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Abstract

We study a multi-agent imitation learning (MAIL)
problem where we take the perspective of a
learner attempting to coordinate a group of agents
based on demonstrations of an expert doing so.
Most prior work in MAIL essentially reduces the
problem to matching the behavior of the expert
within the support of the demonstrations. While
doing so is sufficient to drive the value gap be-
tween the learner and the expert to zero under the
assumption that agents are non-strategic, it does
not guarantee robustness to deviations by strategic
agents. Intuitively, this is because strategic devi-
ations can depend on a counterfactual quantity:
the coordinator’s recommendations outside of the
state distribution their recommendations induce.
In response, we initiate the study of an alternative
objective for MAIL in Markov Games we term
the regret gap that explicitly accounts for poten-
tial deviations by agents in the group. We first
perform an in-depth exploration of the relation-
ship between the value and regret gaps. First, we
show that while the value gap can be efficiently
minimized via a direct extension of single-agent
IL algorithms, even value equivalence can lead
to an arbitrarily large regret gap. This implies
that achieving regret equivalence is harder than
achieving value equivalence in MAIL. We then
provide a pair of efficient reductions to no-regret
online convex optimization that are capable of
minimizing the regret gap (a) under a coverage
assumption on the expert (MALICE) or (b) with
access to a queryable expert (BLADES).

1. Introduction
We consider the problem of a mediator learning to coor-
dinate a group of strategic agents via recommendations of
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actions to take without knowledge of their underlying utility
functions (e.g. routing a group of drivers through a road
network). Given the difficulty of manually specifying the
quality of a recommendation in such situations, it is natural
to provide the mediator with data of desired coordination
behavior, turning our problem into one of multi-agent imi-
tation learning (MAIL, (Waugh et al., 2013; Fu et al., 2017;
Song et al., 2018; Vinitsky et al., 2022; Gulino et al., 2024)).
In our work, we explore the nuances of a fundamental MAIL
question:

What is the right objective for the learner in a multi-agent
imitation learning problem?

We can begin to answer this question by exploring the fol-
lowing scenario: consider developing a routing application
to provide personalized route recommendations (σ) to a
group of users with joint policy π (e.g. the routing pol-
icy that underlies the recommendations provided in Google
Maps (Barnes et al., 2023)). As usual in imitation learn-
ing (IL), we assume we are given access to demonstrations
from an expert σE (e.g. a past iteration of the application).
We can imagine two kinds of users of our application (i.e.
agents): non-strategic users who blindly follow the recom-
mendations of our routing application and strategic users
who will deviate from our recommendations if they have
the incentive to do so under their (unknown) personal utility
function (e.g. we recommend a long route to a busy driver).
We use Ji(πσ) below to denote the value of the mediator’s
learned policy σ under the ith agent’s utility.

Case 1: No Strategic Agents. In the idealized situation
where all agents in the population are perfectly obedient, we
can essentially treat a MAIL problem as a single-agent IL
(SAIL) problem over joint policies. It is therefore natural to
use a direct extension of the well-studied value gap criterion
from the SAIL literature (Abbeel & Ng, 2004; Ziebart et al.,
2008; Swamy et al., 2021; 2022c;a;b; 2023; Ren et al., 2024)
to the multi-agent setting:

max
i∈[m]

Ji(πσE
)− Ji(πσ).

Intuitively, driving the value gap to 0 (i.e. achieving value
equivalence in the terminology of (Grimm et al., 2020))
implies that along as long as all agents blindly follow our
recommendations, we have learned a policy that performs at
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least as well as that of the expert from the perspective of any
agent in the population. In our running routing application
example, this means that if no driver deviates from the
previous behavior, all drivers will be at least as happy as
they were with the prior iteration of the application.

Case 2: Strategic Agents. Of course for any MAIL prob-
lem where agents actually have agency, we need to account
for the fact that agents may deviate from our recommenda-
tions if it appears beneficial to do so from their subjective
perspective. Let us denote the class of deviations (i.e. policy
modifications) for agent i as Φi. Then, we can define the
regret induced by the mediator’s policy as

RΦ(σ)−RΦ(σE) = max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ))

− max
k∈[m]

max
ϕk∈Φk

(Jk(πσE ,ϕk
)− Jk(πσE

)).

(1)
where ϕi is a strategic deviation of agent i and πσ,ϕi is
the joint agent policy induced by all agents other than i
following σ’s recommendations. Intuitively, regret captures
the maximum incentive any agent in the population has to
deviate from the mediator’s recommendations. We can then
compare this metric between the expert and learner policies
to arrive at the notion of a regret gap (Waugh et al., 2013):

RΦ(σ)−RΦ(σE).

Driving the regret gap to zero (i.e. achieving regret equiv-
alence) implies that even if agents are free to deviate, our
learned policy is at least as good as the expert’s from the
perspective of an arbitrary agent in the population. In our
preceding example, this means that despite the fact that they
are not forced to follow our application’s recommendations,
all agents would have no more incentive to take an alter-
nate route than they did under the previous iteration of the
application.

A simple decomposition allows us to show that a small
value gap does not in general imply a small regret gap.
Consider the performance difference between the learner’s
policy under all obedient (Ji(πσ)) and a deviating ith agent
(Ji(πσ,ϕi)). We can decompose this quantity into the fol-
lowing:

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
))︸ ︷︷ ︸

(I: regret gap underϕi)

+ (Ji(πσE ,ϕi
))− Ji(πσE

))︸ ︷︷ ︸
(II: expert regret under ϕi)

+ (Ji(πσE
)− Ji(πσ))︸ ︷︷ ︸

(III: SAIL value gap)

,

where we use πσE ,ϕi to denote agent joint behavior under
expert recommendations and deviation ϕi. Term III is the

standard single-agent value gap (i.e. the performance dif-
ference under the assumption that no agents deviate). Term
II is the expert’s regret under deviation ϕi (i.e. a quantity
we cannot control). Thus, the difference between the regret
gap and value gap objectives can be boiled down to Term I:
Ji(πσ,ϕi

) − Ji(πσE ,ϕi
). Observe that because of the state

distribution shift induced by deviation ϕi, minimizing Term
III doesn’t give us any guarantees with respect to Term 1.
This underlies our key insight: regret is hard in MAIL as
it requires knowing what the expert would have done in
response to an arbitrary agent deviation. More explicitly,
our contributions are three-fold:

1. We initiate the study of the regret gap for MAIL
in Markov Games. Unlike the value gap – the standard
objective in single-agent IL – the regret gap captures the fact
that agents in the population may choose to deviate from
the mediator’s recommendations. The shift from value to
regret gap captures what is fundamentally different about
the SAIL and the MAIL problems.

2. We investigate the relationship between regret gap
and the value gap. We show that under the assumption
of complete reward and deviation function classes, regret
equivalence implies value equivalence. However, we also
prove that value equivalence provides essentially no guaran-
tees on the regret gap, establishing a fundamental limitation
of applying SAIL algorithms to MAIL problems.

3. We provide a pair of efficient algorithms to minimize
the regret gap under certain assumptions. While regret
equivalence is hard to achieve in general as it depends on
counter-factual expert recommendations, we derive a pair of
efficient reductions for minimizing the regret gap that oper-
ate under different assumptions: MALICE (which operates
under a coverage assumption) and BLADES (which requires
access to a queryable expert). We prove that both algorithms
can provide O(H) bounds on the regret gap, where H is the
horizon, matching the strongest known results for the value
gap in single-agent IL. See Table 1 for a summary of our
regret gap bounds.

