the same or different,
DNNs trained with CMIM remain undistillable across all distillation methods. This is in stark contrast to
DNNs trained using other defense techniques, which can still be successfully distilled to a certain degree.
The results indicate that prior defense strategies do not offer complete resistance against knockoff students,
whereas CMIM effectively prevents distillation, making it significantly more robust in protecting model
knowledge.

We also perform an ablation study on the hyperparameters of CMIM—namely β, N , and ω—as detailed in
Appendix K. The key findings are as follows:

• Effect of β: The accuracy of the knockoff student drops sharply when β ≥ 1, suggesting that
large values may destabilize optimization or excessively penalize the CMI term. This highlights the
importance of carefully tuning β to effectively balance the cross-entropy and CMI objectives.

• Effect of the number of samples N : Increasing the number of power samples N leads to a
monotonic decrease in the knockoff student’s accuracy. This indicates that moderate values of N are
sufficient to capture the necessary diversity for robust CMI estimation.

• Effect of the power coefficient ω: Setting ω > 30 can lead to numerical instability, resulting
in NaNs due to excessive exponentiation. Interestingly, the worst knockoff student performance
is observed at ω = 20 and ω = 30, suggesting that these settings best approximate the extreme
concentration behavior of ω → ∞, thereby enhancing undistillability.

Additionally, we investigate CMIC’s impact on model calibration in Appendix M.
4Although LS is not a defense method per se, it is observed that the models trained by LS reduce the knockoff student’s

accuracy. We discuss the rationale behind this in Appendix C.

10

Under review as submission to TMLR

(a) LS (b) Nasty teacher (c) CMIM

Figure 2: Visualization of three projected probability clusters for ResNet-50 trained on CIFAR-100 using (a)
LS, (b) NT, and (c) CMIM.

5.2 Accuracy of Protected Models

In this section, we report the top-1 accuracy of the protected models in Table 1 trained using the benchmark
defense methods with those trained by CMIM. The results are summarized in Tables 2 and 3. As observed,
the models trained by CMIM have the highest classification accuracy compared to the benchmark methods.
This is because for the models trained by CMIM, the clusters corresponding to the output probability of the
DNNs are very concentrated, facilitating easier classification of samples from different classes.

Table 2: Top-1 accuracy (%) of models trained by defense methods on CIFAR-100 and TinyImageNet. The
best and second best results are bolded and underlined, respectively.

CIFAR100 TinyImageNet
Model CE MAD APGP RSP ST NT SNT LS CMIM Model CE RSP ST NT LS CMIM

VGG16 73.75 73.75 73.84 73.71 73.75 73.75 72.59 73.90 73.84 RN34 65.39 65.21 65.39 65.23 65.45 65.99
RN50 77.81 77.81 77.56 77.63 77.81 77.31 77.77 78.45 78.72 RN50 66.14 65.91 66.13 66.06 66.09 66.93

Table 3: Top-1 accuracy (%) of models trained by defense methods on ImageNet.

ImageNet
Model CE ST CMIM
RN34 73.31 73.30 73.69

The results in Table 2 motivate us to test the top-1 accuracy of additional models trained by CMIM and
compare them with those trained by CE loss (see Appendix H).

It is worth noting that the primary focus of this paper is not on increasing the accuracy of DNNs but on
developing a method to train undistillable DNNs. While many existing methods in the literature can enhance
a DNN’s accuracy, they do not address the critical challenge of making DNNs undistillable.

Our approach is the first in the literature that effectively trains undistillable models robust against a wide
range of existing KD methods. The improvement in accuracy observed in our results is a by-product of our
method and not its primary goal. This improvement arises from the unique properties of our approach rather
than replicating the effects of label smoothing or similar techniques.

5.3 Visualizing the Output Clusters

In this subsection, we aim to visualize the output clusters for models trained using CE, NT, and CMIM. To
achieve this, we follow the visualization approach introduced by Yang et al. (2023). Specifically, we randomly
select three labels from the CIFAR-100 dataset. For each probability distribution corresponding to these
three labels, we extract only the probabilities associated with these selected labels and normalize them to

11

Under review as submission to TMLR

form three-dimensional probability vectors. These vectors are then projected onto a two-dimensional simplex,
allowing us to visualize the clustering behavior of each model. By applying this transformation, we obtain a
clear representation of how the models distribute their probability mass across different output categories.

The resulting simplexes for ResNet-50 models trained with LS , Nasty Teacher, and the CMIM framework are
shown in Figure 6 5. To ensure a consistent comparison, we applied the same power transform α = 4 for all
visualizations. As observed, the clusters for the model trained with CMIM are highly concentrated near the
corners of the simplex, closely resembling one-hot vectors. This indicates that the output distributions are
highly compact, making it difficult for a knockoff student to surpass LS regularization when attempting to
distill knowledge from a CMIM-trained model. This increased compactness plays a crucial role in enhancing
the model’s resistance to knowledge distillation.

Lastly, we clarify the distinction between “highly concentrated output clusters” and “overly confident
predictions”. A highly concentrated output cluster does not necessarily imply that the model produces overly
confident predictions. This is because the clusters can be concentrated around points that are not close to
one-hot labels (the corners of the probability simplex). As a result, the model can have concentrated outputs
without being overly confident. These are two separate concepts.

To illustrate this, we train an RN50 model on the CIFAR-100 dataset using three different methods: CMIM,
CE, and LS. After training, we evaluate the model’s confidence by measuring the average entropy of its
output probability vectors on the test dataset. The results, presented in Table 4, indicate that the entropy for
CMIM is higher than that for CE, demonstrating that CMIM produces less confident output probabilities.

Table 4: Entropy Value of the Models Trained by CMIM, CE and LS

Methods CMIM CE LS
Entropy 0.102 0.064 0.152

Additionally, our experiments in Table 1 further support the above-mentioned claim: the CMIM method
generates more concentrated output clusters while also improving the model’s accuracy on the held-out test
dataset compared to models trained with the conventional CE loss. This observation is consistent with the
findings of Yang et al. (2023), which demonstrate that training DNNs to produce highly concentrated output
clusters can lead to improved test accuracy.

