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Abstract

In the last decade, machine learning (ML) has shown tremendous success in areas such
as vision, language, strategic games, and more. Parallel to this, hospitals’ capacity for data
collection has greatly increased with the adoption and continuing maturation of electronic
health records (EHRs). The result of these trends has been a large degree of excitement
and optimism about how ML will revolutionize healthcare once researchers get access to
data. In this work, we present a cautionary tale of the instinct some computer scientists
have to “let the data speak for itself.” Using a popular, public EHR dataset as a case study,
we demonstrate numerous examples where a non-clinician’s intuition may lead to incorrect
– and potentially harmful – modeling assumptions. We explore both non-obvious quirks in
the data (i.e., hypothetical incorrect assumptions) and examples of published papers that
misunderstood the data generating process (i.e., actual incorrect assumptions). This case
study is meant to serve as a cautionary tale to encourage every data scientist to approach
their projects with the humility to know what they can do well and what they cannot.
Without the guidance of stakeholders that understand the data generating process, data
scientists run the risk of “garbage-in, garbage-out” analysis because their models are not
measuring meaningful relationships.

1. Introduction

From recommender systems to financial trading, data science has transformed the way many
sectors opertate in recent years. In 2012, the success of AlexNet demonstrated that deep
learning can be incredibly successful at difficult tasks such as object recognition in images
(Krizhevsky et al., 2012). One of the main “draws” of deep learning is the ability for models
to automatically learn meaningful representations of the input data without explicit feature-
engineering (Bengio et al., 2014). The ability to learn without explicit domain knowledge is
seen as a tremendous strength of deep learning, allowing it to outperform previous models
in computer vision, speech recognition, and more. However, it is always possible to lean too
heavily into a paradigm, embracing the ethos of previous generations of Computer Scientists,
such as Frederick Jelinek who said, “Every time I fire a linguist, the performance of the
speech recognizer goes up.” In this paper, we argue that such an orientation is harmful,
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especially for high-stakes environments such as healthcare. ML requires an understanding of
the data generating process, and its use in healthcare contexts requires computer scientists
must work with domain experts like doctors and nurses.

Machine learning is a very broad tool with many possible uses; pattern recognition
allows for models to discover even un-intuitive relationships. As a result, ML is used not
just for identifying cats in pictures (Le et al., 2012) and sentiment analysis of movie reviews
(Pang et al., 2002) but also to predict whether a patient is likely to die (Parikh et al., 2019).
Often times the real outcome itself is not even measurable, and proxies are used instead,
such as predicting whether a defendant is likely to be re-arrested as a proxy for whether
they will re-commit a crime (Skeem and Lowenkamp, 2016) or their level of healthcare costs
as a proxy for how sick they are (Obermeyer et al., 2019). ML is so flexible that there are
no technical limits on what researchers can try to learn associations between, even if social
and ethical norms sometimes constrain what should be done.1

1.1. Generalizable Insights about Machine Learning in the Context of
Healthcare

In this paper, we examine a case study of electronic health record (EHR) data. Our con-
tributions are twofold:

1. We do a deep dive on a popular, public EHR dataset to demonstrate the need for
a domain expert to help navigate assumptions about the unintuitive data generating
process.

2. We identify some examples of published works which contain incorrect assumptions
about the data generating process.

Our intended audience for this work is anyone – particularly technical scientists – who
would feel confident in conducting data science and drawing conclusions from data even
when they are not entirely sure what the data means. Our hope is that this case study
illustrates the pitfalls in common sense assumptions and the need to work closely with a
domain expert to understand the data generating process.