2. Related Work
Single-Agent Imitation Learning. Much of the theory of
imitation learning focuses on the single-agent setting (Osa
et al., 2018). Offline approaches like behavioral cloning
(BC, (Pomerleau, 1988)) reduce the problem of imitation
to mere supervised learning. Ignoring the covariate shift
in state distributions between the expert and learner poli-
cies can cause compounding errors (Ross & Bagnell, 2010;
Swamy et al., 2021) and associated poor performance. In re-
sponse, interactive IL approaches like inverse reinforcement
learning (IRL, (Abbeel & Ng, 2004; Ziebart et al., 2008)) al-
low the learner to observe the consequences of their actions
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Assumption Upper Bound (Matching) Lower Bound

J-BC β-Coverage O
(

1
β ϵuH

)
Ω
(

1
β ϵuH

)
Theorem 5.3 Theorem 5.4

J-IRL β-Coverage O
(

1
β ϵuH

)
Ω
(

1
β ϵuH

)
Theorem 5.5 Corollary 5.6

MALICE (ours) β-Coverage O (ϵuH) Ω (ϵuH)
Theorem 5.7 Theorem 5.8

BLADES (ours) Queryable Expert O (ϵuH) Ω (ϵuH)
Theorem 5.9 Theorem 5.10

Table 1. A summary of our results: upper and lower bounds on the regret gap (i.e. RΦ(σ)−RΦ(σE)) of various approaches to multi-agent
IL. Here, β is the coverage constant in Assumption 5.2, u is the recoverability constant in Assumption 5.1, H is the horizon.

during the training procedure, preventing compounding er-
rors (Swamy et al., 2021). However, such approaches can be
rather sample-inefficient due to the need to repeatedly solve
a hard RL problem (Swamy et al., 2023; Ren et al., 2024).
Alternative approaches include interactively querying the
expert to get action labels on the learner’s induced state
distribution (DAgger, (Ross & Bagnell, 2010)) or, assum-
ing full coverage of the demonstrations, using importance
weighting to correct for the covariate shift (ALICE, (Spencer
et al., 2021)). Our BLADES and MALICE algorithms can
be seen as the regret gap analog of the value gap-centric
DAgger and ALICE algorithms, operating under the same
assumptions.

Multi-Agent Imitation Learning. The concept of the re-
gret gap was first introduced in the exceptional work of
Waugh et al. (2013), though their exploration was limited
to Normal Form Games (NFGs), in contrast to the more
general Markov Games (MGs) we focus on. Fu et al. (2021)
briefly consider the regret gap in Markov Games (MGs) but
do not explore its properties nor provide algorithms for effi-
cient minimization. Most empirical MAIL work (Song et al.,
2018; Le et al., 2017; Bhattacharyya et al., 2018; Vinitsky
et al., 2022; Gulino et al., 2024) is value gap-based, while
we take a step back and ask what the right objective is for
MAIL in the first place.

Inverse Game Theory. Another line of work focuses on
inverse game theory in Markov Games (Lin et al., 2019;
Goktas et al., 2023), where the goal is to recover a set of
utility functions that rationalize the observed agent behavior,
rather than learning to coordinate from demonstrations. A
detailed comparison between the goals of our work at that
of inverse game theory provided in Appendix F.

3. Preliminaries
We begin with the notation we will use in our paper.
Throughout, we use ∆(X) denote the space of probabil-
ity distribution over a set X . We will use ℓ to denote the loss

function each algorithm optimizes, which should be thought
of as a convex upper bound on the total variation distance
TV. We use ℓTV when the loss function is exactly the TV
distance.

Markov Games. We use MG(H,S,A, T , {ri}mi=1, ρ0) to
denote a Markov Game (MG) between m agents. Here, H
is the horizon, S is the state space, and A = A1 × ...×Am

is the joint action space for all agents. We use T : S ×A →
∆(S) to denote the transition function. Furthermore, the
reward (utility) function for agent i ∈ [m] is denoted by
ri : S×A → [−1, 1]. Lastly, we use ρ0 to denote the initial
state distribution from which the initial state s0 ∼ ρ0 is
sampled.

Learning to Coordinate. Rather than considering the prob-
lem of learning individual agent policies in the MG, we take
the perspective of a mediator who is giving recommenda-
tions to each agent to help them coordinate their behavior
(e.g. a smartphone mapping application providing direc-
tions to a set of users). At each time step, the mediator
gives each agent i a private action recommendation ai to
take at the current state s. Critically, no agent observes the
recommendations the mediator provides to another agent.
We can represent the mediator as a Markovian joint policy
σ ∈ Σ, where σ : S → ∆(A). We use σ(⃗a|s) to denote the
probability of recommending joint action a⃗ in state s. We
use π : S → ∆(A) to denote the joint policy that agents
play in response to the mediator’s policy. When agents ex-
actly follow the mediator’s recommendations, we denote
their joint policy as πσ .

A trajectory ξ ∼ π = {sh, a⃗h}h=1,...,H refers to a sequence
of state-action pairs generated by starting from s0 ∼ ρ0 and
repeatedly sampling joint action a⃗h and next states sh+1

from π and T for H − 1 time steps. Let dπh denote the
state visitation distribution at timestep h following π and
let dπ = 1

H

∑H
h=1 d

π
h be the average state distribution. Let

ρπh(sh, a⃗h) denote the occupancy measure – i.e., probability
of reaching state s and then taking action a⃗ at time step h.
By definition, we know that ∀h,

∑
s,⃗a ρ

π
h(s, a⃗) = 1. Let
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ρπ(s, a⃗) = 1
H

∑H
h=1 ρ

π
h(s, a⃗) be the average occupancy

measure.

We use V π
i,h to denote the expected cumulative reward of

agent i under this policy from time step h, i.e. V π
i,h(s) =

Eξ∼π[
∑H

t=h ri(st, a⃗t)|sh = s]. We define Q-value func-
tion of agent i as Qπ

i,h(s, a⃗) = Eξ∼π[
∑H

t=h ri(st, a⃗t)|sh =
s, a⃗h = a⃗]. We define advantage of an agent i to
be the difference between its Q-value on a selected ac-
tion and the V-value on the state, i.e. Aπ

i,h(s, a⃗) =
Qπ

i,h(s, a⃗) − V π
i,h(s). We also define the performance of

a policy π from the perspective of agent i as Ji(π) =

Es0∼ρ0 [Eξ∼π[
∑H

t=1 ri(st, a⃗t)|s = s0]]. Observe that per-
formance is the inner product between the occupancy
measure and the agent’s reward function, i.e. Ji(π) =
H

∑
s,⃗a ρ

π(s, a⃗)ri(s, a⃗).

Correlated Equilibria. We now introduce the notion of
a correlated equilibrium (CE, Aumann (1987)). First, we
define a strategy deviation ϕi for the i-th agent as a map
ϕi : S ×Ai → Ai. Intuitively, a strategy deviation captures
how the agent responds to the current state of the world
and the recommendation of the mediator – they can either
obey (in which case ϕi(s, a) = a) or defect (in which case
ϕi(s, a) ̸= a). Let Φi be the set of deviations for agent
i, which is a subset of all possible deviations. We use
Φ := {Φi}mi=1 to denote deviations for all agents. We
assume that for all i, the identity mapping ϕi(s, a) ≡ a is
in ϕi. We use πσ,ϕi

to denote (ϕi ◦ πσ,i)⊙ πσ,−i: the joint
agent policy induced by mediator policy σ being over-ridden
by deviation ϕi. We can now define a CE.

