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ABSTRACT

The performance improvement of large language models (LLMs) mainly came
from scaling pretraining. However, a new scaling paradigm emerged called test-
time compute, which uses more computation at the inference time of language
models to get better results. There have been extensive works suggesting various
test-time compute scaling strategies, but derivation of laws describing the scaling
dynamics of these methods is an open research question. In this work we try to
bridge this gap, developing a parametric law for language model-enhanced evolu-
tionary algorithms depending on the language model parameters (N ) and number
of evolutionary iterations (k) used. We show that in molecular optimization tasks,
our law is able to accurately extrapolate 2.5× in N and k. Additionally, our law
suggests that there is a tradeoff between N and k, which we validate by matching
the performance of a 3.2B model with a 8.5× smaller 380M model using 2.3×
more evolutionary algorithms steps.

1 INTRODUCTION

Over the past years, the improvement of large language models (LLMs) primarily came from scaling
pretraining. However, recently, a new scaling paradigm emerged called test-time compute, which
tries to spend extra computation during the inference of language models to get better performance.
Perhaps the simplest forms of using more test-time compute include methods such as, Consensus
(Wang et al., 2022), best of N (Cobbe et al., 2021) and Chain-of-Thought (Kojima et al., 2022).
More advanced methods utilizing test-time compute (in various forms) have demonstrated promising
results in domains like games (Silver et al., 2018), (Brown & Sandholm, 2019), (Jones, 2021),
general reasoning (Jaech et al., 2024), (Guo et al., 2025), (Muennighoff et al., 2025), mathematics
problem solving (Xin et al., 2024), coding problem solving (alp).

Although a wide range of strategies have been developed for increasing test-time compute, to the
best of our knowledge, there are no works developing laws describing the scaling dynamics of these
strategies. In this work, we try to bridge this gap. We focus on the family of evolutionary algorithms
powered by language models. The development of powerful LLMs has enabled their use in the
implementation of crucial operations (such as crossover or mutation) in evolutionary algorithms.
The synthesis of evolutionary algorithms and language models lead to a significant boost in their
capabilities in applications, like prompt optimization (Guo et al., 2023), neural architecture search
(Chen et al., 2023), math problems solving (Yang et al.) and molecular optimization (Wang et al.,
2024), (Guevorguian et al., 2024).

Our contributions are the following:

• We introduce a parametric law for modeling the scaling dynamics of language model-
powered evolutionary algorithms.

• We test our law on challenging multi-property molecular optimization tasks and find that
our law successfully extrapolates 2.46 and 2.5 times along the language model parameters
(N ) and number of evolutionary algorithm iterations (k), respectively. Moreover, we find
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that while accurate in the extrapolation regime, our law is unreliable at the earlier stages of
the evolutionary algorithm.

• We find a tradeoff between the language model parameters (N ) and the number of evo-
lutionary algorithm iterations (k) and show that the performance of larger models can be
accessible from smaller models (as derived by our law). Importantly, we validate the pre-
diction of our parametric law that 380M language model should match the performance of
a (8.5× larger) 3.2B model, through running 2.3× more iterations.

2 RELATED WORK

Extensive work has been done to model the scaling dynamics of neural language models at different
stages. Kaplan et al. (2020), Hernandez et al. (2021), and Hoffmann et al. (2022) model language
model training log-likelihood loss, giving valuable insights into the optimal design choices for lan-
guage models. Aghajanyan et al. (2023) extend the training loss modeling to the multi-modal setting.
Muennighoff et al. (2023) study the training loss in data-constrained settings (i.e., when using the
same data point multiple times).

Isik et al. (2025) suggest a logarithmic model for the BLEU score prediction. Dubey et al. (2024)
and Bhagia et al. (2024) use a two-stage approach, firstly modeling the training loss, then the task
performance based on it, using a sigmoid-based model. Chen et al. (2024) introduce a law for the
probability of solution correctness for test-time compute strategies.

3 SCALING LAWS FOR EVOLUTIONARY ALGORITHMS

We propose a parametric law for predicting the expected performance of the family of methods
that use evolutionary algorithms powered by transformer-based language models. These approaches
typically consist of training a language model and then defining an evolutionary algorithm in terms
of the language model.

3.1 PARAMETRIC LAW

For N parameter transformer, trained on a fixed number of tokens and k evolutionary algorithm
iterations, we propose the following parametric law for the expected performance of a task

Ŝ(N, k) = 1−A− B

(βNα)kγ (1)

where A,B, α, β and γ are parameters to be fitted. In A.1, we provide the derivation of our law.

4 SCALING LAWS FOR MOLECULAR OPTIMIZATION

In this section, we test our parametric law with molecular optimization tasks. In the context of this
work, molecular optimization refers to finding molecules that satisfy some desired properties. Our
method consists of using 170M, 380M, 750M and 1.3B language models and up to 20 iterations
of the evolutionary algorithm to estimate the parameters of our law, then for testing it we use 3.2B
parameter model and up to 50 evolutionary iterations.

