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Abstract

The Dawid-Skene model is the most widely assumed model in the analysis of crowdsourcing
algorithms that estimate ground-truth labels from noisy worker responses. In this work, we
are motivated by crowdsourcing applications where workers have distinct skill sets and their
accuracy additionally depends on a task’s type. Focusing on the case where there are two
types of tasks, we propose a spectral method to partition tasks into two groups such that a
worker has the same reliability for all tasks within a group. Our analysis reveals a separability
condition such that task types can be perfectly recovered if the number of workers n scales
logarithmically with the number of tasks d. Numerical experiments show how clustering tasks
by type before estimating ground-truth labels enhances the performance of crowdsourcing
algorithms in practical applications.

1 Introduction

Labeled datasets are required in many machine learning applications to either train classifiers using supervised
learning or to evaluate their performance. Crowdsourcing is a popular way to label large datasets by collecting
labels from a large number of workers at a low cost. The collected labels are often noisy due to many reasons
including the difficulty of some labeling tasks and differing worker skill sets (Bonald & Combes, 2017; Gao
et al., 2016)). The crowdsourced labels are then used to infer ground-truth labels by aggregating the responses
of the workers. To analyze the quality of the inferred labels, a statistical model for the workers’ responses is
often assumed.

A widely-studied model for crowdsourcing was first proposed by Dawid & Skene (1979). Their one-coin model
assumes that workers have distinct skill sets, and each worker submits responses to a task independently
of all other tasks and workers. Formally, each worker i is assumed to submit a response Xij to a task j
that correctly reflects the label yj with an unknown but fixed probability pi. Although the true labels are
never observed, it is possible to estimate the unknown accuracy parameters p = (p1, . . . , pn) by assuming
that workers respond according to this statistical model. Once the accuracy parameters are estimated, labels
can be estimated using the Nitzan-Paroush estimate (Nitzan & Paroush, 1983). Despite the simplicity of
this Dawid-Skene model, the optimal error rates of label estimation algorithms have only been understood
relatively recently (Berend & Kontorovich, 2014; Gao et al., 2016).

In this paper, we are interested in modeling worker responses when crowdsourced tasks demand different
levels of expertise. The considered model is motivated by expert behavior in radiology when labeling the
presence of thoracic nodules can be more difficult because of their shape and size, or when they are imaged
with different resolutions, resulting in labels that are more reliable for tasks with one type than the other
(Shiraishi et al., 2000; He et al., 2016). The contributions of the paper are the following:

1. We consider a model for crowdsourcing that describes settings when workers label tasks that require
different levels of expertise. Hence, different tasks can be associated with different types with this
assignment of types being unknown. For this model, we propose a spectral clustering algorithm to
cluster the tasks into different types.
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2. We analyze the performance of the proposed clustering algorithm and establish sufficient conditions
for perfect clustering, focusing on the case of two task types. A key contribution of this paper is
proving that the clustering algorithm correctly classifies all tasks with high probability when the
number of workers scales logarithmically with the number of tasks which is a natural condition in
crowdsourcing applications. To the best of our knowledge, this result is novel for spectral clustering
in the context of crowdsourcing models.

Traditional spectral clustering analyses rely on matrix perturbation results, such as the Davis-Kahan
theorem (Yu et al., 2014), which provides bounds on the l2-norm of eigenvector perturbations when
noise is added to the signal matrix. However, such bounds are insufficient (see Remark 2) for proving
perfect clustering, which requires control over the l∞-norm of the perturbation, a significantly stronger
and more challenging requirement. The Davis-Kahan theorem does not yield meaningful guarantees
in this setting.

Moreover, exact-recovery arguments from stochastic block models (Abbe, 2018)—which rely on
matrices with independent Bernoulli edges—do not extend to the dependent, aggregated response
matrix that arises in crowdsourcing (see Subsection 2.4 for a detailed discussion), necessitating the
l∞-perturbation analysis we consider here.

Our main contribution lies in leveraging the specific low-rank signal-plus-perturbation structure of
the expected task-similarity matrix. We show that the perturbation remains sufficiently small and
adapt techniques from Fan et al. (2018) to establish perfect clustering. While the proof is intricate,
we provide a concise outline in the main body of the paper.