Definition 3.1 (Regret and CE in General-Sum MGs). Let
σ ∈ Σ be the mediator’s policy in a Markov Game, and Φi,
i ∈ [m] be the deviation classes for each agent. Then,

1. We define the regret of a mediator policy σ to be

RΦ(σ) := max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi
)− Ji(πσ)), (2)

2. We say a mediator with policy σ induces an ϵ-
approximate Correlated Equilibrium (CE) if

RΦ(σ) ≤ ϵ. (3)

Intuitively, regret captures the maximum utility any agent
can gain by defecting from the mediator’s recommendation.
A CE is an induced joint policy where no agent has a large
incentive to deviate.

4. On the Relationship between the Value Gap
and the Regret Gap

As sketched above, we consider two potential objectives for
the learner in MAIL:

Regret
Equivalence

Complete Reward / Deviation Classes
Value

Equivalence

Figure 1. Under expressive enough reward function and deviation
classes, regret equivalence implies value equivalence but not vice
versa, making the regret gap a “stronger” objective than the value
gap.

Definition 4.1 (Value Gap). We define the value gap be-
tween the expert’s policy σE and the learner’s policy σ ∈ Σ
as

max
i∈[m]

(Ji(πσE
)− Ji(πσ)). (4)

Definition 4.2 (Regret Gap). We define the regret gap be-
tween the expert’s policy σE and the learner’s policy σ ∈ Σ
as

RΦ(σ)−RΦ(σE) = max
i∈[m]

max
ϕi∈Φi

(Ji(πσ,ϕi)− Ji(πσ))

− max
k∈[m]

max
ϕk∈Φk

(Jk(πσE ,ϕk
)− Jk(πσE

)).

(5)

We say that the learner’s policy satisfies value / regret equiv-
alence when the value / regret gap is 0. We now explore the
relationship between the value and regret gap in MAIL, 1

summarized in Figure 1. We use Ji(πσ, f) andRΦ(σ, f) to
denote the value/regret of policy σ under the reward function
f .

4.1. Regret Equivalence + Complete Reward /
Deviation Class =⇒ Value Equivalence

First, we show that if the reward function class and de-
viation class are both complete, then regret equivalence
implies value equivalence. We say that the reward func-
tion class is complete when F = {S × A → [−1, 1]}
(i.e. all convex combinations of state-action indicators),
and that the deviation class is complete if for every agent i,
Φi = {S × Ai → Ai} (i.e. all possible deviations).

Theorem 4.3 (Complete Classes). If the reward func-
tion class F and deviation class Φ are complete and re-
gret equivalence is satisfied (i.e. supf∈F (RΦ(σ, f) −
RΦ(σE , f)) = 0), then value equivalence is also satisfied:
supf∈F maxi∈[m](Ji(πσE

, f)− Ji(πσ, f)) = 0. [Proof]

Next, we prove that completeness of the classes is necessary
for this implication to hold true.

Theorem 4.4 (Incomplete Classes). There exists an MG,
an expert policy σE , and a trained policy σ such that even
though the regret equivalence is satisfied under the true
reward function r, i.e. RΦ(σ, r) − RΦ(σE , r) = 0, the
value gap maxi∈[m](Ji(πσE

, r)− Ji(πσ, r)) ̸= 0. [Proof]

1We prove in Appendix D that the value and regret gaps are
equivalent in single-agent IL.

4



Multi-Agent Imitation Learning: Value is Easy, Regret is Hard

Together, these results tell us that with an expressive enough
class of reward functions / deviations, regret equivalence is
stronger than value equivalence. We now turn our attention
to the converse.

4.2. Value Equivalence ≠⇒ Regret Equivalence

We now show a surprising result: value equivalence does
not directly imply a low regret gap! In the worst case, value
equivalence fails to provide any meaningful guarantees on
the regret gap. This reveals a critical distinction between
SAIL and MAIL not fully addressed in the prior work.

Theorem 4.5. There exists a Markov Game, an expert policy
σE , and a learner policy σ, such that even occupancy mea-
sure of πσ exactly matches πσE

, i.e. ∀(s, a⃗), ρπσ (s, a⃗) =
ρπσE (s, a⃗) (i.e. we have value equivalence under all re-
wards), the regret gapRΦ(σ)−RΦ(σE) ≥ Ω(H). [Proof]

We leave the details of the proof for this theorem in Ap-
pendix E.3. As visualized in Figure 2, both the expert
and learner policies only visit the states in the lower path
s2, s4, ..., s2H−2. The trained policy perfectly matches the
occupancy measure of the expert by taking identical actions
in visited states s2, s4, ..., s2H−2. However, expert demon-
strations lack coverage of state s1 as it is unreachable by
executing πE . This omission becomes critical when agent
1 deviates from the original policy, making s1 unreachable
with high probability. Consequently, the trained policy may
perform poorly in s1, in stark contrast to the expert playing
a CE under the true reward function. This example high-
lights the key difference between value equivalence and
regret equivalence: the former only depends on states ac-
tually visited by the policy, while the latter depends on the
counterfactual recommendations the learner would make at
unvisited states in response to an agent deviations.
Remark 4.6. As shown in Theorem 4.5, even if the learner
has access to infinite samples on the equilibrium path from
expert demonstrations, it is possible that the learner remains
unaware of the expert’s behavior in states unvisited by the
expert (but reachable by the deviated agents joint policy).
Thus, from an information theoretic perspective, it is im-
possible for the learner to minimize the regret gap without
knowing how the expert would behave on those states. This
demonstrates the fundamental difficulty of minimizing the
regret gap, and thus, regret is ‘hard’ in MAIL. We therefore
need a fundamentally new paradigm of MAIL algorithm to
minimize the regret gap.

4.3. Low Regret Gap =⇒ CE, Low Value Gap ≠⇒
CE

Given the deep connections between regret and correlated
equilibrium discussed above, it is perhaps intuitive that if
the expert σE is playing a CE, a low regret gap means the
learner is as well.

s0

s1

s2

s3

s4

s5

s6

s2H−1

s2H

a2a1

else

all

else

a2a1 all

all

...

...

Figure 2. Illustration of an Markov Game that captures why “regret
is hard”. Here, σE(a1a1|s0) = 1. Observe that s1 is un-visited
when all agents obediently follow σE but is with probability 1
under deviation ϕ1 (ϕ1(s0, a1) = ϕ1(s1, a1) = a2). This means
that unless we know what the expert σE would have recommended
counter-factually in s1, we cannot minimize the regret gap.

Theorem 4.7 (Regret Gap Implies CE). If the expert policy
σE induces a δ1-approximate CE, and the learner policy σ
satisfiesRΦ(σ)−RΦ(σE) ≤ δ2, then σ induces a δ1 + δ2-
approximate CE. [Proof]

Then, by combining our preceding result with Theorem 4.5,
it follows that a low value gap does not imply that the learner
is playing a CE.

Corollary 4.8. There exists a Markov Game, an expert
policy σE , and a learner policy σ, such that σE induces a
δ1-approximate CE, and σ satisfies maxi∈[m](Ji(πσE

) −
Ji(πσ)) = δ2, σ induces a Ω(H)-approximate CE.

Together, these results imply that if we are interested in
inducing a CE amongst the agents in the population, the
regret gap is a more suitable objective.

4.4. Efficient Algorithms for Minimizing the Value Gap

Although we have shown that the value gap is a ‘weaker’
objective in some sense, in many real-world scenarios, the
agents may be non-strategic. In these scenarios, minimizing
value gap can be a reasonable learning objective. As we
will demonstrate here, the natural multi-agent generalization
of single-agent IL algorithms can efficiently minimize the
value gap—hence, value is ‘easy’ in MAIL.

