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ABSTRACT

Medical hyperspectral imaging (HSI) represents a transformative innovation in di-
agnosing diseases and planning treatments by capturing detailed spectral and spa-
tial features of tissues. However, the integration of deep learning into medical HSI
classification has unveiled critical vulnerabilities to adversarial attacks. These at-
tacks compromise the reliability of clinical applications, potentially leading to di-
agnostic inaccuracies and jeopardizing patient outcomes. This study identifies two
fundamental reasons for the susceptibility of medical HSI models to adversarial
manipulation: their reliance on local pixel dependencies, which are essential for
preserving tissue structures, and their dependence on Multiscale spectral-spatial
features, which encode hierarchical tissue information. To address these vulner-
abilities, we propose a novel adversarial attack framework specifically tailored to
medical HSI. Our approach introduces the Local Pixel Dependency Attack, which
exploits spatial relationships between neighboring pixels, and the Multiscale In-
formation Attack, which perturbs spectral and spatial features across hierarchical
scales. Experiments on the Brain and MDC datasets reveal that our method sig-
nificantly reduces classification accuracy, particularly for critical tumor regions,
while maintaining imperceptible perturbations. Compared to existing methods,
the proposed framework highlights the unique fragility of medical HSI models
and underscores the urgent need for robust defenses. This work highlights criti-
cal vulnerabilities in medical HSI models and demonstrates how leveraging local
pixel dependencies and Multiscale spectral-spatial features can guide the develop-
ment of targeted defenses to enhance model robustness and clinical reliability.

1 INTRODUCTION

Hyperspectral imaging (HSI) is a powerful technique that captures a wide spectrum of light across
contiguous bands, enabling detailed analysis of material and surface characteristics. Originally de-
veloped for agriculture, environmental monitoring, and land cover classification, HSI is increasingly
applied in medical imaging due to its ability to detect subtle biochemical and structural variations
beyond the capabilities of conventional modalitiesLu & Fei (2014). By integrating spatial and spec-
tral information, HSI supports precise tissue analysis for tasks such as tumor detection, vascular
visualization, and histopathological segmentationLu et al. (2014); Channing (2022). The combina-
tion with advanced computational methods has further improved feature extraction and diagnostic
performanceCui et al. (2022); Xiang et al. (2023).

Despite these advances, the integration of HSI with deep learning introduces vulnerability to ad-
versarial attacks—small, imperceptible perturbations that can severely mislead models Kumar et al.
(2024); Shen et al. (2025). This is especially concerning in medical applications, where misclassi-
fication may compromise patient safety Goodfellow et al. (2014). Studies on diabetic retinopathy
grading and Alzheimer’s disease prediction confirm that minor perturbations can cause significant
performance drops Cheng et al. (2024); Baytaş (2024). HSI models, which rely on rich spectral-
spatial features, are particularly susceptible to such attacks Zeng et al. (2023); Mangotra et al. (2023).

In hyperspectral remote sensing, CNN-based models dominate classification tasks due to their ability
to process high-dimensional data and learn complex spectral-spatial features Khan et al. (2018). Ex-
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isting adversarial attacks mainly focus on pixel-level perturbations, assuming classification depends
only on spectral information from individual pixels. However, in hyperspectral medical images,
spatial dependencies between neighboring pixels are critical Khan et al. (2021). Tissue structure
and tumor boundaries are often defined by local spatial patterns, and minor local variations can
significantly affect classification Xie et al. (2023). As a result, current adversarial methods often
underperform in medical HSI (MHSI), where such spatial context is indispensable.

Furthermore, compared with remote sensing, MHSI contains more complex and Multiscale infor-
mation. Medical images are smaller in spatial scale but demand higher resolution to distinguish
subtle variations in tissue, vasculature, and abnormalities Fei (2019). Fine-grained tumor character-
istics require local-scale analysis, while broader structures such as vascular networks benefit from
global-scale interpretation Lu & Fei (2014). Unlike remote sensing imagery focused on large-scale
patterns Peng et al. (2024), MHSI involves intricate Multiscale features essential for accurate diag-
nosis Wei et al. (2019); Zeng et al. (2023).

Despite progress, most adversarial methods overlook these characteristics, focusing solely on spec-
tral or pixel-level perturbations Shi et al. (2022). This gap limits their effectiveness in medical con-
texts and calls for more tailored attack strategies that exploit spatial dependencies and Multiscale
information.

In this paper, our main contributions are as follows:

• We identify the unique vulnerabilities of MHSI models stemming from local pixel depen-
dencies and Multiscale spectral-spatial structures.

