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Abstract
Query expansion is widely used in Information001
Retrieval (IR) to improve search outcomes by002
enriching queries with additional contextual in-003
formation. Although recent Large Language004
Model (LLM) based methods generate pseudo-005
relevant content and expanded terms via mul-006
tiple prompts, they often yield repetitive, nar-007
row expansions that lack the diverse context008
needed to retrieve all relevant information. In009
this paper, we introduce QA-Expand, a novel010
and effective framework for query expansion.011
It first generates multiple relevant questions012
from the initial query and subsequently pro-013
duces corresponding pseudo-answers as sur-014
rogate documents. A feedback model further015
filters and rewrites these answers to ensure only016
the most informative augmentations are incor-017
porated. Extensive experiments on benchmarks018
such as BEIR and TREC demonstrate that QA-019
Expand enhances retrieval performance by up020
to 13% over state-of-the-art methods, offering a021
robust solution for modern retrieval challenges.022

1 Introduction023

Query expansion is widely used in Information Re-024

trieval (IR) for effectively improving search out-025

comes by enriching the initial query with addi-026

tional contextual information (Carpineto and Ro-027

mano, 2012; Azad and Deepak, 2019a; Jagerman028

et al., 2023). Traditional methods as Pseudo-029

Relevance Feedback (PRF) expand queries by se-030

lecting terms from top-ranked documents (Robert-031

son, 1990; Jones et al., 2006; Lavrenko and Croft,032

2017). While these conventional approaches have033

been successful to some extent, their reliance on034

static term selection limits the scope of expan-035

sion (Roy et al., 2016; Imani et al., 2019).036

In recent years, Large Language Models (LLMs)037

have enabled dynamic query rewriting techniques038

that overcome traditional limitations by harnessing039

their generative ability (Zhao et al., 2023; Ye et al.,040

2023; Liu and Mozafari, 2024; Lei et al., 2024;041

Figure 1: The overview of the novel QA-Expand
framework. Given an initial query, the framework
generates diverse relevant questions, produces corre-
sponding pseudo-answers, and selectively rewrites and
filters relevant answers to enhance query expansion.

Seo et al., 2024; Chen et al., 2024). For instance, 042

Q2D (Wang et al., 2023) expands queries with 043

pseudo-documents generated via few-shot prompt- 044

ing, while Q2C (Jagerman et al., 2023) uses Chain- 045

of-Thought (CoT) prompting (Wei et al., 2022) for 046

reformulation. Moreover, GenQREnsemble (Dhole 047

and Agichtein, 2024) concatenates multiple key- 048

word sets produced through zero-shot paraphrasing 049

with the original query, and GenQRFusion (Dhole 050

et al., 2024) retrieves documents for each keyword 051

set and fuses the rankings. 052

Despite these advances, several significant chal- 053

lenges remain: ① simplistic prompt variations yield 054

repetitive, narrowly focused expansions that miss 055

the full range of contextual nuances; ② many ap- 056

proaches lack a dynamic evaluation mechanism, 057

leading to redundant or suboptimal term inclusion; 058

and ③ these methods do not reformulate the query 059

into distinct questions with corresponding answers, 060

limiting their ability to capture diverse, insightful 061

facets of the underlying information need. 062

To overcome these limitations, we propose QA- 063

Expand, a novel framework that leverages Large 064
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Language Models (LLMs) to generate diverse065

