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Abstract

The emergence of Large Language Models001
(LLMs) has advanced the multilingual machine002
translation (MMT), yet the Curse of Multilin-003
guality (CoM) remains a major challenge. Ex-004
isting work in LLM-based MMT typically miti-005
gates this issue via scaling up training and com-006
putation budget, which raises a critical ques-007
tion: Is scaling up the training and compu-008
tation budget truly necessary for high-quality009
MMT, or can a deeper understanding of CoM010
provide a more efficient solution? To explore011
this problem, we analyze the linguistic con-012
flicts and synergy, the underlying mechanism013
of CoM during post-training phase. We iden-014
tify an asymmetric phenomenon in linguistic015
conflicts and synergy: the dominance of con-016
flicts and synergy varies in different translation017
directions, leading to sub-optimal adaptation in018
existing post-training methods. We further find019
that a significant bottleneck in MMT appears020
to lie in post-training rather than multilingual021
pre-training, suggesting the need for more ef-022
fective adaptation strategies. Building on these023
new insights, we propose a direction-aware024
training approach, combined with group-wise025
model merging, to address asymmetry in lin-026
guistic conflicts and synergy explicitly. Lever-027
aging this strategy, our method fine-tunes X-028
ALMA-13B-Pretrain—trained only with mul-029
tilingual pre-training—achieving comparable030
performance to XALMA-13B (only SFT) while031
using only 20B pretraining tokens and 17B pa-032
rameters—5.5× fewer pretraining-tokens and033
1.7x fewer model size—with just 0.85 COMET034
drop on Flores-200 testsets of 50 languages.035

1 Introduction036

Large language models (LLMs) have shown re-037

markable general capabilities (Brown et al., 2020;038

Wei et al., 2022; Dubey et al., 2024) and have039

advanced multilingual machine translation (Xu040

et al., 2024a; Yang et al., 2023; Alves et al., 2024).041

For example, Aya-101 (Aryabumi et al., 2024)042
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Figure 1: The relationship between pre-training cost,
model capacity and translation performance. We eval-
uate performance on the Flores-200 test sets across 50
languages. The size of circle denotes model capacity.

expands support to 101 languages and achieves 043

strong performance in multilingual machine trans- 044

lation, while LLaMAX (Lu et al., 2024b) further 045

pushes performance beyond 100 languages. The 046

common practice behind these successes is the 047

large-scale pretraining, which typically involves 048

monolingual pretraining 1, parallel pretraining, or 049

both—followed by a small-scale, high-quality post- 050

training phase. However, as LLMs scale to more 051

languages, they suffer from the issue of Curse of 052

Multilinguality (CoM) (Conneau, 2019), which 053

degrades the translation performance. 054

Understanding and mitigating CoM is not new 055

in the MMT literature. In traditional MMT, ex- 056

isting research has identified critical factors such 057

as resource imbalances, limited model capacity, 058

linguistic similarity, and complex interactions be- 059

tween language pairs, particularly for low-resource 060

languages (Arivazhagan et al., 2019; Aharoni et al., 061

2019; Shaham et al., 2023; Meng and Monz, 2024), 062

and proposed solutions including language-specific 063

modules (Fan et al., 2021; Zhao et al., 2024; Xu 064

1We also refer to this as multilingual pretraining, where
data from all languages are mixed during the pretraining pro-
cess.
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et al., 2023), vocabulary optimization (Han et al.,065

2024), data sampling techniques (Wang et al., 2020;066

Wang and Neubig, 2019; Lin et al., 2019), and con-067

tinual learning approach (Liu et al., 2023). Based068

on these studies, recent LLM-based MMT research069

focuses on designing increasingly complex train-070

ing pipelines and modular architectures. For in-071

stance, Xu et al. (2024b) proposed a five-stage train-072

ing pipeline incorporating language-specific mod-073

ules. However, existing analyses primarily focus074

on the encoder-decoder paradigm, while current075

LLM-based approaches heavily rely on scaling up076

model capacity and computational resources, mak-077

ing them prohibitively expensive. This raises a crit-078

ical question: Is scaling up the training and com-079

putation budget truly necessary for high-quality080

MMT, or can a deeper understanding of CoM in081

LLM-based MMT provides a more efficient solu-082

tion?083

In this work, we systematically investigate lin-084

guistic conflicts and synergy during post-training085

phase. We conduct extensive experiments with086

different settings: across 5 to 50 languages, three087

pretrained LLMs - ALMA-7B-Pretrain, ALMA-088

13B-Pretrain and X-ALMA-13B-Pretrain, three dis-089

tinct post-training strategies - multilingual training,090

group multilingual training, and separate training.091

We observe a consistent pattern: asymmetry in lin-092

guistic conflicts and synergy (Figure 2, Appendix093

B.1and B.2 ). For example, in multilingual training,094

XX→En translation directions experience signifi-095

cant linguistic conflicts, leading to performance096

degradation, whereas En→XX translations ben-097

efit from linguistic synergy, where XX denotes098

49 different languages other than English. We099

further show this asymmetric phenomenon can-100

not be easily mitigated through existing training101

approaches, such as group multilingual training102

(Table 1). This finding illustrates the need to103

develop a direction-aware training strategy for104

optimal post-training.105

Another key finding of our work is that a sim-106

ple multilingual pre-training stage can be sufficient107

to equip foundation models with ideal multilin-108

gual capabilities, whereas the bottleneck lies in109

the post-training stage (dotted lines in Figure 2110

(g-i)). Motivated by these findings, we propose a111

novel Direction-Aware Training (DAT) approach112

and build an efficient MMT starting from a rel-113

atively efficient base model, the X-ALMA-13B-114

Pretrain—utilizing only simple multilingual pre-115

training on 20 billion tokens. Our approach fully116

leverages the interactive characteristics of differ- 117

ent language directions to reduce conflicts while 118

maximizing synergy. We also present a scalable 119

version of the approach, named DATM, which uti- 120

lizes model merging to further enhance efficiency 121

with only negligible performance degradation. 122

Through comprehensive evaluations on Flores- 123

200 and WMT23 Benchmark, we demonstrate 124

the effectiveness of our approach. Notably, as 125

shown in Figure 1, compared to X-ALMA (Only 126

SFT) (Xu et al., 2024b), our model X-ALMA-13B- 127

DAT maintains comparable performance while hav- 128

ing two advantages: 1) utilizing a simple and ef- 129

ficient training recipe - starting from base models 130

with fewer pre-training tokens and employing a 131

post-training stage. 2) parameter-efficient - we con- 132

sume 1.7x fewer parameters compared to X-ALMA 133

(Only SFT). These results demonstrate that simple 134

pre-training combined with dedicated post-training 135

can also achieve good multilingual performance. 136

2 Experimental Settings 137

In this section, we introduce the basic experimental 138

settings used in Section 3 and Section 4. 139

2.1 Datasets 140

We use the high-quality parallel dataset curated 141

by Xu et al. (2024b), covering fifty languages 142

across low-, medium-, and high-resource cate- 143

gories. Following (Xu et al., 2024b), these lan- 144

guages are grouped into eight linguistic groups 145

based on linguistic similarity and a balanced num- 146

ber of languages. Details are provided in Section 147

A in Appendix. The dataset primarily consists of 148

samples from the Flores-200 development set and 149

NTREX (Barrault et al., 2019). For languages in 150

both Flores-200 and WMT’15-22, corresponding 151

test sets are incorporated, yielding an average of 152

4K examples per language. For evaluation, we 153

use Flores-200 and WMT23 benchmarks to assess 154

performance. 155

2.2 Models 156

We select three representative fully open multilin- 157

gual LLMs for our study: ALMA-Pretrain (Xu 158

et al., 2024a) (7B–13B parameters) and X-ALMA- 159

Pretrain (Xu et al., 2024b) (13B parameters). The 160

ALMA-Pretrain models were pre-trained on 12B or 161

20B tokens across six languages, while X-ALMA- 162

Pretrain underwent continued pre-training on 20B 163

tokens from 50 languages, both based on LLaMA- 164

2. We exclude other state-of-the-art multilingual 165
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models for two key reasons: (1) their pre-trained166