4.1 CHEMICAL LANGUAGE MODELS

The Llama 3 (Dubey et al., 2024) transformer architecture is chosen for training chemical language
models. We train transformers in the sizes of 170M, 380M, 750M, and 1.3B for scaling law deriva-
tion. Since Llama 3’s smallest architecture has 1B parameter transformer, we manually derive 170M,
380M and 750M parameter architectures. A.2 contains the architecture configurations used for each
model size. We train the language models with AdamW Loshchilov & Hutter (2019) and with
Warmup-Stable-Decay (WSD) learning rate scheduler Hu et al. (2024) using Fully Sharded Data
Parallel (FSDP) Zhao et al. (2023) distributed training method.

2



Published at the GEM workshop, ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k

0.75

0.80

0.85

0.90

0.95

To
p 

1 
Sc

or
e

Llama-3-170M
Llama-3-380M
Llama-3-750M
Llama-3-1.3B
fit

Figure 1: The empirical (solid lines) and pre-
dicted (dashed lines) top-1 scores for 170M-
1.3B models.
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Figure 2: The result of testing our law derived
with 170M-1.3B language models and 20 evo-
lutionary iterations with a 3.2B parameter lan-
guage model with 50 evolutionary iterations.
The empirical and predicted top-1 scores are
represented in solid and dashed lines, respec-
tively.

We employ the extensive chemical dataset curated in Guevorguian et al. (2024), based on the Pub-
Chem knowledge repository, which includes around 100 million molecules, their properties, and
their relationships. We utilize the tokenizer that comes with Llama 3 pre-trained models and, after
some data processing, obtain a dataset consisting of 40B tokens for training our models.

Additionally, we use a special case of the evolutionary algorithm developed in Guevorguian et al.
(2024), which has demonstrated competitive performance in a variety of molecular optimization
tasks. This evolutionary algorithm relies on the notion of similarity defined in terms of molecule
fingerprints. The algorithm keeps a pool of the best molecules so far and, at each step, queries the
language model to generate new molecules similar to the existing good ones, hence defining the
crossover and mutation operations. Algorithm 1 provides a high-level overview of the evolutionary
algorithm used, but for further clarification, we ask the reader to refer to Guevorguian et al. (2024).

4.2 MOLECULAR OPTIMIZATION TASK SELECTION

We model the average top-1 score of the sitagliptin mpo, perindopril mpo and
ranolazine mpo multi-property optimization tasks from the Guacamol Benchmark (Brown
et al., 2019). Additionally, to obtain a more reliable performance estimate, for each task, ten in-
dependent runs are executed (with 10 different seeds), and the results are averaged.

4.3 PARAMETER ESTIMATION

The evolutionary algorithm is run for 20 iterations with 170M, 380M, 750M, and 1.3B sized models,
and data is collected for each model size and per iteration, totaling 80 data points. Following the

Algorithm 1
Input: k (number of iterations), u (pool update frequency), p (pool size)
pool = {} // create a pool
for i = 1, . . . , k do
m1, . . . ,mu ∼ pool // sample u molecules from the pool
mnew

1 , . . . ,mnew
u ∼ LM(m1, . . . ,mu) // sample u new molecules from the LM

pool = top-p(pool ∩ {mnew
1 , . . . ,mnew

u }) // keep the best p molecules in the pool
end for
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Figure 3: Absolute error between the observed and predicted top-1 score for 170M-3.2B models.
The general trend is that the error decreases as k grows.

methodology in Hoffmann et al. (2022), we minimize the Huber loss between the predicted and
observed log scores, to estimate A,B, α, β and γ.

min
A,B,α,β,γ

∑
i

Huber(LSE(a, b− kγi log βN
α
i ))− log(1− Si)) (2)

where LSE refers to the log-sum-exp function, and then we set A = ea, B = eb. δ = 0.001 is
used for Huber loss. We optimize our parametric law with the L-BFGS algorithm and a grid of
initialization to avoid local minimum points, resulting in A = 0.03, B = 142, α = 0.11, β = 78,
and γ = 0.042 estimates. Figure 1 visualizes the observed and predicted top-1 scores.

4.4 EXTRAPOLATION

To test our derived model in the extrapolation regime, we train a 3.2B parameter language model and
execute the evolutionary algorithm for 50 iterations. Figure 2 shows the predicted and the observed
top-1 scores.

At k = 50, the predicted and observed top-1 scores are 0.918 and 0.920 respectively, with 0.002
absolute error. This suggests that our law simultaneously extrapolates in the number of language
model parameters (N ) and in the number of evolutionary algorithm iterations (k) 2.46 and 2.5 times,
respectively.

5 ANALYSIS
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Figure 4: Illustration of incon-
sistent ordering between different
model sizes at the initial stages.

Firstly, we find that the top-1 score is hard to model for smaller
values of k due to the lack of regularity. Figure 4 illustrates
the observed top-1 scores for all model sizes up to 7 iteration,
which shows the order of language models with respective pa-
rameter counts is inconsistent, making it challenging to pre-
dict. We hypothesize that this is due to high stochasticity in
the evolutionary algorithm at the earlier stages and leave the
investigation of this phenomenon as a future work.