5.4 Why Prior Defense Methods Can be Made Distillable?

In this section, we address the question of why DNNs trained using all prior KD-resistance defense methods can
still be made distillable, as demonstrated in Section 5.1. The key reason behind this lies in the fundamental
characteristics of these defense methods and their susceptibility to distillation under certain conditions.
Specifically, by appropriately tuning the power transform parameter α, the models trained using these defense
methods can attain a relatively high CMI value in comparison to our proposed method, CMIM (as illustrated
in Figure 3). As though, compared to the CMIM model, all other defense methods provide more information
for the student to leverage in improving their own performance.

This suggests that, despite their initial resistance, the defense methods fail to enforce undistillability rigorously
across all distillation settings. When the correct α value is selected during the distillation process, a logit-based
KD approach can leverage this property to effectively distill knowledge from these supposedly resistant DNNs.
Consequently, these models can still be exploited to produce distilled students that outperform the baseline
LS student, demonstrating that prior defense strategies do not provide robust protection against all KD
methods.

5In Appendix L, we present the visualization of three different projected probability clusters for ResNet-50 trained on
CIFAR-100.

12

Under review as submission to TMLR

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

α

0.00

0.02

0.04

0.06

C
M

I

CE

MAD

APGP

RSP

NT

SNT

CMIM (ours)

(a) ResNet-50

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

α

0.000

0.025

0.050

0.075

0.100

0.125

0.150

C
M

I

(b) VGG16

Figure 3: The CMI values for the models trained by different KD-resistance defence methods Vs. power
transform value α for (a) ResNet-50, and (b) VGG16 trained on CIFAR-100 dataset. Compared to all other
defense methods in the literature, CMIM effectively reduces peak CMI values under temperature scaling,
which prevents the teacher model from being distilled by the knockoff student.

6 Conclusion and Future Directions

In this paper, from an information-theoretic perspective, we proposed a defence method against the threat
posed by knockoff students attempting to steal the IP of pre-trained DNNs via logit-based KD methods.
In particular, we proposed to minimize the CMI of the protected DNN across different power transform
hyper-parameter values α, while minimizing the conventional CE loss simultaneously. We referred to model
trained by these framework as CMIM models. By conducting a series of experiments, we showed that,
unlike the prior defense methods proposed in the literature, a knockoff student cannot render CMIM models
distillable. In addition, we showed that the models trained by CMIM achieve higher classification accuracy
compared to those trained by CE loss.

Despite these promising results, our work has certain limitations. First, the evaluation of CMIM models
is primarily empirical, as providing a formal theoretical proof of undistillability remains an open challenge.
Second, our approach introduces additional computational overhead compared to the conventional training
using CE loss.

For future work, we aim to extend the CMIM method beyond standard classification tasks. Potential directions
include adapting it for multi-label classification, regression problems, and safeguarding the intellectual property
of cutting-edge models such as LLMs, CLIP, and diffusion models. Another promising direction is to enhance
the model’s undistillability by adapting CMIM for integration with a contrastive learning framework, which
regularizes the latent space rather than the output probability space. By broadening the scope of CMIM, we
hope to further enhance its applicability and effectiveness across a wider range of machine learning paradigms.

References
Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and self-distillation

in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Jure An, Doetsch Peter, and Pylvänäinen Thomas. Relation knowledge distillation. In International
Conference on Learning Representations, 2021.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl, and Geoffrey E Hinton.
Large scale distributed neural network training through online distillation. arXiv preprint arXiv:1804.03235,
2018.

Kenneth Borup and Lars N Andersen. Even your teacher needs guidance: Ground-truth targets dampen
regularization imposed by self-distillation. Advances in Neural Information Processing Systems, 34:5316–
5327, 2021.

13

Under review as submission to TMLR

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 535–541, 2006.

Anda Cheng and Jian Cheng. Apgp: Accuracy-preserving generative perturbation for defending against
model cloning attacks. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.10094956.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Kangning Guo, Hu Shengyuan, Yan Junjie, Liu Xin, Xu Dongbao, and Wang Ningbo. Logit-like knowledge
distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10186–10193,
2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016. doi:
10.1109/CVPR.2016.90.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
https://arxiv.org/abs/1503.02531.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
teacher. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022a. URL https://openreview.net/forum?id=157Usp_kbi.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger teacher.
Advances in Neural Information Processing Systems, 35:33716–33727, 2022b.

Surgan Jandial, Yash Khasbage, Arghya Pal, Vineeth N. Balasubramanian, and Balaji Krishnamurthy.
Distilling the undistillable: Learning from a nasty teacher. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision – ECCV 2022, pp. 587–603,
Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19778-9.

Reyhan Kevser Keser and Behcet Ugur Toreyin. Averager student: Distillation from undistillable teacher,
2023. URL https://openreview.net/forum?id=4isz71_aZN.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).
University of Toronto, 2012. URL http://www.cs.toronto.edu/~kriz/cifar.html.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https://api.
semanticscholar.org/CorpusID:16664790.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. Defending against neural network model stealing
attacks using deceptive perturbations. In 2019 IEEE Security and Privacy Workshops (SPW), pp. 43–49,
2019. doi: 10.1109/SPW.2019.00020.

Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang Wang. Undistillable:
Making a nasty teacher that cannot teach students. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=0zvfm-nZqQs.

Haoyu Ma, Yifan Huang, Tianlong Chen, Hao Tang, Chenyu You, Zhangyang Wang, and Xiaohui Xie. Stingy
teacher: Sparse logits suffice to fail knowledge distillation, 2022. URL https://openreview.net/forum?
id=ae7BJIOxkxH.

14

https://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=157Usp_kbi
https://openreview.net/forum?id=4isz71_aZN
http://www.cs.toronto.edu/~kriz/cifar.html
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://openreview.net/forum?id=0zvfm-nZqQs
https://openreview.net/forum?id=ae7BJIOxkxH
https://openreview.net/forum?id=ae7BJIOxkxH

Under review as submission to TMLR

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In Proceedings of the European conference on computer vision (ECCV), pp.
116–131, 2018.

Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Seungyeon Kim, and Sanjiv Kumar. A statistical
perspective on distillation. In International Conference on Machine Learning, pp. 7632–7642. PMLR, 2021.

Hossein Mobahi, Mehrdad Farajtabar, and Peter Bartlett. Self-distillation amplifies regularization in hilbert
space. Advances in Neural Information Processing Systems, 33:3351–3361, 2020.

