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ABSTRACT

Vision-centric autonomous driving has demonstrated excellent performance with
economical sensors. As the fundamental step, 3D perception aims to infer 3D
information from 2D images based on 3D-2D projection. This makes driving
perception models susceptible to sensor configuration (e.g., camera intrinsics and
extrinsics) variations. However, generalizing across camera configurations is im-
portant for deploying autonomous driving models on different car models. In this
paper, we present UniDrive, a novel framework for vision-centric autonomous
driving to achieve universal perception across camera configurations. We deploy
a set of unified virtual cameras and propose a ground-aware projection method
to effectively transform the original images into these unified virtual views. We
further propose a virtual configuration optimization method by minimizing the
expected projection error between original and virtual cameras. The proposed vir-
tual camera projection can be applied to existing 3D perception methods as a plug-
and-play module to mitigate the challenges posed by camera parameter variability,
resulting in more adaptable and reliable driving perception models. To evaluate
the effectiveness of our framework, we collect a dataset on CARLA by driving
the same routes while only modifying the camera configurations. Experimental
results demonstrate that our method trained on one specific camera configuration
can generalize to varying configurations with minor performance degradation.

1 INTRODUCTION

Vision-centric autonomous driving has gained significant traction (Wang et al., 2023a) due to its
ability to deliver high-performance perception using economical sensors like cameras. At the core
of this approach lies 3D perception (Liu et al., 2022), which reconstructs 3D spatial information
from 2D images via 2D-3D lift transform (Philion & Fidler, 2020). This transform is critical for
enabling vehicles to understand their environment, detect objects, and navigate safely. Previous
works (Huang et al., 2021; Xie et al., 2022; Reading et al., 2021; Li et al., 2022; Zhou & Krähenbühl,
2022; Zeng et al., 2024; Lu et al., 2022; Huang & Huang, 2022; Liu et al., 2023a) have achieved
remarkable 3D perception ability by utilizing Bird’s Eye View (BEV) representations to process
2D-3D lift. Recently, many vision-based 3D occupancy prediction methods (Huang et al., 2023;
Wei et al., 2023; Huang et al., 2024a;b; Zhao et al., 2024) further improved the understanding of
dynamic and cluttered driving scenes, pushing the boundaries of the research domain. As a result,
vision-based systems have become one of the primary solutions for scalable autonomous driving.

Despite the exciting development of the state-of-the-art vision-based autonomous driving (Liu et al.,
2024; Zong et al., 2023; Zheng et al., 2024b;a; Hu et al., 2023; Jiang et al., 2023a), a critical limi-
tation still remains: the sensitivity of these models to variations in camera configurations, including
intrinsics and extrinsics. Autonomous driving models typically rely on well-calibrated sensor se-
tups, and even slight deviations in camera parameters across different vehicles or platforms can
significantly degrade performance (Wang et al., 2023b). As illustrated in Figure 1a, this lack of
robustness to sensor variability makes it challenging to transfer perception models between differ-
ent vehicle platforms without extensive retraining or manual adjustment. This variation necessitates
∗Work done while visiting UC Berkeley.
†Corresponding author.
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(a) Deploy on same camera configurations: Succeed! (b) Deploy on different camera configurations: Fail!

Figure 1: Comparison of deploying perception models on the same and distinct configurations.

training separate models for each vehicle, which consumes a significant amount of computational
resources. Thus, achieving generalization across camera configurations is essential for the practical
deployment of vision-centric autonomous driving.

In this paper, we address two key questions surrounding generalizable driving perception: 1) How
can we construct a unified framework that enables perception models to generalize across different
multi-camera parameters? 2) How can we further optimize the generalization of perception models
to ensure robust performance across varying multi-camera configurations?

To achieve this, we introduce UniDrive, a novel framework designed to address the challenge of
generalizing perception models across multi-camera configurations. This framework deploys a set
of unified virtual camera spaces and leverages a ground-aware projection method to transform origi-
nal camera images into these unified virtual views. Additionally, we propose a virtual configuration
optimization strategy that minimizes the expected projection error between the original and vir-
tual cameras, enabling consistent 3D perception across diverse setups. Our framework serves as
a plug-and-play module for existing 3D perception methods, improving their robustness to camera
parameter variability. We validate our framework in CARLA by training and testing models on
different camera configurations, demonstrating that our approach significantly reduces performance
degradation while maintaining adaptability across diverse sensor setups. To summarize, we make
the following key contributions in this paper:

• To the best of our knowledge, UniDrive presents the first comprehensive framework designed to
generalize vision-centric 3D perception models across diverse camera configurations.

• We introduce a novel strategy that transforms images into a unified virtual camera space, enhanc-
ing robustness to camera parameter variations.

• We propose a virtual configuration optimization strategy that minimizes projection error, improv-
ing model generalization with minimal performance degradation.