Behavior Cloning (BC) and Inverse Reinforcement Learning
(IRL) are two single-agent IL algorithms aimed at minimiz-
ing the value gap. By running these algorithms over joint
policies, we can apply BC and IRL to the multi-agent set-
ting, which we call Joint Behavior Cloning (J-BC) and Joint
Inverse Reinforcement Learning (J-IRL). Doing so results
in the same value gap bounds as in the single-agent set-
ting. More details on of J-BC and J-IRL can be found in
Appendix B.

Theorem 4.9 (J-BC Value Gap Upper Bound). If J-BC re-
turns a policy σ that satisfies Es∼dπσE [ℓ(σE(s), σ(s))] ≤
ϵ, then the value gap maxi∈[m](Ji(πσE

) − Ji(πσ)) ≤
O(ϵH2). [Proof]

Theorem 4.10 (J-IRL Value Gap Upper Bound). If J-IRL

5



Multi-Agent Imitation Learning: Value is Easy, Regret is Hard

outputs a policy σ with moment-matching error

sup
f∈F

EπσE

[
H∑

h=1

f(sh, a⃗h)

]
− Eπσ

[
H∑

h=1

f(sh, a⃗h)

]
≤ ϵH,

then the value gap maxi∈[m](Ji(πσE
)−Ji(πσ)) ≤ O(ϵH).

[Proof]

As argued by Swamy et al. (2021), satisfying the conditions
for either of the above theorems can be achieved oracle-
efficiently via a reduction to no-regret online learning. We
now turn our attention to sufficient conditions for there to
exist efficient algorithms for minimizing the regret gap.

5. Efficient Algorithms for Minimizing the
Regret Gap

In our following analysis, we will make a recoverability
assumption: that a single-step agents deviation could at
most cost the expert a fixed constant.

Assumption 5.1 (u-recoverability). We say that an MG is
u-recoverable if the expert advantage function is bounded
for all deviations, i.e. ∀s, a⃗, h, i, ϕi,

∣∣∣AπσE,ϕi

i,h (s, a⃗)
∣∣∣ ≤ u.

Intuitively, a small value of u means that we’re not in a
problem where a single agent can deviate and a “car crash”
(i.e. a joint mistake) happens that even the expert couldn’t
recover from for the rest of the episode. In the worst case,
u is O(H). This assumption can be thought of natural
multi-agent generalization of the standard recoverability
assumption in SAIL (Ross et al., 2011; Swamy et al., 2021;
Spencer et al., 2021) which is necessary and sufficient to
avoid compounding errors while maintaining computational
efficiency. While we define recoverability with respect to the
actual reward function for implicitly, one can instead easily
define it with respect to the worst-case reward function in
a class (supf∈F ) – moment recoverability – as in (Swamy
et al., 2021) to avoid the need to know the ground truth set
of agent reward functions r to bound u.

In Section 4.2, we proved that for general MGs, J-BC and
J-IRL don’t give any guarantees on the regret gap. Fun-
damentally, without the ability to observe how the expert
would have responded in the counter-factual state induced
by a deviation, the learner cannot ensure that they match
the expert’s regret. We now explore two different sets of
assumptions that give us this ability.

5.1. Assumption 1: Full Coverage of Expert
Demonstrations

In this section, we introduce a coverage assumption on the
expert’s state distribution dπσE (s) which states that the ex-
pert visits every state with a positive probability. We will
show that this assumption is sufficient to give a regret gap

guarantee. The state coverage assumption is a common theo-
retical assumption in the analysis of learning in MDPs/MGs
(Erez et al., 2023) and has been explored in SAIL (Spencer
et al., 2021).

Assumption 5.2 (β-coverage). There exists a constant
β > 0 such that for the expert’s policy σE , it holds that
dπσE (s) ≥ β for all s.

Intuitively, this assumption implies that in the infinite sam-
ple limit, there are no states where we are unsure what the
expert would recommend. As discussed in Remark 4.6,
without the ability to interactively query the expert, a cover-
age assumption is necessary because we cannot minimize
the regret gap without knowing the expert mediator’s actions
in counter-factual states.

We first show that under Assumption 5.2, J-BC and J-IRL
get a (relatively weak) regret gap guarantee.

5.1.1. REGRET GAPS OF J-BC AND J-IRL UNDER FULL
DEMONSTRATION COVERAGE

We begin by analyzing joint behavioral cloning (J-BC).

Theorem 5.3 (J-BC Regret Gap Upper Bound). Under
Assumption 5.1 and Assumption 5.2, if the J-BC algorithm
returns a policy σ that satisfies Es∼dπσE [ℓ(σE(s), σ(s))] ≤
ϵ, then

RΦ(σ)−RΦ(σE) ≤ O

(
1

β
ϵuH

)
.

[Proof]

We leave the proof in Appendix E.7. It is worth to note that
although the dependency of H is linear under our recover-
ability assumption, we still need to pay for the term 1

β in
our regret gap bound. In general, this term can grow expo-
nentially with the horizon, making this guarantee relatively
weak. We can show its tightness by slightly modifying the
example in Theorem 4.5 to satisfy the assumptions.

Theorem 5.4 (J-BC Regret Gap Lower Bound). There exists
a Markov Game, an expert policy σE , and learner policy σ
such that σE satisfies Assumption 5.1 and Assumption 5.2,
σ achieves BC error Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ ϵ, and

RΦ(σ)−RΦ(σE) = Ω

(
1

β
ϵuH

)
.

[Proof]

We now prove analogous results for joint inverse reinforce-
ment learning (J-IRL).

Theorem 5.5 (J-IRL Regret Gap Upper Bound). Under
Assumption 5.2 and Assumption 5.1 and with a complete
reward function class F , if J-IRL returns a policy σ with

6
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moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
−Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

thenRΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
. [Proof]

There are two interesting features of this theorem. The first
is that we needed to assume that the reward function class
is complete – otherwise, a small value gap can still translate
to a large regret gap. The second is that the upper-bound
for J-IRL matches that for J-BC, which is in stark contrast
to the single-agent setting, where IRL enjoys linear-in-H
guarantees with respect to the value gap (Swamy et al.,
2021). We now show this is not an artifact of our analysis
by providing a matching lower bound.

Corollary 5.6 (J-IRL Regret Gap Lower Bound). There
exists a Markov Game, an expert policy σE , and a policy σ
such that σE satisfies Assumption 5.1 and Assumption 5.2,
the trained policy σ gets moment-matching error

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
−Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
≤ ϵ,

andRΦ(σ)−RΦ(σE) = Ω
(

1
β ϵuH

)
. [Proof]

This result implies another fundamental distinction between
SAIL and MAIL: in contrast to the value gap, interactive
training alone is not sufficient to effectively minimize the
regret gap.

5.1.2. MALICE: MULTI-AGENT AGGREGATION OF
LOSSES TO IMITATE CACHED EXPERTS

Observe that the upper bounds for both J-BC and J-IRL
include a dependence on the inverse of the coverage co-
efficient 1

β , which can be rather large for problems with
long horizons or large action spaces. We now present an
efficient algorithm that is able to avoid this dependence by
extending the ALICE algorithm (Spencer et al., 2021) to
the multi-agent setting. ALICE is an interactive algorithm
that, at each round, uses importance sampling to re-weight
the behavior cloning (BC) loss based on the density ratio
between the current learner policy and that of the expert.
Accordingly, ALICE requires a full demonstration cover-
age assumption to ensure that these importance weights are
finite. ALICE uses a no-regret algorithm to learn a policy
that minimizes reweighed on-policy error, which guarantees
a linear-in-H bound on the value gap under a recoverability
assumption (Spencer et al., 2021).