Daniel Moldovan, Ionescu Bogdan, Drimbă Alexandru, and Marius Popescu. Path-kg: Knowledge distillation
with path-level guidance. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1709–1718, 2019.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Advances in
neural information processing systems, 32, 2019.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing functionality of black-box
models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4954–4963, 2019.

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses against
dnn model stealing attacks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SyevYxHtDB.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3967–3976, 2019.

Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey Hinton. Regularizing neural
networks by penalizing confident output distributions, 2017. URL https://openreview.net/forum?id=
HkCjNI5ex.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In International
conference on machine learning, pp. 5142–5151. PMLR, 2019.

Radim Rehurek and Petr Sojka. Gensim–python framework for vector space modelling. NLP Centre, Faculty
of Informatics, Masaryk University, Brno, Czech Republic, 3(2), 2011.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathematical
Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586. URL https://doi.org/10.1214/aoms/
1177729586.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In 2015 53rd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pp. 909–910, 2015. doi: 10.1109/ALLERTON.
2015.7447103.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

Zi Wang, Chengcheng Li, and Husheng Li. Adversarial training of anti-distilled neural network with semantic
regulation of class confidence. In 2022 IEEE International Conference on Image Processing (ICIP), pp.
3576–3580, 2022. doi: 10.1109/ICIP46576.2022.9897169.

15

https://openreview.net/forum?id=SyevYxHtDB
https://openreview.net/forum?id=HkCjNI5ex
https://openreview.net/forum?id=HkCjNI5ex
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586

Under review as submission to TMLR

En-hui Yang and Linfeng Ye. Markov knowledge distillation: Make nasty teachers trained by self-undermining
knowledge distillation fully distillable. In European Conference on Computer Vision. Springer, 2024.

En-hui Yang, Shayan Mohajer Hamidi, Linfeng Ye, Renhao Tan, and Beverly Yang. Conditional mutual
information constrained deep learning for classification. arXiv preprint arXiv:2309.09123, 2023.

En-hui Yang, Shayan Mohajer Hamidi, Linfeng Ye, Renhao Tan, and Beverly Yang. Conditional mutual
information constrained deep learning: Framework and preliminary results. In 2024 IEEE International
Symposium on Information Theory (ISIT), pp. 569–574, 2024. doi: 10.1109/ISIT57864.2024.10619241.

Linfeng Ye, Shayan Mohajer Hamidi, Renhao Tan, and En-hui Yang. Bayes conditional distribution estimation
for knowledge distillation based on conditional mutual information. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=yV6wwEbtkR.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 11953–11962,
2022.

Kaixiang Zheng and EN-HUI YANG. Knowledge distillation based on transformed teacher matching. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=MJ3K7uDGGl.

16

https://openreview.net/forum?id=yV6wwEbtkR
https://openreview.net/forum?id=MJ3K7uDGGl
https://openreview.net/forum?id=MJ3K7uDGGl

Under review as submission to TMLR

A Appendix

B A Thorough Study of Related Works

B.1 Logit-based KD methods

Knowledge Distillation (KD) has become a cornerstone technique for compressing large teacher models into
smaller student models. This section reviews key logit-based KD methods and explores their advancements.

Hinton et al. (2015) introduced the foundational concept of KD, using KL divergence to match the student’s
softmax outputs to the teacher’s. This work laid the groundwork for logit-based methods, as the softmax
output directly relates to the logits. Later, Moldovan et al. (2019) proposed Path-KD, a method that utilizes
the paths leading to the correct class in both teacher and student models for distillation. While not directly
logit-based, it demonstrates the effectiveness of aligning decision-making processes. Guo et al. (2021) proposed
Logit-Like Distillation, addressing the capacity gap by matching the ranking of logits instead of their exact
values [4]. This approach allows the student to learn the essential ordering of classes even with limited
capacity. An et al. (2021) proposed relation knowledge distillation (RKD), focusing on aligning relationships
between class logits rather than individual values. This approach improves the student’s ability to generalize
to unseen data. Zhao et al. (2022) introduced decoupled knowledge distillation (DKD), where it decouples the
classical KD loss into two parts: target class knowledge distillation and non-target class knowledge distillation.
Huang et al. (2022b) proposed DIST where they designed a KD method to distill better from a stronger
teacher; indeed they claim that preserving the relations between the predictions of teacher and student would
suffice for an effective KD. Borup & Andersen (2021) provided theoretical arguments for the importance of
weighting the teacher outputs with the ground-truth targets when performing self-distillation with kernel
ridge regressions along with a closed form solution for the optimal weighting parameter.

B.2 Defense methods against Logit-based KD

As also discussed in Section 2, the defense methods against the threat posed by knockoff students attempting
to steal the IP of pre-trained DNNs via logit-based KD methods can be categorized into two approaches.
Here, we elaborate on these two approaches.

(I) Model stealing resistant training: In this approach, DNNs are trained to reduce the accuracy of
knockoff students while maintaining the original classification accuracy of the model. In particular, Ma et al.
(2021) proposed a training algorithm named self-undermining KD to create nasty teachers (NT) that prevent
knowledge leakage and unauthorized model stealing through KD, without compromising model accuracy.
The nasty teacher is trained by minimizing the following objective function:

LNT = H(y, qx) − ϵ KL(q̃x, qx), (30)

where q̃x is a output of a pre-trained standard model.

Subsequently, Wang et al. (2022) proposed semantic nasty teachers (SNT) which improve the model stealing
resistance of NT by disentangling semantic relationships in the output logits during teacher model training,
which is crucial for successful KD.

(II) post-training defence methods: The aim of these approaches is to deceive the knockoff by imposing
minimal perturbations to the model’s predictions. Lee et al. (2019) tested a variety of possible perturbation
forms, and found that the reverse sigmoid perturbation (RSP) to be the most effective one. Orekondy et al.
(2020) introduced maximizing angular deviation (MAD), a technique that perturbs the output probabilities,
leading to an adversarial gradient signal that deviates significantly from the original gradient of the knockoff.
To this end, they applied a randomly initialized model as the surrogate for the potential knockoff. More
recently, Cheng & Cheng (2023) proposed a plug-and-play generative perturbation model, dubbed as accuracy
preserving generative perturbation (APGP), which can effectively defend KD-based model cloning, while
preserve the model utility.