• We contribute a systematic data generation platform along with a 160,000 frames multi-camera
dataset, and benchmark evaluating perception models across varying camera configurations.

2 RELATED WORK

Vision-based 3D Detection. The development of camera-only 3D perception has gained great
momentum recently. Early works such as FCOS3D (Wang et al., 2021), which extended the 2D
FCOS detector (Tian et al., 2020) by adding 3D object regression branches, paved the way for
improvements in depth estimation via probabilistic modeling (Wang et al., 2022a; Chen et al.,
2022a). Later methods like DETR3D (Wang et al., 2022c), PETR (Liu et al., 2022), and Graph-
DETR3D (Chen et al., 2022b) applied transformer-based architectures with learnable object queries
in 3D space, drawing from the foundations of DETR (Zhu et al., 2021; Wang et al., 2022b), by-
passing the limitations of perspective-based detection. Recent works utilize bird’s-eye view (BEV)
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for better 3D understanding. BEVDet (Huang et al., 2021) and M²BEV (Xie et al., 2022) effec-
tively extended the Lift-Splat-Shoot (LSS) framework (Philion & Fidler, 2020) for 3D object de-
tection. CaDDN (Reading et al., 2021) introduced explicit depth supervision in the BEV trans-
formation to improve depth estimation. In addition, BEVFormer (Li et al., 2022), CVT (Zhou &
Krähenbühl, 2022), and Ego3RT (Lu et al., 2022) explored multi-head attention mechanisms for
view transformation, demonstrating further improvements in consistency. To further enhance accu-
racy, BEVDet4D (Huang & Huang, 2022), BEVFormer (Li et al., 2022), and PETRv2 (Liu et al.,
2023a) leveraged temporal cues in multi-camera object detection, showing significant improvements
over single-frame methods.

Cross Domain Perception. The cross-camera configurations problem proposed in this paper lies
in the area of cross-domain perception. Domain generalization or adaptation is to enhance model
performance on varying domains without re-training. For 2D perception, numerous cross-domain
methods, such as feature distribution alignment and pseudo-labeling (Muandet et al., 2013; Li et al.,
2018; Dou et al., 2019; Facil et al., 2019; Chen et al., 2018; Xu et al., 2020; He & Zhang, 2020;
Zhao et al., 2020), have primarily addressed domain shifts caused by environmental factors like rain
or low light. Recent 3D driving perception works (Hao et al., 2024; Peng et al., 2023) focus on
transfering the models trained on clean environment or perfect sensor situations to corrupted sensor
and noisy environments, leading to several benchmarks and methods. Cross camera configuration
is a relatively new topic in this area. While some works (Wang et al., 2023b) find that the model’s
overfitting to camera parameters can lead to degrade performance because the models learn the
fixed observation perspectives, the driving perception across camera parameters has seldom been
systematically investigated.

Sensor Configuration. Sensor configurations has been proven important in the design of perception
systems (Joshi & Boyd, 2008; Xu et al., 2022). Despite being relatively new in autonomous driving
research (Liu et al., 2019), sensor placement has gained significant attention. For instance, Hu
et al. (2022) and Li et al. (2024b) were the first to explore multi-LiDAR setups for improving 3D
object detection, and Li et al. (2024a) studied how combining LiDAR and cameras impacts multi-
modal detection systems. Several other studies (Jin et al., 2022; Kim et al., 2023; Cai et al., 2023;
Jiang et al., 2023b) focused on the strategic positioning of roadside LiDAR sensors for vehicle-to-
everything (V2X) communication, shifting away from in-vehicle sensor placements. Although many
efforts have aimed to refine sensor configurations for better performance, the challenge of adapting
perception models to different sensor setups has been largely overlooked. Our research is the first to
explore the generalization of driving perception models across diverse camera configurations.

3 UNIDRIVE

3.1 PROBLEM FORMULATION

In real-world multi-camera driving systems, perception models are typically trained on a specific
camera configuration with fixed intrinsic and extrinsic parameters. However, the performance of
these models often deteriorates when applied to new camera configurations, where the cameras may
have different placements, orientations, or intrinsic properties.

Perception Across Multi-camera Configurations. Given a set of cameras C = {C1, C2, . . . , CJ},
each characterized by its intrinsic matrix KCj ∈ R3×3 and extrinsic matrix ECj ∈ R4×4, where j ∈
{1, 2, . . . , J} and J is the number of cameras. The images captured by these cameras are denoted
as ICj ∈ RHCj×WCj×3, where HCj and WCj are the height and width of the image ICj . When
deploying the model trained on {C1, C2, . . . , CJ} to a new set of cameras {C ′1, C ′2, . . . , C ′J′} with
different camera numbers and intrinsic and extrinsic parameters, the model may no longer effectively
understand the 3D scene due to the differences between the training and testing configurations.