In Algorithm 1, we describe Multi-agent ALICE (MALICE),
where adapt ALICE to the multi-agent setting (i.e. minimiz-
ing the regret gap). Specifically, we modify the ALICE loss

Algorithm 1 MALICE (Multi-agent Aggregation of Losses
to Imitate Cached Experts)

1: Input: Expert demonstrations DE .
2: Initialize σ(1) ∈ Σ.
3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample states from st ∼ d

π
(n)
σ,ϕi .

7: end for
8: end for
9: Construct loss function ℓ(n)(σ) =

ℓMALICE(σ,DE , σ
(n)).

10: // Run arbitrary no-regret OCO
algorithm on sequence of losses, e.g.
FT(R)L:

11: σ(n+1) ← argminσ∈Σ

∑n
j=1 ℓ

(n)(σ)
12: end for
13: Return Best of σ(1:N) on validation data.

function to include a maximum over all deviations. This
gives us

ℓMALICE(σ,DE , σ̂)

= max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ̂,ϕi (s)

dπσE (s)
ℓ(σE(s), σ(s))

]
.

(6)

Since Es∼dπE

[
d
πσ̂,ϕi (s)
dπσE (s)

ℓ(σE(s), σ(s))
]

is a convex loss
function, and the maximum of convex functions is still a
convex function, we know that ℓMALICE(σ,DE , σ̂) is a valid
convex loss function with scales in [0, 1]. As a result, we
can run an (arbitrary) no-regret online convex optimization
(OCO) algorithm to efficiently optimize it, giving us an
efficient reduction from regret gap minimization to no-
regret online convex optimization under demonstration
coverage.

We now provide regret gap guarantees on the policy returned
by MALICE.

Theorem 5.7 (MALICE Regret Gap Upper Bound). Let
σ be a policy such that ℓMALICE(σ,DE , σ) ≤ ϵ. Under
Assumption 5.1 and Assumption 5.2, we have

RΦ(σ)−RΦ(σE) ≤ O(ϵuH).

[Proof]

As promised, observe that adapting the importance sampling
technique of Spencer et al. (2021) to the multi-agent setting
allows us to efficiently minimize the regret gap while avoid-
ing an upper bound that depends on the coverage coefficient
of the expert demonstrations.

We now show that the bound in Theorem 5.7 is tight by
constructing a matching lower bound.

7
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Theorem 5.8 (MALICE Regret Gap Lower Bound). There
exists a Markov Game, an expert policy σE that satisfies
Assumption 5.1, and a trained policy σ that gets error
ℓTV,MALICE(σ,DE , σ) ≤ ϵ, and

RΦ(σ)−RΦ(σE) = Ω (ϵuH) .

[Proof]

We now turn our attention to an alternate assumption and
the corresponding regret gap algorithm.

5.2. Assumption 2: Access to a Queryable Expert

For many problems, full coverage of expert demonstrations
is not a reasonable assumption. Thus, we explore another
natural assumption that allows us to observe expert recom-
mendations at counter-factual states: access to a queryable
expert. In their classic DAgger algorithm, Ross et al. (2011)
showed that access to a queryable expert allows one to elim-
inate the covariate shift that results from the difference be-
tween expert and learner induced state distributions. When
we transition to the multi-agent setting, we can again use
access to a queryable expert to handle yet another source of
covariate shift: potential strategic deviations by agents in
the population that push the learner outside of the support of
the expert. We refer to our multi-agent extension of DAgger
as BLADES.

Algorithm 2 BLADES (Bend Learner, Aggregate Datasets
of Expert Suggestions)

1: Input: Expert demonstrations DE .
2: Initialize learner σ(1) =

argminσ Es∼DE
ℓ(σE(s), σ(s)).

3: for n = 1 to N do
4: for i = 1 to m do
5: for ϕi ∈ Φi do
6: Sample trajectories from π

(n)
σ,ϕi

.
7: Query expert for action recommendations to

construct dataset D(n)
ϕi

= {(s, σE(s))}.
8: end for
9: end for

10: Construct loss function ℓ(n)(σ) = ℓBLADES(σ, σ
(n)).

11: // Run arbitrary no-regret OCO
algorithm on sequence of losses, e.g.
FT(R)L:

12: σ(n+1) ← argminσ∈Σ

∑n
j=1 ℓ

(n)(σ).
13: end for
14: Return Best of σ(1:N) on validation data.

In each iteration of BLADES, we request the expert to pro-
vide recommendations under all possible agent deviations,
before training on the aggregated data. More formally, we

minimize the following sequence of loss functions:

ℓBLADES(σ, σ̂) = max
i∈[m]

max
ϕi∈Φi

Es∼d
πσ̂,ϕi [ℓ(σE(s), σ(s))].

(7)
Similar to MALICE, we know that the loss ℓBLADES is also a
valid convex loss function, and thus we can use a no-regret
algorithm to efficiently minimize it. This gives us an effi-
cient reduction from regret gap minimization to no-regret
online convex optimization with access to a queryable ex-
pert. We now derive and upper and lower bounds on the
regret gap of a policy returned by BLADES.

Theorem 5.9 (BLADES Regret Gap Upper Bound). Under
Assumption 5.1, if a policy σ satisfies ℓBLADES(σ, σ) ≤ ϵ ,
then

RΦ(σ)−RΦ(σE) ≤ O(ϵuH).

[Proof]

Theorem 5.10 (BLADES Regret Gap Lower Bound). There
exists a Markov Game, an expert policy σE , and a trained
policy σ such that σE satisfies Assumption 5.1, σ achieves
error ℓTV,BLADES(σ, σ) ≤ ϵ, and

RΦ(σ)−RΦ(σE) = Ω (ϵuH) .

[Proof]

In short, under either a demonstration coverage assump-
tion or with access to a queryable expert, we are able to
efficiently minimize the regret gap on a recoverable MAIL
problem.

6. Conclusion
Our work focuses on the core question of what fundamen-
tally distinguishes multi-agent IL problems from single-
agent ones. In short, our answer is that on problems with
strategic agents that are not mere puppets, we need to deal
with another source of distribution shift: deviations by
agents in the population. This new source of distribution
shift cannot be efficiently controlled with environment in-
teraction (i.e. inverse RL). Instead, we need to be able to
estimate how the expert would act in counter-factual states.
Based on this core insight, we derive two reductions that
are able to minimize the regret gap under a coverage or
queryable expert assumption. We leave the development
and implementation of practical approximations of our ide-
alized algorithms to future work.
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A. Broader Impacts
As the algorithms we proposed are theoretical, we do not foresee any direct societal concerns resulting from this work.
However, these theoretical algorithms can serve as a foundation for developing practical algorithms or provide guidance for
designing practical algorithms in MAIL, which could be applied to real world problems in the future.