question-answer pairs from an initial query. Specif-066

ically, QA-Expand first generates multiple relevant067

questions derived from the initial query and subse-068

quently produces corresponding pseudo-answers069

that serve as surrogate documents to enrich the070

query representation. A feedback model is fur-071

thermore integrated to selectively rewrite and fil-072

ter these generated answers, ensuring that the fi-073

nal query augmentation robustly captures a multi-074

faceted view of the underlying information need.075

Extensive experiments on four datasets from076

BEIR Benchmark (Thakur et al., 2021) and two077

datasets from the TREC Deep Learning Passage078

2019 and 2020 (Craswell et al., 2020) demonstrate079

that QA-Expand significantly outperforms exist-080

ing query expansion techniques. Our contributions081

include: (1) a novel paradigm that reformulates082

the query into multiple targeted questions and gen-083

erates corresponding pseudo-answers to capture084

diverse aspects of the information need; (2) a dy-085

namic feedback model that selectively rewrites and086

filters only the most informative pseudo-answers087

for effective query augmentation; and (3) compre-088

hensive empirical validation confirming the robust-089

ness and superiority of our approach.1090

2 Methodology091

In this section, we detail our proposed QA-Expand092

framework. An overview of the QA-Expand frame-093

work is provided in Figure 1.094

2.1 Multiple Question Generation095

Given an initial query Q, a single inference call is096

made to an LLM using a fixed prompt P to generate097

a set of diverse questions relevant to initial query.098

This process is formalized as:099

Q = {q1, q2, . . . , qN} = GQ(Q,P ), (1)100

where GQ denotes the question generation module101

and N is the number of generated questions. Each102

qi is designed to capture a distinct aspect of the103

information need expressed in Q.104

2.2 Pseudo-Answer Generation105

For each generated question qi ∈ Q, the answer106

generation module subsequently produces a corre-107

sponding pseudo-answer. This module generates108

an answer for each question in Q. This results in a109

1Background is detailed in Appendix A.

complete set of pseudo-answers: 110

A = {a1, a2, . . . , aN} = GA(Q), (2) 111

where GA denotes the answer generation process 112

implemented via an LLM. This design ensures that 113

all generated questions are paired with an answer, 114

providing a comprehensive candidate set for subse- 115

quent evaluation. 116

2.3 Feedback-driven Rewriting and Selection 117

After generating the pseudo-answers, the feedback 118

module GS processes the complete set of question- 119

answer pairs {(qi, ai)}Ni=1 in the context of the 120

initial query Q and directly produces the refined 121

pseudo-answer set: 122

S = GS({(qi, ai)}Ni=1, Q). (3) 123

Here, GS denotes the selective rewriting and fil- 124

tering operation implemented via an LLM. In this 125

process, any refined pseudo-answer deemed irrele- 126

vant or too vague is omitted from S . Thus, the final 127

set of refined pseudo-answers can be represented 128

as: 129

S = {a′1, a′2, . . . , a′j}, with 0 ≤ j ≤ N. (4) 130

Finally, the refined pseudo-answers S are inte- 131

grated with the initial query Q using various aggre- 132

gation strategies (e.g., sparse concatenation, dense 133

weighted fusion, and Reciprocal Rank Fusion), as 134

detailed in Section 3.2.2 135

3 Experiments 136

3.1 Setup 137

Our experimental setup includes a description of 138

the datasets, model specifications, and the baseline 139

methods used for comparison in our framework. 140

Datasets. We evaluate QA-Expand on two 141

benchmark collections: (1) BEIR Bench- 142

mark (Thakur et al., 2021) and (2) TREC Passage 143

Datasets (Craswell et al., 2020). Specifically, for 144

BEIR Benchmark, we select four frequently used 145

datasets: webis-touche2020, scifact, trec-covid- 146

beir, and dbpedia-entity. For TREC Datasets, 147

we employ the Deep Learning Passage Tracks 148

from 2019 and 2020, which consist of large-scale 149

passage collections to ensure that our approach 150

performs well in challenging retrieval scenarios. 3 151

2Prompts are detailed in Appendix B.
3Statistical description of the datasets is detailed in Ap-

pendix C.
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LLM and Retrieval Models. For generating152