3. Clustering, and in particular, identifying the hard tasks may be the end goal in many cases. After
the clustering step, one may choose to add more workers to the hard tasks and try to identify experts
who are better at the hard tasks. But here, in addition, we also study whether the clusters can be
helpful to perform better labeling. For this purpose, we conduct experiments using publicly available
datasets. We compared two classes of algorithms: one where we first performed task clustering by
type and then applied an algorithm designed for the traditional DS model to label tasks separately
for each type and the other where the labeling algorithm is directly applied to the dataset without
any clustering. Our experimental results show that clustering followed by labeling outperforms direct
labeling in the datasets we considered. We also compared our algorithm with other algorithms
which also divide tasks into types. Again, we found that our algorithm outperforms other task
type-dependent algorithms.

4. In Section 3.3, we theoretically examine the impact of the clustering step on downstream label
estimation in the two-type crowdsourcing model. Specifically, we derive a lower bound on the
expected labeling error when applying DS-based weighted majority voting without clustering (i.e.,
type-agnostic). We then compare this lower bound to the performance of weighted majority voting
with clustering, assuming task types are known. Our analysis shows that the latter asymptotically
outperforms the lower bound for type-agnostic algorithms.

2 Background and Related Work

In this section, we first discuss the model under consideration followed by a discussion on related prior works.

2.1 Problem Setting

For any positive integer m, denote by [m] the set {1, . . . , m}. We use the notation || · || to denote l2-norm
and || · ||∞ to denote l∞-norm in this paper. Let n ≥ 3 be the number of workers labeling d tasks. Each task
j ∈ [d] is associated with deterministic but unknown ground-truth labels y1, y2, . . . , yd ∈ {−1, +1} following
Gao et al. (2016). Each worker i ∈ [n] independently submits a response Xij ∈ {−1, +1} to each task j with
Xij being independent across task index j. The goal is to estimate the true label yj ∈ {−1, +1} for every
task j ∈ [d].
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Our model is motivated by crowdsourcing scenarios with more than one type of task. For simplicity of
exposition in this paper, we are considering there are exactly two types of tasks. More specifically, each task
j is associated with a type kj ∈ {e, h} indicating “easy” and “hard” types, respectively. The task types are
also deterministic but unknown, and a task’s type kj determines the accuracy parameter pkji = P(Xij = yj)
as the probability of worker i correctly labeling a task j for all workers i ∈ [n]. Using the accuracy vectors,
we can define the reliability vectors re, rh ∈ [−1, 1]n as rk = 2pk − 1, where we denote the ith element of pk

by pki for all k ∈ {e, h}. Finally, we let the number of tasks of type k be dk; clearly, de + dh = d. We assume
that dk is unknown and re ̸= rh.

This hard-easy model is motivated by applications where certain tasks can inherently be more difficult than
others. In keeping with the motivation of studying problems with hard and easy tasks, we assume the
following:

Assumption 1 1. The reliability vectors satisfy

(a) ∥re∥2 ≥ ∥rh∥2.

(b) For some universal constant ρ ∈ (0, 1/2),

ρ ≤ 1 ± rki

2 ≤ 1 − ρ, ∀i ∈ [n], ∀k ∈ {e, h}. (1)

2. There exists α ∈ (0, 1) such that de = αd and dh = (1 − α)d. We assume α ≥ 0.5, that is, de ≥ dh.

3. There exists a positive constant r̄ such that 1
n

∑
i rki > r̄ for all types k ∈ {e, h}. Practically speaking,

this assumption requires the average reliability of the workers to be positive for each type. Without
this assumption, the label vector y is only identifiable up to sign.

The assumption de ≥ dh is practically motivated, as in most crowdsourcing settings, easier tasks tend to be
more common than harder ones. Nevertheless, this assumption can be relaxed up to any α ∈ (0, 1) without
affecting the validity of our results.

Our hard-easy model can be considered an extension of the one-coin Dawid-Skene (DS) model to two types
of tasks. Henceforth, when we refer to the DS model, we mean the one-coin DS model unless explicitly stated
otherwise.