B. Extending Single-Agent IL Algorithms to Minimize the Value Gap
B.1. Multi-Agent Joint Behavior Cloning

Behavioral Cloning (BC, Pomerleau (1988)) treats the problem of imitation learning as supervised learning and performs
maximum likelihood estimation with expert states as inputs and expert actions as labels. Unfortunately, as first analyzed by
Ross & Bagnell (2010), the covariate shift between the training (expert states) and test (learner states) distributions can lead
to compounding errors – i.e. a value gap that increases quadratically as a function of the horizon H . We note that this is not
an artifact of the particular objective used in BC – as argued by Swamy et al. (2021), the same can be said for any offline
imitation learning algorithm. J-BC extends BC to a multi-agent setting by learning a map from the state space S to the joint
action space A. By adapting the analysis of Ross & Bagnell (2010) and Swamy et al. (2021) to the multi-agent setting, we
establish a similar compounding error result for multi-agent behavior cloning in Theorem 4.9. There exists an example of
MDP/MG that matches this bound, which shows that the bound is tight (Swamy et al., 2021).

B.2. Multi-Agent Inverse Reinforcement Learning

A popular family of online techniques for imitation learning is inverse reinforcement learning (IRL). Intuitively, IRL can be
thought of as being similar to a GAN (Goodfellow et al., 2020) but in the space of trajectories: the generator is the learner’s
policy coupled with a world model to actually give us trajectories, while the discriminator is trained between expert and
learner trajectories and is used as a reward function for policy updates. More formally, IRL can be viewed as a two-player
zero-sum game between a reward player and a policy player (Swamy et al., 2021). In each round, the reward player picks
a reward function from F that maximizes the value gap between σE and σ, while the policy player uses a reinforcement
learning algorithm to learn a new policy in Σ that maximizes the performance under this reward function.

Intuitively, as the learner can see policy rollouts during training procedure, they cannot be “surprised” by where their policy
ends up at test time, removing the covariate shift issue that lies at the heart of compounding errors. More formally, Swamy
et al. (2021) proved that value gap for single-agent IRL algorithm is O(ϵH). We now generalize this result to the multi-agent
setting. Accordingly, our policy class Σ becomes one of joint policies. We use a reward function class F that is identical for
all agents (i.e. we assume the the game is common payoff). Then, by following the proof in Swamy et al. (2021), we prove a
O(ϵH) value gap bound for multi-agent IRL algorithm in Theorem 4.10.

Algorithm 3 J-IRL
1: Input: expert demonstration DE , Policy class Σ, Reward class F
2: Set σ(1) ∈ Σ
3: for n = 1 to N do
4: f (n) ← argmaxJ(πσE

, f)− J(Unif(πσ(1:n)), f) +R(f)
// Treat it as a single-agent RL problem over joint action space under reward
function f (n)

5: σ(n+1) ← MaxEntRL(r = f (n))
6: end for
7: Return best σ(n) on validation

C. Useful Lemmas
We introduce a lemma which will be very useful in the analysis under the recoverability assumption. It is used in the analysis
in the single-agent DAgger (Ross et al., 2011) and ALICE (Spencer et al., 2021), and we will also use it in the analysis for
MAIL. It shows that if the policy achieves small on-policy error, then, with recoverability assumption, the value gap is linear
over H .
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Lemma C.1. [Ross et al. (2011)] For agent joint policy π1 and π2, if the advantage of π1 is bounded under the true reward
function ∀i, h, s, a⃗, |Aπ1

i,h(s, a⃗)| ≤ u, and π2 get on-policy error Es∼dπ2 [ℓ(π1(s), π2(s))] ≤ ϵ, then |Ji(π1) − Ji(π2)| ≤
ϵuH,∀i ∈ [m].

Proof. Via the performance difference lemma, ∀i ∈ [m], we have

|Ji(π1)− Ji(π2)| =

∣∣∣∣∣
H∑

h=1

Es∼d
π2
h
[Aπ1

i,h(s, π(s))]

∣∣∣∣∣
≤ uHEs∼dπ2 [ℓ(π1(s), π2(s))]

≤ ϵuH

(8)

For our analysis of MALICE and BLADES, we will let π1 be any deviated expert policy πσE ,ϕi and π2 be the deviated
trained policy πσ,ϕi under the same deviation.

D. Equivalence of Regret Gap and Value Gap in Single-Agent IL
For single-agent IL we prove that the regret gap and the value gap are equivalent.

Theorem D.1 (Equivalence in Single-Agent IL). For single-agent MDP, regret gap and value gap are equivalent to each
other

J(πσE
)− J(πσ) = RΦ(σ)−RΦ(σE)

Proof. For single-agent MDP, we ignore the index i in the following proof. A strategy deviation in single-agent MDP is
equivalent to taking another policy, because there are no other agents affecting the dynamics of the agent. We have

RΦ(σ) = max
ϕ∈Φ

(J(πσ,ϕ)− J(πσ)) = J(π∗)− J(πσ)

where π∗ is the optimal policy under the true reward function. Similarly, we have

RΦ(σE) = J(π∗)− J(πσE
)

Therefore,
RΦ(σ)−RΦ(σE) = (J(π∗)− J(πσ))− (J(π∗)− J(πσE

)) = J(πσE
)− J(πσ)

In single-agent MDPs, the dynamics are fixed because no other agents affect the agent’s dynamics, and therefore, the regret
gap is equivalent to the value gap.
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E. Proofs

Contents
E.1. Proof of Theorem 4.3

Proof. We prove the lemma by showing that the occupancy measures of πσ and πσE
exactly match, i.e. ρπσ (s, a⃗) =

ρπσE (s, a⃗) for every (s, a⃗). Consider a cooperative reward function fs′ ,⃗a′ = −1(s = s′, a⃗ = a⃗′).

Under fs,⃗a, we have J(πσ) = −Hρπσ (s, a⃗), J(πσE
) = −HρπσE (s, a⃗). The maximum value performance the ex-

pert/learner can get after deviation is 0 because the reward function is non-positive. (0 can be achieved by simply not taking
a⃗ on s).

ThereforeRΦ(σ) = 0− (−Hρπσ (s, a⃗)) = Hρπσ (s, a⃗),RΦ(σE) = 0− (−HρπσE (s, a⃗)) = HρπσE (s, a⃗).

Since RΦ(σ) − RΦ(σE) = 0, we know that ρπσ (s, a⃗) = ρπσE (s, a⃗). This implies that the occupancy measures of two
policies exactly match. As a result,

sup
f∈F

max
i∈[m]

(Ji(πσE
, f)− Ji(πσ, f)) = 0

E.2. Proof of Theorem 4.4

Proof. We can construct an example in normal form games, in which there are mulitple CEs with different pay-offs. We
can let the σE plays CE 1 and σ plays CE 2. Therefore, although the regret gap RΦ(σ) − RΦ(σE) = 0, the value gap
maxi∈[m](Ji(πσE

) − Ji(πσ)) ̸= 0. The NFG in Figure 5 is an example, where (a1, a1) and (a2, a2) are two CEs with
different values.

E.3. Proof of Theorem 4.5

Proof. We prove the theorem by constructing such a Markov Game and policies that can get Ω(H) regret gap. For simplicity,
we construct a two-player cooperative game where the reward is identical for all agents. Agents can not visit the same state
at different time steps. These allow us to omit the index i in the reward function in the proof. The notation aiaj is used to
represent the action pair (ai, aj).

The transition dynamics are illustrated in Figure 2, and the rewards are action free. The reward function r(s3) = r(s5) =
... = r(s2H−3) = 1, with all other states yielding a reward of 0. Each agent has an action space Ai = {a1, a2, a3}.

The expert policy σE satisfies σE(a1a1|s0) = 1.σE(a3a3|s1) = 1. Action on all other states don’t matter because the
transition and the reward would be the same. The trained policy σ satisfies σ(a1a1|s0) = 1, σ(a1a1|s1) = 1, and plays the
same as the expert in all other states.