Universal Multi-camera Representation. To address the transferability of learned models across
camera configurations, we attempt to design a universal representation, which transforms images
from different camera configurations to a unified space before input to the deep learning network.
To achieve this, we propose a Virtual Camera Projection approach, which re-projects the views ICj

from the original cameras C = {C1, C2, . . . , CJ} into a unified set of virtual camera configurations
V = {V1, V2, ..., VK}, where K is the number of virtual cameras. The image is represented as
IVk ∈ RHVk×WVk×3, where HVk and WVK are the image sizes, and k ∈ {1, 2, . . . ,K} indexes the
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Figure 2: Overview of UniDrive framework. We transform the input images into a unified virtual
camera space to achieve universal driving perception. To estimate the depth of pixels in the virtual
view for projection, we propose a ground-aware depth assumption strategy. To obtain the most
effective virtual camera space for multiple real camera configurations, we propose a data-driven
CMA-ES (Hansen, 2016) based optimization strategy. To evaluate the efficacy of our framework,
we propose an automatic data generation platform in CARLA (Dosovitskiy et al., 2017).

virtual camera views. We denote KVk and EVk as the intrinsic and extrinsic matrices for the virtual
camera Vk. This virtual configuration serves as a standardized coordinate system for both training
and inference, allowing the model to operate consistently across different physical camera setups.

3.2 VIRTUAL CAMERA PROJECTION

In this subsection, we explain the Virtual Camera Projection method to project points from mul-
tiple camera views onto virtual camera views using a combination of ground and cylindrical sur-
face assumptions, as shown in Figure 2. The goal is to learn a transformation function TV←C

that maps the images from the original cameras C = {C1, C2, . . . , CJ} to the virtual cameras
V = {V1, V2, . . . , VK} with minimum errors.

Ground-aware Assumption. For each pixel at coordinates (uVk , vVk) in the virtual view, its 3D
coordinates in the virtual camera frame (XVk

c , Y Vk
c , ZVk

c ) are calculated based on the pixel’s position
in the image and the depth assumptions. Let the camera height be hc, the focal lengths of the camera
be fVk

x and fVk
y , and the principal point (image center) be (cVk

x , cVk
y ). We first project all pixels to

the ground plane to compute the initial assumption of 3D coordinates in virtual camera frame as,(
X̂Vk

c , Ŷ Vk
c , ẐVk

c

)
=

(
fVk
y (uVk − cVk

x )

fVk
x (vVk − cVk

y )
hc, hc,

fVk
y

vVk − cVk
y

hc

)
. (1)

The Euclidean distance to optical center is computed as D̂Vk
c =

∥∥(X̂Vk
c , Ŷ Vk

c , ẐVk
c

)∥∥
2
. Then we

compare the distance D̂Vk
c with threshold D0, if D̂Vk

c < D0, the points connected to corresponding
pixels in the images are assumed on the ground, (XVk

c , Y Vk
c , ZVk

c ) = (X̂Vk
c , Ŷ Vk

c , ẐVk
c ). If D̂Vk

c ≥
D0, we assume that the points lie on a cylindrical-like surface at a fixed distance D0 from the
camera’s optical center. In this case, the 3D coordinates are computed as:

(
XVk

c , Y Vk
c , ZVk

c

)
=

(
(uVk − cVk

x ) D0

fVk
x dVk

,
(vVk − cVk

y ) D0

fVk
y dVk

,
D0

dVk

)
, (2)

where dVk =

∥∥∥∥(uVk−cVk
x

f
Vk
x

,
vVk−cVk

y

f
Vk
y

, 1

)∥∥∥∥
2

.

Point-wise Projection. Once the 3D coordinates (XVk
c , Y Vk

c , ZVk
c ) in the virtual camera frame

are calculated, we transform the point into the world coordinate system with extrinsic matrix EVk ,
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pw = EVk · pVk
c , where pVk

c = (XVk
c , Y Vk

c , ZVk
c , 1)⊤ is the homogeneous coordinate of the point in

the virtual camera’s frame, and pw ∈ R4 is the 3D point in the world coordinate system. Next, we
transform the point from the world coordinate system into the original camera’s coordinate system
using the inverse of the original camera’s extrinsic matrix p

Cj
c = ECj

−1 ·pw. Finally, we project the
point back onto the original camera’s 2D image plane using its intrinsic matrix, (uCj , vCj , 1)⊤ =

KCj · pCj
c = KCj · ECj

−1 · pw. This provides the pixel coordinates (uCj , vCj ) in the original
view that correspond to the pixel (uVk , vVk) in the virtual view. We denote PVk←Cj

(D̂Vk
c ) as the

projection transform matrix from (uCj , vCj ) in the i-th original view to (uVk , vVk) based on the
Euclidean distance to virtual camera optical center D̂Vk

c .