the question-answer pairs in QA-Expand, we uti-153

lize Qwen2.5-7B-Instruct Model4 (Team, 2024),154

which is a high-performance language model and,155

for the retrieval task, we employ multilingual-e5-156

base5 (Wang et al., 2024) to encode both queries157

and documents into dense representations. Addi-158

tionally, we incorporate BM25 (Robertson et al.,159

2009) as a sparse retrieval baseline, specifically us-160

ing BM25s6 (Lù, 2024), a pure-Python implemen-161

tation that leverages Scipy (Virtanen et al., 2020)162

sparse matrices for fast, efficient scoring.163

Baselines and Our Approach. We compare164

QA-Expand with standard retrieval baselines and165

query expansion methods. Retrieval baselines in-166

clude BM25 for sparse retrieval and multilingual-167

e5-base for dense retrieval using cosine similar-168

ity. We also evaluate query expansion methods169

such as Q2D (Wang et al., 2023), which generates170

pseudo-documents via few-shot prompting, and171

Q2C (Jagerman et al., 2023), which uses chain-172

of-thought guided reformulation. In addition, we173

compare with GenQR-based methods (Dhole and174

Agichtein, 2024; Dhole et al., 2024) that gener-175

ate 10 prompt-based keyword sets, with one vari-176

ant concatenating these keywords with the original177

query and the other retrieving documents for each178

set and fusing the rankings. All baselines use their179

original settings. In contrast, our QA-Expand en-180

riches each query by generating 3 distinct while di-181

verse questions and corresponding refined pseudo-182

answers—a configuration chosen to balance diver-183

sity and relevance by capturing multiple facets of184

the query without excessive redundancy.185

3.2 Implementation Details186

Sparse Query Aggregation. In the sparse re-187

trieval setting, following previous work (Wang188

et al., 2023; Jagerman et al., 2023), we replicate the189

initial query Q three times and append all refined190

pseudo-answers a′i. Specifically, let Qi = Q for191

i = 1, 2, 3. The expanded query is formulated as:192

Q∗
sparse =

3∑
i=1

Qi +

|S|∑
j=1

a′j , (5)193

4https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

5https://huggingface.co/intfloat/
multilingual-e5-base

6https://github.com/xhluca/bm25s

where the “+” operator denotes the concatenation 194

of query terms (with [SEP] tokens as separators). 195

Dense Query Aggregation. For dense retrieval, 196

let emb(Q) be the embedding of the initial query 197

and emb(a′i) the embedding of each refined pseudo- 198

answer. Following previous work in weighted 199

query aggregations (Seo et al., 2024), which em- 200

ployed a weight of 0.7 for the initial query embed- 201

ding, we adopted the same weighting scheme and 202

compute the final query embedding Q∗
dense: 203

Q∗
dense = 0.7·emb(Q)+0.3· 1

|S|

|S|∑
i=1

emb(a′i). (6) 204

Reciprocal Rank Fusion (RRF). In the RRF 205

setting (Cormack et al., 2009), each refined pseudo- 206

answer a′i is used to form an individual expanded 207

query Q∗
i . For each document d, let ri,d denote its 208

rank when retrieved with Q∗
i . The final score for d 209

is computed as: 210

score(d) =
|S|∑
i=1

1

k + ri,d
, (7) 211

where k is a constant (e.g., k = 60) to dampen 212

the influence of lower-ranked documents. Docu- 213

ments are then re-ranked based on their aggregated 214

scores.7 215

3.3 Main Results 216

In our experiments on both sparse and dense re- 217

trieval settings (see Table 1), we found that while 218

methods such as GenQREnsemble, Q2C, and Q2D 219

yield incremental improvements through query re- 220

formulations, each exhibits notable shortcomings. 221

GenQREnsemble uses multiple prompt configura- 222

tions to produce pseudo-relevant term expansions, 223

yet its repeated and narrowly focused outputs often 224

miss the full spectrum of user intent. Similarly, 225

Q2C leverages chain-of-thought (CoT) reasoning 226

but tends to generate repetitive expansions with 227

limited contextual diversity, and although Q2D pro- 228

duces pseudo-documents that better capture the 229

underlying information need, it falls short in fil- 230

tering out less informative content. In contrast, 231

our QA-Expand framework reformulates the query 232

into diverse targeted questions and generates cor- 233

responding pseudo-answers that are dynamically 234

evaluated, resulting in a 13% improvement in aver- 235

age retrieval performance. 236

7Algorithm of QA-Expand is detailed in Appendix D.
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Methods
BEIR Benchmark (nDCG@10) TREC DL’19 TREC DL’20