It is not hard to verify that σE plays a CE under this reward function, which means

RΦ(σE) = 0

The worst deviation for σ is to deviate action of agent 1 from playing a1 to a2 on both s0 and s1. We get

RΦ(σ) = H − 2

Therefore, the regret gapRΦ(σ)−RΦ(σE) = H − 2 = Ω(H)

E.4. Proof of Theorem 4.7

Proof. From the definition of CE, we knowRΦ(σE) ≤ δ1. Therefore,

RΦ(σ) = RΦ(σE) + (RΦ(σ)−RΦ(σE)) ≤ δ1 + δ2 (9)

Thus, we know that σ induces a δ1 + δ2-approximate CE.
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E.5. Proof of Theorem 4.9

Proof. For any i, we can view multi-agent problem as a single agent MDP over the joint action space under reward function
ri. Following the proof in Ross & Bagnell (2010); Swamy et al. (2021), we can prove Ji(πσE

) − Ji(πσ) ≤ O(ϵH2).
Therefore, maxi∈[m](Ji(πσE

)− Ji(πσ)) ≤ O(ϵH2).

E.6. Proof of Theorem 4.10

Proof. For any i,

Ji(πσE
)− Ji(πσ) ≤ sup

f∈F
Eξ∼πσE

[
H∑

h=1

f(sh, a⃗h)

]
− Eξ∼πσ

[
H∑

h=1

f(sh, a⃗h)

]
≤ ϵH

Therefore, maxi∈[m](Ji(πσE
)− Ji(πσ)) ≤ O(ϵH).

E.7. Proof of Theorem 5.3

Proof. With Assumption 5.2, we know that

Es∼dπσ [ℓ(σE(s), σ(s))] ≤
1

β
Es∼dπσE [ℓ(σE(s), σ(s))] ≤

ϵ

β

By Lemma C.1, we get

Ji(πσE
)− Ji(πσ) ≤ O

(
1

β
ϵuH

)
For any deviation ϕi,

Es∼d
πσ,ϕi [TV(πσE ,ϕi(s), πσ,ϕi(s))] ≤ Es∼d

πσ,ϕi [TV(πσE
(s), πσ(s))] ≤

1

β
Es∼dπσE [TV(σE(s), σ(s))] ≤

ϵ

β

By Lemma C.1, we get

Ji(πσ,ϕi)− Ji(πσE ,ϕi) ≤ O

(
1

β
ϵuH

)
Therefore,

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
)) + (Ji(πσE ,ϕi

))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi)− Ji(πσE
) +O

(
1

β
ϵuH

)
(10)

Taking the maximum over i, ϕi, we get

RΦ(σ)−RΦ(σE) ≤ O

(
1

β
ϵuH

)

E.8. Proof of Theorem 5.4

Proof. We prove the theorem by constructing such a Markov Game policies that can get Ω( 1β ϵuH) regret gap. We consider
the two-player cooperative game similar to the example in Theorem 4.5. What we need to do is to slightly modify the
MG and the policy to satisfy Assumption 5.1 and Assumption 5.2. The rewards are action free. Let u′ = ⌊u⌋, the reward
function r(s3) = r(s5) = ... = r(s2u′−3) = 1, with all other states yielding a reward of 0. The transition of the MG is
shown in Figure 3. We know that the value is between [0, u′] for any policy, which means Assumption 5.1 is satisfied.

Let σE be the policy that σE(a1a1|s0) = 1− 2β, σE(a2a1|s0) = 2β, σE(a2a1|s1) = 1
2 , σE(a3a3|s1) = 1

2 . Action at all
other states doesn’t matter because the transition and the reward would be the same. σE satisfies Assumption 5.2.
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s0

s1

s2

s3

s4

s5

s6

s2u′−1

s2u′

s2H−1

s2H

a2a1

else

all

else

a2a1 all

all

...

...

...

...

Figure 3. Example of Ω( 1
β
ϵuH) regret gap for J-BC and J-IRL

Let trained policy σ be the policy that σ(a1a1|s0) = 1 − 2β, σ(a2a1|s0) = 2β, σ(a2a1|s1) = 1
2 , σ(a1a1|s1) =

ϵH
2β , σ(a3a3|s1) =

1
2 −

ϵH
2β . σ and σE only differs at s1.

Behavior cloning error of σ satisfies

Es∼dπσE [ℓTV(σE(s), σ(s))] ≤ 2β · ϵH
2β
· 1
H

= ϵ

It is not hard to verify, the worst deviation for πσE
is to deviate action of agent 1 at s0 from playing a1 to a2, and thus

RΦ(σE) =
1

2
(1− 2β)(u′ − 2)

The worst deviation of πσ is to deviate action of agent 1 from playing a1 to a2 at s0 and s1.

RΦ(σ) =
1

2
(1− 2β)(u′ − 2) +

ϵH

2β
(u′ − 2)

Therefore, the regret gapRΦ(σ)−RΦ(σE) =
ϵH
2β (u

′ − 2) = Ω( 1β ϵuH).

E.9. Proof of Theorem 5.5

Proof. We prove it by showing that under complete reward function class F , low IRL error will imply low BC error, and
then apply Theorem 5.3.

When F = [−1, 1]|S||A|,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

=
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

(11)
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Therefore, we have
∑

s,⃗a |ρπσE (s, a⃗)− ρπσ (s, a⃗)| ≤ ϵ.∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσ (s)σ(⃗a|s)|

=
∑
s,⃗a

|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s) + dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|

≥
∑
s,⃗a

(|dπσE (s)σE (⃗a|s)− dπσE (s)σ(⃗a|s)| − |dπσE (s)σ(⃗a|s)− dπσ (s)σ(⃗a|s)|)

=Es∼dπσE [TV(σE(s), σ(s))]−
∑
s

|dπσE (s)− dπσ (s)|

=Es∼dπσE [TV(σE(s), σ(s))]−
∑
s

∣∣∣∣∣∑
a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]

∣∣∣∣∣
≥Es∼dπσE [TV(σE(s), σ(s))]−

∑
s,a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≥Es∼dπσE [TV(σE(s), σ(s))]− ϵ

(12)

Therefore, we get
Es∼dπσE [TV(σE(s), σ(s))] ≤ 2ϵ

Directly applying Theorem 5.3, we getRΦ(σ)−RΦ(σE) ≤ O
(

1
β ϵuH

)
.

E.10. Proof of Corollary 5.6

Proof. Consider the same example in proof of Theorem 5.4 with parameter ϵ′. In the example, the only difference between
the occupancy measures of two policies are ρ(s, a⃗) at state s1. Therefore,

sup
f∈F

EπσE

[∑H
h=1 f(sh, a⃗h)

H

]
− Eπσ

[∑H
h=1 f(sh, a⃗h)

H

]
= sup

f∈F

∑
s,⃗a

[ρπσE (s, a⃗)− ρπσ (s, a⃗)]f(s, a⃗)

≤
∑
s,⃗a

|ρπσE (s, a⃗)− ρπσ (s, a⃗)|

≤|ρπσE (s1, a3a3)− ρπσ (s1, a3a3)|+ |ρπσE (s1, a1a1)− ρπσ (s1, a1a1)|

=
1

H

(
2β · ϵ

′H

2β
· 2
)

= 2ϵ′

(13)

Let ϵ′ = 1
2ϵ. Then the regret gapRΦ(σ)−RΦ(σE) =

ϵH
4β (u

′ − 2) = Ω( 1β ϵuH).