• We propose two novel attack methods: Local Pixel Dependency Attack and Multiscale
Information Attack, designed to exploit these characteristics.

• We demonstrate through experiments that our methods substantially reduce classification
accuracy in critical regions while preserving perturbation imperceptibility, highlighting the
urgent need for dedicated defense mechanisms.

2 RELATED WORKS

2.1 HYPERSPECTRAL IMAGE CLASSIFICATION

Hyperspectral image classification has progressed from traditional methods (PCA, SVM, KNN) to
deep learning approaches that automate feature extraction and integrate spectral-spatial informa-
tionLi et al. (2019). While computationally efficient, traditional methods require extensive feature
engineering for high-dimensional dataKumar et al. (2020). Convolutional Neural Networks (CNNs)
significantly advanced the field by exploiting spectral-spatial correlations. Early 2D-CNNs extracted
spatial features, while 3D-CNNs enabled spectral-spatial integration. Hybrid architectures like Hy-
bridSN balance efficiency and accuracy through combined 3D-2D convolutionsRoy et al. (2019).
The Spectral-Spatial Residual Network(SSRN) further improved generalization via residual learn-
ingZhong et al. (2017). The Self-attention Context Network(SACNet) employs self-attention and
context encoding to capture global dependencies, improving robustness through hierarchical feature
extractionXu et al. (2021). More recently, graph-based methods with uncertainty quantification have
been explored to improve reliability in OOD and misclassification detectionYu et al. (2024).

2.2 MEDICAL HYPERSPECTRAL IMAGE CLASSIFICATION

Medical HSI (MHSI) classification provides critical diagnostic insights but faces high-
dimensionality challenges. CNN-based methods effectively capture hierarchical spectral-spatial
features and have been widely applied to tumor and lesion analysisHuang et al. (2019). Recent
works emphasize the importance of pixel dependencies and multiscale structures, demonstrating
that accurate modeling of local spatial coherence and hierarchical spectral-spatial patterns is crucial
for robust medical diagnosis under perturbationsXie et al. (2023); Wei et al. (2019). More recently,
the Dual-Stream model has been introduced for medical hyperspectral classification, integrating
complementary spatial and spectral streams to enhance discriminative powerYun et al. (2023).
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2.3 ADVERSARIAL ATTACK AND DEFENSE ON HYPERSPECTRAL IMAGES

Adversarial attacks exploit imperceptible perturbations to induce misclassification. For hyperspec-
tral data, several representative attack methods have been developed. Spectral–Spatial FGSM(SS-
FGSM) perturbs spectral features at the pixel levelShi et al. (2023), while Spectral–Spatial At-
tack(SSA) explores spectral-spatial adversarial strategiesYin et al. (2025). Multifeature collabora-
tive adversarial Network(MfcaNet) introduces multi-feature collaborative perturbations to enhance
attack success ratesShi et al. (2022). These approaches, however, were not specifically designed for
medical HSI, leaving vulnerabilities in clinical applications.

In parallel, defense networks have been proposed to counter such threats. The Robust Class Context-
Aware(RCCA) network leverages contextual class dependencies to enhance robustness against ad-
versarial perturbationsTu et al. (2023). The Weighted Fusion of Spectral Transformer and Spa-
tial Self-Attention(WFSS) integrates transformer-based spectral modeling with spatial self-attention
for multi-level defenseTang et al. (2024). More recently, attention-based defenses such as Attack-
Invariant Attention Feature(AIAF) and Spatial-spectral self-attention Network(S3ANet) have been
introduced, focusing on adaptive information aggregation and spectral–spatial alignment to suppress
adversarial noise while preserving lesion structuresShi et al. (2024); Xu et al. (2024). These methods
represent strong defensive baselines, and we include them in our experiments to comprehensively
evaluate the effectiveness of our proposed attack framework.

3 METHOD

Figure 1: The proposed adversarial attack and defense framework for HSI classification.

3.1 LOCAL PIXEL DEPENDENCY ATTACK

In medical hyperspectral imaging, adversarial attacks present significant challenges due to the in-
tricate spatial relationships between neighboring pixels. To address this issue, we introduce the
Local Pixel Dependency Attack, which leverages these local dependencies between adjacent pixels
to generate adversarial examples. The goal of this attack is to mislead the model by introducing
perturbations that are perceptually subtle yet highly effective in altering the classification outcome.

The core idea behind the Local Pixel Dependency Attack is to exploit the spatial relationships be-
tween neighboring pixels. By incorporating these local pixel dependencies, we apply gradient-based
perturbations in a manner that ensures the attack remains both effective and minimally detectable.