It is worth noting that our model assumes all workers respond to all tasks, as it is motivated by applications
where an institution contracts professionals to label a dataset. In this paper, we are not interested in
applications that use platforms such as Amazon Mechanical Turk, in which workers independently select a
sparse subset of tasks to label.

2.2 Related Work: Dawid-Skene Model

Crowdsourcing models differ in the assumed structure for the accuracy matrix P , where

Pij = P (Xij = yj) .

In the one-coin DS model, P is a matrix with d identical columns. There is a vast literature on inferring labels
from data under this model. These include the original EM algorithm proposed in Dawid & Skene (1979),
spectral-EM algorithm in Zhang et al. (2016), message passing algorithm in Karger et al. (2013; 2014b),
label estimation from the principal eigenvector of the worker-similarity matrix studied in Dalvi et al. (2013)
to name a few. For our experiments, once the tasks are separated by types, we use the following common
approach on the DS model to estimate the reliability vector rk from the responses X, denoted as r̂k, and use
the Nitzan-Paroush decision rule (Nitzan & Paroush, 1983) to infer the labels for each type k:

ŷNP
j = sgn

(
n∑

i=1
log 1 + r̂ki

1 − r̂ki
Xij

)
, ∀j ∈ [d], kj = k. (2)

where we assign the label as +1 if the argument inside the right-hand side is equal to zero. In the reliability
estimation step after the clustering step, we use the Triangular Estimation(TE) algorithm proposed in Bonald
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& Combes (2017), which we will use in our theoretical results. The reason we focus on this algorithm is that
it has been compared to other algorithms and shown to perform better in real datasets. Additionally, by
comparing the probability of labeling error expression derived from Bonald & Combes (2017) with the lower
bounds in Gao et al. (2016), it can be seen that the algorithm is provably asymptotically optimal. We give a
brief description of the TE algorithm in Appendix B.

Lu & Zhou (2016) study a sub-Gaussian mixture model and, in the context of crowdsourcing, focus on the
standard Dawid–Skene (DS) model where all tasks are assumed to be probabilistically identical. While their
framework allows multiple labels per task, it does not incorporate heterogeneity across task types. Their
Lloyd-type algorithm is closely related to EM with spectral initialization.

2.3 Related Work: More General Models

The DS model has been extended in numerous prior works to account for scenarios where the same worker
may exhibit different reliabilities across various tasks. We review these extended models in this subsection.

A rank-1 model studied by Khetan & Oh (2016) assumes that P is an outer product of the accuracy of the
workers and a vector parametrizing the easiness of all tasks. A more general model was studied in Shah et al.
(2021), where P is assumed to satisfy strong stochastic transitivity (Shah et al., 2016). In the context of
crowdsourcing, this assumption implies that workers can be ranked from most to least accurate and that this
ranking does not change across tasks. The P that they consider can be associated with a rank as large as
min(n, d). Lastly, the model in Shah & Lee (2018); Kim et al. (2024) assumes an accuracy matrix P that
exhibits a low-rank structure with a fixed number of distinct entries. They call it a k-type specialization
model which is close to a stochastic block model with k communities. The algorithms designed for this model
in Shah & Lee (2018); Kim et al. (2024) have a two-step approach. The first step involves clustering workers
according to their types. The second step is estimating labels for each task j using a weighted majority vote
where significant weight is given to workers that match the type of task j and negligible weight is given to all
other workers.

We now compare our model to the above models. As pointed out in Kim et al. (2024), both Khetan & Oh
(2016) and Shah et al. (2021) consider the following: if worker A is better than worker B for any task, then
this same ordering holds for all other tasks. Such a monotonicity is not assumed in our model. The k-type
specialization model in Shah & Lee (2018); Kim et al. (2024) is somewhat similar in spirit to our model in
the sense it attempts to cluster tasks according to types. However, they also cluster workers according to
types and their algorithm uses a simple majority vote or a majority vote with two weights. Such a voting
scheme is not optimal when different workers have different reliabilities (Nitzan & Paroush, 1983).