checkpoints are unavailable, as in the case of Aya-167

series (Aryabumi et al., 2024) and BigTrans (Yang168

et al., 2023); or (2) they exhibit suboptimal multi-169

lingual performance in certain languages as shown170

in Xu et al. (2024b); Cui et al. (2025), such as171

LLaMA-3 (Dubey et al., 2024).172

2.3 Training173

Fine-tuning Strategies We employ three distinct174

training strategies for fine-tuning the models: Mul-175

tilingual Training, Separate Training, and Group176

Multilingual Training.177

• Multilingual Training (Tang et al., 2020): This178

is typically achieved by mixing data from all lan-179

guages and using it to fine-tune the model. The180

resulting model is a single model that possesses181

shared representations across all languages.182

• Group Multilingual Training (Xu et al., 2024b):183

We group the languages and then apply multilin-184

gual training within each group, resulting in mul-185

tiple models, each for its respective languages.186

• Separate Training: Separate tuning involves187

training a distinct model for each language with-188

out considering linguistic synergies or conflicts.189

Training Configurations In this work, all mod-190

els are trained with a learning rate of 2e-3 using191

an inverse square root scheduler, a weight decay192

of 0.01, and a warmup ratio of 0.01. The to-193

tal batch size is set to 128. Fine-tuning is con-194

ducted for 1 epoch, with both max_new_tokens195

and max_source_length set to 512. Additionally,196

FP16 precision training is enabled to optimize per-197

formance and efficiency. All models are trained on198

4 NVIDIA H100 with LoRA (Hu et al., 2022) as Xu199

et al. (2024a) has shown a negligible performance200

gap between LoRA tuning and full fine-tuning.201

2.4 Evaluation202

We set the number of beams to 5 and both203

max_new_tokens and max_source_tokens to 512.204

We evaluate performance mainly using COMET-205

22 (Rei et al., 2022) and SacreBLEU (Post, 2018).206

3 The Phenomenon: Asymmetry in207

Linguistic Conflicts and Synergy208

In this section, we investigate the phenomenon of209

Asymmetry in Linguistic Conflicts and Synergy in210

LLM-based MMT. We begin by illustrating the211

phenomenon (Section 3.1) and analyzing its dis-212

tribution across two essential factors: language re-213

sources and groups (Section 3.2). Finally, we show 214

how this phenomenon poses challenges to existing 215

post-training strategies (Section 3.3). 216

3.1 Asymmetry in Linguistic Conflicts and 217

Synergy 218

We investigate linguistic conflicts and synergy dur- 219

ing the post-training phase. To explore this, we 220

utilize three foundation models, as mentioned in 221

Section 2.2, to perform multilingual training with 222

training datasets that include a range of languages, 223

from 5 to 50, and evaluate the average performance 224

on corresponding languages. 225

To quantify linguistic conflicts and synergy, we 226

compare multilingual training with separate train- 227

ing, where each language pair is trained indepen- 228

dently, eliminating cross-lingual interactions. 229

• Linguistic Conflicts: If multilingual training un- 230

derperforms compared to separate training (i.e., 231

COMET drop), conflicts dominate over synergy. 232

• Linguistic Synergy: If multilingual training out- 233

performs separate training, synergy dominates. 234

• Intensity: the magnitude of the performance gap 235

measures the strength of conflicts/synergy. 236

Figure 2 displays the results. We can have the 237

following observations: 238

• Key Findings 1: Asymmetry in Linguistic Con- 239

flicts and Synergy. As shown in Figures 2 (a), 240

(d), and (g), the average performance decreases 241

with an increase in the number of languages, 242

a phenomenon known as the CoM (Conneau, 243

2019; Xu et al., 2024b). However, by decom- 244

posing the average performance across all lan- 245

guage directions into XX→En and En→XX, we 246

uncover an intriguing asymmetry in the distri- 247

bution of linguistic conflicts and synergies, as 248

illustrated in Figures 2 (b), (c), (e), (f), (h), and 249

(i). Specifically, in the XX→En direction, lin- 250

guistic conflicts are more dominant, as shown by 251

multilingual training consistently underperform- 252

ing separate training. Conversely, in the En→XX 253

direction, linguistic synergy is significant, with 254

multilingual tuning consistently outperforming 255

separate training. Furthermore, comparing differ- 256

ent models reveals that increasing model capacity 257

(e.g., from 7B to 13B) or incorporating more lan- 258

guages in the pre-training corpus can mitigate 259

conflicts. However, a significant gap remains be- 260

tween separate and multilingual tuning, indicat- 261

ing that simply increasing model capacity and the 262

number of languages in the pre-training corpus 263

cannot fully resolve the issue. We observe similar 264
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Figure 2: Performance of different models trained on varying numbers of languages. The dotted line represents the
performance of separately trained models, serving as a reference point where no language conflicts or synergies
occur. Two key findings emerge: (1) Asymmetry in Linguistic Conflicts and Synergy (Figure a–i), highlighting
the uneven impact of multilingual training across language pairs; and (2) The Bottleneck of Multilinguality in
Post-Training (Figure g–i): While multilingual pre-training provides a solid foundation for handling multiple
languages, the multilingual training phase can lead to the CoM.
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Figure 3: ∆ COMET-22 between separate training and multilingual training in XX → En translation, grouped by
resource level and linguistic features. The magnitude of ∆ COMET-22 denotes the intensity of linguistic conflicts.

findings in terms of SacreBLEU (Appendix B.1)265

and across different settings (Appendix B.2).266

A potential concern regarding this phenomenon267

is that it may stem from the limited LoRA rank,268

leading to linguistic conflicts and synergy issues.269

However, our results (see Appendix B.3) demon-270

strate that LoRA rank is not the root cause of this271

phenomenon. Instead, this issue may arise from272

an inherent limitation in the model’s ability to en-273

code source language representations effectively,274

potentially due to the absence of an encoder com-275

ponent. We leave this for future work.276

• Key Findings 2: Multilingual Pretraining277

Stage can sufficiently facilitate X-ALMA-13B-278

Pretrain with ideal multilingual capabilities,279

whereas the bottleneck may lie in the post- 280

training stage. Observing the dotted line in 281

Figures 2 (g), (h), and (i), we find that separate 282

training on the X-ALMA-13B-Pretrain model 283

achieves ideal multilingual performance, main- 284

taining average performance as the number of 285

languages increases. However, multilingual train- 286

ing in the post-training stage cannot fully activate 287

this multilingual ability, resulting in the CoM. 288

For instance, Figure 2 (h) shows a significant per- 289

formance gap between multilingual training and 290

ideal performance, which widens as the number 291

of languages increases. Interestingly, previous 292

work (Xu et al., 2024b) designed complex train- 293

ing regimens with up to five stages, including 294
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Model Training Type
Group 1 Group 2 Group 3 Group 4

XX-En En-XX XX-En En-XX XX-En En-XX XX-En En-XX

ALMA-13B
Pretrain

Group Training 86.0/30.8 87.7/32.0 86.3/31.7 87.7/33.2 85.2/31.5 88.0/26.8 80.3/24.1 81.3/26.0
Separate Training 88.5/43.4 86.6/29.9 88.4/41.4 87.1/31.7 86.9/39.3 86.9/24.7 81.1/31.0 74.7/23.7

Multilingual 72.3/14.5 87.2/31.6 71.2/13.5 87.4/32.6 71.7/13.4 87.5/26.8 66.2/10.0 80.6/25.7

Group 5 Group 6 Group 7 Group 8

XX-En En-XX XX-En En-XX XX-En En-XX XX-En En-XX

Group Training 82.7/25.8 80.0/16.4 82.7/21.9 81.1/18.5 77.4/17.7 68.7/9.7 73.6/12.6 69.9/6.9
Separate Training 83.3/29.4 75.6/14.2 83.5/24.8 75.8/16.8 77.6/17.6 57.4/5.1 76.5/18.5 55.5/4.0

Multilingual 70.7/13.1 79.4/ 16.7 72.3/11.1 80.7/ 18.7 62.3/4.0 70.6/11.0 62.8/5.9 70.9/8.1

Group 1 Group 2 Group 3 Group 4

XX-En En-XX XX-En En-XX XX-En En-XX XX-En En-XX

X-ALMA-13B
Pretrain

Group Training 86.3/31.1 88.8/34.7 86.6/31.7 88.6/33.2 85.9/33.2 89.8/31.3 83.5/26.6 86.3/29.3
Separate Training 88.9/44.4 88.5/34.1 88.6/41.6 88.3/34.9 87.5/41.0 89.7/30.5 85.9/35.8 85.3/27.8

Multilingual 79.0/17.4 88.6/34.3 78.0/16.3 88.5/35.4 77.3/15.6 89.9/31.4 75.8/13.8 86.2/28.8

Group 5 Group 6 Group 7 Group 8

XX-En En-XX XX-En En-XX XX-En En-XX XX-En En-XX

Group Training 85.6/28.2 89.9/24.0 86.2/24.6 89.6/25.8 86.4/27.0 81.0/18.8 83.0/20.6 87.5/17.6
Separate Training 87.4/35.3 89.4/23.5 87.7/30.1 88.9/22.6 87.8/33.1 80.2/17.2 86.5/31.1 86.6/15.6

Multilingual 79.7/17.8 89.7/23.6 80.0/14.7 89.0/22.8 77.8/10.6 80.9/18.3 76.5/11.4 87.2/17.1

Table 1: Performance of ALMA-13B-Pretrain and X-ALMA-13B-Pretrain on 50 languages from the Flores-200
test sets under three training approaches: Group multilingual training, Separate training, and Multilingual training.
Results are categorized by language groups. Detailed scores for each group are provided in the Appendix.

three pre-training and two post-training stages295

with language-specific group training, to address296

this issue. In contrast, our findings suggest there297

may be a more efficient way to tackle the CoM.298

For example, we could start with a base model299

that only undergoes multilingual pretraining and300

then apply a dedicated post-training approach to301

achieve high-quality translation.302

3.2 Asymmetry in Conflicts and Synergies303

Across Languages Groups and Resources304

We further address a key question: Does Asymme-305

try in Conflicts and Synergies occur across all lan-306

guage pairs, or is it concentrated in specific pairs?307

To answer this, we analyze its distribution across308

different language groups and resource levels.309

Figure 3 displays the results. We can have the310

following observations:311

• Asymmetry in linguistic conflicts is consistently312

observed across languages with varying resource313

levels and language groups, but its intensity is314

not uniformly distributed.315

• While increasing model capacity or pre-training316

data can help narrow the performance gap, consis-317

tent with findings in previous work (Arivazhagan318

et al., 2019; Aharoni et al., 2019; Shaham et al.,319

2023; Meng and Monz, 2024), a substantial gap320

of nearly 10 COMET-22 points still persists.321

3.3 Challenges by Asymmetry in Linguistic 322

Conflicts and Synergy 323

The asymmetry in linguistic conflicts and synergies 324

may pose challenges for LLM-based MMT, lead- 325

ing to suboptimal performance for existing post- 326

training approaches. Intuitively, translation direc- 327

tions where linguistic conflicts dominate may bene- 328

fit from post-training strategies that minimize such 329

conflicts. Conversely, translation directions where 330

linguistic synergies prevail may require strategies 331

that effectively enhance high-quality synergy. To 332

see this, we fine-tune foundation models using 333

three key approaches: multilingual training, group 334

multilingual training, and separate training on 50 335

languages and compare their performance. 336

Table 1 displays the experimental results on the 337

Flores-200 test set. We observe the following: 338

• Key Findings 3: The effectiveness of the ex- 339

isting training strategy exhibits an asymmet- 340

rical pattern.: In XX→En translations, sepa- 341

rate training consistently achieves the best per- 342

formance, followed by group multilingual train- 343

ing, while full multilingual training performs the 344

worst. This result is expected, as linguistic con- 345

flict is prominent in these translation directions. 346

By contrast, in En→XX translations, multilin- 347

gual training or group multilingual training con- 348

5



En-De

De-En

En-Zh

Zh-En

...

...
En-Fr

Fr-En

Data Selection

Base Model

LoRA1 LoRA2 ... LoRAN

+ + +

Task1 Task2 ... TaskN

(a) Seperate/Multilingual/Group Training

En-De

De-En

En-Zh

Zh-En

...

...
En-Fr

Fr-En

Group Selection

Base Model

LoRA1 LoRA2 ... LoRANG

+ + +

Taskenxx
1 Taskenxx

2
... Taskenxx

NG

Base Model

LoRA2LoRA1 ... LoRANL

+ + +

Group-wise Merged Model

Taskxxen
1 Taskxxen

2 ... Taskxxen
NG

En→XX XX→En

(b) Direction-aware Training with Group-wise Model Merging

Figure 4: (a) Separate Training (N = NL): Each translation task is trained independently using different datasets
for different language pairs, with distinct LoRA model weights fine-tuned separately; Multilingual Training (N =
1): All language pairs are combined to fine-tune a single model with shared LoRA weights; Group Multilingual
Training (N = NG): Language pairs are grouped as specified in Table 3-4, with an adapter trained for each group.
(b) Group-wise model merging: For XX→En translation, separate training is applied to each language pair. For
En→XX translation, group training is applied, where different tasks share LoRA weights within language groups.