Algorithm 1 Virtual Camera Projection

1: Input: {Cj ,K
Cj ,ECj , ICj}Jj=1, {Vk,K

Vk ,EVk}Kk=1

2: Output: {IVk}Kk=1

3: for k = 1, 2, . . . ,K do
4: for (uVk , vVk ) in IVk do
5: Compute (X̂

Vk
c , Ŷ

Vk
c , Ẑ

Vk
c ), D̂Vk

c using equation 1
6: if D̂Vk

c < D0 then
7: (X

Vk
c , Y

Vk
c , Z

Vk
c )← (X̂

Vk
c , Ŷ

Vk
c , Ẑ

Vk
c )

8: else
9: Compute (X

Vk
c , Y

Vk
c , Z

Vk
c ) using equation 2

10: end if
11: pw ← EVk · pVk

c , pVk
c = (X

Vk
c , Y

Vk
c , Z

Vk
c )

12: p
Cj
c ← ECj

−1 · pw

13: (uCj , vCj )← KCj · pCj
c

14: IVk←Cj (uVk , vVk )← ICj (uCj , vCj )
15: end for
16: end for
17: IVk ← 1

W

∑J
j=1 wj · IVk←Cj using equation 3

Image-level Transformation. The
point-wise projection is extended to
the entire image view. For each
pixel (uVk , vVk) in the k-th virtual
view, we compute the corresponding
pixel (uCj , vCj ) in the i-th original
view based on the projection matrix
PVk←Cj

(D̂Vk
c ). The entire image ICj

of the i-th original view is warped into
the virtual view IVk←Cj as follows,
IVk←Cj = T (ICj ,PVk←Cj (D̂

Vk
c )),

where T (I,P) represents the warping
function applied to the image ICj using
the projection matrix PVk←Cj

(D̂Vk
c )

based on the D̂Vk
c .

Blending Multiple Views. Since each
pixel in a single virtual view may have
corresponding pixels from various orig-
inal view, after transforming each origi-
nal view into the virtual view, we merge
all the transformed images IVk←Cj to form the final output image IVk . This blending is performed
by computing a weighted sum of all the projected views:

IVk =
1

W

J∑
j=1

wj · IVk←Cj =
1

W

J∑
i=1

wj · T (ICj ,PVk←Cj
(D̂Vk

c )), (3)

where W =
∑J

j=1 wj is the total weight, and wj is the blending weight for the j-th original
view. The weights can be based on factors such as the angular distance between the original and
virtual views, or the proximity of the cameras. We presented the detailed computation process in
Algorithm 1.

3.3 VIRTUAL PROJECTION ERROR

To evaluate the accuracy of the Virtual Camera Projection method in the context of a 3D object de-
tection task, we propose a weighted projection error metric based on angular discrepancies between
the virtual and original camera views. This method accounts for both angular deviations and the
distance from the camera’s optical center to provide a more robust error evaluation.

Angle Computation. Given a driving scenario of 3D bounding box information, for each 3D bound-
ing box bn = {(xn,m, yn,m, zn,m)⊤}8m=1, we first project its corner points onto the original camera
Cj as the pixel (uCj

n,m, v
Cj
n,m), using the intrinsic matrix KCj and extrinsic matrix ECj . Then, we

use the inverse of the warping process PVk←Cj
to find the corresponding pixel (uVk

n,m, vVk
n,m) in the

virtual camera view Vk for each corner point. We compute the pitch angle θVk
n,m and yaw angle ϕVk

n,m
relative to the virtual camera’s optical center:(

θVk
n,m, ϕVk

n,m

)
=

(
arctan

vVk
n,m − cVk

y

fVk
y

, arctan
uVk
n,m − cVk

x

fVk
x

)
. (4)
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Figure 3: Integration with Existing Methods. Our virtual camera projection can be integrated into
the pipeline as a pre-processing stage before feeding the multi-view images into the network.

Algorithm 2 Virtual Camera Configuration Optimization

1: Initialize: t← 0, m(0), σ(0), C(0), Nt, Mt, ∀t ∈ {0, 1, 2, . . . , T}
2: for t = 0, 1, 2, . . . , T do
3: for i = 1 to Nt do
4: Sample u

(t)
i ∼ N (m(t), (σ(t))2C(t)) from δ-density gird-level candidates

5: Calculate E(u(t)
i )

6: end for
7: Update m(t+1) based on the top Mt best solutions û(t)

i via equation 7
8: Update σ(t+1) and C(t+1) via equation 8, equation 9, equation 10, and equation 11
9: end for

Next, for the same corner points, we directly project to the virtual view using KVk and EVk as
(uVk′

n,m, vVk′
n,m). Then the pitch angle θVk′

n,m and yaw angle ϕVk′
n,m are

(
θVk′
n,m, ϕVk′

n,m

)
=

(
arctan

vVk′
n,m − cVk

y

fVk
y

, arctan
uVk′
n,m − cVk

x

fVk
x

)
. (5)