2. Background and Related Work

Numerous works have investigated the unintuitive ways that machine learning models have
failed. Ribeiro et al. (2016) demonstrate a computer vision model which is ’right for the
wrong reason;’ using an explanation tool, they show the model was correctly predicting an
image was a wolf not because of the canine’s features but because the image had snow in the
background. Buolamwini and Gebru (2018) demonstrate that commercial facial recognition
software performed worse against women and dark-skinned subjects. In the healthcare
space, Obermeyer et al. (2019) identify that a model deployed and making predictions for
millions of patients had been underrestimating Black patients’ risks by using a biased proxy
as its training label. Zech et al. (2018) identify that models were achieving inflated results
because of confounders, such as a model identifying indicators of which hospital system

1. https://blog.neurips.cc/2021/08/23/neurips-2021-ethics-guidelines
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Figure 1: An illustration of the data in MIMIC captured by the EHR, including some data
which is ICU-only and some from throughout the hospital stay. A given patient
(subject-id) might have multiple hospitall admissions (one per hadm-id). A given
hospital admission might have multiple trips to the ICU (one per icustay-id).

(essentially a more sick one or a less sick one) was performing the radiology scan as a proxy
for the severity of the image’s illness.

In the book Artificial Unintelligence, Broussard (2019) argues that because “all data
is dirty ... [and that] in every seemingly orderly column of numbers, there is noise,” data
scientists often have to make many assumptions about the structure of the data. Yang
and Roberts (2021) observe that politically-motivated selective censorship of datasets can
bias models which are supposed to be general-purpose tools. D’Ignazio and Klein (2020)
introduce Data Feminism, a framework for critiquing and doing data science using concepts
from the academic discipline of intersectional feminism. Data Feminism enumerates seven
principles, including:

• Elevate Emotion and Embodiment: “[V]alue multiple forms of knowledge, in-
cluding the knowledge that comes from people as living, feeling bodies in the world.”

• Consider Context: “[D]ata are not neutral or objective. They are the products of
unequal social relations, and this context is essential for conducting accurate, ethical
analysis.”

• Make Labor Visible: “The work of data science, like all work in the world, is
the work of many hands. Data feminism makes this labor visible so that it can be
recognized and valued.”

To mitigate this issue of decontextualization, Gebru et al. (2018) introduce Datasheets
for Datasets to provide an approach to standardize the process for documenting the data
generating process. Extending Datasheets to the domain of clinical collaborations, Saleh
et al. (2020) introduce Clinical Collabsheets to facilitate effective collaboration between data
scientists and clinicians. They interviewed 18 experts in the Clinical ML field and distilled
the lessons learned into a list of questions to promote productive discussion when working
on a new project. Their work presents 8 sets of questions to discuss with an interdisciplinary
team at the beginning of a clinical collaboration, including an entire set dedicated to the data
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generating process. It encourages the team to discuss: missing data patterns, how/when
the data is recorded (e.g., automatically vs nurse input at the end of the shift), label
validity, gotchas (e.g., “timestamps reflect time of entry instead of time of event; low acuity
(controls) patients all receiving imaging from the same machine; survey-based questions
delivered differently by site“), confounders, dataset shift, and curation/pre-processing. .

Within the field of ML for Health, MIMIC-III has been one of the most widely-used pub-
lic databases (Johnson et al., 2016). Recognizing the importance of curating meaningful
representations of patient data, Wang et al. (2020) create MIMIC Extract, a preprocessed
version of MIMIC, in order to be more useful to researchers for machine learning tasks.
This pre-processed dataset successfully standardizes measurement units and performs out-
lier detection to eliminate physiologically impossible measurements based on expert-curated
measurement ranges (Harutyunyan et al., 2019). Additionally, it aggregates similar mea-
surements where appropriate (e.g., in the EHR, “heart rate” is encoded as ItemID 211 before
2008 and as ItemID 220045 from 2008 onwards, due to a change of software systems from
Carevue to Metavision). Because of this many of these pre-processing are necessary but
unintuitive, MIMIC Extract dataset is a valuable contribution to the research community.
However, it has been focused on researcher utility rather than focusing on how MIMIC itself
can be a case study to demonstrate the challenges of unintuitive modeling assumptions to
a larger audience.