Webis SciFact TREC-COVID DBpedia Avg. Score nDCG@10 R@1000 Avg. Score nDCG@10 R@1000 Avg. Score

Sparse Results
BM25 0.2719 0.6694 0.5868 0.2831 0.4528 0.4239 0.3993 0.4116 0.4758 0.4240 0.4500
Q2C (2023) 0.3546 0.6876 0.6954 0.3252 0.5157 0.5439 0.4814 0.5127 0.5357 0.4941 0.5149
Q2D (2023) 0.3679 0.6794 0.6957 0.3378 0.5202 0.5732 0.4890 0.5311 0.5486 0.4958 0.5222
GenQREnsemble (2024) 0.2887 0.5560 0.5104 0.2302 0.3963 0.4109 0.4110 0.4110 0.4261 0.4163 0.4207
QA-Expand* (Sparse, Ours) 0.3919* 0.6965* 0.7050* 0.3273* 0.5302* 0.5811* 0.4932* 0.5372* 0.5803* 0.5000* 0.5402*

Dense Results
E5-Base 0.1786 0.6924 0.7098 0.4002 0.4953 0.7020 0.5185 0.6103 0.7029 0.5648 0.6339
Q2C (2023) 0.1841 0.7028 0.7238 0.4250 0.5112 0.5517 0.4891 0.5204 0.7084 0.5715 0.6400
Q2D (2023) 0.1931 0.7108 0.7284 0.4229 0.5133 0.7472 0.5565 0.6519 0.6971 0.5799 0.6385
QA-Expand* (Dense, Ours) 0.1911* 0.7147* 0.7342* 0.4278* 0.5387* 0.7476* 0.5527* 0.6502* 0.7184* 0.5831* 0.6508*

RRF Fusion (BM25) Results
GenQRFusion (2024) 0.3815 0.6518 0.6594 0.2726 0.4913 0.4418 0.4205 0.4312 0.4375 0.4654 0.4515
QA-Expand* (RRF, Ours) 0.3533 0.6777* 0.6698* 0.3009* 0.5004* 0.5048* 0.4734* 0.4891* 0.5211* 0.4795* 0.5003*

Table 1: Combined retrieval performance on BEIR Benchmark (nDCG@10) and TREC DL’19/TREC DL’20
(nDCG@10 / R@1000). For BEIR, the Avg. column is the average across Webis, SciFact, TREC-COVID, and
DBpedia. For TREC DL, the Avg. Score is computed as the average of nDCG@10 and R@1000. Bold indicates the
best score and underline indicates the second-best score. * denotes significant improvements (paired t-test with
Holm-Bonferroni correction, p < 0.05) over the average baseline value for the metric.