17

Under review as submission to TMLR

B.3 Attack Methods Using Logit-based KD

Jandial et al. (2022) sought to circumvent the defense of nasty teachers and steal (or extract) its information.
Specifically, they analyzed nasty teacher from two different angles and subsequently leverage them carefully
to develop simple yet efficient methodologies, named as HTC and SCM, which enhance learning from nasty
teacher.

In AVG (Keser & Toreyin, 2023), the authors noted that undistillable teachers exhibit multiple peaks in their
softmax response, which are transferred to the student models. These peaks are considered to be the primary
factor that misleads the student models. To mitigate the influence of the multiple peaks in the softmax
response of teachers, they proposed transferring the mean of features with the same labels as the soft labels.

Orekondy et al. (2019) introduced a technique called "Knockoff Nets" that allows an attacker to steal the
functionality of black-box models. Remarkably, the attacker only needs to interact with the model by
feeding it input data and observing the resulting predictions. By training a new model ("knockoff") on these
input-prediction pairs, the attacker can create a copycat model that performs similarly to the original black
box.

C Why LS reduce the knockoff student’s accuracy?

Original aiming to prevent overfitting and improve generalization, label smoothing was observed by Müller
et al. (2019) to reduce the accuracy of the knockoff student. The researchers found that "label smoothing
encourages examples to lie in tight, equally separated clusters". Consequently, label smoothing reduces the
contextual information in the teacher model’s output (Yang et al., 2024).

D Power Transformation of Mutual Information

The following theorem implies that for each label y, I(X; Ŷ α|Y = y) as a function of α is continuously
differentiable.
Theorem 2. Let (X, Z) be a pair of random variables, where Z is discrete, and X can be either discrete or
continuous. Let PZ|X [·|x] denote the conditional probability distribution of Z given X = x. Additionally, let
P α

Z|X [·|x] denote the power transformed version of PZ|X [·|x] with power α, Zα denote the random variable
the conditional distribution of which given X = x is P α

Z|X [·|x], and qα denote the probability distribution of
Zα. Then, the following holds

∂ I(X; Zα)
∂ α

= 1
α

∑
x

PX [x]
{(

m2(P α
Z|X [·|x]) − m2

1(P α
Z|X [·|x])

)
− Cov(P α

Z|X [·|x], qα)
}

, (31)

where for probability vectors P and Q,

m1(P) ∆=
∑

j

P [j]
(

− ln(P [j])
)

= H(P), (Shannon entropy) (32a)

m2(P) ∆=
∑

j

P [j]
(

− ln(P [j])
)2

, (Second moment) (32b)

Cov(P, Q) ∆=
∑

j

P [j]
(

− ln(P [j]) − m1(P)
)(

− ln(Q[j]) −
∑

i

P [i](− ln(Q[i]))
)

. (32c)

Proof. To simplify our notation, we denote the conditional distributions PZ|X [·|x] and P α
Z|X [j|x] by px and

pα
x , respectively. Decompose I(X; Zα) as follows

I(X; Zα) = H(Zα) − H(Zα|X)

= H(qα) −
∑

x

P [x]H(pα
x) (33)

18

Under review as submission to TMLR

where for any random variables U and V , H(V) and H(V |U) are the entropy of V and the conditional
entropy of V given U , respectively, and H(p) denotes the entropy of the probability distribution p. Then the
partial derivative of I(X; Zα) w.r.t. α is equal to

∂I(X; Zα)
∂α

= ∂H(qα)
∂α

−
∑

x

P [x]∂H(pα
x)

∂α
. (34)

To continue, we first compute the partial derivative in the second term of the RHS of (34)

∂H(pα
x)

∂α
=

−∂
∑

j
pα

x [j] ln(pα
x [j])

∂α
= −

∑
j

(
ln(pα

x [j]) + 1
)

∂pα
x [j]

∂α

= −
∑

j

(
ln(pα

x [j]) + 1
)

×
(px[j])α ln(px[j])

(∑
i
(px[i])α

)
− (px[j])α

(∑
i
(px[i])α ln px[i]

)
(∑

i
(px[i])α

)2

= −
∑

j

(
ln(pα

x [j]) + 1
)(

pα
x [j]
(

ln(px[j]) −
∑

i

pα
x [i] ln(px[i])

))
= −1

α

∑
j

(
ln(pα

x [j]) + 1
)

pα
x [j]
(

ln(px[j])α −
∑

i

pα
x [i|] ln(px[i])α

)
(35)

= −1
α

∑
j

(
ln(pα

x [j]) + 1
)

pα
x [j]
(

ln(pα
x [j]) −

∑
i

pα
x [i] ln(pα

x [i])
)

= −1
α

(∑
j

pα
x [j]
(

ln(pα
x [j])

)2 −
(∑

j

pα
x [j] ln(pα

x [j])
)(∑

i

pα
x [i] ln(pα

x [i])
))

= −1
α

(
m2(pα

x) − m2
1(pα

x)
)

(36)

Note that

qα =
∑

x

P [x]pα
x .

19

Under review as submission to TMLR

Then we have
∂H(qα)

∂α
=

−∂
∑

j qα[j] ln(qα[j])
∂α

= −
∑

j

(
ln(qα[j]) + 1

)∂qα[j]
∂α

= −
∑

j

(
ln(qα[j]) + 1

)∑
x

P [x]∂pα
x [j]

∂α

= −1
α

∑
j

(
ln(qα[j]) + 1

)∑
x

P [x]pα
x [j]

(
ln(pα

x [j]) + m1(pα
x)
)

(37)

= −1
α

∑
j

(
ln(qα[j])

)∑
x

P [x]pα
x [j]

(
ln(pα

x [j]) + m1(pα
x)
)

= −1
α

∑
x

P [x]
∑

j

(
ln(qα[j])

)
pα

x [j]
(

ln(pα
x [j]) + m1(pα

x)
)

= −1
α

∑
x

P [x]
(∑

j

pα
x [j] ln(pα

x [j])
(

ln(qα[j])
)

− m1(pα
x)
∑

j

pα
x [j]

(
− ln(qα[j])

))

= −1
α

∑
x

P [x] Cov (pα
x , qα) (38)

where (37) is due to (35).