3. Data

We use the MIMIC-III v1.4 database (Johnson et al., 2016). MIMIC-III is a large, freely-
available database consisting of de-identified EHR data from over 58,000 hospital admissions
for nearly 38,600 adult patients. The data was collected from Beth Israel Deaconess Med-
ical Center from 2001–2012. During that period, Beth Israel switched EHR vendors from
CareVue to MetaVision. Every hospital admission in MIMIC has at least one ICU stay,
though some admissions may have multiple stays. Figure 1 demonstrates some of the data
collected during one hospital admission for a patient, including demographics, patient out-
comes (e.g., mortality, length of stay, discharge location), laboratory test results, vital sign
measurements, medications, procedures, and caregiver notes.

The documentation2 for MIMIC-III outlines the most important tables, schemas, and
inputs and outputs for understanding the data generating process. MIMIC-III has been
cited over 3,400 times. As one of the earliest large EHR-based dataset, it has been very
influential to the field of ML for Health.

4. Methodology

In this work, we illustrate the pitfalls of making common sense assumptions about domain-
specialized data. This is done through two sets of experiments: first, we show a series of
counterintuitive “quirks” of a popular EHR dataset, and second we identify two published
papers which made incorrect modeling assumptions that undercut the points they hope to
make.

2. https://mimic.mit.edu/docs/iii
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Figure 2: When plotting heart rate measurements in MIMIC, there is a surprising finding:
some patients have hearts that beat 3 times per second.

To examine the EHR quirks, we employ techniques from exploratory data analysis
(Tukey, 1977). Professionalized by Tukey in 1977, exploratory data analysis critiqued the
overuse of statistical hypothesis testing (“confirmatory data analysis”) by the statistics
community. As intended, the purpose of this technique is to suggest hypotheses about the
causes of interesting phenomena, identify shortcomings in the data to supplement through
additional collection, and more.

In Section 6, we critique currently-published research. To accomplish this, we first
introduce a given work’s motivation, summarize its main findings, and then show how
incorrect modeling assumptions undermine the paper’s main results. Further, we discuss
the implications that these oversights have on the overall findings and impact of the works.
This is done with mixed methods, employing both internal analysis (i.e., how the experiment
relates to the paper’s findings) and external analysis (e.g., literature review of how the work’s
findings are being referenced by other researchers).

5. Quirks of an EHR Dataset

In this section, we examine surprising artifacts from MIMIC-III’s data generating process.

5.1. Surprising Distribution of Heart Rates

According to the Cleveland Clinic, a normal resting adult heart rate should fall within the
range of 60 - 100 beats per minute (bpm). However, when we plot the distribution of heart
rates vs. age, we see a different story. Figure 2 shows that the distribution of patients
in MIMIC have heart rates not only in the normal 60–100 bpm range, but there are also
several measurements from patients whose hearts beat 3 times per second (180 bpm).

As it turns out, we can gain additional insight into what is going on by plotting not just
the patient heart rate but also their ages when the measurements were recorded. Figure 3
uncovers the quirk: the dataset has newborn babies, and newborn babies have a markedly
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different physiology from adults. Figure 3 is an interesting visualization of MIMIC, because
it prompts discussion for three non-obvious artifacts:

1. Newborn physiology is significantly different from adult physiology.

2. Only one of MIMIC-III’s two EHRs (CareVue) has data from a Neonatal ICU (NICU),
whereas there are no newborns in the MetaVision data.

3. There are “300-year-old” patients in MIMIC. This is explained in the dataset’s doc-
umentation: HIPAA requires all patients 90 years and older be binned together so as
to avoid making patients easily identifiable by their rare age. MIMIC accomplishes
this by mapping all 90+ patients to 300+.3

The presence of newborns and 300-year-old patients could potentially confuse someone
not familiar with the patients in the dataset and how they were encoded. Many works that
use MIMIC filter out patients younger than 15 years old (Ghassemi et al., 2017), however in
a reproducibility study, MIMIC authors Johnson et al. observe that “[m]any of the studies
reviewed omitted details necessary to fully reproduce the work [such as] which age to use
for identifying adults” (Johnson et al., 2017).