In the fusion-based retrieval scenario, conven-237

tional methods such as GenQRFusion typically gen-238

erate candidates through up to ten separate prompts239

and then fuse the resulting rankings using Recip-240

rocal Rank Fusion (RRF). Although this approach241

is intended to capture a wide range of query facets,242

it often aggregates redundant or low-quality can-243

didates, resulting in an overall ineffective expan-244

sion. Our QA-Expand framework, on the other245

hand, employs a more discerning selection pro-246

cess prior to fusion. Our method integrates only247

those expansions that robustly encapsulate the mul-248

tifaceted nature of the initial query by leveraging249

a dedicated evaluation module to filter out inferior250

pseudo-answers. This targeted fusion strategy min-251

imizes computational overhead while delivering252

significantly improved retrieval performance, as253

evidenced by our experimental results.254

3.4 Ablation Study and Analysis255

To evaluate the effectiveness of the evaluation mod-256

ule, we conducted an ablation study on two datasets.257

Table 2 compares the full QA-Expand framework258

with a variant that omits the evaluation module.259

The results show that including the evaluation mod-260

ule improves the average score by effectively fil-261

tering out redundant and less informative pseudo-262

answers, ensuring that only high-quality expan-263

sions contribute to query augmentation.264

Furthermore, the evaluation module not only265

boosts overall performance but also enhances ro-266

bustness. Without it, performance variability in-267

Methods Feedback BEIR TREC DL’19 TREC DL’20

BM25
w/o feedback 0.5266 0.5342 0.5373
w feedback 0.5302 0.5372 0.5402

Dense
w/o feedback 0.5115 0.6404 0.6474
w feedback 0.5387 0.6502 0.6508

BM25/RRF
w/o feedback 0.5099 0.4766 0.5001
w feedback 0.5004 0.4891 0.5003

r

Table 2: Combined average retrieval performance on
BEIR Benchmark and TREC DL datasets, with and
without feedback. Scores are averaged over four BEIR
datasets and computed separately for TREC DL’19 and
DL’20. Bold values denote the best performance.

creases and more noise from less relevant pseudo- 268

answers is observed, whereas the refined feedback 269

mechanism maintains stable and superior retrieval 270

effectiveness across diverse datasets. These find- 271

ings highlight the importance of dynamically se- 272

lecting high-quality expansions to capture the mul- 273

tifaceted nature of user intent. Notably, even the 274

variant without the evaluation module outperforms 275

other baselines, as shown in Table 1. 276

4 Conclusion 277

In this paper, we present our novel framework QA- 278

Expand which addresses query expansion by gener- 279

ating diverse question-answer pairs and employing 280

a feedback model for selective rewriting and filter- 281

ing. Our approach yields significant performance 282

gains and better captures the multifaceted nature 283

of user intent. Experimental results on BEIR and 284

TREC benchmarks demonstrate the effectiveness 285

and robustness of QA-Expand. 286
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5 Limitations287

One limitation is the persistence of residual noise288

and redundancy in the expanded queries. Although289

our feedback module is designed to filter out irrele-290

vant or repetitive pseudo-answers, some less infor-291

mative content may still be included, particularly292

for queries with ambiguous or complex information293

needs. Such residual noise can degrade retrieval294

precision by diluting the core intent of the initial295

query. Further research is needed to develop more296

robust filtering methods that can better discern and297

eliminate spurious information. Addressing this298

issue is an important direction for future work, as299

it could significantly improve the effectiveness of300

the query expansion process.301

References302

Hiteshwar Kumar Azad and Akshay Deepak.303
2019a. A novel model for query expansion using304
pseudo-relevant web knowledge. arXiv preprint305
arXiv:1908.10193.306

Hiteshwar Kumar Azad and Akshay Deepak. 2019b.307
Query expansion techniques for information retrieval:308
a survey. Information Processing & Management,309
56(5):1698–1735.310

Claudio Carpineto and Giovanni Romano. 2012. A311
survey of automatic query expansion in information312
retrieval. Acm Computing Surveys (CSUR), 44(1):1–313
50.314

Xinran Chen, Xuanang Chen, Ben He, Tengfei Wen, and315
Le Sun. 2024. Analyze, generate and refine: Query316
expansion with llms for zero-shot open-domain qa.317
In Findings of the Association for Computational318
Linguistics ACL 2024, pages 11908–11922.319

Vincent Claveau. 2020. Query expansion with320
artificially generated texts. arXiv preprint321
arXiv:2012.08787.322

Gordon V Cormack, Charles LA Clarke, and Stefan323
Buettcher. 2009. Reciprocal rank fusion outperforms324
condorcet and individual rank learning methods. In325
Proceedings of the 32nd international ACM SIGIR326
conference on Research and development in informa-327
tion retrieval, pages 758–759.328

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel329
Campos, and Ellen M Voorhees. 2020. Overview330
of the trec 2019 deep learning track. arXiv preprint331
arXiv:2003.07820.332