We formulate the attack as an optimization problem, where the objective is to perturb the input
hyperspectral image, denoted as x, such that the model misclassifies it, while accounting for the
local pixel dependencies. Specifically, given an image x and its true label y, the goal is to minimize
the loss function with respect to a target label ŷ, while introducing perturbations that preserve the
spatial coherence between adjacent pixels. The gradient of the loss function L with respect to the
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input image x is calculated as:
∇xL (x,y) (1)

The objective of the attack can be expressed as:

xadv = x− ε · 1
Ni, j

∑
(i′, j′)∈W (i, j)

∇xL (x,y), (2)

where x represents the original hyperspectral image, while xadv is the adversarial image obtained
after applying perturbations. The perturbation strength is controlled by the parameter ε , which
determines how much the image is altered in each iteration. The term ∇xL (x,y) refers to the
gradient of the loss function L with respect to the image x, which is used to guide the perturbation
direction. The sum is taken over a local window W (i, j), which includes neighboring pixels of a
given pixel (i, j). The number of pixels in this local window is denoted by Ni, j, and it ensures that
the perturbation considers the pixel dependencies within the local region.

The gradient is averaged over the local window for each pixel, ensuring that perturbations account
for the relationships between adjacent pixels. This averaging step is important for maintaining the
spatial structure of the image and making the attack more imperceptible.

The attack is applied iteratively to refine the adversarial perturbations. In each iteration, the image
is updated as follows:

x(t+1) = x(t)− ε · 1
Ni, j

∑
(i′, j′)∈W (i, j)

∇xL (x,y), (3)

where x(t) is the image at the t-th iteration and x(t+1) is the updated image after perturbation. This
process continues for a predefined number of iterations, typically 20 in our case, to ensure that the
perturbations gradually mislead the model while preserving local pixel dependencies.

In the targeted attack scenario, the objective is to misclassify the hyperspectral image x into a specific
target label ŷ, as opposed to just any incorrect label. The loss function is modified to encourage the
model to predict the target label for the perturbed image:

L (xadv, ŷ) =− logP(ŷ|xadv) (4)

3.2 MULTISCALE INFORMATION ATTACK

In medical hyperspectral imaging, adversarial attacks must account for the Multiscale nature of
spectral and spatial features. To address this, we propose the Multiscale Information Attack, which
generates perturbations by leveraging both downsampling and upsampling operations at multiple
scales. This approach targets the Multiscale dependencies inherent in hyperspectral data, crafting
perturbations that disrupt model predictions across different resolutions.

The Multiscale Information Attack processes the input hyperspectral image x ∈ RB×D×H×W , where
B is the batch size, D is the number of spectral bands, and H,W are the spatial dimensions. For each
scale factor s ∈S , the attack introduces perturbations in the scale space. Specifically, each spectral
band x(d) is first downsampled to a lower resolution:

x(d,s)down = Downsample(x(d),s) (5)

At the downsampled resolution, perturbations are introduced as follows:

x(d,s)pert = x(d,s)down + ε ·∇
x(d,s)down

L (x,y), (6)

where L (x,y) is the loss function guiding the attack, and ε controls the strength of the perturbation.
After adding the perturbation, the image is upsampled back to the original resolution:

x(d,s)up = Upsample(x(d,s)pert ,(H,W )) (7)

For each scale s, the perturbations across all spectral bands are summed to produce the total pertur-
bation at that scale:

ps =
D

∑
d=1

x(d,s)up (8)
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To incorporate Multiscale information, the perturbations from all scales are aggregated:

p = ∑
s∈S

ps (9)

Finally, the adversarial example is generated by adding the aggregated perturbation to the original
input image:

xadv = x+ ε ·p (10)

By introducing perturbations at multiple resolutions and restoring them to the original size, the
Multiscale Information Attack ensures that the adversarial perturbations impact both fine-grained
and coarse-grained spatial features in the hyperspectral data. This hierarchical perturbation strategy
aligns with the Multiscale nature of hyperspectral image analysis, making it particularly effective in
medical applications.

3.3 ADVERSARIAL ATTACK FRAMEWORK

The final adversarial perturbation is the combination of the local pixel-dependent perturbation and
the Multiscale perturbation:

δfinal = δlocal +δMultiscale (11)

The adversarial example is then generated as:

xadv = x+δfinal, (12)

where x is the original hyperspectral image, and xadv is the perturbed adversarial example.