A data scientist unfamiliar with what constitutes abnormal ranges for feature values
might unwittingly just feed it into their model without further investigation. Ages of 0 and
300 will not crash the learning algorithm, though they likely may lead to the model learning
incorrect generalizations and inferences.

Figure 3: Patient heart rate vs. patient age in the MIMIC-III Database. Patients 90+ are
coded as being 300 years-old for de-identification purposes.

3. https://physionet.org/content/mimiciii/1.4
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Figure 4: Data from the icustays (top) & admissions (bottom) in MIMIC-III of a patient
who allegedly didn’t leave the ICU until after being discharged from the hospital.

5.2. Inconsistent Timestamps

Figure 1 shows the data in the tables of MIMIC corresponds to a patient being treated in
the ICU. When the patient arrives at the hospital, they are admitted for a hospital stay and
their records are entered into the EHR. At some point during that stay the patient is sent
to an intensive care unit (e.g., surgical ICU, trauma ICU, cardiac ICU, etc). They might
have multiple ICU stays during one admission, and eventually they leave.

Intuitively, one would assume that a patient’s admission in the hospital would follow
the following chronological workflow:

hospital admission time (admittime) ≤
patient enters ICU (intime) ≤
patient leaves ICU (outtime) ≤
patient discharged from hospital (dischtime)

We examine 57,783 ICU stays and find that the above ordering (hosp-in, icu-in, icu-out,
hosp-out) only strictly holds 79% of the time. There are 12,338 stays where at least one of
those three inequalities does not hold:

• 486 instances of the ICU intime occuring before the hospital admission (i.e., admitted
to ICU before admitted to hospital); and

• 11,886 instances of the ICU outtime occurring after the hospital dischtime (i.e., left
the hospital before they left the ICU)

Our understanding is that this phenomenon is a reflection of data entry “errors.” The
hospital and ICU each have their own paperwork for when a patient leaves, and if it is filled
out by different caregivers, then estimated times might be somewhat inconsistent with each
other. For instance, nearly 3,000 of those 12,300 stays have the outtime and dischtime
within 10 minutes of each other, suggesting this was the result of 2 sets of paperwork filled
out by 2 different hospital workers both describing the same event. Further, 90% of those
stays fall within 6 hours, which is half of a nurse’s shift.

One of the first tasks in data science is to “clean” the data, where impossible data (e.g.,
a patient that is 20 feet tall) is filtered out. However, a nontrivial amount of patients (21%)
do not fully satisfy the expected chronological relationships. “Common sense” cannot adju-
dicate whether those stays are acceptable or not; it requires understanding the generating
process.

7
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Figure 5: Fraction of abnormal results from white blood cell counts vs. time of day

5.3. Lab Values Vary by Time of Day

In 1816, Laennec invented the stethoscope to measure the human body and correlate those
findings with the patient’s disease. In the following centuries, medicine has developed
thousands of new measurements for body temperature, reflexes, body chemistry, and more
(Walker et al., 1990). Modern clinical laboratory tests are a product of that legacy: we
try to measure the patient and deduce what that means about their health. According to
a survey from the Los Angeles County/University of Southern California Medical Center,
clinical laboratory tests are used for: diagnosis (37% of labs), monitoring (33%), screening
(32%), comparing against previous abnormal result (12%), prognosis (7%), and misc (3%)
(Wertman et al., 1980). The CDC reports 14 billion laboratory tests are ordered annually
and “70% of today’s medical decisions are depend on laboratory test results” (CDC, 2018).

However, it is important to note that the data captured in a patient’s EHR is not their
full story, but rather a collection of the data points chosen by the clinical care team and
collected at specific times (Agniel et al., 2018). Albers and Hripcsak (2010) show that
patients with kidney failure are more likely to have their creatinine measured between 10
pm and 6 am than healthier patients . Contrary to the naive assumption that data is
missing randomly, the timing of the measurement can tell you a lot about the care team’s
assumptions and resources available.