From Equations (36) and (38), Theorem 2 follows.

E Proof of Theorem 1

Theorem 1 follows from Theorem 2 and the following lemma.
Lemma 1. Let g(t) be a continuously differentiable function over [0, β]. Then the following holds:

max
t

g(t) = lim
ω→∞

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt. (39)

Proof. Let t∗ be an optimal point at which

g(t∗) = max
t

g(t).

For any ϵ > 0, let N (t∗, ϵ) denote a closed interval containing t∗ with length ϵ. It is easy to verify that

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt ≤ g(t∗)

which implies that

lim sup
ω→∞

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt ≤ g(t∗). (40)

On the other hand,

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt ≥ 1

ω
ln 1

β

∫
N (t∗,ϵ)

exp {ωg(t)}dt

≥ 1
ω

ln ϵ

β
exp {ω min

t∈N (t∗,ϵ)
g(t)}

= min
t∈N (t∗,ϵ)

g(t) + 1
ω

ln ϵ

β
. (41)

20

Under review as submission to TMLR

Letting ω → ∞ in (41) yields

lim inf
ω→∞

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt ≥ min

t∈N (t∗,ϵ)
g(t). (42)

Note that (42) is valid for any ϵ > 0. Letting ϵ → 0 in (42), we have

lim inf
ω→∞

1
ω

ln 1
β

∫ β

0
exp {ωg(t)}dt ≥ g(t∗). (43)

Then (39) follows from (40) and (43). This completes the proof of Lemma 1.

F Datasets description

• CIFAR-100 (Krizhevsky et al., 2012) dataset contains 50K training and 10K test color images, each
with size 32 × 32, categorized into 100 classes.

• TinyImageNet (Le & Yang, 2015) contains 120K color images across 200 classes, each with a resolution
of 64 × 64 pixels. For each class, there are 500 training images, 50 validation images and 50 test
images.

• ImageNet (Deng et al., 2009) is a large-scale dataset used in visual recognition tasks, containing
around 1.2 million training and 50K validation images.

G Experiments setup

All experiments detailed in this paper were conducted using a publicly available national high-performance
computer. For each experiment, we utilized 16 CPU cores, 64 GB of memory, and one NVIDIA V100 GPU.
The software environment comprised Python 3.10, PyTorch 1.13, and CUDA 11.

For all experiments, including defenses and attacks, the SGD optimizer (Robbins & Monro, 1951; LeCun
et al., 2002) with a learning rate of 0.1 is used unless otherwise specified.

For the CIFAR-100 and TinyImageNet datasets, we train the model for 200 epochs, decaying the learning
rate by 0.1 at epochs 60, 120, 160.

For ImageNet, we follow the standard PyTorch practice 6.

The batch size is 128 for both CIFAR-100 and TinyImageNet, and 256 for ImageNet.

To get the accuracy that a knockoff student can achieve using label smoothing, we have tested a wide
spectrum of label smoothing factor ϵ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and selected the one
that resulted in the highest classification accuracy.

In the CMIM method, we set T = 20 and tested λ = 0.1, 0.25, 0.5, 1, selecting the value that minimized the
CMI value while maintaining or improving classification accuracy.

G.1 Defense setup

We used the following parameters and settings for the defense models used in Section 5.

G.1.1 Defense setup on CIFAR-100 and TinyImagenet

1. MAD: We employ a randomly initialized VGG-8 as adversary’s architecture, and following the
implementation of MAD-argmax.

2. APGP: We apply a 3 layer MLP with residual connection as the generative model and set λ = 0.1
for all experiments.

6https://github.com/pytorch/vision/tree/main/references/classification

21

https://github.com/pytorch/vision/tree/main/references/classification

Under review as submission to TMLR

3. RSP: We use α = 1 and β = 20 for all the experiments.

4. NT: To ensure a acceptable accuracy sacrifice, we test three different ϵ values and select the largest
one that results in an accuracy drop of less than 0.5%. Specifically, we use ϵ = 0.01 for ResNet-50
and ϵ = 0.005 for VGG-16 on the CIFAR-100 dataset, while for TinyImageNet, we use ϵ = 0.001 for
both ResNet-34 and ResNet-50.

5. SNT: We use the pretrained word2vect model namely "fasttext-wiki-news-subwords-300" provided
by Gensim (Rehurek & Sojka, 2011), and set λ = 0.2 for all experiments.

6. ST: We use the teacher model trained by CE as the underlying model, and use the sparse ratio of
10% as suggested in their paper for all experiments.

7. LS: We apply label smoothing factor 0f 0.05 for all experiments.

8. ISTM: We set the binary search parameters to Tb = 20 and αmax = 2000. We use λ = 0.2 for
ResNet-50 and λ = 0.5 for VGG-16 on the CIFAR-100 dataset, while for TinyImageNet, we use
λ = 0.1 for ResNet-34 and λ = 0.5 ResNet-50.

G.1.2 Defense setup on Imagenet

1. ST: We use the teacher model trained by CE as the underlying model, and use the sparse ratio of
10% as suggested in their paper for all experiments.

2. ISTM: We set the binary search parameters to Tb = 20 and αmax = 2000. We use λ = 0.2 for all
the experiments.

G.2 Attack setup

G.2.1 Attack setup on CIFAR-100 and TinyImagenet

We use power transform parameter α = 0.25 (or equivalently T = 4) for all experiments unless otherwise
specified.

1. KD: We set the CE-KL trade-off coefficient to λ = 0.9.

2. MKD: We use the intrinsic dimension of 3 for CIFAR-100, and 5 for TinyImageNet. We employed the
Adam optimizer (Kingma & Ba, 2014) with learning rate 10−3 for the trainable Markov transform.

3. DKD: We test alpha, beta pairs of {1, 4} and {2, 8}, and report the one with best accuracy.

4. DIST: We useβ = 1.0, γ = 1.0, τ = 1.0 for all experiments.

5. HTC: We use α = 0.05(T = 20), λ = 0.01 for all experiments.

6. AVG: λ = 0.9.

7. Knockoff : We follow the implementation of the original paper.

G.2.2 Attack setup on Imagenet

We use α = 1 (T = 1) for all experiments unless otherwise specified.