Angle Error Calculation. For each corner point, we compute the angular error between the original
camera projection and the corresponding point in the virtual camera. The absolute errors in pitch
and yaw are ∆θVk

n,m =
∣∣θVk

n,m − θVk′
n,m

∣∣ , ∆ϕVk
n,m =

∣∣ϕVk
n,m − ϕVk′

n,m

∣∣ . We use the distance DVk
n,m of

each corner point from the original camera’s optical center as a weight. The distance is computed
as DVk

n,m =
∥∥(xVk

n,m, yVk
n,m, zVk

n,m

)∥∥. The weighted error for each corner point is then calculated as
EVk
n,m = DVk

n,m · (∆θVk
n,m + ∆ϕVk

n,m). The overall error for a 3D bounding box bn is obtained by
summing the weighted errors of its eight corner points EVk

bn
=
∑8

m=1 EVk
n,m. We sum the projection

errors across all 3D bounding boxes bn ∈ B to compute the total projection error

E =

N∑
n=1

EVk

bn
=

N∑
n=1

8∑
m=1

EVk
n,m. (6)

3.4 OPTIMIZING VIRTUAL CAMERA CONFIGURATIONS

Given a set of multi-camera systems, we aim to design a unified virtual camera configuration that
minimizes the reprojection error across all original camera configurations. To achieve this, we adopt
the heuristic optimization based on the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
(Hansen, 2016) to find an optimized set of virtual camera configurations.

Objective Function. Given multiple driving perception systems with varying multi-camera conf-
girations indexed by s, the total error across all systems is expressed as Etotal =

∑S
s=1 E(s)(u),

where u = {Vk,K
Vk ,EVk}Kk=1 includes both the intrinsic and extrinsic camera parameters of vir-

tual multi-camera framework, K is the total quantity of virtual cameras and S is the total quantity
of multi-camera driving systems that share the same perception model. We aim to minimize this
error by sampling and updating the virtual camera parameters iteratively through a CMA-ES based
optimization method.

Optimization Method. Our Optimization strategy begins by defining a multivariate normal distri-
bution N (m(t), (σ(t))2C(t)), where m(t) represents the mean vector, σ(t) denotes the step size, and
C(t) is the covariance matrix at iteration t. The configuration space U is discretized with a density
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(a) 4× 95◦ (b) 5× 75◦ (c) 6× 80◦a (d) 6× 80◦b (e) 6× 70◦

(f) 6× 60◦ (g) 8× 50◦ (h) 5× 70◦ + 110◦ (i) w/o optimization (j) w/ optimization

Figure 4: Visualized multi-camera configurations. We illustrate the multi-view camera configu-
rations used in our study. There configurations are inspired by practical applications in the industry.

δ, and Nt candidate configurations u
(t)
i ∼ N (m(t), (σ(t))2C(t)) are sampled at each iteration t.

Initialization begins with the initial mean m(0), step size σ(0), and covariance matrix C(0) = I. The
updated mean vector m(t+1) is calculated in the subsequent iteration to serve as the new center for
the search distribution concerning the virtual camera configuration. The process can be mathemati-
cally expressed as:

m(t+1) =

Mt∑
i=1

wiû
(t)
i , E(û(t)

1 ) ≥ E(û(t)
2 ) ≥ · · · ≥ E(û(t)

Mt
) , (7)

where Mt is the number of top solutions selected to update m(t+1), and wi are weights determined
by solution performance. The evolution path p

(t+1)
C , which tracks the direction of successful opti-

mization steps, is updated as:

p
(t+1)
C = (1− cC) · p(t)

C +
√
1− (1− cC)2 ·

√
1∑Mt

i=1 w
2
i

· m
(t+1) −m(t)

σ(t)
, (8)

where cC is the learning rate for updating the covariance matrix. The covariance matrix C, which
defines the distribution’s shape for camera configurations, is adjusted at each iteration as follows:

C(t+1) = (1− cC)C
(t) + cCp

(t+1)
C p

(t+1)
C

T
. (9)

Similarly, the evolution path for the step size, pσ , is updated, and the global step size σ is then
adjusted to balance exploration and exploitation:

p(t+1)
σ = (1− cσ)p

(t)
σ +

√
1− (1− cσ)2 ·

√
1∑Mt

i=1 w
2
i

· m
(t+1) −m(t)

σ(t)
, (10)

σ(t+1) = σ(t) exp

(
cσ
dσ

(
∥p(t+1)

σ ∥
E∥N (0, I)∥

− 1

))
, (11)

where cσ is the learning rate for updating pσ , and dσ is a normalization factor controlling the ad-
justment rate of the global step size. We presented the detailed optimization process in Algorithm 2.