sistently outperforms separate training. This in-349

dicates that while linguistic conflicts dominate350

in the XX→En direction, the En→XX direction351

benefits from cross-linguistic knowledge trans-352

fer, leading to an enhanced translation quality.353

When model capacity is sufficiently large, the354

general pattern observed is: group multilingual355

training > multilingual training > separate train-356

ing. This highlights two things: 1) linguistic357

similarity benefits positive cross-linguistic trans-358

fer. 2) the widely adopted group multilingual359

training approach remains insufficient to address360

the challenges posed by the asymmetry.361

These findings underscore the critical impact of362

asymmetry in linguistic conflicts and synergy phe-363

nomenon on the effectiveness of existing training364

strategies, highlighting the need for novel train-365

ing approaches to consider such an asymmetry to366

achieve optimal performance in both directions.367

4 Direction-Aware Training and Merging368

for Efficient LLM-based MMT369

In this section, we show how to construct an effi-370

cient MMT system by leveraging the insights from371

Section 3, starting from a base model with simple372

multilingual pre-training.373

4.1 Motivations and Main Ideas374

As demonstrated in Section 3, linguistic conflicts375

and synergy exhibit asymmetry during the post-376

training stage, posing significant challenges to mul-377

tilingual translation. A widely adopted technique to378

mitigate conflicts and enhance synergy is language-379

specific group multilingual training (Fan et al.,380

2021; Zhao et al., 2024; Xu et al., 2023, 2024b).381

However, it still achieves sub-optimal performance. 382

The state-of-the-art XALMA system (Xu et al., 383

2024b) achieves high-quality translations by em- 384

ploying eight large language-specific adapters 385

within a MoE framework combined with group 386

multilingual training. However, this approach in- 387

curs high computational and storage costs, as each 388

adapter contains up to 15% of the base model’s 389

parameters, making large-scale deployment chal- 390

lenging. Additionally, XALMA requires a massive 391

amount of tokens during pre-training, further in- 392

creasing resource consumption. This raises an im- 393

portant question: Can we achieve comparable high 394

translation quality in a more efficient manner? 395

Intuitively, we could develop a more efficient 396

training approach for high-quality MMT by con- 397

sidering the asymmetry in linguistic conflicts and 398

synergy. To this end, we propose a direction-aware 399

training framework combined with model merging, 400

which fully leverages the inherent asymmetry to 401

enhance both performance and efficiency. Our ap- 402

proach primarily consists of two key components: 403

1) Direction-aware training strategies for efficiently 404

and effectively mitigating linguistic conflicts and 405

encouraging linguistic synergy and 2) Group-wise 406

model merging for running efficiency. 407

4.2 Direction-Aware Training Strategies 408

As shown in Figure 4 (b), we propose a simple 409

yet effective direction-aware training strategy that 410

addresses linguistic conflicts and linguistic synergy 411

separately for different translation directions: 412

• For XX→En translation directions: We employ 413

separate training to build expert models for each 414

language direction. 415

• For En→XX translation directions: We adopt 416
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Model # Tokens (Pre-training)
# Params FLORES200 WMT23

Base/Adapter Total XX→En En→XX XX→En En→XX

Existing State-of-the-Art MMT System

NLLB-3.3B - 3B/- 3B 80.7 87.4 71.2 81.5
Aya-23-8B - 8B/- 8B 80.9 74.4 81.5 84.2
Aya-23-35B - 35B/- 35B 84.9 76.0 82.3 84.1
Aya-101 - 13B/- 13B 86.3 84.1 79.7 80.8
LLaMAX3-Alpaca-8B 66B 8B/- 8B 85.9 84.1 81.0 79.8
X-ALMA-13B (Only SFT, MoE) 110B 13B/16B 29B 88.2 88.9 83.2 85.6

Our System

X-ALMA-13B-DAT (MoE) 20B 13B/4B 17B 87.6 87.8 82.8 84.8
X-ALMA-13B-DATM (MoE) 20B 13B/1B 14B 87.4 87.8 82.1 84.8

Table 2: Performance on Flores-200 and WMT23 benchmarks. The results of baselines are directly sourced from
Xu et al. (2024b) as we utilized same generation configuration. Full results are provided in Appendix.

group multilingual training, training one model417

per language group following Xu et al. (2024b).418

All training employs LoRA (Hu et al., 2022) with419

a rank of 16 for parameter efficiency. Using the420

proposed strategies, we construct a LoRA weight421

pool of size NG +NL, where NG is the number of422

groups and NL is the number of languages.423

4.3 Group-wise Model Merging424

Although the direction-aware training approach425

achieves promising performance, the number of426

LoRA weights increases linearly with the num-427

ber of supported languages, posing challenges for428

deployment and inference, especially at large lan-429

guage scales. Model merging (Yadav et al., 2024;430

Zhang et al., 2023) provides a feasible solution to431

reduce the number of LoRA weights and improve432

efficiency. However, directly using model merge433

for efficient MMT is non-trial. In our preliminary434

experiments, we have two key observations:435

• Merging LoRA weights into one for each di-436

rection leads to performance degradation. No-437

tably, Dang et al. (2024) find that model merg-438

ing can improve performance, contrasting our439

findings. However, this discrepancy may arise440

because their comparison is against a weaker441

baseline, such as multilingual training, whereas442

we compare against the most vigorous base-443

line—separate training.444

• The degradation effect of model merging ex-445

hibits an asymmetric nature. The performance446

degradation per parameter in the En→XX direc-447

tion is 6.86× greater than in the XX→En direc-448

tion. A potential explanation is that linguistic syn-449

ergy plays a crucial role in En→XX directions,450

while model merging introduces low-quality lin-451

guistic synergy, leading to a performance drop. 452

Therefore, a more dedicated design is needed to 453

preserve performance as much as possible. 454

Motivated by these observations, we only apply 455

model merging to XX→En directions in a group- 456

wise manner. Specifically, we apply model merg- 457

ing to languages within each group, resulting in 458

NG LoRA weights. We adopt the TIES (Yadav 459

et al., 2024) for model merging. We also compare 460

this approach with other methods such as DARE- 461

TIES (Yu et al., 2024) and find no significant per- 462

formance difference. With this approach, we can 463

reduce the number of LoRA weights from O(NL) 464

to O(NG), improving scalability while lead mini- 465

mal performance degradation. 466

4.4 Main Results 467

We evaluated our models using the Flores-200 test 468

set for 50 languages and the WMT23 test sets for 469

five languages (de, ru, uk, ja, zh). We provide more 470

details in Appendix A. We select existing state-of- 471

the-art open multilingual MT system as baselines: 472

• Aya-101 (Üstün et al., 2024): A 13B multilingual 473

LLM supporting 101 languages. 474

• LLaMAX (Lu et al., 2024b): An 8B LLM-based 475

MMT system supporting 102 languages. 476

• Aya-23-8B/35B (Aryabumi et al., 2024): An 477

8B/35B multilingual LLMs that support 23 lan- 478

guages. 479

• XALMA (Xu et al., 2024b): A 29B multilin- 480

gual MoE-based MMT system supporting 50 481

languages, using language-specific adapters and 482

group multilingual training. Notably, since we 483

focus only on the supervised fine-tuning stage, 484

we select the version without preference learning, 485

namely XALMA-13B (Only SFT) to ensure fair 486

7



comparison.487

Table 2 shows the results. We can have the fol-488

lowing observations:489

• Both X-ALMA-13B-DAT and X-ALMA-13B-490

DATM can achieve high translation perfor-491

mance. Compared to previous multilingual492

LLMs, such as Aya-101, Aya-23-8B, and LLa-493

MAX, our approach consistently outperforms494

them across both benchmarks and translation495

directions. Moreover, compared to X-ALMA,496

our X-ALMA-13B-DAT achieves comparable497

performance in XX→En directions; however, in498

En→XX, a significant performance gap remains,499

up to 0.95 COMET-22 on average.500

• Our approach provides an efficient way to build501

effective MMT. Our model is built upon X-502

ALMA-13B-Pretrain with only 20 billion tokens503

of simple multilingual pre-training. Moreover,504

it utilizes multiple small LoRA weight compo-505

sitions and achieves relatively high translation506

performance across all directions, which is con-507

sistent with previous work (Zheng et al., 2024)508

5 Related Work509

5.1 Curse of Multilinguality510

Existing research has explored both understanding511

and addressing this issue in MMT, identifying crit-512

ical factors such as resource imbalances, limited513

model capacity, and complex interactions between514

language pairs, particularly for low-resource lan-515

guages (Arivazhagan et al., 2019; Aharoni et al.,516

2019; Shaham et al., 2023). Interestingly, stud-517

ies have shown that while linguistic similarity en-518

hances positive transfer, dissimilar languages can519

also act as regularizers, improving training stabil-520

ity (Meng and Monz, 2024). To address these chal-521

lenges, proposed solutions in recent research in-522

clude language-specific modules (e.g., adapters,523

sparse experts) to dynamically allocate capacity524

and reduce interference (Fan et al., 2021; Zhao525

et al., 2024; Xu et al., 2023), vocabulary optimiza-526

tion to better support new languages through im-527

proved token representations (Han et al., 2024),528

data sampling techniques to enhance representa-529

tion for underrepresented languages (Wang et al.,530

2020; Wang and Neubig, 2019; Lin et al., 2019) and531

continual learning techniques (Liu et al., 2023). No-532

tably, techniques, such as language-specific mod-533

ules, have been integrated into LLM-based MMT534

systems, resulting in substantial improvements in535

multilingual performance (Xu et al., 2024b). In536

this work, we systematically investigate how post- 537

training in LLM-based MMT contributes to the 538

CoM, providing a fine-grained analysis of its im- 539

pact on linguistic conflicts and synergies. 540

5.2 LLMs for Multilingual MT 541

Many efforts have been made to adapt LLMs for 542

effective machine translation. A key approach 543

is prompting, which enhances translation perfor- 544

mance without additional training (He et al., 2024; 545

Lu et al., 2024a). Beyond this, growing research 546

focuses on fine-tuning open and smaller LLMs to 547

achieve high translation quality while ensuring effi- 548

ciency (Xu et al., 2024a; Yang et al., 2023; Alves 549

et al., 2024; Aryabumi et al., 2024). 550

Yang et al. (2023) propose a training pipeline 551

that integrates monolingual pre-training to improve 552

language modeling and parallel instruction fine- 553

tuning for enhanced translation performance. Simi- 554

larly, Xu et al. (2024a) emphasize the quality over 555

quantity of parallel data, introducing a training 556

recipe: (1) large-scale monolingual pre-training, 557

followed by (2) small-scale, high-quality parallel 558

fine-tuning. Further revisiting the role of parallel 559

data, Guo et al. (2024) highlights its importance 560

in the pre-training stage. Additionally, Xu et al. 561

(2024c) underscore the necessity of alignment in 562

post-training, proposing the CPO algorithm. More 563

recently, with the need to scale models across more 564

languages, Xu et al. (2024b) introduces language- 565

specific modules combined with group training to 566

mitigate language conflicts. In this work, we focus 567

on the post-training stage, which has been underex- 568

plored in previous studies, and propose a direction- 569

aware training approach with model merging to 570

achieve efficient and effective MMT. 571

6 Conclusions 572

In this work, we systematically investigate linguis- 573

tic conflicts and synergy during post-training in 574

LLM-based MMT and identify a phenomenon we 575

term asymmetry in linguistic conflicts and synergy. 576

We provide an in-depth analysis of its distribution 577

and challenges for LLM-based MMT. Based on 578

these insights, we propose a direction-aware train- 579

ing approach combined with model merging to 580

build an effective MMT system from X-ALMA- 581

13B-Pretrain with only multilingual pre-training. 582

Our approach highlights the importance of post- 583

training in LLM-based MMT and offers insights 584

into building MMT resource-efficiently. 585
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Limitations586

One limitation of this work is that our approach587

does not surpass state-of-the-art methods like X-588

ALMA in performance, particularly in En→XX589

directions, despite requiring less training cost and590

fewer model parameters. Second, while this work591

identifies a novel phenomenon and designs an ef-592

ficient approach leveraging it, it does not provide593

a deeper or more rigorous analysis of why asym-594

metry in linguistic conflicts and synergy exists. We595

leave the analysis of the underlying mechanism of596

asymmetry in linguistic conflicts and synergy for597

future work.598

Additionally, although this work conducts ex-599

tensive experiments on fifty languages and three600

pre-trained models, further scaling is necessary601

to validate our findings on a broader scale, such602

as extending to over 100 languages. This would603

help push the boundaries of multilingual machine604

translation research, which we also leave for future605

work.606
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A Detailed Experimental Setups834