1. KD: λ = 0.9.

2. MKD: We use the intrinsic dimension of 16. We employed the Adam optimizer (Kingma & Ba,
2014) with learning rate 10−3 for the trainable Markov transform.

3. DKD: We test alpha, beta pairs of {1, 4} and {2, 8}, and report the one with best accuracy.

22

Under review as submission to TMLR

H Accuracy of Protected models

In this section, we report the top-1 accuracy of some additional models that are trained using CMIM and
compare them with those trained by CE method. To this end, we use 10 well-known models for CIFAR-100
dataset namely ResNet (RN)-{18, 34, 50, 101, 152}, SqueezeNet (SQN), ResNext (RNXT) 50, MobileNet (MN),
Xception (XCP), DenseNet (DN) 121; and 2 models namely RN-{34, 50} for TinyImageNet and ImageNet.
We follow the same training recipe as the one in Section 5.1. The results for CIFAR-100 and (Tiny-)ImageNet
are listed in Table 5 and Table 6, respectively. As seen, the top-1 accuracy for all models trained by CMIM is
consistently higher than those trained by CE counterpart, with the gain up to 1.15%.

Table 5: Top-1 accuracy (%) of models trained by CE and CMIM methods on CIFAR-100.
CIFAR-100

Model CE CMIM Model CE CMIM
RN18 76.05 77.20 SQN 69.32 70.64
RN34 77.20 77.54 RNXT50 78.71 79.12
RN50 77.81 77.93 MN 67.26 67.51
RN101 79.07 79.12 XCP 77.37 77.64
RN152 79.21 79.43 DN121 79.16 79.33

Table 6: Top-1 accuracy (%) of models trained by CE and CMIM methods on TinyImageNet and ImageNet.
TinyImageNet ImageNet

Model CE CMIM Model CE CMIM
RN34 65.39 65.99 RN34 73.31 73.69
RN50 66.14 66.93 RN50 76.15 76.40

23

Under review as submission to TMLR

I Variance of Table 1

Table 7: Top-1 accuracy (%) and variance of the knockoff student on CIFAR-100 and TinyImageNet dataset
(averaged over 3 runs)

CIFAR-100
Defense Model K-student LS KD MKD DKD DIST HTC AVG Knockoff

MAD
VGG16 VGG11 71.94±0.09 68.55±0.20 72.08±0.29 53.32±0.38 69.21±0.09 71.19±0.03 70.03±0.07 61.44±0.06

SNV2 72.65±0.18 72.50±0.11 72.46±0.13 7.64 ± 0.70 69.91 ± 0.18 71.37±0.24 72.86±0.18 70.87±0.26

RN50 VGG11 71.94±0.09 72.00±0.21 72.04±0.13 54.29±0.52 71.57±0.31 70.76±0.20 70.73±0.22 61.73±0.23
RN18 78.76±0.08 77.76±0.23 78.79±0.23 43.73±0.55 73.76±0.10 77.89±0.25 78.61±0.15 73.92±0.19

APGP
VGG16 VGG11 71.94±0.09 71.92±0.19 72.27±0.21 27.24±0.54 69.25±0.14 70.08±0.23 72.01±0.20 45.98±0.45

SNV2 72.65±0.18 73.10±0.27 73.75±0.23 12.52±0.30 71.04±0.31 71.66±0.13 73.20±0.27 9.48 ± 0.73

RN50 VGG11 71.94±0.09 71.91 ± 0.17 72.11 ± 0.23 9.74 ± 0.86 69.48 ± 0.11 71.38 ± 0.25 71.92 ± 0.14 34.71 ± 0.30
RN18 78.76 ± 0.08 78.04 ± 0.21 79.06 ± 0.14 62.71 ± 0.29 77.32 ± 0.13 77.82 ± 0.13 77.90 ± 0.15 2.57 ± 0.95

RSP
VGG16 VGG11 71.94 ± 0.09 71.42 ± 0.24 72.04 ± 0.13 70.22 ± 0.19 70.80 ± 0.17 70.40 ± 0.17 71.56 ± 0.06 31.04 ± 0.62

SNV2 72.65 ± 0.18 73.55 ± 0.34 72.95 ± 0.36 67.45 ± 0.20 72.19 ± 0.44 71.46 ± 0.41 72.27 ± 0.27 26.09 ± 0.40

RN50 VGG11 71.94 ± 0.09 71.97 ± 0.17 72.01 ± 0.20 69.53 ± 0.12 72.18 ± 0.21 70.87 ± 0.14 70.85 ± 0.17 46.68 ± 0.60
RN18 78.76 ± 0.08 77.78 ± 0.09 77.79 ± 0.16 77.01 ± 0.09 78.88 ± 0.21 78.00 ± 0.26 78.13 ± 0.12 55.86 ± 0.18

NT
VGG16 VGG11 71.94 ± 0.09 71.40 ± 0.34 73.44 ± 0.16 71.47 ± 0.14 71.33 ± 0.18 70.77 ± 0.23 71.58 ± 0.09 63.56 ± 0.16

SNV2 72.65 ± 0.18 72.44 ± 0.43 72.70 ± 0.35 6.24 ± 0.51 72.04 ± 0.19 70.75 ± 0.13 72.83 ± 0.20 6.32 ± 0.26

RN50 VGG11 71.94 ± 0.09 72.01 ± 0.25 72.03 ± 0.19 71.55 ± 0.36 71.88 ± 0.31 70.16 ± 0.29 71.94 ± 0.18 62.94 ± 0.24
RN18 78.76 ± 0.08 78.41 ± 0.25 78.92 ± 0.14 79.26 ± 0.29 78.99 ± 0.14 77.94 ± 0.22 78.33 ± 0.05 68.96 ± 0.18

SNT
VGG16 VGG11 71.94 ± 0.09 72.06 ± 0.22 72.28 ± 0.12 4.92 ± 0.22 71.98 ± 0.18 70.60 ± 0.13 71.63 ± 0.10 64.08 ± 0.19

SNV2 72.65 ± 0.18 72.94 ± 0.41 73.17 ± 0.13 72.78 ± 0.20 72.22 ± 0.24 71.22 ± 0.18 72.74 ± 0.20 6.22 ± 0.59

RN50 VGG11 71.94 ± 0.09 72.02 ± 0.19 72.12 ± 0.39 72.32 ± 0.33 71.70 ± 0.39 70.66 ± 0.17 71.65 ± 0.20 62.94 ± 0.29
RN18 78.76 ± 0.08 78.25 ± 0.05 78.48 ± 0.24 78.82 ± 0.30 78.14 ± 0.28 78.45 ± 0.15 78.38 ± 0.13 67.71 ± 0.20