3.4 ALGORITHM SUMMARY

The general process of the proposed attack method can be briefly summarized as Algorithm 1:

Algorithm 1 Overall Framework for Adversarial Attacks in MHSI

Require: HSI data x, target ŷ, model f , ε , iterations T , scales S
Ensure: Adversarial xadv

1: xadv← x
2: for t = 1 to T do
3: Local Pixel Attack:
4: for each pixel (i, j) in xadv do
5: W (i, j)← local window; Ni, j← |W |
6: ∇xL ← loss gradient of xadv
7: ∇̄x← 1

Ni, j
∑W (i, j) ∇xL

8: xadv(i, j)← xadv(i, j)− ε · ∇̄x
9: end for

10: Multiscale Attack:
11: p← 0
12: for s ∈S do
13: ps← 0
14: for band d do
15: xdown← Downsample(x(d),s)
16: xpert← xdown + ε ·∇xdownL (xdown, ŷ)
17: xup← Upsample(xpert,(H,W ))
18: ps← ps +xup
19: end for
20: p← p+ps
21: end for
22: xadv← xadv + ε ·p
23: end for
24: return xadv

5
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4 EXPERIMENTS

4.1 DATASETS

4.1.1 IN-VIVO HYPERSPECTRAL HUMAN BRAIN IMAGE DATABASE FOR BRAIN CANCER
DETECTION

The In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection consists of 36
hyperspectral images collected from 22 neurosurgical operationsFabelo et al. (2019). It covers four
annotated classes: normal tissue, tumor tissue, blood vessels, and background elements. The images
span the Visual and Near-Infrared (VNIR) spectrum from 400 to 1000 nm, providing over 300,000
labeled spectral signatures. Labels were generated using a semi-automatic methodology based on
the Spectral Angle Mapper (SAM) algorithm, cross-referenced with histopathological evaluations.
This dataset serves as a significant resource for developing machine learning models for brain tumor
classification and guiding real-time surgical decisions.

4.1.2 MULTIDIMENSIONAL CHOLEDOCH (MDC) DATASET

MultiDimensional Choledoch (MDC) Dataset includes 880 hyperspectral scenes collected from 174
individuals, comprising 689 scenes with partial cancer regions (L), 49 with complete cancerous areas
(N), and 142 without cancer (P)Zhang et al. (2019). This dataset only uses binary classification to
determine the cancer region from the normal region. The hyperspectral data were captured using a
system with a 20× objective lens, covering wavelengths from 450 nm to 1000 nm with 60 spectral
bands per scene. Each hyperspectral image was resized to 256×320 pixels to enhance computational
efficiency.

4.2 EXPERIMENTAL SETUP

In this study, we performed experiments on hyperspectral image datasets, specifically targeting med-
ical image classification tasks. To reduce the data dimensionality and extract the most important
spectral features, Principal Component Analysis (PCA) was applied, reducing the spectral dimen-
sions to 20 components. This reduction in dimensionality helps minimize computational overhead
while retaining the essential spectral information for classification.

For data preprocessing, image cubes were generated using a sliding window approach with a win-
dow size of 11×11, allowing for the extraction of local spatial-spectral features. Zero-padding was
applied at the borders to handle edge pixels, which do not have enough neighboring pixels for patch
extraction. We used a training-to-testing split of 80% for training and 20% for testing, ensuring that
the training set included a diverse representation of different classes.

4.3 EVALUATION METRICS

Since we are conducting medical image adversarial attacks, attacking the lesion area to misclassify
it into normal areas will cause the greatest harm to patients and the medical system. Therefore, our
evaluation metrics mainly focus on the classification success rate of the lesion areas in each dataset.
The lower the success rate, the better the effectiveness of our attack. At the same time, we also adopt
three commonly used metrics for comprehensive evaluation:

Overall Accuracy (OA) measures the overall proportion of correctly classified pixels. It is defined
as:

OA =
∑

C
i=1 Nii

∑
C
i=1 ∑

C
j=1 Ni j

(13)

where Ni j represents the number of pixels whose ground truth class is i and predicted class is j, and
C is the total number of classes.

Average Accuracy (AA) calculates the mean classification accuracy across all classes, reflecting
the model’s balanced performance:

AA =
1
C

C

∑
i=1

Nii

∑
C
j=1 Ni j

(14)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

target model attack method Normal
Tissue(↓)

Tumor
Tissue(↑)

Hyper
vascularized(↓)

Background
(↓) OA AA KAPPA L0 L2

HybridSNRoy et al. (2019)

MfcaNetShi et al. (2022) 0 85.81 0 0 96.61 78.45 95.02 3428 12.2
SSAYin et al. (2025) 0 86.53 0 0 96.61 78.42 95.01 4687 13.6

SS-FGSMShi et al. (2023) 0 82.16 0 0 96.61 78.44 95.02 3274 11.3
Ours 0 92.02 0 0 96.59 78.3 94.98 1896 7.8