In this section, we will discuss the detailed setup835

of our experiment, including the datasets.836

A.1 Details of Dataset in Section 2.1837

Following (Xu et al., 2024b), we present a classi-838

fication of languages based on linguistic families,839

scripts, and resource availability in Tables 3- 4.840

Fifty languages are grouped into eight distinct cat-841

egories, primarily guided by linguistic similarity842

while considering a balanced distribution of lan-843

guages across groups. Each group encompasses844

a mix of low-, medium-, and high-resource lan-845

guages to ensure comprehensive multilingual cov-846

erage. Additionally, English is included in each847

group to facilitate English-centric translation and848

mitigate catastrophic forgetting. This structured849

grouping provides a well-rounded dataset for mul-850

tilingual research, enabling robust language model-851

ing and cross-lingual transfer learning.852

We train the translation model on X-ALMA-853

Parallel-Data, a parallel dataset in (Xu et al.,854

2024b). The distribution of the parallel datasets855

for each language is illustrated in Figure 5.856

The evaluation dataset primarily consists of sam-857

ples from the Flores-200 development set and858

NTREX (Barrault et al., 2019). In our experiment,859

we follow the setting in (Xu et al., 2024b), where860

the translation sentences are sampled to contain 861

1012 sentences in each language pair. We also 862

use WMT23 benchmarks to assess performance for 863

evaluation. The distribution of WMT23 for each 864

language is illustrated in Figure 6. 865

For languages in both Flores-200 and WMT’15- 866

22, corresponding test sets are incorporated, yield- 867

ing an average of 4K examples per language. 868

B Additional Experiments 869

B.1 Asymmetry in Linguistic Conflicts and 870

Synergy in terms of SacreBLEU 871

As shown in Figure 7, we observe a clear asym- 872

metry in linguistic conflicts and synergy based on 873

the SacreBLEU metric. This aligns with our main 874

findings in the paper, where we used the COMET 875

metric, further reinforcing the consistency of the 876

observed phenomenon across different evaluation 877

measures. 878

B.2 More Experiments on Asymmetry in 879

Linguistic Conflicts and Synergy 880

We further design another setting to validate the 881

asymmetry in linguistic conflicts and synergy. 882

Experimental Setup We select anchor sets of 883

varying sizes and perform post-training using train- 884

ing sets that include different numbers of languages 885

but cover those anchor sets. We then observe the 886

performance changes of these anchor sets. If the 887

performance declines as more languages are in- 888

cluded in the training set, this would indicate the 889

presence of linguistic conflicts. 890

Results Table 5 displays the results. We can 891

clearly observe that in the XX-En directions, the av- 892

erage performance of each anchor set consistently 893

decreases as the number of languages increases. 894

However, this phenomenon is not observed in the 895

En-XX directions, where performance remains rel- 896

atively stable. The findings are consistent with 897

Section 3. 898

B.3 Impact of Lora Rank 899

We observed an asymmetry in linguistic conflicts 900

and synergies. A natural question arises: could this 901

be due to using a low LoRA rank, which might 902

limit learning capacity and, consequently, degrade 903

performance? To address this concern, we selected 904

the ALMA-13B-Pretrain model and trained it on 16 905

languages using different LoRA ranks, specifically 906

16 and 32. We then compared the performance 907
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of models with these LoRA ranks on the FLores-908

200 test sets. As shown in Table 6, increasing the909

LoRA rank did not yield performance improve-910

ments. Therefore, we conclude that the observed911

asymmetry is not attributed to using a low LoRA912

rank.913

C Full Results914

915

916
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Language ISO-639-1 Script Family Subgroup Resource

English en Latin Indo-European Germanic High

Group 1: Germanic Languages
Afrikaans af Latin Indo-European Germanic Mid
Danish da Latin Indo-European Germanic Mid
Dutch nl Latin Indo-European Germanic High
German de Latin Indo-European Germanic High
Icelandic is Latin Indo-European Germanic Low
Norwegian no Latin Indo-European Germanic Low
Swedish sv Latin Indo-European Germanic High

Group 2: Romance Languages
Catalan ca Latin Indo-European Italic High
Galician gl Latin Indo-European Italic Mid
Italian it Latin Indo-European Italic High
Portuguese pt Latin Indo-European Italic High
Romanian ro Latin Indo-European Italic Mid
Spanish es Latin Indo-European Italic High

Group 3: Eastern and Southern Slavic Languages
Bulgarian bg Cyrillic Indo-European Balto-Slavic Mid
Macedonian mk Cyrillic Indo-European Balto-Slavic Low
Russian ru Cyrillic Indo-European Balto-Slavic High
Serbian sr Cyrillic Indo-European Balto-Slavic High
Ukrainian uk Cyrillic Indo-European Balto-Slavic Mid

Group 4: Southeast Asian Languages
French fr Latin Indo-European Italic High
Indonesian id Latin Austronesian Malayo-Polynesian Mid
Malagasy mg Latin Austronesian Malayo-Polynesian Low
Malay ms Latin Austronesian Malayo-Polynesian Mid
Thai th Thai Tai-Kadai Kam-Tai Mid
Vietnamese vi Latin Austronesian Vietic High

Table 3: Detailed information of all languages
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Figure 5: Number of sentences per language pair in X-ALMA-Parallel-Data (Xu et al., 2024b)
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Figure 6: Number of Sentences per language pair in WMT’23
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Language ISO-639-1 Script Family Subgroup Resource

Group 5: Central and Eastern European Languages
Czech cs Latin Indo-European Balto-Slavic Mid
Greek el Greek Indo-European Graeco-Phrygian Mid
Hungarian hu Latin Uralic Finnic High
Latvian lv Latin Indo-European Balto-Slavic Mid
Lithuanian lt Latin Indo-European Balto-Slavic Mid
Polish pl Latin Indo-European Balto-Slavic High

Group 6: Eurasian Language Mix
Chinese zh Han Sino-Tibetan Sinitic High
Estonian et Latin Uralic Finnic Mid
Finnish fi Latin Uralic Finnic High
Georgian ka Georgian Kartvelian Georgian-Zan Mid
Japanese ja Japanese Japonic Japanesic High
Korean ko Hangul Koreanic Korean High

Group 7: Indo-Aryan Languages
Gujarati gu Gujarati Indo-European Indo-Aryan Low
Hindi hi Devanagari Indo-European Indo-Aryan High
Marathi mr Devanagari Indo-European Indo-Aryan Low
Nepali ne Devanagari Indo-European Indo-Aryan Low
Urdu ur Arabic Indo-European Indo-Aryan Mid

Group 8: Turkic and Semitic Languages
Arabic ar Arabic Afro-Asiatic Semitic High
Azerbaijani az Arabic/Latin Turkic Common Turkic Low
Hebrew he Hebrew Afro-Asiatic Semitic Mid
Kazakh kk Cyrillic Turkic Common Turkic Mid
Kyrgyz ky Cyrillic Turkic Common Turkic Low
Persian fa Arabic Indo-European Iranian High
Turkish tr Latin Turkic Common Turkic High
Uzbek uz Latin Turkic Common Turkic Low

Table 4: Detailed information of all languages (cont.)
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Figure 7: Performance of different models trained on varying numbers of languages (evaluated by SacreBLEU).
The dotted line represents the performance of separately trained models, serving as a reference point where no
language conflicts or synergies occur. Two key findings emerge: (1) Asymmetry in Linguistic Conflicts and Synergy
(Figure a–i), highlighting the uneven impact of multilingual training across language pairs; and (2) The Bottleneck
of Multilinguality in Post-Training (Figure g–i), showing that while monolingual pre-training provides an ideal
foundation for handling multiple languages, the post-training stage imposes constraints that lead to the curse of
multilinguality.
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Languages (Trained) Languages (Test) XX→En En→XX All

ALMA-7B-Pretrain

5 {De, Zh, Ru, CS} 86.8/32.5 88.5/32.0 87.7/32.3
17 {De, Zh, Ru, CS} 79.8/19.0 88.2/30.9 84.0/25.0
50 {De, Zh, Ru, CS} 76.4/17.7 88.4/31.3 82.4/24.5
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 79.6/18.2 87.4/26.5 83.5/22.4
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 76.5/17.3 87.5/27.2 82.0/22.3
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 74.3/14.7 78.8/19.8 76.6/17.3
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 70.4/13.3 78.7/20.4 74.6/16.7

ALMA-13B-Pretrain

5 {De, Zh, Ru, CS} 86.7/31.9 89.2/33.9 88.0/32.9
17 {De, Zh, Ru, CS} 83.2/23.3 89.1/34.5 86.2/28.9
50 {De, Zh, Ru, CS} 78.0/18.5 89.0/34.3 83.5/26.4
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 83.5/23.1 89.2/30.6 86.4/26.9
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 78.8/18.9 89.1/30.4 84.0/24.7
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 79.8/19.6 83.3/23.8 81.6/21.7
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 73.4/14.9 83.2/23.6 78.3/19.3

X-ALMA-13B-Pretrain

5 {De, Zh, Ru, CS} 86.5/31.7 88.4/33.7 87.5/32.7
17 {De, Zh, Ru, CS} 83.6/23.1 89.0/33.9 86.3/28.5
50 {De, Zh, Ru, CS} 80.9/19.5 88.9/33.4 84.9/26.5
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 84.2/23.2 89.9/31.8 87.1/27.5
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro} 81.6/19.8 89.8/31.2 85.7/25.5
17 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 83.7/22.2 88.5/28.4 86.1/25.3
50 {De, Zh, Ru, CS, Ja, Fi, Uk, Ro, Is, Kk, Fr, Lv, Gu, He, Hi, Hu} 80.6/18.2 88.4/28.1 84.5/23.2

Table 5: The average performance of language in anchor set significantly decreases as the number of trained
languages increase in XX-En directions while the average performance in En-XX directions maintain stable.
This indicates the linguistic conflicts is predominant in XX-En directions, which is consistent with the findings
in Section 3. Performance was evaluated on Flores200 test sets.

LoRA Rank
En-XX XX-En Avg.

COMET-22 SacreBLEU COMET-22 SacreBLEU COMET-22 SacreBLEU

16 83.3 23.8 79.8 19.6 81.5 21.6
32 83.6 24.1 79.2 19.6 81.4 21.8

Table 6: Performance of ALMA-13B-Pretrain on FLores-200 Test Sets for Different LoRA Ranks.

Group 1 (Af, Da, Nl, De, Is, No, Sv)

XX→En En→XX

Strategy Af Da Nl De Is No Sv Avg. Af Da Nl De Is No Sv Avg.