In MIMIC, we observe that the fraction of normal vs. abnormal lab values are not always
constant over time as one might naively expect. Figure 5 shows that lab abnormality4 is
not constant throughout the day. Between 4am and 8am, the majority of lab values are
within normal range, but between 8am and 4am, there is a noticeably higher fraction of
tests that are abnormal.

The implication of this finding is that the timing of a lab order might, itself, already
be an indication of the patient’s state. Some machine learning models are unequipped to
handle irregularly-spaced sequential data, so time parameters are dropped for convenience.
Of course, it is possible a given situation might permit a modeling decision like that, but
in general, data scientists are not knowledgeable enough to understand those assessments
without a domain expert.

4. where normal is defined as 4,500 - 11,000 white blood cells per microliter (UCSF, 2020)
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Table 1: 1-year mortality rates by race in post-discharge cohort.
race N # 12-month mort % 12-month mort

White 22482 3492 15.5

Not Specified 2860 420 14.7

Black 2435 370 15.2

Other 1825 171 9.4

Hispanic 1107 81 7.3

Asian 730 104 14.2

Total 31892 4699 14.7

5.4. Multiple Copies of Provider Notes

Throughout a patient’s ICU stay, the care team writes many notes. Every day there are at
least 2 nursing shifts, each with their own note. There is also typically a daily physician
note. If certain tests are ordered, there might be radiology, echo, or ECG reports. If experts
are called in, there might be nutrition or social worker notes. And finally, when they leave
the hospital, there is a discharge summary.

Many papers employ the use of natural language processing (NLP) on hospital notes to
predict clinical outcomes (Rumshisky et al., 2016). One approach clinical NLP predictive
models take is concatenating all of the notes into a single note for processing (Boag et al.,
2018a). However, if done naively, this runs the risk of double-, triple-, or even octuple-
counting the content of these notes. This is because MIMIC contains not just a provider’s
official note but also all of the note drafts that the EHR autosaved. As a result, a clinical
finding documented in one note might as if it is repeatedly observed. This manifests in the
database in the following way: all of the partial drafts have the same “chart time” as the
final note, but their “store times” reflect when they were partially written. This allows for
a straightforward way to de-duplicate the set of notes for a patient: group by chart time
and then select the most recently written note.

5.5. Missing Death Date Collection

Many end-of-life patients don’t wish to spend their final weeks hooked up to machines in a
hospital, but they often miss the opportunity to communicate how they’d like to live their
final months (Gawande, 2014). Because “Unexpected end-of-life situations can happen
at any age,” the Mayo Clinic recommends that “it’s important for all adults to prepare
[advance directives]” (Staff”, 2020). However, only 1-in-3 American adults have completed
an advance directive (Yadav et al., 2017). To address this, there have been efforts to build
machine learning models to predict which patients are at high risk and would benefit from
discussing their goals of care (Avati et al., 2017).

We build a 12-month mortality model on MIMIC data to identify patients that would
benefit most from advance care planning.5 Our cohort contains adult patients who were
discharged (i.e. didn’t die in-hospital) and have never had a code status of “comfort mea-

5. https://github.com/wboag/eol-mort-pred
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Figure 6: Kaplan Meier curve of patients that die postdischarge.

sures only” nor an ICD billing code for palliative care. Table 1 shows the demographic
breakdown of this demographic. Surprisingly, in contrast with a large literature of racial
biases in health (Williams, 1999), this data seems to show white patients have a higher
12-month mortality rate than Black patients.

Figure 6 shows a survival curve of post-discharge mortality and demonstrates that for
any given time (e.g., 1-month post-discharge), a higher proportion of Black patients have
died than white patients. This appears in direct conflict with Table 1 assertion that white
patients have a higher 12-month mortality rate.