While Ariu et al. (2024) also considers models with multiple task types, their setting and contributions are
fundamentally different. They assume all workers are statistically identical, resulting in a rank-1 expected
response matrix and making simple majority voting optimal. In contrast, our model captures heterogeneity
in worker reliabilities across task types, leading to a rank-2 structure and necessitating the use of weighted
majority voting. Moreover, their clustering method requires the number of workers to exceed the number of
tasks for reliable recovery, whereas our analysis shows that only log(d) workers suffice—making our approach
significantly more practical in expert-labeling scenarios.

Several well-known probabilistic models also capture heterogeneity in crowdsourcing but pursue a different
goal from ours. GLAD Whitehill et al. (2009) represents each worker by a continuous “ability” and each item
by a continuous “difficulty” and learns these parameters via Expectation-Maximization, without finite-sample
error guarantees. Zhou et al. (2012) assigns a separate latent distribution to every worker–item pair and poses
label aggregation as a convex minimax-entropy problem, again with no recovery bounds. The CBCC/EBCC
family (Kim & Ghahramani, 2012; Li et al., 2019) introduces latent worker communities with shared confusion
matrices, improving aggregation through richer Bayesian priors while still treating tasks as i.i.d. and leaving
task types unidentified. The tutorial Drutsa et al. (2019) and the recent paper Ibrahim et al. (2025) review
these models from a systems perspective but do not provide new theoretical limits. In contrast, we focus
on discrete latent task types. We prove that these types can be perfectly clustered with only n = log(d)
workers under a constant reliability gap. Identifying such hard/easy groups is often an end goal in practice
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(e.g., triage or active relabeling) and is orthogonal to the per-item difficulty or worker-community structure
emphasised by GLAD, Zhou et al. (2012), and BCC variants.

Its also important to note a recent work Han et al. (2025) which considers a different regime from ours: it
exploits item features and per-worker continuous embeddings; The method does not posit latent task types;
ground truths are not treated as hidden variables in the worker model, and no finite-sample guarantees are
reported.

2.4 Related Work: Spectral Clustering

Spectral clustering has been widely studied in various contexts. Von Luxburg (2007) provides a comprehensive
review of this area. The basic idea behind spectral clustering is to analyze the spectrum of the expected
observation matrix and then show that the spectrum of the observed data is close to that of the expected
matrix (Von Luxburg, 2007; Ng et al., 2001). The specifics of these steps can differ significantly across
applications. To the best of our knowledge, there is limited prior work on spectral clustering specifically
for crowdsourcing data. Some works, including Dalvi et al. (2013); Shah et al. (2021); Khetan & Oh (2016)
explore the use of spectral methods in crowdsourcing, mainly focusing on analyzing worker-similarity matrices
and improving label aggregation. However, most focus on label aggregation rather than explicitly clustering
tasks based on their types. In particular, our result that perfect clustering of tasks by type is possible with
O(log(d)) workers when task-type reliabilities are well-separated in norm appears to be novel.

The condition that a logarithmic number of workers suffices for perfect clustering bears resemblance to sample
complexity thresholds in other latent structure models, such as the degree condition for exact recovery in
stochastic block models (SBMs) (Abbe, 2018) and the signal-to-noise ratio threshold in sub-Gaussian mixture
models (Lu & Zhou, 2016). However, the analogy appears to be superficial. In particular, unlike SBMs
where Laplacian matrix entries (Abbe, 2018) are independent Bernoulli random variables, the entries of our
task-task similarity matrix are highly dependent, as each aggregates the responses of shared workers taking
integer values in [0, n]. These dependencies violate key assumptions in SBM-style analyses, which is why
classical guarantees—e.g., those based on Fiedler vectors—do not directly apply in our setting.

To frame our setting in mixture-model terms we can treat the four task groups—(easy, label +1), (easy,
label −1), (hard, label +1), and (hard, label −1)—as four mixture components over binary vectors of worker
responses. While this allows us to apply tools from mixture model analysis, even then, the guarantees differ:
Lu & Zhou (2016) show perfect clustering with probability 1 − e

√
n when n = O(log(d)) , whereas we achieve

a stronger guarantee of 1 − e−n under the same conditions.