ALMA-13B-Pretrain

Group Multilingual Training 84.85 86.55 84.82 87.71 85.19 85.63 86.92 85.95 83.77 89.21 87.44 88.15 86.93 88.51 89.72 87.68
Multilingual Training (50) 66.14 70.25 69.87 79.43 80.38 69.23 71.04 72.33 82.65 88.68 87.01 87.98 86.80 88.04 89.22 87.20
Separate Training 87.56 89.60 87.38 89.35 87.04 88.44 89.79 88.45 80.94 88.05 86.81 87.72 86.89 87.35 88.58 86.62

X-ALMA-13B-Pretrain

Group Multilingual Training 86.35 87.07 84.97 87.45 84.77 86.15 87.32 86.30 86.61 91.11 88.18 87.99 86.75 89.94 91.13 88.82
Multilingual Training (50) 76.65 78.71 76.05 82.53 82.65 77.29 78.91 78.97 86.51 90.93 88.27 87.77 86.30 89.81 90.82 88.63
Separate Training 89.32 90.23 87.46 89.28 86.70 88.93 90.13 88.86 86.36 90.53 87.96 87.66 86.52 89.65 90.70 88.48

Table 7: Result of various training strategies on Group 1 languages. The performance is evaluated by COMET-22.
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Group 2 (Ca, Gl, It, Pt, Ro, Es)

XX→En En→XX

Strategy Ca Gl It Pt Ro Es Avg. Ca Gl It Pt Ro Es Avg.

ALMA-13B-Pretrain

Group Multilingual Training 86.29 85.71 85.97 86.74 87.51 85.43 86.28 87.44 86.43 88.10 88.82 88.95 86.39 87.69
Multilingual Training (50) 69.41 67.79 70.34 69.30 82.55 67.91 71.22 87.14 85.52 87.94 88.69 88.67 86.21 87.36
Separate Training 88.59 87.88 88.13 89.33 89.06 87.42 88.40 87.10 84.59 87.83 88.53 88.61 86.09 87.12

X-ALMA-13B-Pretrain

Group Multilingual Training 86.59 86.23 86.20 87.06 87.88 85.41 86.56 88.08 87.82 88.55 89.44 90.71 86.78 88.56
Multilingual Training (50) 76.67 76.44 76.87 77.03 84.77 75.93 77.95 88.03 87.72 88.32 89.36 90.70 86.68 88.47
Separate Training 88.81 88.46 88.18 89.32 89.36 87.50 88.61 87.77 87.59 88.29 89.21 90.42 86.51 88.30

Table 8: Result of various training strategies on Group 2 languages. The performance is evaluated by COMET-22.

Group 3 (Bg, Mk, Ru, Sr, Uk)

XX→En En→XX

Strategy Bg Mk Ru Sr Uk Avg. Bg Mk Ru Sr Uk Avg.

ALMA-13B-Pretrain

Group Multilingual Training 85.48 84.30 85.34 85.44 85.49 85.21 89.16 85.24 89.69 86.80 89.16 88.01
Multilingual Training (50) 69.35 66.40 76.99 68.08 77.54 71.67 88.47 83.57 89.44 86.71 89.16 87.47
Separate Training 87.45 85.78 86.86 87.12 87.26 86.89 88.21 81.19 89.57 86.14 89.21 86.86

X-ALMA-13B-Pretrain

Group Multilingual Training 86.50 85.77 85.60 86.00 85.84 85.94 90.95 89.55 89.64 88.74 90.18 89.81
Multilingual Training (50) 76.11 75.92 79.33 75.76 79.44 77.31 90.90 89.45 89.64 89.67 89.87 89.91
Separate Training 87.98 87.76 86.78 87.81 87.36 87.54 90.51 89.44 89.34 89.13 90.08 89.70

Table 9: Result of various training strategies on Group 3 languages. The performance is evaluated by COMET-22.

Group 4 (Fr, Id, Mg, Ms, Th, Vi)

XX→En En→XX

Strategy Fr Id Mg Ms Th Vi Avg. Fr Id Mg Ms Th Vi Avg.

ALMA-13B-Pretrain

Group Multilingual Training 86.98 85.93 63.47 84.55 77.34 83.41 80.28 87.60 89.92 63.79 86.85 72.74 87.01 81.32
Multilingual Training (50) 79.99 68.69 53.49 66.90 61.02 67.33 66.24 87.53 89.60 63.29 86.48 70.57 86.07 80.59
Separate Training 89.22 88.76 56.68 87.45 78.61 86.59 81.22 87.46 89.36 39.87 85.64 59.28 86.49 74.68

X-ALMA-13B-Pretrain

Group Multilingual Training 86.94 86.35 73.33 84.82 85.07 84.24 83.46 87.96 90.75 76.37 87.89 86.51 88.49 86.33
Multilingual Training (50) 83.49 77.59 65.08 75.95 76.97 75.77 75.81 88.07 90.73 75.70 87.80 86.25 88.40 86.16
Separate Training 89.25 89.11 74.75 87.71 87.57 87.21 85.93 87.72 90.75 71.99 87.46 85.84 88.08 85.31

Table 10: Result of various training strategies on Group 4 languages. The performance is evaluated by COMET-22.

Group 5 (Cs, El, Hu, Lv, Lt, Pl)

XX→En En→XX

Strategy Cs El Hu Lv Lt Pl Avg. Cs El Hu Lv Lt Pl Avg.

ALMA-13B-Pretrain

Group Multilingual Training 87.92 81.93 85.57 79.42 76.79 84.70 82.72 91.28 76.51 86.69 69.81 67.41 88.21 79.98
Multilingual Training (50) 79.94 62.88 68.91 68.85 63.48 80.26 70.72 91.11 75.92 86.24 68.90 66.40 87.63 79.37
Separate Training 88.77 82.72 87.66 78.75 75.81 85.94 83.28 90.95 68.11 86.23 61.62 58.89 87.96 75.63

X-ALMA-13B-Pretrain

Group Multilingual Training 87.30 85.77 85.81 85.63 84.58 84.64 85.62 91.31 89.03 89.57 89.80 90.07 89.69 89.91
Multilingual Training (50) 82.44 76.80 76.78 81.80 78.77 81.73 79.72 91.31 88.88 89.36 89.49 89.67 89.70 89.73
Separate Training 88.58 87.51 87.99 87.58 86.49 86.14 87.38 90.83 88.87 89.03 89.64 89.79 89.61 89.63

Table 11: Result of various training strategies on Group 5 languages. The performance is evaluated by COMET-22.
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Group 6 (Et, Fi, Ja, Ka, Ko, Zh)

XX→En En→XX

Strategy Et Fi Ja Ka Ko Zh Avg. Et Fi Ja Ka Ko Zh Avg.

ALMA-13B-Pretrain

Group Multilingual Training 80.84 87.60 86.18 73.71 85.36 85.22 83.15 73.01 89.85 89.92 61.63 84.44 87.75 81.10
Multilingual Training (50) 71.87 80.54 77.25 58.64 69.78 75.86 72.32 70.26 89.19 89.64 62.08 85.68 87.55 80.73
Separate Training 80.97 89.15 87.38 70.05 86.85 86.71 83.52 61.16 89.58 89.64 41.78 85.28 87.29 75.79

X-ALMA-13B-Pretrain

Group Multilingual Training 87.23 88.25 86.16 84.34 85.97 85.01 86.16 90.79 92.29 90.44 87.02 88.14 87.46 89.36
Multilingual Training (50) 83.70 84.38 80.55 74.73 77.59 79.11 80.01 90.55 92.00 90.35 86.23 87.97 86.92 89.00
Separate Training 88.75 89.59 87.64 86.37 87.49 86.62 87.74 90.45 92.13 90.40 86.27 87.36 86.99 88.93

Table 12: Result of various training strategies on Group 6 languages. The performance is evaluated by COMET-22.

Group 7 (Gu, Hi, Mr, Ne, Ur)

XX→En En→XX

Strategy Gu Hi Mr Ne Ur Avg. Gu Hi Mr Ne Ur Avg.

ALMA-13B-Pretrain

Group Multilingual Training 70.05 83.00 76.42 81.54 76.14 77.43 73.06 69.72 59.17 72.70 68.72 68.67
Multilingual Training (50) 59.78 65.44 60.27 65.85 59.95 62.26 76.01 70.68 61.03 74.13 71.06 70.58
Separate Training 66.96 84.27 76.60 82.62 77.47 77.59 59.24 62.51 45.03 59.68 60.75 57.44

X-ALMA-13B-Pretrain

Group Multilingual Training 86.43 87.19 85.57 87.82 84.84 86.37 86.68 79.15 74.19 82.71 82.09 80.96
Multilingual Training (50) 79.75 77.66 76.45 79.23 75.84 77.79 86.60 79.37 73.76 82.29 82.21 80.85
Separate Training 87.07 88.83 87.44 89.29 86.49 87.82 85.91 78.57 73.17 81.71 81.84 80.24

Table 13: Result of various training strategies on Group 7 languages. The performance is evaluated by COMET-22.

Group 8 (Ar, Az, He, Kk, Ky, Fa, Tr, Uz)

XX→En En→XX

Strategy Ar Az He Kk Ky Fa Tr Uz Avg. Ar Az He Kk Ky Fa Tr Uz Avg.

ALMA-13B-Pretrain

Group Multilingual Training 74.17 72.83 70.54 73.58 70.06 75.22 82.01 70.34 73.59 77.14 63.41 71.63 68.57 62.74 71.52 77.61 66.83 69.93
Multilingual Training (50) 60.33 61.77 57.48 63.74 60.45 62.40 76.40 59.61 62.77 75.78 65.72 71.12 71.08 63.12 72.18 78.45 69.64 70.89
Separate Training 80.97 75.94 77.71 72.45 67.25 81.80 85.36 70.53 76.50 73.00 43.13 62.30 46.70 35.71 64.67 74.37 44.37 55.53

X-ALMA-13B-Pretrain

Group Multilingual Training 81.70 82.67 83.28 83.53 81.19 83.14 87.15 81.15 82.98 86.40 86.86 87.74 89.41 87.42 86.69 88.50 86.80 87.48
Multilingual Training (50) 74.48 75.55 75.45 78.74 74.45 75.96 83.65 73.35 76.45 86.11 86.67 87.44 89.33 87.22 86.60 88.35 86.20 87.24
Separate Training 86.57 85.65 87.77 87.00 84.49 87.23 88.83 84.21 86.47 85.72 85.81 87.88 88.84 86.45 86.44 87.94 83.71 86.60

Table 14: Result of various training strategies on Group 8 languages. The performance is evaluated by COMET-22.

Group 1 (Af, Da, Nl, De, Is, No, Sv)

XX→En En→XX

Strategy Af Da Nl De Is No Sv Avg. Af Da Nl De Is No Sv Avg.