SSRNZhong et al. (2017)

MfcaNetShi et al. (2022) 0 85.25 0 0 96.61 78.47 95.03 3512 12.5
SSAYin et al. (2025) 0 78.14 0 0 96.63 78.68 95.08 4825 14.1

SS-FGSMShi et al. (2023) 0 88.06 0 0 96.6 78.32 95.03 3341 11.5
Ours 0 95.35 0 0 96.58 78.9 94.95 1958 8.1

SacNetXu et al. (2021)

MfcaNetShi et al. (2022) 0 81.72 0 0 96.62 78.57 95.05 3395 11.9
SSAYin et al. (2025) 0 74.33 0 0 96.64 78.82 95.12 4973 14.7

SS-FGSMShi et al. (2023) 0 83.46 0 0 96.62 78.51 95.04 3189 11
Ours 0 91.54 0 0 96.59 78.32 94.99 2027 8.5

UAGCNYu et al. (2024)

MfcaNetShi et al. (2022) 0 84.92 0 0 96.68 78.61 95.07 3315 11.8
SSAYin et al. (2025) 0 79.85 0 0 96.71 78.96 95.15 4728 14.3

SS-FGSMShi et al. (2023) 0 85.74 0 0 96.66 78.55 95.02 3092 10.9
Ours 0 93.28 0 0 96.62 78.41 94.97 1975 7.9

Dual-StreamYun et al. (2023)

MfcaNetShi et al. (2022) 0 71.41 0 0 96.68 82.15 94.22 3607 13
SSAYin et al. (2025)citehynu2023patent 0 67.66 0 0 95.8 83.09 93.75 4896 14.4

SS-FGSMShi et al. (2023) 0 62.55 0 0 95.96 84.36 94.46 3425 11.8
Ours 0 80.75 0 0 95.48 79.81 92.48 2144 8.7

RCCATu et al. (2023)

MfcaNetShi et al. (2022) 0.45 16.39 0.17 0.06 99.09 95.54 98.55 2968 10.4
SSAYin et al. (2025) 1.73 24.18 0.39 0.63 98.31 93.27 96.91 4087 11.9

SS-FGSMShi et al. (2023) 0.42 20.86 0.11 0.45 98.72 94.68 97.08 2854 10.9
Ours 1.22 31.41 0.69 1.25 97.94 92.95 95.28 1718 7

WFSSTang et al. (2024)

MfcaNetShi et al. (2022) 1.17 28.02 0.58 0.42 98.07 93.45 98.04 2897 10.7
SSAYin et al. (2025) 0.88 17.96 0.03 0.09 98.93 95.29 98.97 4149 12.2

SS-FGSMShi et al. (2023) 1.28 32.05 0.85 1.15 97.86 93.16 95.13 2766 10.8
Ours 1.28 37.68 1.37 1.63 96.91 90.76 93.57 1684 6.8

AIAFShi et al. (2024)

MfcaNetShi et al. (2022) 0.3 14.8 0.04 0.08 98.72 96.22 98.25 3021 10.9
SSAYin et al. (2025) 1.1 18.55 0.37 0.29 98.39 94.94 97.62 4012 11.7

SS-FGSMShi et al. (2023) 0.38 16.88 0.2 0.12 98.63 95.64 98.02 2879 11
Ours 0.85 29.66 1.03 0.79 98.01 91.87 96.62 1741 7.1

S3ANetXu et al. (2024)

MfcaNetShi et al. (2022) 0.26 13.98 0.09 0.02 98.77 96.34 98.31 2954 10.6
SSAYin et al. (2025) 0.8 17.43 0.33 0.39 98.46 95.43 97.73 4193 12.1

SS-FGSMShi et al. (2023) 0.35 15.7 0.16 0.24 98.66 95.96 98.08 2798 10.7
Ours 0.82 27.89 0.87 1.09 98.1 92.81 96.8 1697 6.9

Table 1: Performance Comparison of Adversarial Attacks on the Brain Dataset Across Different
Models.

Figure 2: Classification results under different attacks and ground-truth on the brain
dataset.(a)Ground-truth, (b)SS-FGSM, (c)SSA, (d)MfcaNet, (e)Ours.