A more direct comparison is with SBM exact-recovery thresholds. For the general two–block SBM with possibly
different within-class probabilities p11 = a log d/d, p22 = c log d/d and cross probability p12 = b log d/d, Abbe
(2018); Abbe & Sandon (2015) show that exact recovery is information-theoretically possible iff

min
x∈(0,1)

[
x(

√
a −

√
b)2 + (1 − x)(

√
c −

√
b)2
]

> 2,

(see Theorem 3 in Abbe (2018)). By contrast, our exact recovery result requires only n = O(log d) workers are
available, and the reliability gap satisfies ∥re∥ 2

2 − ∥rh∥ 2
2 > βn for some absolute constant β > 0, a markedly

weaker condition than the thresholds needed for SBM.

These differences highlight why SBM-style guarantees cannot be directly transferred to multi-type crowd-
sourcing and motivated the new perturbation analysis considered in this work.

3 Main Results

Notation

For clarity, Table 1 summarizes the key symbols used throughout the paper. We follow standard conventions
and do not use boldface for vectors; symbols like re, rh, and v̂ denote vectors, while their indexed versions
(e.g., rei) refer to scalars.
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For a vector x ∈ Rd, we write ∥x∥2 for the Euclidean norm and ∥x∥∞ = maxj |xj | for the max norm. For
a square matrix M ∈ Rd×d, we define the infinity norm as ∥M∥∞ = maxi

∑d
j=1|Mij |, i.e., the maximum

absolute row sum.

Symbol Meaning / Definition

[m] Index set {1, . . . , m}
n, d Number of workers and number of tasks, respectively
Xij ∈ {−1, +1} Response given by worker i on task j

yj ∈ {−1, +1} Unknown ground-truth label of task j

kj ∈ {e, h} Type of task j: either easy (e) or hard (h)
pki Probability that worker i correctly labels a task of type k

rki = 2pki − 1 Reliability of worker i on type-k tasks
re, rh Reliability vectors for easy and hard tasks, respectively
de, dh Number of easy and hard tasks, respectively (de + dh = d)
α Proportion of easy tasks: de = αd, dh = (1 − α)d
ρ The amount by which pki is bounded away from 0 and 1
r̄ Lower bound on average reliability: 1

n

∑
i rki ≥ r̄

T = 1
n X⊤X Task-similarity matrix

v̂ Principal eigenvector of T used for clustering
µ̂ = 1

d

∑
j |v̂j | Threshold for clustering tasks based on v̂

Ry Low rank signal matrix defined in Lemma 1
ν(n−1Ry) Normalized eigengap of Ry as defined in Lemma 1
r̂ki Estimated reliability of worker i for type-k tasks
η Fraction of tasks mis-clustered by the algorithm
s Ratio between the distinct entries of the principal eigenvector of E[T ]
D(re, rh, α, d) Problem-dependent term in the perfect clustering bound from Theorem 1
Φn(rk) Error exponent for DS-based label estimation on type-k tasks

Table 1: Summary of notation used throughout the paper. Subscripts k ∈ {e, h} indicate task type when
relevant.

3.1 Algorithm

We proposed a clustering algorithm for clustering tasks by type from the observation matrix X. For the goal
of estimating the ground truth label yj for each task j ∈ [d], we propose a two-step approach:

1. Clustering Tasks by Type: Separate the tasks into two clusters using Algorithm 1.

2. DS Algorithm for Label Estimation: Use the following DS model-based algorithm on each of
those clusters to estimate the labels within each cluster:

(a) Use the TE algorithm (see Appendix B for details of TE algorithm) to estimate the reliability
vector for each cluster.

(b) Estimate the labels using the plug-in NP rule as given in Equation 2.

The clustering method described in Algorithm 1 computes the principal eigenvector of the task-similarity
matrix T = n−1XT X denoted as v̂. Each task j is then assigned to one of the two clusters by thresholding
the magnitude of the jth entry v̂j with a threshold µ̂ = 1

d

∑
j |v̂j |. We adopt the convention that eigenvectors

are unit norm.
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Algorithm 1 Clustering tasks into hard and easy types
Input: Worker responses X ∈ {−1, +1}n×d.
Compute the principal eigenvector v̂ of the task-similarity matrix T = n−1XT X.
Set threshold µ̂ = 1

d

∑
j |v̂j |.