ST
VGG16 VGG11 71.94 ± 0.09 72.09 ± 0.23 72.01 ± 0.14 71.63 ± 0.16 71.93 ± 0.12 71.16 ± 0.27 71.63 ± 0.18 63.32 ± 0.14

SNV2 72.65 ± 0.18 72.64 ± 0.15 72.67 ± 0.21 70.53 ± 0.48 72.24 ± 0.39 71.32 ± 0.38 72.42 ± 0.12 69.46 ± 0.28

RN50 VGG11 71.94 ± 0.09 72.00 ± 0.19 72.13 ± 0.13 71.62 ± 0.24 71.76 ± 0.29 70.54 ± 0.33 71.73 ± 0.11 65.43 ± 0.24
RN18 78.76 ± 0.08 78.96 ± 0.26 79.02 ± 0.06 78.35 ± 0.09 78.31 ± 0.14 78.36 ± 0.25 78.81 ± 0.14 72.87 ± 0.08

LS
VGG16 VGG11 71.94 ± 0.09 71.90 ± 0.18 72.00 ± 0.06 71.57 ± 0.26 70.89 ± 0.12 70.66 ± 0.17 71.76 ± 0.10 63.49 ± 0.21

SNV2 72.65 ± 0.18 72.87 ± 0.28 73.52 ± 0.25 70.01 ± 0.32 71.49 ± 0.38 71.70 ± 0.42 73.01 ± 0.27 65.20 ± 0.14

RN50 VGG11 71.94 ± 0.09 71.82 ± 0.28 71.99 ± 0.16 71.95 ± 0.33 70.77 ± 0.39 70.86 ± 0.24 71.88 ± 0.16 62.29 ± 0.10
RN18 78.76 ± 0.08 77.72 ± 0.30 77.82 ± 0.12 79.37 ± 0.19 78.33 ± 0.06 78.31 ± 0.21 77.91 ± 0.07 63.36 ± 0.17

CMIM
VGG16 VGG11 71.94 ± 0.09 71.87 ± 0.24 71.64 ± 0.07 71.56 ± 0.03 70.34 ± 0.09 71.71 ± 0.14 71.42 ± 0.05 66.89 ± 0.11

SNV2 72.65 ± 0.18 72.53 ± 0.21 71.44 ± 0.16 72.46 ± 0.20 71.45 ± 0.31 71.59 ± 0.24 71.94 ± 0.20 64.45 ± 0.24

RN50 VGG11 71.94 ± 0.09 71.54 ± 0.30 71.34 ± 0.16 71.77 ± 0.06 71.86 ± 0.28 69.32 ± 0.09 71.70 ± 0.22 60.58 ± 0.17
RN18 78.76 ± 0.08 78.21 ± 0.13 78.16 ± 0.09 78.13 ± 0.06 77.56 ± 0.06 77.23 ± 0.09 78.64 ± 0.06 65.88 ± 0.09

TinyImageNet

RSP RN34 RN18 63.56 ± 0.06 63.54 ± 0.09 64.32 ± 0.07 64.01 ± 0.07 63.27 ± 0.16 63.54 ± 0.07 62.15 ± 0.14 55.43 ± 0.12
RN50 SNV2 60.61 ± 0.15 60.18 ± 0.26 60.76 ± 0.16 56.26 ± 0.16 56.43 ± 0.11 60.96 ± 0.22 60.15 ± 0.20 54.01 ± 0.22

ST RN34 RN18 63.56 ± 0.06 63.96 ± 0.13 64.12 ± 0.07 63.25 ± 0.10 63.51 ± 0.14 63.49 ± 0.19 63.84 ± 0.08 57.42 ± 0.08
RN50 SNV2 60.61 ± 0.15 61.23 ± 0.24 61.36 ± 0.14 60.43 ± 0.14 60.32 ± 0.24 60.22 ± 0.17 61.13 ± 0.13 55.84 ± 0.11

NT RN34 RN18 63.56 ± 0.06 63.27 ± 0.14 64.49 ± 0.17 64.67 ± 0.16 63.43 ± 0.20 63.50 ± 0.10 64.43 ± 0.11 53.11 ± 0.06
RN50 SNV2 60.61 ± 0.15 59.57 ± 0.22 61.55 ± 0.12 31.55 ± 0.28 60.03 ± 0.23 60.98 ± 0.27 60.31 ± 0.17 50.94 ± 0.15

LS RN34 RN18 63.56 ± 0.06 63.74 ± 0.08 64.01 ± 0.14 64.23 ± 0.11 63.51 ± 0.07 64.20 ± 0.16 63.04 ± 0.13 57.43 ± 0.10
RN50 SNV2 60.61 ± 0.15 60.32 ± 0.24 60.93 ± 0.15 60.74 ± 0.26 60.11 ± 0.28 60.46 ± 0.14 60.14 ± 0.21 52.96 ± 0.23

CMIM RN34 RN18 63.53 ± 0.06 62.89 ± 0.03 63.15 ± 0.08 62.94 ± 0.03 63.28 ± 0.05 61.57 ± 0.06 62.96 ± 0.06 56.13 ± 0.04
RN50 SNV2 60.61 ± 0.15 57.57 ± 0.20 59.32 ± 0.17 60.58 ± 0.12 59.41 ± 0.09 59.33 ± 0.10 60.42 ± 0.04 56.91 ± 0.05

Upon reviewing the variance estimates, we see that certain cases, such as the (RN50, VGG11) pair on
CIFAR-100, might suggest that the CMIM-trained model could be rendered distillable under naive statistical
interpretations. For example, when the DIST method is applied to the CMIM model, the accuracy is reported
as, which could potentially exceed the LS student accuracy of if variance is simply added to the mean.