ALMA-13B-Pretrain

Group Multilingual Training 35.39 31.82 23.66 34.88 28.67 29.25 31.76 30.78 33.13 38.35 24.66 36.48 25.37 27.93 37.83 31.96
Multilingual Training (50) 10.68 12.10 10.23 21.00 24.37 11.10 12.09 14.51 33.00 36.93 24.34 36.82 25.07 27.65 37.18 31.57
Separate Training 52.88 46.74 32.21 44.21 37.39 42.92 47.21 43.37 27.63 35.25 23.39 36.22 25.41 25.40 35.72 29.86

X-ALMA-13B-Pretrain

Group Multilingual Training 37.40 32.39 23.63 33.66 28.30 29.68 32.74 31.11 40.68 42.78 26.38 36.09 24.23 30.85 41.80 34.69
Multilingual Training (50) 16.45 16.06 11.58 22.41 24.56 14.76 16.14 17.42 40.21 41.95 26.52 35.32 23.82 30.57 41.79 34.31
Separate Training 57.35 48.92 32.66 43.83 35.92 43.87 48.54 44.44 39.08 42.41 26.08 35.04 24.05 30.50 41.25 34.06

Table 15: Result of various training strategies on Group 1 languages. The performance is evaluated by SacreBLEU.
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Group 2 (Ca, Gl, It, Pt, Ro, Es)

XX→En En→XX

Strategy Ca Gl It Pt Ro Es Avg. Ca Gl It Pt Ro Es Avg.

ALMA-13B-Pretrain

Group Multilingual Training 33.77 31.56 27.82 34.82 35.49 26.81 31.71 39.10 31.01 27.53 41.43 32.21 27.81 33.18
Multilingual Training (50) 11.95 10.61 11.07 11.14 27.33 9.09 13.53 38.50 29.64 27.24 40.89 32.24 27.02 32.59
Separate Training 46.06 41.02 35.75 47.77 43.82 33.89 41.38 37.44 27.43 26.37 40.84 31.85 26.38 31.72

X-ALMA-13B-Pretrain

Group Multilingual Training 33.79 31.43 27.45 34.99 35.41 26.29 31.56 41.11 35.11 29.31 43.43 37.63 28.15 35.79
Multilingual Training (50) 14.74 13.75 13.19 14.84 28.91 12.40 16.30 40.59 34.85 29.10 43.23 36.83 28.02 35.44
Separate Training 46.01 42.02 35.54 47.73 44.62 33.79 41.62 39.45 33.71 28.55 43.09 36.86 27.55 34.87

Table 16: Result of various training strategies on Group 2 languages. The performance is evaluated by SacreBLEU.

Group 3 (Bg, Mk, Ru, Sr, Uk)

XX→En En→XX

Strategy Bg Mk Ru Sr Uk Avg. Bg Mk Ru Sr Uk Avg.

ALMA-13B-Pretrain

Group Multilingual Training 30.72 31.47 30.09 33.53 31.89 31.54 30.05 22.85 29.03 26.63 25.21 26.75
Multilingual Training (50) 9.96 9.16 18.08 10.21 19.70 13.42 30.21 21.87 29.62 26.79 25.28 26.75
Separate Training 39.56 38.58 36.13 42.05 40.32 39.33 28.31 17.45 29.18 23.40 25.11 24.69

X-ALMA-13B-Pretrain

Group Multilingual Training 33.56 34.13 30.92 34.43 32.81 33.17 36.66 32.41 28.98 31.32 27.09 31.29
Multilingual Training (50) 12.96 13.49 18.33 14.14 18.85 15.55 36.36 32.30 29.38 32.00 26.90 31.39
Separate Training 40.40 43.17 36.69 44.00 40.71 40.99 35.61 31.28 28.61 30.38 26.45 30.47

Table 17: Result of various training strategies on Group 3 languages. The performance is evaluated by SacreBLEU.

Group 4 (Fr, Id, Mg, Ms, Th, Vi)

XX→En En→XX

Strategy Fr Id Mg Ms Th Vi Avg. Fr Id Mg Ms Th Vi Avg.

ALMA-13B-Pretrain

Group Multilingual Training 35.54 30.22 10.13 29.61 13.75 25.54 24.13 43.95 37.60 4.01 28.67 6.73 34.86 25.97
Multilingual Training (50) 24.53 9.34 3.85 9.18 4.22 8.58 9.95 44.11 36.40 4.38 28.37 7.15 33.54 25.66
Separate Training 44.78 41.77 7.63 40.57 16.36 34.66 30.96 43.97 35.24 54.00 25.13 4.11 32.97 23.66

X-ALMA-13B-Pretrain

Group Multilingual Training 35.04 31.29 16.10 29.44 21.36 26.20 26.57 46.13 39.97 9.99 30.83 9.93 38.68 29.25
Multilingual Training (50) 27.13 13.59 6.83 13.09 10.01 12.26 13.82 45.36 40.01 9.23 29.28 11.36 37.54 28.80
Separate Training 44.69 42.99 19.64 40.79 29.92 36.98 35.84 45.30 39.49 6.48 28.01 9.78 37.43 27.75

Table 18: Result of various training strategies on Group 4 languages. The performance is evaluated by SacreBLEU.

Group 5 (Cs, El, Hu, Lv, Lt, Pl)

XX→En En→XX

Strategy Cs El Hu Lv Lt Pl Avg. Cs El Hu Lv Lt Pl Avg.

ALMA-13B-Pretrain

Group Multilingual Training 36.91 23.58 26.31 21.62 19.37 27.05 25.81 31.04 13.04 17.21 10.46 8.63 18.20 16.43
Multilingual Training (50) 22.08 6.40 8.19 11.58 8.37 21.72 13.06 31.02 13.59 17.70 10.33 9.68 18.14 16.74
Separate Training 41.62 27.38 33.58 22.89 19.97 30.96 29.40 30.62 9.04 15.56 6.55 5.59 17.93 14.22

X-ALMA-13B-Pretrain

Group Multilingual Training 34.26 28.15 25.25 28.89 26.61 26.19 28.22 30.91 23.62 21.91 24.56 22.52 20.28 23.97
Multilingual Training (50) 23.16 12.64 11.68 21.52 16.20 21.59 17.80 30.23 23.40 21.72 23.96 22.27 20.02 23.60
Separate Training 40.95 35.56 34.62 35.99 33.79 31.12 35.34 29.92 22.18 21.17 25.27 22.27 20.05 23.48

Table 19: Result of various training strategies on Group 5 languages. The performance is evaluated by SacreBLEU.
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Group 6 (Et, Fi, Ja, Ka, Ko, Zh)

XX→En En→XX

Strategy Et Fi Ja Ka Ko Zh Avg. Et Fi Ja Ka Ko Zh Avg.

ALMA-13B-Pretrain

Group Multilingual Training 22.49 27.83 22.64 12.35 21.50 23.92 21.79 10.60 18.59 29.63 4.40 6.79 40.49 18.42
Multilingual Training (50) 13.25 18.25 11.69 3.56 7.05 12.82 11.10 10.10 18.29 28.71 5.34 9.87 39.74 18.67
Separate Training 24.10 33.33 26.70 9.22 26.77 28.95 24.84 5.44 17.45 28.49 1.52 9.06 38.79 16.79

X-ALMA-13B-Pretrain

Group Multilingual Training 29.46 27.76 22.32 20.23 22.24 22.97 24.16 21.92 22.78 31.87 12.59 10.08 39.99 23.21
Multilingual Training (50) 22.32 20.01 12.44 9.06 10.38 14.09 14.72 21.48 21.38 30.89 12.32 11.82 38.65 22.76
Separate Training 35.84 34.19 26.94 27.00 28.37 28.31 30.11 21.52 21.62 31.76 11.54 10.65 38.22 22.55

Table 20: Result of various training strategies on Group 6 languages. The performance is evaluated by SacreBLEU.

Group 7 (Gu, Hi, Mr, Ne, Ur)

XX→En En→XX

Strategy Gu Hi Mr Ne Ur Avg. Gu Hi Mr Ne Ur Avg.

ALMA-13B-Pretrain

Group Multilingual Training 10.95 24.45 16.88 19.50 16.89 17.73 8.78 15.68 5.63 8.67 9.90 9.73
Multilingual Training (50) 3.10 5.34 3.71 4.46 3.59 4.04 10.50 17.29 6.25 9.53 11.33 10.98
Separate Training 8.09 26.64 15.40 20.37 17.67 17.63 4.89 9.66 2.09 3.89 5.11 5.13

X-ALMA-13B-Pretrain

Group Multilingual Training 26.47 29.68 25.56 27.99 25.45 27.03 18.18 26.33 13.57 16.75 18.94 18.75
Multilingual Training (50) 12.55 10.32 10.44 10.05 9.80 10.63 17.78 25.96 13.17 15.90 18.88 18.34
Separate Training 30.82 36.37 32.69 33.91 31.51 33.06 16.55 23.83 12.58 15.01 17.78 17.15

Table 21: Result of various training strategies on Group 7 languages. The performance is evaluated by SacreBLEU.

Group 8 (Ar, Az, He, Kk, Ky, Fa, Tr, Uz)

XX→En En→XX

Strategy Ar Az He Kk Ky Fa Tr Uz Avg. Ar Az He Kk Ky Fa Tr Uz Avg.

ALMA-13B-Pretrain

Group Multilingual Training 14.67 9.20 14.01 10.83 7.40 14.42 21.09 9.47 12.64 10.04 3.34 10.70 4.42 2.41 11.27 9.99 3.16 6.92
Multilingual Training (50) 5.09 3.87 4.01 5.63 3.46 5.18 15.65 4.19 5.88 11.04 4.76 10.80 5.87 2.87 12.39 11.96 5.05 8.09
Separate Training 28.08 12.64 25.00 11.36 6.59 24.96 28.39 10.72 18.47 8.03 84.00 6.60 1.13 40.00 6.09 7.95 53.00 3.95

X-ALMA-13B-Pretrain

Group Multilingual Training 21.40 16.27 24.74 19.94 14.91 20.98 28.69 17.76 20.59 20.13 11.89 25.11 17.26 11.53 21.95 21.56 10.98 17.55
Multilingual Training (50) 11.13 7.89 11.92 12.76 8.08 10.83 20.84 7.77 11.40 19.43 12.11 24.68 17.22 10.65 21.66 20.39 10.52 17.08
Separate Training 38.34 22.16 41.85 30.35 20.97 33.66 35.90 25.28 31.06 18.84 10.10 24.62 15.62 8.89 20.92 19.41 6.56 15.62

Table 22: Result of various training strategies on Group 8 languages. The performance is evaluated by SacreBLEU.

Model
Zh De Ru Ja Uk Avg.

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-3.3B 11.4 67.8 20.1 66.6 24.4 76.7 6.8 65.8 33.1 79.0 19.2 71.2
Aya-23-8B 22.6 78.8 32.3 82.1 30.9 81.6 19.8 80.2 39.2 85.0 29.0 81.5
Aya-23-35B 23.5 79.7 32.7 82.3 31.7 82.2 21.3 81.6 39.1 85.7 29.7 82.3
Aya-101 13.8 73.7 34.9 81.6 28.4 81.4 13.9 77.3 34.9 84.5 25.2 79.7
LLaMAX3-Alpaca-8B 22.3 79.3 25.6 79.4 29.4 81.3 17.6 80.1 37.8 84.9 26.5 81.0
X-ALMA-13B (Only SFT, MoE) 23.8 80.3 42.5 85.3 32.8 82.4 20.4 81.6 42.5 86.4 32.4 83.2

X-ALMA-13B-DAT (MoE) 21.1 79.7 38.4 84.6 32.3 82.4 19.8 81.2 39.5 85.9 30.2 82.8
X-ALMA-13B-DATM (MoE) 22.2 79.2 37.5 84.2 29.0 82.0 19.0 80.4 34.0 84.7 28.3 82.1

Table 23: WMT23 XX→En translation results (BLEU and COMET). The results of baselines are directly sourced
from Xu et al. (2024b). We keep the same generation configuration as Xu et al. (2024b).
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Model
Zh De Ru Ja Uk Avg.