Classify task types by thresholding:

k̂j =
{

e if |v̂j | ≥ µ̂

h if |v̂j | < µ̂.

Return: Task type estimates k̂1, . . . , k̂d.

3.2 Clustering

In this sub-section, we analyze the performance of the clustering Algorithm 1. We note that our clustering
algorithm only needs to classify tasks into two groups, as long as all the easy tasks fall into one group and
all the hard tasks fall into the other group. Later, we will apply the DS-based algorithm separately to each
cluster and hence, it does not matter which group we call hard and which group we call easy. Therefore, the
clustering error associated with Algorithm 1 can be defined as

η := min
π:{e,h}→{e,h}

1
d

∑
j

1
{

π(k̂j) ̸= kj

}
. (3)

We show that the probability of perfectly recovering clusters, i.e. η = 0, approaches 1 with a rate exponentially
fast in n. This is precisely stated and shown in Theorem 1.

To understand why task types can be perfectly recovered from clustering, we characterize the spectral
properties of the task-similarity matrix T . For simplicity of analysis, we re-arrange the tasks such that easy
tasks are in the first de columns of X and hard tasks are in the remaining columns. Knowing the arrangement
of columns implies knowledge of task types, but we only use this to simplify exposition and note that this is
not used by our algorithm and does not affect our analysis.

Denote Id and 1a×b to be the d × d identity matrix and the all-ones matrix of size a × b, respectively. We first
show that the expected task similarity matrix E[T ] := E[n−1X⊤X] can be factorized into a sum of low-rank
and sparse components.

Lemma 1 Define the matrix

n−1Ry

:= n−1diag(y)
(

∥re∥2
21de×de

rT
e rh1de×dh

rT
h re1dh×de ∥rh∥2

21dh×dh

)
diag(y)

and a diagonal matrix
S − Id − 1

n
diag

(
[∥re∥2

211×de
, ∥rh∥2

211×dh
]T
)

.

The matrix n−1Ry is rank-ℓ with ℓ ≤ 2, and its normalized eigen-gap ν(n−1Ry) := d−1(λ1(n−1Ry) −
λ2(n−1Ry)) between its two largest eigenvalues λ1, λ2 can be expressed as:

ν(n−1Ry) =

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

nd
. (4)

Further, we have the low-rank factorization

E[T ] = n−1Ry + S. (5)

The proof is provided in Appendix E.
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Our key motivation for Algorithm 1 is based on the observation in Lemma 2, where the principal eigenvector
v(n−1Ry) of the low-rank signal matrix n−1Ry has a special structure. Specifically, there exists a bijection
between the magnitudes of entries in the principal eigenvector and task types. The proof follows from the
eigendecomposition of matrix n−1Ry and is presented in Appendix E.

Lemma 2 Suppose r⊤
e rh ̸= 0. Then, the principal eigenvector of the matrix n−1Ry has the following form:

v(n−1Ry) = diag(y)

 s√
s2de+dh

1de×1
1√

s2de+dh

1dh×1

 (6)

where
s = ω +

√
ω2 + dh

de
(7)

and
ω = de∥re∥2

2 − dh∥rh∥2
2

2derT
e rh

.

In the alternative case that r⊤
e rh = 0, we have that

v(n−1Ry) = diag(y)
[ 1√

de
1de×1

0dh×1

]
. (8)

Denote the distinct magnitudes in v(n−1Ry) corresponding to easy and hard tasks as µe(n−1Ry) and
µh(n−1Ry) respectively. It turns out that µe(n−1Ry) ̸= µe(n−1Ry) as long as ∥re∥2 ̸= ∥rh∥2. Consequently
under this condition, if we have access to the signal matrix n−1Ry, we can differentiate tasks of one type
from another by inspecting the entries of the vector v(n−1Ry). Specifically, the task type can be recovered
by thresholding the magnitudes of the entries with the average

µ(n−1Ry) = de

d
µe(n−1Ry) + dh

d
µh(n−1Ry). (9)

However, we can only access the principal eigenvector v̂ of T = n−1XT X instead of v(n−1Ry). The following
theorem shows that the noisy entries in v̂ are sufficiently concentrated to those in v such that the threshold
rule applied to v̂ perfectly recovers the task types.