In order to understand this, we examine the data collection practices. MIMIC-III uses
social security records to collect patient mortality information for patients who passed away
outside of the hospital. But in 2013,6 “a legislative change ... forbid the social security death
index from collecting deaths from state databases. The result was a 40% drop in the capture
of deaths - it’s no longer of sufficient quality to use as a source of out-of-hospital mortality.”
Consequently, the date of death column is partially unreliable for patients post-discharge;
a higher number of Black patients were passing away without that being reflected in the
SSN’s records (and therefore without being reflected in MIMIC).

This data label bias is easy to miss; we only identified it because of the surprising nature
of the original cohort’s mortality rates by race. However, training a model on the original
cohort would produce a tool which recommends interventions that underestimate the risk
for Black patients.7 In contrast, training a model on a modified cohort (considering only
patients who are known to have a death certificate eventually) is able to build a model
which more accurately identifies that Black and Asian populations are at higher risk for
12-month mortality.8 Intervention models that make directionally wrong mistakes run the
risk of creating harmful feedback loops for patients.

6. https://github.com/MIT-LCP/mimic-code/issues/1199
7. https://github.com/wboag/eol-mort-pred/blob/main/eol-predict.ipynb
8. https://github.com/wboag/eol-mort-pred/blob/main/eol-predict-3.0.ipynb
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6. Instances of Incorrect Assumptions

In this section, we examine two papers which made incorrect assumptions about MIMIC.
Although neither of these assumptions are fatal to the papers’ central claims, each error
does undermine its paper’s point when left unaddressed.

6.1. Diagnosis Column

In “What’s In a Note?”, Boag et al. (2018a) investigate different methods for represent-
ing clinical notes as high-dimensional vectors. Specifically, they employ three methods to
represent the text of notes (bag-of-words, word2vec centroid, and LSTM) and explore how
well each method does on predicting structured information like age, gender, diagnosis, and
length of stay.

They found that bag-of-words (BoW) performed better on extractive tasks such as age
and gender, where the answer was indicated by identifying a single, important token, such
as in the sentence “Patient is a 38-year-old woman with fatigue and coughing.” However,
they also note that the “LSTM model outperforms BoW on tasks more related to clinical
reasoning: diagnosis and length of stay, for which we expect the temporal information to be
important in predictions.” This work was yet another directionally consistent datapoint in
the research about deep learning’s value for difficult reasoning tasks (Hermann et al., 2015;
Tai et al., 2015; See et al., 2017).

Although it may well be the case that the “LSTM model outperforms BoW on tasks
more related to clinical reasoning ... which we expect the temporal information to be
important in predictions,” this paper is less supportive evidence than originally understood.
The outcome they are predicting is not final diagnosis (which could be identified through
ICD codes) but instead is the admission diagnosis, which is the condition identified by the
physician when the patient first is admitted to the hospital. In this way, since the prediction
label was assigned at the beginning of the hospital admission, there is no need for a model
to “reason” through a sequence of data. Technically speaking, this oversight could have
been foreseen with a thorough reading of the documentation9 for the relevant table: “The
DIAGNOSIS column provides a preliminary, free text diagnosis for the patient on hospital
admission. The diagnosis is usually assigned by the admitting clinician and does not use a
systematic ontology.”

Fortunately, the impact of this oversight has been minimal. Of the 30 publicly available
works which cite Boag et al., only five even mention the claim about LSTMs being better
at clinical reasoning tasks (Jin et al., 2018; Kemp et al., 2019; Zhang et al., 2020a; Khan,
2019; Baruah, 2020). The vast majority of works cite this paper to either establish that
researchers have been using notes for predictions or to comment about the relationship
between structured and unstructured data. Two works cite the Boag et al. for its publicly
available word2vec embeddings pre-trained on MIMIC (Zhang et al., 2020b; Flamholz et al.,
2022).