Kaustubh D Dhole and Eugene Agichtein. 2024. Gen-333
qrensemble: Zero-shot llm ensemble prompting for334
generative query reformulation. In European Con-335
ference on Information Retrieval, pages 326–335.336
Springer.337

Kaustubh D Dhole, Ramraj Chandradevan, and Eugene 338
Agichtein. 2024. Generative query reformulation 339
using ensemble prompting, document fusion, and rel- 340
evance feedback. arXiv preprint arXiv:2405.17658. 341

Ayyoob Imani, Amir Vakili, Ali Montazer, and Azadeh 342
Shakery. 2019. Deep neural networks for query ex- 343
pansion using word embeddings. In Advances in 344
Information Retrieval: 41st European Conference on 345
IR Research, ECIR 2019, Cologne, Germany, April 346
14–18, 2019, Proceedings, Part II 41, pages 203–210. 347
Springer. 348

Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui 349
Wang, and Michael Bendersky. 2023. Query expan- 350
sion by prompting large language models. arXiv 351
preprint arXiv:2305.03653. 352

Pengyue Jia, Yiding Liu, Xiangyu Zhao, Xiaopeng Li, 353
Changying Hao, Shuaiqiang Wang, and Dawei Yin. 354
2023. Mill: Mutual verification with large language 355
models for zero-shot query expansion. arXiv preprint 356
arXiv:2310.19056. 357

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley 358
Greiner. 2006. Generating query substitutions. In 359
Proceedings of the 15th international conference on 360
World Wide Web, pages 387–396. 361

Ivica Kostric and Krisztian Balog. 2024. A surprisingly 362
simple yet effective multi-query rewriting method for 363
conversational passage retrieval. In Proceedings of 364
the 47th International ACM SIGIR Conference on 365
Research and Development in Information Retrieval, 366
pages 2271–2275. 367

Victor Lavrenko and W Bruce Croft. 2017. Relevance- 368
based language models. In ACM SIGIR Forum, vol- 369
ume 51, pages 260–267. ACM New York, NY, USA. 370

Yibin Lei, Yu Cao, Tianyi Zhou, Tao Shen, and An- 371
drew Yates. 2024. Corpus-steered query expan- 372
sion with large language models. arXiv preprint 373
arXiv:2402.18031. 374

Hang Li, Ahmed Mourad, Shengyao Zhuang, Bevan 375
Koopman, and Guido Zuccon. 2023. Pseudo rele- 376
vance feedback with deep language models and dense 377
retrievers: Successes and pitfalls. ACM Transactions 378
on Information Systems, 41(3):1–40. 379

Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin, 380
Jimmy Lin, Rolf Jagerman, Xuanhui Wang, and 381
Michael Bendersky. 2024. Can query expansion im- 382
prove generalization of strong cross-encoder rankers? 383
In Proceedings of the 47th International ACM SIGIR 384
Conference on Research and Development in Infor- 385
mation Retrieval, pages 2321–2326. 386

Jie Liu and Barzan Mozafari. 2024. Query rewrit- 387
ing via large language models. arXiv preprint 388
arXiv:2403.09060. 389

Xing Han Lù. 2024. Bm25s: Orders of magnitude 390
faster lexical search via eager sparse scoring. arXiv 391
preprint arXiv:2407.03618. 392

5



Iain Mackie, Shubham Chatterjee, and Jeffrey Dalton.393
2023. Generative and pseudo-relevant feedback for394
sparse, dense and learned sparse retrieval. arXiv395
preprint arXiv:2305.07477.396

Shahrzad Naseri, Jeffrey Dalton, Andrew Yates, and397
James Allan. 2021. Ceqe: Contextualized embed-398
dings for query expansion. In Advances in Infor-399
mation Retrieval: 43rd European Conference on400
IR Research, ECIR 2021, Virtual Event, March 28–401
April 1, 2021, Proceedings, Part I 43, pages 467–482.402
Springer.403