Theorem 1 Under Assumption 1, if the number of tasks d satisfies

d ≥ C1√
D(re, rh, α, d)

, (10)

then Algorithm 1 returns task type estimates such that

P (η = 0) ≥ 1 − 2d2 exp (−C2nD(re, rh, α, d)) , (11)
where the problem-dependent quantity D(re, rh, α, d) characterizing the error exponent and the requirement
on d is defined as follows:

D(re, rh, α, d) =


(

(1−α)5ρ
α

ν(n−1Ry)||s|−1|√
s2+1

)2
when, r⊤

e rh ̸= 0,(
(1−α)5ρ

α ν(n−1Ry)
)2

when, r⊤
e rh = 0

(12)

and C1 and C2 are universal constants, independent of the problem parameters.

Remark 1 Inspecting the problem-dependent exponent D(re, rh, α, d) in Theorem 1 reveals that, when the
reliability vectors are not orthogonal, the exponent increases (as |s| is an increasing function of |ω| and |s| > 1
under Assumption 1) with

|ω| =
∣∣de∥re∥2

2 − dh∥rh∥2
2
∣∣

2der⊤
e rh

.

This implies that the probability of perfect clustering improves (i.e., has a better exponent) when there is a
large gap in the norms of the reliability vectors and/or the angle between them is large.
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3.2.1 log(d) Workers Suffice for Perfect Clustering

From the above Theorem 1, we show that for achieving a clustering with η = 0 using Algorithm 1, we only
need the number of workers n to be of order O(log(d)) under our model assumptions. From Theorem 1, the
requirement on n for an event of perfect clustering with probability ≥ 1 − δ becomes:

n ≥
log
(

2d2

δ

)
C2D(re, rh, α, d) .

The next lemma provides an intuitive condition on the reliability vectors re and rh showing that O(log(d))
workers suffice for perfect clustering.

Corollary 1 If there exist some universal constant β with 0 < β ≤ 1,

∥re∥2
2 − ∥rh∥2

2
n

≥ β (13)

then, under Assumption 1, Algorithm 1 achieves clustering error η = 0 with probability at least 1 − δ when

n ≥
C6α2 log

( 2d
δ

)
(1 − α)12ρ2β4 (14)

where C6 is an absolute constant given as C6 = 160
C2

.

Recall from our model assumptions, we indeed have re, rh = O(n). Hence, the above condition in Equation
13 is quite practical. It requires that the normalized norm gap between the reliability vectors is bounded
away from zero.

The idea behind proving Corollary 1 is to show that the problem-dependent parameter D(re, rh, α, d) is of
order O(1). This is shown in detail in Section F.5.

3.2.2 Proof Sketch of Theorem 1

Building upon the above discussion, we give an outline of the key ideas involved in proving Theorem 1 below.
The detailed proof of Theorem 1 is given in the Appendix F:

1. Recall the structure of v(n−1Ry), the principal eigenvector of the signal matrix n−1Ry from Lemma
2. We prove that The magnitudes of v(n−1Ry) corresponding to different types are separated when
∥re∥2 ≠ ∥rh∥2. This suggests that under this condition if we had access to v(n−1Ry), then we can
cluster tasks by using a threshold to differentiate the magnitudes of the elements of v(n−1Ry). But
we do not have access to this eigenvector, therefore the rest of the proof shows that the eigenvector
we have access to is a small perturbation of v(n−1Ry).

2. We note that T = n−1Ry + S + N, where N is a random matrix noise term given by N = T − E(T ).
We use matrix Hoeffding inequality to show that this noise term is small in the infinity-norm sense.
This is shown in Lemma 3.