4 EXPERIMENTS

4.1 BENCHMARK SETUPS

Data Generation. We generate multi-view image data and 3D objects ground truth in CARLA
simulator (Dosovitskiy et al., 2017). We use the maps of Towns 1-6 to collect data. We incorporate 6
classes for 3D object detection, including Car, Bus, Truck, Motorcycle, Bicycle, and Pedestrian. The
dataset consists of 500 scenes (20,000 frames) for each camera configuration. We split 250 scenes
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Table 1: Quantitative results of BEVFusion-C for 3D detection across camera configurations.
The detector is trained on the blue configurations and tested on all configurations directly. We
report the mAP (↑) and class-level AP (↑) scores in percentage (%).

Configurations mAP Car Bus Truck Ped. Motor Bic. Configurations mAP Car Bus Truck Ped. Motor Bic.

5× 70◦ + 110◦ 63.9 62.4 58.0 66.5 54.7 68.7 72.9 6× 60 69.3 68.7 67.4 66.3 62.2 78.4 72.8

4× 95◦ 4.9 4.6 5.1 3.8 3.9 3.1 4.2 4× 95◦ 3.8 4.1 4.3 3.2 4.1 3.3 3.6
5× 75◦ 7.2 9.5 4.8 6.2 5.1 9.0 8.3 5× 75◦ 3.4 3.7 2.5 3.1 2.7 4.3 4.2
6× 80◦a 8.5 11.7 8.8 8.4 6.1 8.2 7.7 6× 80◦a 0.6 1.7 0.4 0.5 0.1 0.4 0.6
6× 80◦b 6.9 10.0 7.2 7.8 5.2 6.1 5.6 6× 80◦b 0.4 1.4 0.0 0.7 0.0 0.2 0.1
6× 70◦ 67.5 65.2 61.2 69.3 57.9 79.5 72.1 6× 70◦ 8.1 9.6 4.3 6.8 7.1 11.0 10.0
6× 60◦ 9.2 12.4 7.0 8.0 6.5 11.9 9.4 5× 70◦ + 110◦ 4.6 4.9 3.0 3.5 3.4 5.4 7.4
8× 50◦ 0.5 0.6 0.1 0.9 0.2 0.3 0.6 8× 50◦ 17.3 18.5 9.9 14.1 16.7 21.2 23.4

6× 80◦a 66.7 65.4 66.2 63.7 55.8 75.9 72.9 6× 80◦b 69.1 66.0 65.1 72.1 58.3 78.6 74.2

4× 95◦ 3.8 4.3 5.0 3.6 3.2 2.8 3.9 4× 95◦ 3.5 3.9 4.1 3.3 3.2 2.6 3.7
5× 75◦ 30.4 31.2 23.4 27.8 28.6 36.9 34.2 5× 75◦ 29.6 30.3 22.6 27.1 27.9 36.3 33.2

5× 70◦ + 110◦ 9.2 10.5 6.5 8.6 7.1 8.8 13.3 6× 80◦a 63.2 65.5 67.0 66.4 46.7 68.2 65.1
6× 80◦b 63.3 65.4 63.8 70.9 46.3 68.1 65.4 6× 60◦ 1.7 2.9 0.5 1.1 0.7 2.3 2.6
6× 70◦ 16.4 18.0 9.4 13.3 14.7 22.2 20.6 6× 70◦ 16.1 17.7 8.3 12.3 14.6 23.7 19.9
6× 60◦ 1.8 3.3 0.8 1.5 0.6 2.3 2.4 5× 70◦ + 110◦ 8.9 10.3 5.6 7.5 7.1 9.6 13.4
8× 50◦ 0.4 0.5 0.0 0.8 0.1 0.1 0.6 8× 50◦ 0.2 0.4 0.0 0.9 0.3 0.3 0.4

for training and 250 scenes for validation. Our dataset is organized as the format of nuScenes (Caesar
et al., 2020) and compatible to the nuscenes-devkit python package for convenient processing.

Camera Configurations. We adopt several commonly used camera configurations in automotive
practice with various camera quantities, placements and field of views. These configurations are
represented in Figure 4. We set all camera resolutions to 1600×900 as nuScenes. Our camera
configurations include camera numbers from 4 to 8. For the field of view (FOV) for cameras,
we conduct study mainly on 6 cameras with FOV = 60, 70, 80. For the placement, we design two
different types of placement as shown in Figure 4 (c), (d). We also include the original configurations
of nuScenes (Caesar et al., 2020) dataset with five 70◦ cameras and a 110◦ camera.

Deteciton Method. Due to the extensive computation resource needed to benchmark the multi-
camera configurations, we only compare our method with the camera variant of BEVFusion (Liu
et al., 2023b) (abbreviated as BEVFusion-C). BEVFusion is one of the representative methods in
many leaderboards, such as nuScenes (Caesar et al., 2020) and Waymo (Sun et al., 2020).

4.2 COMPARATIVE STUDY

We conduct comparative studies to evaluate the performance of camera perception across configu-
rations. Through our analysis, we are able to demonstrate the effectiveness of UniDrive framework.