Hai-Long Nguyen, Tan-Minh Nguyen, Duc-Minh404
Nguyen, Thi-Hai-Yen Vuong, Ha-Thanh Nguyen,405
and Xuan-Hieu Phan. 2024. Exploiting llms’ reason-406
ing capability to infer implicit concepts in legal infor-407
mation retrieval. arXiv preprint arXiv:2410.12154.408

Stephen Robertson, Hugo Zaragoza, et al. 2009. The409
probabilistic relevance framework: Bm25 and be-410
yond. Foundations and Trends® in Information Re-411
trieval, 3(4):333–389.412

Stephen E Robertson. 1990. On term selection for query413
expansion. Journal of documentation, 46(4):359–414
364.415

Dwaipayan Roy, Debjyoti Paul, Mandar Mitra, and416
Utpal Garain. 2016. Using word embeddings417
for automatic query expansion. arXiv preprint418
arXiv:1606.07608.419

Wonduk Seo, Haojie Zhang, Yueyang Zhang, Changhao420
Zhang, Songyao Duan, Lixin Su, Daiting Shi, Jiashu421
Zhao, and Dawei Yin. 2024. Gencrf: Generative422
clustering and reformulation framework for enhanced423
intent-driven information retrieval. arXiv preprint424
arXiv:2409.10909.425

Qwen Team. 2024. Qwen2.5: A party of foundation426
models.427

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-428
hishek Srivastava, and Iryna Gurevych. 2021. Beir:429
A heterogenous benchmark for zero-shot evalua-430
tion of information retrieval models. arXiv preprint431
arXiv:2104.08663.432

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt433
Haberland, Tyler Reddy, David Cournapeau, Ev-434
geni Burovski, Pearu Peterson, Warren Weckesser,435
Jonathan Bright, et al. 2020. Scipy 1.0: fundamental436
algorithms for scientific computing in python. Na-437
ture methods, 17(3):261–272.438

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,439
Rangan Majumder, and Furu Wei. 2024. Multilin-440
gual e5 text embeddings: A technical report. arXiv441
preprint arXiv:2402.05672.442

Liang Wang, Nan Yang, and Furu Wei. 2023.443
Query2doc: Query expansion with large language444
models. arXiv preprint arXiv:2303.07678.445

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 446
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 447
et al. 2022. Chain-of-thought prompting elicits rea- 448
soning in large language models. Advances in neural 449
information processing systems, 35:24824–24837. 450

Fanghua Ye, Meng Fang, Shenghui Li, and Emine Yil- 451
maz. 2023. Enhancing conversational search: Large 452
language model-aided informative query rewriting. 453
arXiv preprint arXiv:2310.09716. 454

Le Zhang, Yihong Wu, Qian Yang, and Jian-Yun Nie. 455
2024. Exploring the best practices of query expan- 456
sion with large language models. In Findings of the 457
Association for Computational Linguistics: EMNLP 458
2024, pages 1872–1883. 459

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 460
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 461
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 462
survey of large language models. arXiv preprint 463
arXiv:2303.18223. 464