Cohen’s Kappa Score is a statistical measure of agreement between predicted and true labels,
adjusted for random chance:

κ =
po− pe

1− pe
, (15)

where the observed agreement po and expected agreement pe are defined as:

po =
∑

C
i=1 Nii

∑
C
i=1 ∑

C
j=1 Ni j

(16)
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target model attack method Normal
(↓)

Cancer
(↑) OA AA KAPPA L0 L2

HybridSNRoy et al. (2019)

MfcaNetShi et al. (2022) 0 84.21 87.11 57.9 69.47 1428 13.5
SSAYin et al. (2025) 0 76.83 88.29 61.59 73.91 1764 13.9

SS-FGSMShi et al. (2023) 0 81.54 87.69 59.23 71.08 1289 11.7
Ours 0 89.69 86.55 55.16 66.47 752 7.8

SSRNZhong et al. (2017)

MfcaNetShi et al. (2022) 0 83.46 87.38 58.27 69.96 1387 12.8
SSAYin et al. (2025) 0 72.72 89.09 63.64 76.36 1721 13.4

SS-FGSMShi et al. (2023) 0 71.43 89.29 64.29 77.14 1244 11.2
Ours 0 86.38 87.72 56.81 68.17 713 7.4

SacNetXu et al. (2021)

MfcaNetShi et al. (2022) 0 84.51 87.09 57.75 69.3 1472 13.9
SSAYin et al. (2025) 0 80.57 87.72 59.72 71.65 1802 14.3

SS-FGSMShi et al. (2023) 0 86.19 86.91 56.91 68.27 1326 12
Ours 0 90.44 86.39 54.78 65.74 794 8.2

UAGCNYu et al. (2024)

MfcaNetShi et al. (2022) 0 85.12 87.15 57.82 69.35 1421 13.6
SSAYin et al. (2025) 0 81.03 87.79 60.11 71.80 1768 14.2

SS-FGSMShi et al. (2023) 0 86.72 86.98 56.85 68.40 1298 11.5
Ours 0 91.23 86.48 54.92 66.10 768 7.9

Dual-StreamYun et al. (2023)

MfcaNetShi et al. (2022) 0 57.85 92.86 71.08 85.75 1398 13.1
SSAYin et al. (2025) 0 62.13 92 68.94 83.25 1750 13.6

SS-FGSMShi et al. (2023) 0 54.06 93.06 72.97 86.29 1279 11.6
Ours 0 67.36 91.64 66.32 82.35 741 7.6

RCCATu et al. (2023)

MfcaNetShi et al. (2022) 0.4 47.29 92.68 71.36 85.03 1194 11
SSAYin et al. (2025) 0.67 51.48 92 68.91 83.2 1532 11.2

SS-FGSMShi et al. (2023) 0.3 43.63 93.09 72.69 86.17 1093 10.3
Ours 1.09 55.32 91.23 66.34 81.77 624 6.9

WFSSTang et al. (2024)

MfcaNetShi et al. (2022) 0.48 46.98 92.76 71.51 85.16 1181 10.8
SSAYin et al. (2025) 0.82 50.86 92.12 69.07 83.36 1519 11.1

SS-FGSMShi et al. (2023) 0.32 42.89 93.17 73.56 86.62 1085 10.1
Ours 1.14 54.73 91.33 66.64 82.11 611 6.7

AIAFShi et al. (2024)

MfcaNetShi et al. (2022) 0.5 25.5 94.88 86.75 92.18 1042 9.7
SSAYin et al. (2025) 0.86 29.7 94.21 84.72 90.95 1379 10

SS-FGSMShi et al. (2023) 0.34 21.75 95.25 88.88 93.17 987 9.1
Ours 1.21 33.88 93.64 82.46 89.15 552 6.2

S3ANetXu et al. (2024)

MfcaNetShi et al. (2022) 0.58 24.97 94.93 87.02 92.39 1026 9.5
SSAYin et al. (2025) 0.91 28.93 94.27 85.04 91.04 1364 9.8

SS-FGSMShi et al. (2023) 0.36 20.94 95.32 89.53 93.44 972 9
Ours 1.15 32.74 93.96 83.13 89.89 543 6.1

Table 2: Performance Comparison of Adversarial Attacks on the MDC Dataset Across Different
Models.

pe =
C

∑
i=1

(
∑

C
j=1 Ni j

∑
C
i=1 ∑

C
j=1 Ni j

·
∑

C
j=1 N ji

∑
C
i=1 ∑

C
j=1 Ni j

)
(17)

These metrics provide a comprehensive assessment of model performance, especially under adver-
sarial conditions where lesion misclassification must be rigorously evaluated.

4.4 RESULTS UNDER ATTACKS AND DEFENSES

To provide a unified and mechanism-driven analysis, we jointly examine the results presented in
Table 1 (Brain dataset) and Table 2 (MDC dataset). These two tables cover multiple classifiers (Hy-
bridSN, SSRN, SACNet, Dual-Stream) and representative defense models (RCCA, WFSS, AIAF,
S3ANet), enabling consistent observations across datasets and architectures. Discussing them to-
gether avoids fragmented reporting and highlights cross-cutting patterns that are obscured when
each table is considered in isolation.