E.11. Proof of Theorem 5.7

Proof. From the definition of ℓMALICE, we know

ℓMALICE(σ,DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πE(s), π(s))

]
≥ max

i∈[m]
max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
ℓ(πEϕi

(s), πϕi(s))

]
≥ max

i∈[m]
max
ϕi

Es∼d
πσ,ϕi

[
ℓ(πEϕi

(s), πϕi(s))
] (14)
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From Lemma C.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi
)− Ji(πσE ,ϕi

) ≤ O(ϵuH)

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)

Therefore, we get

Ji(πσ,ϕi)− Ji(πσ) = (Ji(πσ,ϕi)− Ji(πσE ,ϕi)) + (Ji(πσE ,ϕi))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi)− Ji(πσE
) +O (ϵuH)

(15)

Taking the maximum over i, ϕi, we get
RΦ(σ)−RΦ(σE) ≤ O (uϵH)

E.12. Proof of Theorem 5.8

Proof. We prove the theorem by constructing such a Markov Game policies that MALICE can get Ω(ϵuH) regret gap.
We consider a single-agent MDP shown in Figure 4. The rewards are action free. Let u′ = ⌊u⌋, the reward function
r(s1) = r(s3) = ... = r(s2u′−3) = 1, with all other states yielding a reward of 0. The transition of the MDP is shown in
Figure 4. We know that the value is between [0, u′] for any policy, and thus Assumption 5.1 is satisfied.

Let σE be the policy that σE(a1|s0) = 1−β, σE(a2|s0) = β. Action at all other states doesn’t matter because the transition
and the reward would be the same. It is easy to verify that σE satisfies Assumption 5.2.

Let trained policy σ be the policy that σ(a1|s0) = 1− β −Hϵ, σ(a2|s0) = β +Hϵ. σ and σE only differ at s0.

Now we verify that ℓTV,MALICE(σ,DE , σ) ≤ ϵ.

Since σ and σE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have that

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
= Es∼d

πσ,ϕi [TV(σE(s), σ(s))] ≤
1

H
·Hϵ = ϵ

Therefore,

ℓTV,MALICE(σ,DE , σ) = max
i∈[m]

max
ϕi

Es∼dπσE

[
dπσ,ϕi

dπσE
TV(σE(s), σ(s))

]
≤ ϵ

It is not hard to verify, the worst deviation for πE is to deviate action on s0 from playing a2 to a1, and thus

RΦ(πE , r) = β(u′ − 1)

the worst deviation for πE is also to deviate action on s0 from playing a2 to a1.

RΦ(π, r) = (β + ϵH)(u′ − 1)

Therefore, the regret gapRΦ(π)−RΦ(πE) = ϵ(u′ − 1)H = Ω(ϵuH).

E.13. Proof of Theorem 5.9

Proof. From the definition of ℓBLADES, we know

ℓBLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi

[
ℓ(σE(s), σ(s))

]
≥ max

i∈[m]
max
ϕi

Es∼d
πσ,ϕi [ℓ(πσE ,ϕi

(s), πσ,ϕi
(s))]

(16)

From Lemma C.1, we know that for all i, ϕi, we have

Ji(πσ,ϕi)− Ji(πσE ,ϕi) ≤ O(ϵuH)
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Figure 4. Example of Ω(ϵuH) regret gap for MALICE and BLADES

And
Ji(πσE

)− Ji(πσ) ≤ O(ϵuH)

Therefore, we get

Ji(πσ,ϕi
)− Ji(πσ) = (Ji(πσ,ϕi

)− Ji(πσE ,ϕi
)) + (Ji(πσE ,ϕi

))− Ji(πσE
)) + (Ji(πσE

)− Ji(πσ))

≤ Ji(πσE ,ϕi
)− Ji(πσE

) +O (ϵuH)
(17)

Taking the maximum over i, ϕi, we get
RΦ(σ)−RΦ(σE) ≤ O (ϵuH)

E.14. Proof of Theorem 5.10

Proof. Let MDP, expert policy σE and the trained policy σ be the same example in the proof of Theorem 5.8.

Since σ and σE only differ at state s0, and dπσ,ϕi (s0) = 1 for any i, ϕi, we have

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤

1

H
·Hϵ = ϵ

Therefore, the trained policy π satisfies

ℓTV,BLADES(σ, σ) = max
i∈[m]

max
ϕi

Es∼d
πσ,ϕi [TV(σE(s), σ(s))] ≤ ϵ

The regret gapRΦ(σ)−RΦ(σE) = ϵ(u′ − 1)H = Ω(ϵuH).

F. Comparison with Goktas et al. (2023)
Recent work Goktas et al. (2023) worked on similar problem as ours. We will highlight some of the difference between two
works.

First, the learning goals are different. They focus on a problem of inverse game theory, where the goal is to recover a
reward function to rationalize the expert’s behavior, i.e. the expert policy plays an equilibrium under such a reward function.
However, in our setting, instead of recovering a singe reward function, our goal is to learn a robust policy that get similar
regret performance under a class of reward functions. We will show later that if the ultimate goal is to learn this robust
policy, simply recovering a single reward function is not enough.

Second, the solution concepts are different. they work on Nash equilibrium, while in our setting, we focus on correlated
equilibrium. We note that our algorithms also work for learning independent policies, by restricting the policy class to be a
class of independent policies.

Third, in finite demonstration setting, their objective is to find a reward function which the learned policy plays a local
NE, under the constraints that ℓ2 difference of the observations for behaviors of two learned policy is small. We note that
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r a1 a2
a1 (1,1) (0,0)
a2 (0,0) (2,2)

r′ a1 a2
a1 (1,1) (0,0)
a2 (0,0) (1,1)

Figure 5. Multiple reward functions rationalize σE

in general simply matching this difference is not enough to guarantee that the learned policy play an equilibrium. From
Theorem 4.5, we know that even if the occupancy measures of two policies exactly match, the regrets can still be significantly
different under the same reward function.

In conclusion, they work on a inverse game theory style problem where the goal is to recover a single reward function to
rationalize the agents behavior. We work on imitation learning problem, where the goal is not recovering a single reward
function but learning a policy that matches the regret performance of the expert under a class of reward functions.

We will give examples in normal form games (NFG) to show that recovering a single reward function is not enough to learn
a policy that minimizing the regret gap for a large class of reward functions. NFG can be viewed as an MG in which H = 1
and |S| = 1.

Lemma F.1. For an expert policy σE , there may exist multiple reward functions that rationalize it.

Proof. We show this by an example of normal form games in Figure 5. Consider the policy to be σE(a1a1) = 1, then the
expert plays CE/NE under both reward functions r and r′, which means both reward functions rationalize σE .

Lemma F.2. For a fixed reward function, There may exist multiple CE/NEs.

Proof. For reward function r in Figure 5, we can construct such two policies σ1, σ2. For σ1, let σ1(a1, a1) = 1. Let
σ2(a1, a1) =

4
9 , σ2(a1, a2) = σ2(a2, a1) =

2
9 , σ2(a2, a2) =

1
9 . Tt is not hard to verify that both σ1 and σ2 play CE/NE

under the reward function r.

Therefore, since there is no one-to-one mapping between the equilibria and the pay-off structures, simply recovering a single
reward function might not help recover a policy that gets small regret gap.

For example, the true reward function is r in Figure 5, and expert policy σE satisfies σE(a1, a1) = 1. The algorithm
may recover r′ in Figure 5, and a trained policy σ that plays NE/CE under recovered reward function r′ would be
σ(a1, a1) = σ(a1, a2) = σ(a2, a1) = σ(a2, a2) =

1
4 . However, this trained policy σ does not play NE/CE under the true

reward function r.
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