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-3.3B 34.8 79.6 33.5 79.7 29.1 83.8 13.8 81.6 25.5 82.8 27.3 81.5
Aya-23-8B 44.5 85.3 29.3 80.4 24.3 84.3 19.3 86.5 24.3 84.3 28.3 84.2
Aya-23-35B 42.8 84.6 30.7 80.7 27.5 84.7 20.6 86.4 24.9 84.0 29.3 84.1
Aya-101 25.4 78.6 25.1 75.1 22.1 83.1 14.1 84.6 19.7 82.7 21.3 80.8
LLaMAX3-Alpaca-8B 34.0 81.5 20.9 73.3 23.5 81.6 11.9 81.8 19.8 80.6 22.0 79.8
X-ALMA-13B (Only SFT, MoE) 47.5 86.1 40.9 84.1 31.5 85.9 22.3 86.8 27.4 85.3 33.9 85.6

X-ALMA-13B-DAT (MoE) 40.3 85.0 35.3 83.3 27.6 85.0 19.0 86.0 23.5 84.6 29.1 84.8
X-ALMA-13B-DATM (MoE) 40.3 85.0 35.3 83.3 27.6 85.0 19.0 86.0 23.5 84.6 29.1 84.8

Table 24: WMT23 En→XX translation results (BLEU and COMET). The results of baselines are directly sourced
from Xu et al. (2024b). We keep the same generation configuration as Xu et al. (2024b).

Direction NLLB-3.3B LLaMAX3-Alpaca-8B Aya-101 Aya-23-8B Aya-23-35B X-ALMA-13B (only SFT) X-ALMA-13B-DAT (Ours) X-ALMA-13B-DATM (Ours)

Group 1 (Af, Da, Nl, De, Is, No, Sv)

en→af 87.4 / 38.9 86.0 / 38.5 78.8 / 22.5 79.6 / 17.6 81.2 / 26.7 87.5 / 44.2 86.6 / 40.7
en→da 90.0 / 44.5 88.6 / 38.2 87.6 / 34.2 76.4 / 19.3 82.9 / 29.0 91.8 / 48.6 91.1 / 42.8
en→de 88.1 / 40.0 85.4 / 31.4 84.3 / 29.3 88.1 / 36.8 88.1 / 37.0 88.7 / 41.2 88.0 / 36.1
en→is 84.6 / 24.5 81.2 / 18.3 84.3 / 20.9 38.4 / 1.6 51.0 / 5.9 87.2 / 28.0 86.8 / 24.2
en→nl 87.5 / 27.5 86.3 / 23.3 85.8 / 22.1 87.9 / 26.0 87.7 / 26.6 88.8 / 29.3 88.2 / 26.4
en→no 88.9 / 33.0 87.8 / 28.0 87.5 / 26.9 77.3 / 15.7 82.4 / 22.1 90.6 / 35.0 89.9 / 30.9
en→sv 90.7 / 44.3 89.1 / 38.7 86.9 / 31.3 78.3 / 20.8 83.7 / 28.8 91.7 / 47.0 91.1 / 41.8

af→en 80.3 / 40.6 89.0 / 53.1 86.1 / 43.2 85.3 / 46.9 88.3 / 54.3 89.9 / 58.8 89.3 / 57.4 89.1 / 55.1
da→en 83.0 / 34.4 89.6 / 45.3 89.2 / 42.4 87.7 / 42.6 89.7 / 47.3 90.2 / 49.6 90.2 / 48.9 90.3 / 48.7
de→en 81.3 / 28.6 88.8 / 40.5 88.5 / 39.7 89.3 / 43.9 89.5 / 45.1 89.6 / 45.7 89.3 / 43.8 89.2 / 43.8
is→en 64.2 / 16.2 85.6 / 32.5 82.3 / 27.2 68.0 / 13.0 78.5 / 24.5 87.1 / 37.7 86.7 / 35.9 86.7 / 35.7
nl→en 81.9 / 25.3 87.1 / 30.1 86.9 / 30.1 87.5 / 31.9 87.8 / 33.9 87.6 / 34.2 87.5 / 32.7 87.6 / 32.5
no→en 80.7 / 32.1 88.5 / 41.8 88.1 / 39.5 86.5 / 38.5 88.5 / 43.2 89.1 / 45.7 88.9 / 43.9 88.9 / 44.5
sv→en 82.3 / 35.0 89.5 / 45.6 89.4 / 44.3 87.9 / 42.6 89.5 / 46.9 90.2 / 50.0 90.1 / 48.5 90.1 / 48.7

Group 2 (Ca, Es, Gl, It, Pt, Ro)

en→ca 87.8 / 43.1 86.5 / 36.3 87.1 / 37.8 81.7 / 25.1 83.9 / 33.1 89.0 / 45.7 88.1 / 41.1
en→es 86.5 / 28.6 85.0 / 24.1 85.3 / 24.2 86.4 / 27.8 86.2 / 27.7 87.2 / 29.5 86.8 / 28.2
en→gl 87.3 / 35.7 86.4 / 31.2 86.7 / 32.7 82.7 / 17.2 84.2 / 25.3 88.4 / 39.0 87.8 / 35.1
en→it 88.5 / 31.3 86.9 / 26.5 87.0 / 25.6 88.4 / 30.2 88.2 / 30.5 89.1 / 32.5 88.6 / 29.3
en→pt 89.6 / 49.6 88.1 / 41.5 85.3 / 32.5 89.9 / 48.4 89.7 / 48.6 90.2 / 49.9 89.4 / 43.4
en→ro 90.2 / 37.6 88.1 / 32.7 89.4 / 34.9 90.6 / 37.9 90.7 / 38.4 91.5 / 42.2 90.7 / 37.6

ca→en 83.7 / 37.9 88.3 / 42.9 87.6 / 41.1 85.8 / 39.5 88.4 / 46.3 89.2 / 48.6 88.8 / 46.0 88.8 / 46.4
es→en 85.3 / 27.1 86.7 / 29.0 86.8 / 28.8 87.4 / 31.3 87.7 / 33.1 87.7 / 34.9 87.5 / 33.8 87.4 / 32.8
gl→en 84.0 / 34.7 88.0 / 38.6 86.9 / 35.5 87.0 / 37.3 88.5 / 41.7 89.0 / 44.9 88.5 / 42.0 88.5 / 42.1
it→en 84.4 / 28.8 87.5 / 31.3 87.4 / 31.2 88.1 / 34.1 88.3 / 36.0 88.3 / 36.9 88.2 / 35.5 88.2 / 35.4
pt→en 86.7 / 42.3 89.1 / 46.3 88.7 / 43.8 89.7 / 49.7 89.9 / 51.5 89.7 / 51.0 89.3 / 47.7 89.4 / 48.4
ro→en 83.0 / 31.4 88.9 / 40.4 88.4 / 37.8 89.5 / 43.5 89.7 / 46.0 89.7 / 46.8 89.4 / 44.6 89.4 / 43.9

Group 3 (Bg, Mk, Ru, Sr, Uk)

en→bg 90.9 / 40.5 89.0 / 32.2 90.0 / 34.3 73.3 / 6.7 75.7 / 17.0 91.7 / 42.1 90.0 / 36.7
en→mk 88.8 / 34.4 87.4 / 29.3 88.7 / 30.7 57.1 / 2.9 65.4 / 9.6 90.4 / 37.3 89.6 / 32.4
en→ru 89.2 / 32.2 87.7 / 26.4 88.3 / 27.2 89.6 / 29.9 89.6 / 31.2 90.1 / 32.3 89.6 / 29.0
en→sr 89.0 / 33.8 76.2 / 5.8 82.9 / 23.3 61.7 / 0.9 67.4 / 1.1 90.2 / 36.4 88.7 / 31.3
en→uk 89.1 / 30.3 87.9 / 25.5 88.7 / 25.1 90.2 / 29.4 90.0 / 30.3 90.8 / 31.8 90.2 / 27.1

bg→en 86.0 / 37.6 87.5 / 38.2 85.4 / 32.9 84.4 / 32.6 86.7 / 38.2 88.4 / 43.4 88.0 / 40.4 88.0 / 40.3
mk→en 84.3 / 37.1 87.2 / 39.8 84.3 / 33.7 78.4 / 25.0 84.6 / 36.2 88.2 / 45.6 87.8 / 43.2 87.6 / 42.7
ru→en 84.2 / 30.7 86.4 / 33.1 86.1 / 32.7 86.7 / 36.1 87.1 / 38.6 87.0 / 38.7 86.8 / 36.7 86.8 / 36.6
sr→en 83.4 / 35.8 87.3 / 40.6 85.0 / 35.0 79.9 / 27.9 85.3 / 37.8 88.4 / 46.2 87.8 / 44.0 87.9 / 43.9
uk→en 83.7 / 33.7 86.8 / 37.0 86.2 / 35.5 87.2 / 40.1 87.7 / 42.0 87.7 / 42.8 87.4 / 40.7 87.3 / 39.8

Group 4 (Fr, Id, Mg, Ms, Th, Vi)

en→fr 88.3 / 51.1 86.4 / 41.2 85.3 / 38.3 88.3 / 48.9 88.0 / 49.0 88.7 / 51.8 88.0 / 46.1
en→id 91.2 / 46.4 89.0 / 35.6 90.0 / 38.7 91.2 / 42.9 91.1 / 43.5 91.8 / 48.0 90.8 / 40.0
en→mg 81.6 / 17.7 56.8 / 2.4 81.1 / 16.1 31.0 / 0.3 41.4 / 0.8 81.8 / 16.8 76.4 / 10.0
en→ms 89.1 / 41.6 87.4 / 32.5 86.3 / 30.7 87.3 / 22.2 87.2 / 26.7 89.7 / 42.0 87.8 / 30.8
en→th 84.3 / 5.3 84.8 / 3.7 86.5 / 9.8 61.0 / 0.7 63.2 / 6.1 87.4 / 11.6 86.5 / 10.0
en→vi 88.0 / 41.8 86.0 / 34.9 85.6 / 31.9 89.0 / 40.3 89.2 / 40.4 89.4 / 43.9 88.5 / 38.7

fr→en 86.6 / 38.1 88.7 / 41.6 88.6 / 41.2 89.4 / 45.3 89.5 / 47.0 89.6 / 47.8 89.3 / 44.7 89.3 / 45.1
id→en 84.5 / 34.3 89.0 / 40.8 88.4 / 38.8 89.5 / 44.1 89.8 / 45.7 89.6 / 47.3 89.1 / 43.0 89.2 / 43.0
mg→en 63.3 / 13.5 76.0 / 19.6 79.8 / 27.7 47.0 / 1.5 54.1 / 5.3 81.9 / 30.1 74.8 / 19.6 70.6 / 13.8
ms→en 82.1 / 31.4 88.6 / 41.3 87.8 / 39.0 87.3 / 40.0 88.7 / 43.9 89.1 / 46.9 87.7 / 40.8 87.1 / 39.7
th→en 85.9 / 26.8 87.7 / 28.2 85.8 / 26.9 78.1 / 15.2 83.6 / 23.5 88.0 / 32.3 87.6 / 29.9 87.3 / 28.2
vi→en 84.1 / 31.6 87.2 / 33.7 86.6 / 33.6 87.6 / 37.2 87.8 / 38.9 87.9 / 39.8 87.2 / 37.0 87.2 / 36.4