Effectiveness of UniDrive. In Table 1 and 2, we present the 3D object detection results of
BEVFusion-C (Liu et al., 2023b) and UniDrive. The models are trained on one configuration and
tested on other varying camera configurations. The performance of BEVFusion-C degrades a lot
when deployed on cross-camera configuration tasks, nearly unusable on other configurations. As
shown in Table 2, we train the models using our plug-and-play UniDrive framework. The detection
performance significantly improves compared to BEVFusion-C (Liu et al., 2023b). Our method only
experiences little performance degradation on cross-camera configuration tasks. We present more
results in Figure 5, which comprehensively shows the effectiveness of our framework.

Optimization via UniDrive. To demonstrate the importance of optimization in UniDrive, we com-
pare the perception performance between optimized virtual camera configurations and intuitive one
in Figure 5. The intuitive virtual camera configuration places all cameras in the center of the vehicle
roof. As shown in Figure 5 (b), although the intuitive setup (without optimizing) also significantly
improved cross-camera configuration perception performance compared to BEVFusion-C (in Fig-
ure 5 (a)), it exhibited a clear preference for certain configurations while performing poorly on
others. In contrast, the optimized virtual camera parameters (in Figure 5 (c)) demonstrated greater
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Table 2: Quantitative results of UniDrive for 3D detection across camera configurations. The
detector is trained on the blue configurations and tested on all configurations directly. We report
the mAP (↑) and class-level AP (↑) scores in percentage (%).

Configurations mAP Car Bus Truck Ped. Motor Bic. Configurations mAP Car Bus Truck Ped. Motor Bic.

5× 70◦ + 110◦ 68.8 67.5 64.8 71.9 59.1 73.6 75.9 6× 60◦ 64.6 63.4 58.2 59.7 59.2 76.7 70.0

4× 95◦ 60.1 59.1 57.2 58.4 59.2 68.6 67.8 4× 95◦ 58.9 57.7 54.1 56.9 53.1 65.2 67.4
5× 75◦ 66.7 64.5 65.9 67.8 59.6 72.3 70.1 5× 75◦ 62.2 59.5 60.6 65.8 53.6 70.3 63.1
6× 80◦a 69.4 68.4 68.1 67.5 57.8 78.2 76.1 6× 80◦a 64.4 65.1 64.9 65.5 53.3 70.2 67.1
6× 80◦b 65.8 64.7 62.0 63.9 55.8 76.7 71.7 6× 80◦b 65.7 63.2 63.1 63.9 55.8 76.7 71.7
6× 70◦ 68.4 66.8 64.3 69.8 57.6 79.1 72.8 6× 70◦ 65.0 62.9 60.8 65.4 55.1 73.0 72.8
6× 60◦ 63.1 60.6 57.4 58.8 59.2 73.0 69.6 5× 70◦ + 110◦ 63.6 61.2 61.4 64.8 55.2 71.0 68.1
8× 50◦ 58.9 57.1 55.4 56.1 51.1 69.7 64.1 8× 50◦ 63.8 60.2 58.3 62.6 56.8 74.2 70.5

6× 80◦a 69.4 69.0 67.7 66.6 58.6 78.4 76.1 6× 80◦b 63.1 63.2 61.9 59.8 53.4 71.1 69.4

4× 95◦ 55.9 56.4 58.4 52.7 48.3 59.5 60.1 4× 95◦ 53.6 51.2 48.0 49.7 51.0 61.5 60.1
5× 75◦ 65.2 63.6 64.8 66.8 57.0 70.9 68.3 5× 75◦ 62.7 62.1 60.6 62.2 56.3 69.9 67.0

5× 70◦ + 110◦ 63.7 61.3 58.9 60.5 59.9 72.8 68.8 6× 80◦a 64.5 62.6 60.3 62.4 58.6 71.4 71.6
6× 80◦b 66.2 65.2 61.1 65.1 56.1 76.3 73.2 6× 60◦ 62.6 60.3 59.1 62.6 53.4 70.2 70.2
6× 70◦ 68.9 67.9 63.5 70.7 58.3 79.5 73.8 6× 70◦ 62.5 59.4 55.6 62.9 52.6 73.4 70.8
6× 60◦ 59.6 57.2 54.0 55.7 57.0 67.5 66.1 5× 70◦ + 110◦ 57.9 56.1 52.5 53.7 56.9 64.3 63.7
8× 50◦ 61.2 60.3 58.1 59.9 54.5 68.2 65.9 8× 50◦ 58.4 60.3 57.0 54.3 53.9 64.4 60.2

adaptability, showing relatively consistent performance across various configurations. This is crucial
for the concurrent development of multiple multi-camera perception systems in autonomous driving.

4.3 ABLATION STUDY

In this section, we analyze the interplay between our proposed virtual projection strategy and percep-
tion performance to address these questions: 1) What’s the impact of camera extrinsic and intrinsic
for cross-configuration perception? 2) How UniDrive works towards these parameters separately?