A central finding is a lesion-first degradation pattern: our attack drastically reduces accuracy for
lesion-related classes (tumor or cancer), while global metrics (OA/AA/Kappa) remain high due
to class imbalance and smoothing effects of defenses. For example, under RCCA and WFSS,
OA/AA/Kappa stay in the 96–99% range, yet lesion accuracy drops most severely with our method
(e.g., WFSS: 37.68% tumor accuracy on Brain, 54.73% cancer accuracy on MDC), indicating a
selective but clinically critical shift toward false negatives.
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It is worth emphasizing the extreme values observed in Tables 1 and 2, where some non-lesion
categories show nearly 0% attack success across baseline classifiers. This does not indicate a failure
of the attack but reflects two intrinsic properties of the setting. First, standard HSI classifiers such
as HybridSN, SSRN, SACNet, and Dual-Stream already achieve near-perfect accuracy on clean
images for non-lesion tissues (Normal, Hypervascularized, Background in Brain; Normal in MDC).
Since our method is designed to perturb lesion regions only, the attack success rate on non-lesion
classes naturally remains close to zero. In contrast, defense-oriented networks (RCCA, WFSS,
AIAF, S3ANet) cannot achieve strict 100% accuracy on clean images due to the robustness–accuracy
trade-off, and thus exhibit a few non-zero misclassifications after attacks. These patterns highlight
the selectivity of our attack rather than any ineffectiveness.

On the Brain dataset, tumor accuracy drops to single digits across all classifiers: 92.02% misclas-
sification for HybridSN, 95.35% for SSRN, and 91.54% for SACNet. The lowest value for SSRN
suggests that residual spectral–spatial coupling is particularly vulnerable to locally coherent, multi-
scale perturbations, amplifying boundary shifts in lesion regions.

On the MDC dataset (Normal vs. Cancer), our method maintains 100% accuracy for Normal while
sharply degrading Cancer performance (e.g., 89.69%, 86.38%, 90.44%, and 67.36% misclassifi-
cation across classifiers). This constitutes a targeted shift from positive to negative—precisely the
most harmful clinical error mode—mirroring the Brain results and aligning with the design intent of
our attack.

The attack also remains effective against defense networks and stronger medical architectures. With
RCCA and WFSS, tumor accuracy on Brain falls to 31.41% and 37.68%, respectively, while on
MDC, Cancer accuracy decreases to 55.32% and 54.73%. Similar trends are observed for AIAF and
S3ANet, where our method reduces Brain tumor accuracy to 29.66% and 27.89%, and MDC cancer
accuracy to 33.88% and 32.74%. These results show that although defenses achieve near-perfect
clean accuracy, their robustness margin against targeted perturbations remains limited.

These behaviors are consistent with the attack design. The local pixel dependency component av-
erages gradients within small neighborhoods, preserving anatomical coherence and visual plausibil-
ity. The multiscale component injects perturbations across multiple resolutions and reprojects them
back, jointly shifting decision boundaries without introducing conspicuous artifacts. This resolves
the paradox of high OA/AA/Kappa alongside catastrophic lesion-class collapse.

Finally, qualitative evidence in Fig. 2 corroborates the quantitative findings: baseline methods pro-
duce only partial errors, whereas our approach induces extensive lesion misclassification while keep-
ing least perturbations.

5 DISCUSSION

This study introduces a specialized adversarial attack framework specifically designed for medical
hyperspectral imaging, addressing the unique spectral-spatial characteristics and Multiscale features
inherent in medical data. Our innovative Local Pixel Dependency Attack leverages precise spatial
relationships between neighboring pixels, while the Multiscale Information Attack strategically tar-
gets hierarchical spectral-spatial features. These innovations effectively exploit critical vulnerabili-
ties in medical deep learning classifiers, significantly reducing classification accuracy for clinically
relevant tumor regions on Brain and MDC datasets, outperforming existing methods such as SS-
FGSM, SSA, and MfcaNet. However, our approach could be further enhanced by incorporating
domain-specific priors, such as spectral similarity between tumor and surrounding tissues, to refine
perturbation precision.