9. https://mimic.mit.edu/docs/iii/tables/admissions
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6.2. Variation in Data Entry

Whereas the previous example was an instance of not adequately reading the full documen-
tation, there are also scenarios where researchers simply cannot know without working with
frontline workers.

In the past decade, numerous studies have identified that nonwhite patients had worse
end-of-life experiences than white patients (Muni et al., 2011; Lee et al., 2016; Hanchate
et al., 2009). They looked at invasive care (e.g., mechanical ventilation) as compared to
comfort-based care (i.e., hospice). White patients were receiving smaller amounts of invasive
care than nonwhite – in particular Black and Hispanic – patients. Prior work hypothesizes
that mistrust between the patient and the doctor could be one of the factors exacerbating
the issue. Mistrust may lead a patient or family to question the intention of a care team’s
hospice recommendation (e.g., suspecting the hospital doesn’t want to use resources), and
instead demand additional invasive interventions (Garrett et al., 1993).

Researchers published a series of papers investigating whether this trust-based hypoth-
esis could explain the difference in treatments. Both “Racial Disparities and Mistrust in
End-of-Life Care” (Boag et al., 2018c) and “Modeling Mistrust in End-of-Life Care” (Boag
et al., 2018b) attempted to model a proxy for the patient’s trust in their care team. This
was done by using coded interpersonal features from the chartevents table for all MIMIC
patients, including: whether the patient was restrained, patient healthcare literacy, indica-
tion of family meetings, how thoroughly pain is being monitored, and more. They found
that the consensus of three derived proxies for mistrust both: (1) seem to indicate an even
larger high-trust vs low-trust treatment disparity than Black vs white, and (2) show that
Black patients had higher levels of mistrust in their doctors.

However, in the years that followed the publication, we spoke to a nurse from Beth
Israel about a different project, and we asked about how to understand the coded items in
the chartevents table. She described how some of these entries come from an overwhelming
number of pop-ups in the EHR which few people would have enough time to comprehen-
sively fill out. Further, she said that data entry can vary from nurse to nurse and although
some nurses do code family meetings in the chart, she has only ever indicated family meet-
ings in her nursing notes. The implications of this revelation is that the prior work was
potentially under-estimating the “mistrust score” proxy for some patients whose indications
of tension were not coded in structured data. A more comprehensive modeling approach
would use both the structured data and perform NLP to extract comparable concepts from
the unstructured text.

Fortunately, for this very reason of epistemic humility/hedging, Boag et al. (2018c)
purposefully avoided creating just one “definitive” proxy which could be misinterpreted as
authoritative. Instead, they created three different scores for “mistrust,” not all of which
even used chartevents. Therefore this is little reason to doubt this data entry instance would
change the overall findings of the work.

The original work was published with a medical doctor as a coauthor, although there
were no nurses (let alone Beth Israel nurses) involved in the original project. A medical
doctor likely would not have known the specific data entry culture for nurses. Once again,
this serves as an important reminder to work with the frontline workers familiar with the
data generating process.
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7. Conclusion

In this work, we demonstrate many of the quirks of a well-known public healthcare dataset
(MIMIC-III). We do not mean to single MIMIC-III out as uniquely unintuitive – if anything,
its documentation is much better than most clinical datasets the authors are familiar with.
Instead, we hope to convey that every dataset is only as meaningful as the researcher’s
knowledge of the data generating process. Whether it is incorrect timestamps, unexpected
data entry by the frontline workers, or incomplete label collection, we want to underscore
that data scientists can’t do it alone (and shouldn’t try to).

Indeed these challenges demonstrate a broader systems failure, because it is difficult for
reviewers to assess whether a paper’s assumptions seem reasonable. We applaud conferences
like Machine Learning for Healthcare10 ensuring every submitted paper is assessed by at
least one technical reviewer and at least one clinical reviewer. Nonetheless even relevant
reviewers would not be able to catch something like the data entry habits of a given hospital’s
nurses. For this reason, it becomes even more critical to collaborate with a domain expert
to help paint a clear picture of the data collection process.
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