Table 25: Full results for Group 1-4 languages on Flores-200 benchmark. The performance of baselines is directly
sourced from Xu et al. (2024b) and we keep the generation configuration of our approach the same as those.
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Direction NLLB-3.3B LLaMAX3-Alpaca-8B Aya-101 Aya-23-8B Aya-23-35B X-ALMA-13B (only SFT) X-ALMA-13B-DAT (Ours) X-ALMA-13B-DATM (Ours)

Group 5 (Cs, El, Hu, Lt, Lv, Pl)

en→cs 91.0 / 32.2 88.1 / 24.6 90.0 / 26.7 91.1 / 30.5 91.4 / 32.2 91.5 / 33.8 91.3 / 30.9
en→el 89.0 / 27.4 86.2 / 20.4 86.6 / 21.4 89.5 / 26.1 89.6 / 27.0 89.8 / 27.9 89.0 / 23.6
en→hu 89.3 / 26.4 86.6 / 18.2 88.4 / 21.4 51.7 / 3.6 77.0 / 10.8 90.4 / 27.0 89.6 / 21.9
en→lt 89.3 / 25.2 86.1 / 17.0 89.2 / 22.5 65.4 / 5.4 82.5 / 14.0 91.3 / 28.4 90.0 / 22.5
en→lv 87.4 / 25.0 85.8 / 21.1 88.6 / 25.0 36.5 / 1.5 62.7 / 7.9 90.7 / 29.3 89.8 / 24.6
en→pl 88.9 / 21.6 86.7 / 17.2 87.6 / 18.3 89.2 / 20.7 89.8 / 22.4 90.1 / 23.3 89.7 / 20.3

cs→en 80.1 / 29.4 88.1 / 37.5 87.6 / 35.6 88.5 / 40.7 88.5 / 42.3 89.0 / 43.3 88.6 / 41.0 88.6 / 40.7
el→en 86.1 / 33.0 87.5 / 34.2 86.5 / 32.1 87.8 / 36.1 88.3 / 39.0 87.9 / 38.0 87.5 / 35.6 87.5 / 35.6
hu→en 70.1 / 14.0 87.8 / 32.5 86.4 / 29.9 81.1 / 23.0 86.5 / 32.2 88.7 / 37.3 88.0 / 34.6 88.2 / 35.0
lt→en 67.1 / 12.6 86.0 / 31.0 85.8 / 30.2 80.6 / 24.6 85.4 / 32.9 87.1 / 36.9 86.5 / 33.8 86.3 / 32.8
lv→en 68.1 / 10.4 87.0 / 32.7 86.3 / 32.0 73.4 / 14.1 83.3 / 29.1 87.9 / 38.2 87.6 / 36.0 87.6 / 36.3
pl→en 77.8 / 20.3 85.6 / 28.3 85.6 / 28.0 86.1 / 30.5 86.7 / 33.4 86.5 / 32.8 86.1 / 31.1 86.2 / 31.3

Group 6 (Et, Fi, Ja, Ka, Ko, Zh)

en→et 90.5 / 25.0 87.7 / 18.1 90.7 / 21.9 40.5 / 1.5 57.8 / 6.1 91.6 / 26.4 90.8 / 21.9
en→fi 91.7 / 24.1 89.3 / 17.5 90.3 / 18.9 51.9 / 2.4 70.0 / 8.1 92.7 / 25.3 92.3 / 22.8
en→ja 87.9 / 22.6 89.0 / 27.5 89.0 / 27.3 90.8 / 30.7 91.0 / 30.9 91.2 / 34.6 90.4 / 31.9
en→ka 84.6 / 14.8 78.6 / 9.6 85.3 / 11.3 43.3 / 0.4 47.6 / 2.0 87.6 / 14.0 87.0 / 12.6
en→ko 88.4 / 12.5 85.6 / 8.8 87.4 / 10.2 89.0 / 13.1 89.4 / 12.8 89.3 / 15.0 88.1 / 10.1
en→zh 82.0 / 32.4 85.6 / 36.3 82.4 / 27.3 87.3 / 40.2 87.5 / 37.3 88.2 / 43.6 87.5 / 40.0

et→en 62.5 / 7.2 88.3 / 33.6 87.7 / 32.5 74.9 / 15.4 84.2 / 28.9 89.2 / 38.2 88.8 / 35.8 88.4 / 34.7
fi→en 67.7 / 10.2 89.3 / 31.6 88.6 / 29.7 81.3 / 20.4 87.3 / 29.8 90.0 / 36.0 89.6 / 34.2 89.7 / 34.0
ja→en 79.5 / 17.2 87.5 / 24.6 86.5 / 23.5 87.9 / 28.1 88.4 / 30.4 88.1 / 28.9 87.6 / 26.9 87.5 / 26.9
ka→en 84.8 / 25.6 50.7 / 1.2 84.5 / 25.6 60.1 / 3.6 79.4 / 19.4 86.8 / 28.4 86.4 / 27.0 86.3 / 26.9
ko→en 84.9 / 26.2 87.5 / 26.3 87.0 / 26.5 88.0 / 29.4 88.7 / 32.2 88.1 / 30.6 87.5 / 28.4 87.5 / 28.1
zh→en 77.1 / 16.8 86.6 / 25.9 84.5 / 23.1 87.1 / 29.4 87.6 / 32.2 87.1 / 30.4 87.7 / 28.3 86.6 / 28.2

Group 7 (Gu, Hi, Mr, Ne, Ur)

en→gu 87.2 / 24.3 82.7 / 13.7 83.9 / 15.6 65.7 / 0.4 62.2 / 1.5 88.2 / 25.0 86.7 / 18.2
en→hi 80.9 / 34.4 76.6 / 23.5 75.5 / 21.4 79.3 / 25.0 79.1 / 26.0 81.4 / 34.3 79.2 / 26.3
en→mr 74.3 / 17.1 69.5 / 10.1 69.5 / 10.3 66.7 / 0.9 61.1 / 1.3 75.9 / 18.0 74.2 / 13.6
en→ne 76.5 / 16.4 78.4 / 10.7 77.5 / 10.5 69.2 / 1.5 68.3 / 1.4 84.0 / 21.5 82.7 / 16.8
en→ur 81.3 / 22.9 75.6 / 13.4 74.6 / 13.9 63.6 / 0.3 39.1 / 2.4 83.5 / 23.8 82.1 / 18.9

gu→en 90.2 / 42.3 66.0 / 9.9 82.3 / 28.0 53.6 / 3.4 63.1 / 8.8 90.1 / 40.4 87.0 / 30.8 85.9 / 29.5
hi→en 88.9 / 38.7 88.9 / 35.4 87.5 / 34.6 89.1 / 37.6 89.6 / 40.1 89.8 / 43.0 88.8 / 36.4 88.8 / 36.0
mr→en 87.0 / 34.0 87.3 / 30.6 85.2 / 30.1 68.9 / 7.5 79.9 / 18.4 88.5 / 37.7 87.4 / 32.7 87.4 / 32.3
ne→en 89.7 / 38.0 89.3 / 32.9 84.9 / 31.2 77.0 / 10.0 84.1 / 23.3 90.6 / 41.2 89.3 / 33.9 89.4 / 33.9
ur→en 86.0 / 31.6 86.5 / 30.5 83.9 / 28.1 70.2 / 9.3 80.2 / 21.1 87.7 / 36.4 86.5 / 31.5 86.6 / 31.9

Group 8 (Ar, Az, Fa, He, Kk, Ky, Tr, Uz)

en→ar 86.3 / 27.5 82.2 / 14.1 84.1 / 17.2 87.3 / 26.5 87.1 / 27.4 87.8 / 29.1 86.4 / 20.1
en→az 86.9 / 14.0 80.0 / 7.3 85.6 / 11.5 75.5 / 2.0 67.2 / 3.0 88.2 / 14.0 86.9 / 11.9
en→fa 86.5 / 22.6 84.5 / 17.7 86.4 / 19.1 87.7 / 23.2 87.6 / 23.8 88.5 / 28.4 86.7 / 22.0
en→he 87.8 / 30.4 86.2 / 23.3 85.4 / 20.5 88.3 / 27.0 88.2 / 28.9 89.6 / 32.7 87.7 / 25.1
en→kk 90.0 / 20.6 86.0 / 12.7 89.0 / 17.2 71.0 / 1.2 45.0 / 0.7 90.7 / 22.2 89.4 / 17.3
en→ky 88.1 / 13.2 82.9 / 7.9 86.6 / 10.4 62.9 / 1.2 49.6 / 0.9 88.5 / 13.2 87.4 / 11.5
en→tr 89.7 / 29.0 84.2 / 13.8 88.3 / 21.1 88.9 / 23.7 88.7 / 23.6 90.3 / 27.7 88.5 / 21.6
en→uz 89.8 / 18.6 74.5 / 6.8 88.6 / 12.0 46.5 / 0.5 37.1 / 0.3 90.0 / 16.8 86.8 / 11.0

ar→en 86.1 / 38.2 86.8 / 35.1 85.8 / 35.0 87.9 / 41.5 87.6 / 43.4 87.5 / 41.2 86.6 / 38.3 86.5 / 36.9
az→en 77.5 / 15.1 70.0 / 7.9 85.2 / 21.5 75.6 / 10.6 82.6 / 17.9 86.7 / 25.8 85.7 / 22.2 86.1 / 23.1
fa→en 83.5 / 29.8 87.6 / 33.1 87.3 / 32.8 87.9 / 36.8 88.5 / 39.6 88.1 / 37.6 87.2 / 33.7 87.4 / 34.2
he→en 86.0 / 39.1 87.2 / 39.5 86.4 / 37.9 88.4 / 43.2 88.9 / 46.6 88.3 / 44.5 87.8 / 41.9 87.6 / 40.9
kk→en 85.0 / 30.2 86.7 / 29.0 86.1 / 29.2 59.9 / 3.5 74.0 / 14.2 87.8 / 33.5 87.0 / 30.4 87.0 / 29.4
ky→en 81.6 / 20.1 84.5 / 20.4 83.0 / 20.4 64.3 / 4.2 74.3 / 11.3 85.4 / 23.5 84.5 / 21.0 84.6 / 21.5
tr→en 75.3 / 16.8 88.6 / 33.4 88.1 / 33.2 88.2 / 35.8 89.6 / 39.3 89.6 / 39.9 88.8 / 35.9 88.5 / 33.0
uz→en 60.7 / 5.3 86.1 / 27.9 84.9 / 28.1 61.3 / 3.9 75.9 / 15.3 86.9 / 32.2 84.2 / 25.3 83.5 / 24.1

Table 26: Full results for Group 5-8 languages on Flores-200 benchmark. The performance of baselines is directly
sourced from Xu et al. (2024b) and we keep the generation configuration of our approach the same as those.
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