Although hard to predict at earlier steps, as k gets larger, the
top-1 score gets more stable, and our model is able to accu-
rately capture the top-1 performance, as can be seen in Figure
1 and 2. To facilitate a more comprehensive understanding,
Figure 3 represents the absolute error between the predicted
and observed top-1 scores for all model sizes.
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Figure 5: This figure represents the tradeoff between
N and k, by showing the configurations of N and k to
choose for achieving top-1 0.88 − 0.92 scores. Figure
inspired from Jones (2021)

5.1 MODEL SIZE AND EVOLUTIONARY STEPS TRADEOFF

In this section we show the tradeoff between N and k. Figure 5 x axis represents the number of
language model parameters to choose, and the y axis shows the number of evolutionary iterations
to use to get the desired performance. The dashed lines represent the prediction of the scaling law.
To validate this prediction, we run 170M and 380M models for the appropriate number of iterations
to achieve the predicted 0.9, 0.91, and 0.92 top-1 scores. The stars represent the exact configuration
used for testing along with the empirical result. We find that for N = 170M model our law correctly
predicts the top-1 score for k = 57, but makes a 0.01 error for 91 and 160. For N = 380M model, it
correctly predicts the top-1 score at k = 115. These findings suggest that, indeed, there is a tradeoff
between N and k.

In practice training a larger language model can be inaccessible due to compute or data quality
or quantity constraints. However, our experiments suggest that the capabilities of larger language
models may be accessible from smaller language models through more evolutionary iterations.

6 DISCUSSION AND FUTURE WORK

While in this work we focused on molecular optimization task, it is natural to conjecture that our
law would be possible to extend to other problem formulations as well. Additionally, it would be
interesting to model metrics other than top-1 scores, spreading the applicability of these methods.

We think that an exciting line of work would be to introduce the notion of compute optimality, which
will require some unification of the oracle and language model computation to optimize against.
This would enable us to find the choices for N and k, maximizing the performance under some
fixed compute budget.

As the next steps in this work, we plan on including more challenging and realistic molecular op-
timization problems to embrace the usefulness of our method. We plan to construct tests to check
further extrapolation for a range of different molecular optimization tasks and enhance our under-
standing of the strengths and limitations of our approach.

7 CONCLUSION

We have developed a parametric law for modeling the scaling dynamics of language model-enhanced
evolutionary algorithms. We tested it on the average top-1 performance of multi-property molecular
optimization tasks and showed that our law accurately extrapolates in the language model parameter
count and number of evolutionary algorithm iterations at the same time. As suggested by our law, we
found that smaller models can reach the performance of larger ones by running more evolutionary
algorithm steps.
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A APPENDIX

A.1 DERIVATION OF THE PARAMETRIC LAW

In this section, we provide the derivation of our scaling law for the task performance obtained by
evolutionary algorithms powered by a language model.

We frame a task to be solved as a minimization problem given by

S∗ = min
x

S(x)

where S is the objective function and refers to the metric of interest. We examine evolutionary
algorithms augmented by transformer-based language models fN,D with N number parameters,
trained with D number of tokens (terminology adopted from Hoffmann et al. (2022)). We seek to
find the expected value of the best task performance achieved by running the evolutionary algorithm
for k iterations with a language model fN,D, and denote it by Sk

fN,D

, more rigorously

Sk
fN,D

= E
Xk

[min(S(x) : x ∈ Xk)]

where Xk denotes the population after kth iteration

We write the expected performance in the following form

Sk
fN,D

= S∗ + (Sk
fN,D

− S∗)

where S∗ is the minimum achievable performance and the (Sk
fN,D

− S∗) term refers to the approx-

imation error of the evolutionary algorithm. He et al. (2018) developed a theoretical framework
for approximation error analysis for a class of evolutionary algorithms and proved that the error is
upper bounded by e0e

k
1 for kth iteration, where e0 and e1 are some constants. We approximate the

(Sk
fN,D

− S∗) term in accordance with the theoretical bound and obtain the following expression.

Sk
fN,D

= A+
B

(βNα)kγ

where A,B, α, β and γ are parameters to estimate. We added the γ in the exponent of k for an
additional degree of freedom, and we note that without it, the model failed to capture the empirical
observations with high accuracy.

Finally, as many task metrics are in the [0, 1] range and require to maximize performance, our
expression can be easily converted to model these cases by subtracting our expression from 1

1−A− B

(βNα)kγ

A.2 SMALLER LLAMA 3 MODELS.

Table 1 shows the architecture parameters used for obtaining smaller models corresponding to Llama
3 architecture.

model size dmodel nlayers nheads nkv heads

170M 768 8 16 8
380M 1024 16 16 8
750M 1536 16 24 8

Table 1: Architecture configurations used for smaller versions of Llama 3 architecture.
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