However, this approach of directly comparing mean values with added variances does not provide an accurate
or fair assessment of undistillability. To address this, we conducted a more rigorous analysis where, across
five different seeds, we compared the accuracy of the knock-off Student (VGG11 in this case) trained via
label smoothing and the DIST method applied to RN50 trained with CMIM.

The results of this comprehensive comparison are summarized in the following table, which demonstrates
that the CMIM model achieves undistillability across all different seeds.

J Computational Overhead

In this section we compare the computational overhead of our method with the CE counterpart on CIFAR-100
dataset.

24

Under review as submission to TMLR

Table 8: Variance analysis of Table 7
Seed 1 Seed 2 Seed 3 Seed 4 Seed 5

LS 72.28 71.83 72.06 72.25 71.53
CMIM 72.01 71.74 71.93 72.12 71.27

Table 9: Training times of CMIM and CE for ResNet-10 and VGG-16 on the CIFAR-100 dataset.
CE CMIM

RN50 4 hours 43 minutes 5 hours 13 minutes
VGG16 2 hours 57 minutes 3 hours 25 minutes

Note that the training time for CMIM is slightly higher than that of conventional CE method. This is
primarily due to the additional inference samples required to estimate the CMI per class. We believe this
is a reasonable trade-off given the significant benefits of the method. In addition, note that the number
of samples N does not have any effects on the training time CMIM; this is because the power transform
applied to the teacher’s output probabilities, and when calculating the gradients during the backpropagation,
different values of α does not change the gradients.

Additionally, we note that among the existing KD protection methods in the literature, only CMIM (our
method) and ST are scalable to larger datasets like ImageNet. This scalability is due to the significant
computational complexity of other benchmark methods, which limits their applicability to smaller datasets.

K Ablation on Hyper-parameters

In this section, we perform an ablation study to analyze the impact of three key hyper-parameters of CMIM:
β, the number of samples N , and ω.

For all experiments in this study, we employ the VGG-16 and SNV2 models as the teacher-student pair, using
the CIFAR-100 dataset as the evaluation benchmark.

K.1 Range of β

In this section, we examine the impact of β on the performance of CMIM. For this analysis, we fix N = 50
and ω = 25, while varying the value of β. The results are shown in Figure 4 show that the accuracy of the
knockoff student decreases significantly when β ≥ 1, highlighting the importance of choosing an appropriate
β to effectively balance cross-entropy and CMI objectives.

Figure 4: The student accuracy when distilled from the teacher model trained by different β values.

25

Under review as submission to TMLR

K.2 Number of power samples N

In this section, we analyze the influence of the number of samples N on the performance of the knockoff
student. For this study, we set β = 2 and ω = 25, varying N to observe its impact. The results, presented in
Figure 5, reveal that the accuracy of the knockoff student declines monotonically as N increases, suggesting
that a moderate sampling size is enable to capture sufficient diversity for robust estimation.

Figure 5: The student accuracy when distilled from the teacher model trained by different number of sample
N .

K.3 Power Coefficient ω

In this section, we investigate the effect of the power coefficient ω on the knockoff student’s performance.
For this analysis, we fix β = 2 and N = 25, while varying ω. The results are summarized in Table 10.
Notably, when ω > 30, the simulation frequently results in NaN values due to excessively large exponent
values. Furthermore, the table shows that at ω = 20 or ω = 30, the knockoff student’s accuracy reaches its
minimum, indicating that this value effectively approximates the behavior of ω = ∞.

Table 10: The student accuracy when distilled from the teacher model trained by different values of ω.
Value of ω 1 2 5 10 15 20 25 30 40 50 100 200

Knock-off Student Accuracy 72.65 72.67 72.55 72.56 72.55 72.52 72.53 72.52 NaN NaN NaN NaN

26

Under review as submission to TMLR

L Visualization of Different Three Projected Probability Clusters

(a) LS (b) Nasty teacher (c) CMIM

Figure 6: Visualization of three projected probability clusters for ResNet-50 trained on CIFAR-100 using (a)
LS, (b) NT, and (c) CMIM.

In this section, we randomly selected three additional output clusters from the CIFAR-100 dataset, oak,
raccoon, and ray, and visualized them using the method introduced in Yang et al. (2023). The same conclusion
continues to hold.

M Effect of CMIM on Model Calibration

In this section, we investigate the impact of the CMIM method on model calibration. To do so, we report the
Expected Calibration Error (ECE) for ResNet-50 trained with CE, LS, NT and CMIM on the CIFAR-100
dataset. As shown in Table 11, the CMIM-trained model achieves calibration on par with its CE-trained
counterpart and consistently outperforms both the LS and NT counterparts.

Table 11: Expected calibration error of three projected probability clusters for ResNet-50 trained on CIFAR-
100 using CE, LS, NT and CMIM.

Defense CE LS NT CMIM
ECE 9.42% 21.48% 16.47% 11.24%

Accuracy 77.81% 78.45% 77.31% 78.72%

27

	Introduction
	Related Works
	Notation and Preliminaries
	Notation
	Label Smoothing
	Power Transform of Probability Distribution
	CMI value of a DNN

	CMI Minimized Method
	Information Quantities for Power Transformed Clusters
	Framework for Minimizing CMI Values of Power Transformed Clusters
	Algorithm for Solving the Optimization in (27)

	Experiments
	Knockoff Student Accuracy
	Accuracy of Protected Models
	Visualizing the Output Clusters
	Why Prior Defense Methods Can be Made Distillable?

	Conclusion and Future Directions
	Appendix
	A Thorough Study of Related Works
	Logit-based KD methods
	Defense methods against Logit-based KD
	Attack Methods Using Logit-based KD

	Why LS reduce the knockoff student's accuracy?
	Power Transformation of Mutual Information
	Proof of th2
	Datasets description
	Experiments setup
	Defense setup
	Defense setup on CIFAR-100 and TinyImagenet
	Defense setup on Imagenet

	Attack setup
	Attack setup on CIFAR-100 and TinyImagenet
	Attack setup on Imagenet

	Accuracy of Protected models
	Variance of Tab:BenchmarkCIFAR100
	Computational Overhead
	Ablation on Hyper-parameters
	Range of
	Number of power samples N
	Power Coefficient

	Visualization of Different Three Projected Probability Clusters
	Effect of CMIM on Model Calibration