Camera Intrinsics. Changes in camera intrinsics pose the greatest challenge for cross-camera pa-
rameter perception. In Figure 5 (a), BEVFusion-C almost entirely fails when tasked on distinct
camera intrinsics with the detection accuracy mostly under 20%. For instance, BEVFusion only
gets 1.8% when deploying models trained on 6 × 80◦a to 6 × 60◦. In contrast, in Figure 6, our
UniDrive framework demonstrates substantial robustness, with performance dropping by at most
9.8% under the largest intrinsic differences, which highlights the effectiveness of our approach.

Camera Height. The variation in the vertical position of cameras can significantly impact percep-
tion performance, as cameras at varying heights capture images with distinct geometric features. We
perform experiments specifically for varying camera heights at 1.6 meters, 1.4 meters, 1.8 meters,
and 2.5 meters. We train the model on 1.6 meters and test on other configuraitons. As shown in
Fig. 6b. BEVFusion-C experiences a substantial performance drop for more than 10%, when faced
with varying camera heights. In contrast, UniDrive significantly improves performance across dif-
ferent camera heights, demonstrating enhanced robustness with only 3.0% performance decreasing.

Camera Placement. Changing the camera’s horizontal position and orientation on presents a
relatively smaller challenge for cross-camera parameter perception. As shown in Figure 5 (a),
BEVFusion-C experiences a performance drop of 5.9% when deploying the model trained on the
6× 80◦b configuration to the 6× 80◦a configuration. Nonetheless, our UniDrive framework further
enhances cross-camera parameter perception performance. In Figure 5 (c), we train the model on
the 6×80◦a configuration and test on other configurations, UniDrive only experiences a 4.6% when
deploying the model trained on the 6× 80◦b configuration to the 6× 80◦a configuration.

4.4 ANALYSIS

In this section, we further investigate some useful insight points found in the benchmark experi-
ments: 1) What’s the impact of inconsistency in multi-camera intrinsics for perception? 2) How
UniDrive works towards this inconsistency?
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(a) BEVFusion-C (Liu et al., 2023b)
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(c) UniDrive (w/ optimization)

Figure 5: Performance evaluations of BEVFusion-C and UniDrive on 3D object detection across
camera configurations. We report the mAP (↑) scores in percentage (%).
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Figure 6: Ablation Study of BEVFusion-C and UniDrive on 3D object detection across camera
configurations. We report the mAP (↑) scores in percentage (%).

Degradation with Inconsistent Intrinsics. In our experiments, we observed that for multi-camera
systems, models perform better when camera intrinsics are consistent compared to when they vary.
However, due to design aesthetics and other constraints, many autonomous driving companies use
multiple cameras with different intrinsic parameters to achieve 360-degree perception. For instance,
the nuScenes (Caesar et al., 2020) uses five 70◦ cameras and one 110◦ camera. As shown in Fig 1,
BEVFusion-C performs a lot better in 6×80◦a and 6×60◦ compared to configuration 5×70◦+110◦.
Thus, inconsistency in camera intrinsics can potentially hinder perception improvement.

Improvement via UniDrive. Our framework significantly enhances the perception performance of
multi-camera systems with varying intrinsics by leveraging a virtual camera system with consis-
tent intrinsics. For training and testing on the same configurations, as demonstrated in Figure 2,
UniDrvie achieves 68.8% accuracy in 5 × 70◦ + 110◦ configuration, which surpasses 4.9% than
BEVFusion-C (63.9%). For testing across camera configurations, UniDrive experiences little accu-
racy reduction only in rare situations. This demonstrates that UniDrive has substantial potential to
push advancements in driving perception technology.

5 CONCLUSION

In this paper, we introduce the UniDrive framework, a robust solution for enhancing the gener-
alization of vision-centric autonomous driving models across varying camera configurations. By
leveraging a unified set of virtual cameras and a ground-aware projection method, our approach ef-
fectively mitigates the challenges posed by camera intrinsics and extrinsics. The proposed virtual
configuration optimization ensures minimal projection error, enabling adaptable and reliable perfor-
mance across diverse sensor setups. Extensive experiments in CARLA validate the effectiveness
of UniDrive, demonstrating strong generalization capabilities with minimal performance loss. Our
framework not only serves as a plug-and-play module for existing 3D perception models but also
paves the way for more versatile and scalable autonomous driving solutions.

Limitation. The camera configurations analyzed in this paper can not cover all real-world setups,
more comprehensive experiments may be required. In addition, our research are fully conducted on
simulation data, as real-world experiments are time-consuming and need extensive resource.
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A VISUALIZATION

We present the visualization results of the virtual camera projection in Figure 7. Overall, the warping
from the original view to the virtual view is highly accurate. Only a few areas are not warped because
the original cameras lack coverage of those regions.

Original Wrapped Multi-view Images
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Figure 7: Wrapped Multi-view Images.
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