6

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


A Appendix A. Background465

Query Expansion with LLM. Let Q denote the466

initial query and G be a Large Language Model467

(LLM) used for generation. Query expansion en-468

hances retrieval by enriching Q with additional469

context (Azad and Deepak, 2019b; Claveau, 2020;470

Naseri et al., 2021; Jia et al., 2023). Two pre-471

dominant LLM-based strategies have emerged:472

(1) Pseudo-Document Generation, where G pro-473

duces a surrogate document D or an expanded474

query Q∗ using a prompt P to capture latent in-475

formation (Wang et al., 2023; Jagerman et al.,476

2023; Zhang et al., 2024), and (2) Term-Level477

Expansion, where G generates a set of terms478

T = {t1, t2, . . . , tM} that reflect diverse aspects of479

Q (Dhole and Agichtein, 2024; Dhole et al., 2024;480

Li et al., 2024; Nguyen et al., 2024).481

Retrieval with Expanded Queries. In query ex-482

pansion, Information Retrieval (IR) integrates the483

initial query with generated augmentations using484

various strategies. For sparse retrieval, the com-485

mon method concatenates multiple copies of the486

initial query with generated terms to reinforce core487

signals (Wang et al., 2023; Zhang et al., 2024).488

In dense retrieval, one strategy directly combines489

the query and its expansions into a unified embed-490

ding (Li et al., 2023; Wang et al., 2023), while491

another fuses separate embeddings from each com-492

ponent (Seo et al., 2024; Kostric and Balog, 2024).493

Additionally, Reciprocal Rank Fusion (RRF) aggre-494

gates rankings from individual expanded queries495

by inversely weighting document ranks (Mackie496

et al., 2023).497

B Appendix B. Prompts498

Prompt for Multiple Question Generation

You are a helpful assistant. Based on the
following query, generate 3 possible related
questions that someone might ask.
Format the response as a JSON object with
the following structure:

{"question1":"First question ..."
"question2":"Second question ..."
"question3":"Third question ..."}

Only include questions that are meaningful
and logically related to the query. Here is
the query: {}

499

Prompt for Pseudo-Answer Generation

You are a knowledgeable assistant. The
user provides 3 questions in JSON format.
For each question, produce a document
style answer. Each answer must: Be
informative regarding the question. Return
all answers in JSON format with the keys
answer1, answer2, and answer3. For
example:

{"answer1": "...",
"answer2": "...",
"answer3": "..."}

Text to answer: {}
500

Prompt for Feedback-driven Rewriting and
Selection

You are an evaluation assistant. You have
an initial query and answers provided in
JSON format. Your role is to check how
relevant and correct each answer is. Return
only those answers that are relevant and
correct to the initial query. Omit or leave
blank any that are incorrect, irrelevant, or
too vague. If needed, please rewrite the
answer in a better way.
Return your result in JSON with the same
structure:

{"answer1": "Relevant/correct...",
"answer2": "Relevant/correct...",
"answer3": "Relevant/correct..."}

If an answer is irrelevant, do not include it
at all or leave it empty. Focus on ensuring
the final JSON only contains the best
content for retrieval. Here is the combined
input (initial query and answers): {}

501

C Appendix C. Dataset Details 502

Dataset Test Queries Corpus

Webis 49 382,545
SciFact 300 5,183
TREC-COVID 50 171,332
DBpedia-Entity 400 4,635,922
Trec DL’19 Passage 43 8,841,823
Trec DL’20 Passage 54 8,841,823

Table 3: Test Queries and Corpus Sizes for the Different
Datasets from BEIR Benchmark and TREC Track.
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D Appendix D. Algorithm503

Algorithm 1 QA-Expand: Query Expansion via
Question-Answer Generation
Require: Initial query Q, LLM models: Question

Generator GQ, Answer Generator GA, Feed-
back Filter GS , Aggregation Strategy Agg

Ensure: Expanded query Q∗

1: // Step 1: Multiple Question Generation
2: Q ← GQ(Q,P ) ▷ Generate a set of diverse

questions {q1, q2, . . . , qN} from Q
3: // Step 2: Pseudo-Answer Generation
4: A ← GA(Q) ▷ Generate

pseudo-answers concurrently for all questions,
yielding A = {a1, a2, . . . , aN}

5: // Step 3: Feedback-driven Rewriting and
Selection

6: S ← GS({(qi, ai)}Ni=1, Q) ▷ Refine
and filter to obtain S = {a′1, a′2, . . . , a′j} with
0 ≤ j ≤ N

7: // Retrieval via Diverse Aggregation Meth-
ods

8: if Method = Sparse then
9: Compute: Q∗

sparse =
∑3

i=1Qi +
∑|S|

j=1 a
′
j

10: else if Method = Dense then
11: Compute: Q∗

dense = 0.7 · emb(Q) + 0.3 ·
1
|S|

∑|S|
i=1 emb(a′i)

12: else if Method = RRF then
13: for each document d do
14: Compute: score(d) =

∑|S|
i=1

1
k+ri,d

15: end for
16: end if
17: return Ranked documents

8
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