The clinical relevance of our method is substantial, as adversarial misclassifications of tumor re-
gions can critically affect diagnostic accuracy, leading to potential misdiagnoses and compromised
patient outcomes. By explicitly addressing vulnerabilities related to spectral-spatial dependencies
and Multiscale information, this research highlights the urgent need for robust defensive strategies
tailored specifically to medical HSI-based diagnostic systems. Future research will validate clin-
ical applicability in diverse scenarios and develop targeted defenses to enhance medical imaging
reliability.
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A APPENDIX

A.1 ABLATION STUDY

In this section, we present an ablation study to evaluate the contribution of different components
in our proposed adversarial attack framework. The study is divided into two parts: (1) analyzing
the impact of spatial and spectral attention mechanisms, and (2) evaluating the contributions of the
local pixel dependency attack and the Multiscale attack. The results of the ablation experiments are
summarized in Table 3.

A.1.1 SENSITIVITY ANALYSIS OF SCALE FACTORS AND WINDOW SIZE

To investigate the impact of key hyperparameters in our adversarial attack framework, we conducted
ablation experiments on (1) the set of scale factors S used in the Multiscale Information Attack and
(2) the window size N employed in the Local Pixel Dependency Attack. These parameters control
the granularity of Multiscale perturbations and the extent of local spatial averaging, respectively.

(a) Effect of Scale Factors S: We evaluated the framework using four different scale sets:

Spatial
Attention

Spectral
Attention

Local
Pixel Multiscale Norma

Tissue(↑)
Tumor

Tissue(↓)
Hyper

vascularized(↑) Background(↑)

✓ × ✓ ✓ 85.94 30.67 84.24 89.76
× ✓ ✓ ✓ 79.04 26.49 75.97 83.43
✓ ✓ ✓ × 95.31 15.48 91.74 94.98
✓ ✓ × ✓ 98.49 12.76 95.06 96.24
✓ ✓ ✓ ✓ 94.89 8.46 89.25 94.51

Table 3: Performance Comparison with Different Attention Mechanisms and Methods.

S1 = {1}, S2 = {1,2}, S3 = {1,2,4}, S4 = {1,2,4,8}

As shown in Table 4, introducing more scales improves the effectiveness of the attack. However,
excessive scaling may over-smooth the perturbation and slightly reduce attack sharpness. Therefore,
S = {1,2,4} is selected as the optimal configuration.

Table 4: Effect of Scale Factors S on Attack Effectiveness (Tumor Class Accuracy ↓)

Scale Factors S Tumor Acc. (%) ↓
{1} 50.87
{1, 2} 27.43
{1, 2, 4} 9.27
{1, 2, 4, 8} 16.36

(b) Effect of Window Size N:

To assess the sensitivity to local spatial context, we varied the window size N in the Local Pixel
Dependency Attack as:

N = 3×3, 5×5, 7×7, 11×11
As shown in Table 5, moderate window sizes such as 5× 5 offer the best trade-off between spa-
tial coherence and attack precision. Larger windows may dilute local structures, weakening the
perturbation’s targeting power.
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Table 5: Effect of Window Size N on Attack Effectiveness (Tumor Class Accuracy ↓)

Window Size N Tumor Acc. (%) ↓
3×3 28.74
5×5 12.55
7×7 19.49

11×11 26.68

A.1.2 ABLATION STUDY ON ATTENTION MECHANISMS AND ATTACK COMPONENTS

We systematically evaluate the contributions of spatial and spectral attention mechanisms and core
attack components through ablation studies in Table 3. When removing both spatial and spectral
attention, tumor classification accuracy rises to 30.67%, indicating degraded feature detection capa-
bility. Isolating spectral attention removal further degrades performance (26.49% tumor accuracy),
underscoring its critical role in leveraging spectral dependencies. Incorporating both mechanisms
significantly enhances attack effectiveness, reducing tumor accuracy to 12.76%.

For core attack components, the Multiscale attack alone achieves 15.48% tumor accuracy by dis-
rupting multiresolution features, while the local pixel attack reaches 12.76% by exploiting spatial
dependencies. Their synergistic combination maximizes impact, reducing tumor accuracy to 8.46%,
a 44.5% improvement over individual components. These findings quantitatively validate the com-
plementary roles of attention mechanisms and attack strategies in exploiting MHSI vulnerabilities.

A.1.3 OVERALL EVALUATION

Combining spatial/spectral attention and local - pixel/Multiscale attack strategies yields the most
potent adversarial attack. This setup hits the lowest tumor classification accuracy (8.46%) while
strongly degrading accuracy across other classes, highlighting the need to integrate these compo-
nents to fully exploit model vulnerabilities.

Our ablation study shows each framework component boosts effectiveness, with maximal impact
when used together. These insights stress the superiority of our integrated approach in exposing
MHSI classifier vulnerabilities, underscoring the need for robust, tailored defenses.
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