Lemma 3 For any t > 0 and any positive values of n and d, the task-similarity matrix T concentrates
around its expectation as given by the noise matrix concentration follows:

P (∥N∥∞ ≥ t) ≤ 2d2 exp
(

− nt2

2d2

)
. (15)

The proof is given in the appendix F.1.

3. Since S is a diagonal matrix, it can be easily shown that its spectral norm is sufficiently small when
the number of tasks is large, which is the case in crowdsourcing models. This observation, along with
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Lemma 3, implies that the spectral norm of S + N is sufficiently small with high probability. Then,
using the result of Fan et al. (2018), we show that the principal eigenvector of the matrix T which is
denoted as v̂ has a structure similar to that of v(n−1Ry), i.e., v̂ is a perturbed version of v(n−1Ry),
in the l∞ norm sense, where the perturbation is small under our model. This is shown in Lemma 4.

Lemma 4 If ν(n−1Ry) satisfies : C3(1−α)4ρ
α ν(n−1Ry)d − 1 > 0, then, for every 0 < ϵ < C3(1 −

α)4ν(n−1R)d − 1, the event

min
θ∈{−1,+1}

∥θv̂ − v(n−1Ry)∥∞ ≥ C4α

(1 − α)4ρν(n−1Ry)d
√

d
(ϵ + 1) (16)

occurs with probability at most 2d2 exp
(

−n ϵ2

2d2

)
where C3 and C4 are universal positive constants.

The proof of Lemma 4 is quite involved and is provided in Appendix F.2. Below, we outline the key
intuition behind the approach. Let ζ denote the angle between reliability vectors re and rh. Our
analysis distinguishes between two regimes:

• Sufficiently large ζ: In this case, we approximate the expected task-similarity matrix using a
rank-2 signal matrix.

• Small ζ: Here, we employ a rank-1 approximation of the task-similarity matrix.
A crucial aspect of our analysis is identifying the transition between these regimes, which requires a
careful, structure-aware examination of the task-similarity matrix.

4. The l∞ norm concentration in Lemma 4 yields a sufficient condition for perfect clustering. In particular,
we show that ∥v̂ − v(n−1Ry)∥∞ is with high probability, at most 1

2 min(me(n−1Ry), mh(n−1Ry)),
where me(n−1Ry) = |µe(n−1Ry) − µ(n−1Ry)| and mh(n−1Ry) = |µ(n−1Ry) − µh(n−1Ry)|. A little
thought shows that this would imply that all tasks are clustered perfectly.

Remark 2 In the above proof sketch, we leveraged the l∞-norm perturbation of the eigenvectors of the
task-similarity matrix, as established in Lemma 4 to derive the perfect clustering result in Theorem 1 where
log(d) order of workers suffice. Next, we discuss why a direct application of the Davis-Kahan theorem (Yu
et al., 2014), one of the most commonly used perturbation results in clustering literature, yields vacuous
bounds in this context.

The Davis-Kahan theorem characterizes eigenvector perturbations as a function of matrix perturbations in
the l2-norm of the eigenvectors. However, it is ineffective for obtaining meaningful l∞ norm bounds on
eigenvector perturbations. A standard approach to convert an l2-norm bound into an l∞-norm bound relies
on the inequality ∥x∥∞ ≥ 1√

d
∥x∥2 for a vector x in Rd. This introduces an undesirable

√
d factor, leading

to a requirement that the number of workers must scale polynomially with the number of tasks which is an
impractical condition for crowdsourcing applications.

This limitation highlights the necessity of a more refined analysis, as developed in our approach, to ensure
that perfect clustering is achievable under realistic conditions. Notably, the Davis-Kahan theorem does not
exploit any special structure of the matrix that is being perturbed while the result in Fan et al. (2018) allows
us to exploit a low-rank structure that we have identified in the crowdsourcing task-similarity matrix.

3.3 How Useful is Clustering for Labeling?

A natural question to ask in this two-type model is how important is the clustering step proceeding the label
estimation. Can one use a weighted majority voting estimate for the labels using a single weight vector across
all tasks? The following proposition gives a lower bound on the expected labeling error for such type-agnostic
weighted majority voting (TA-WMV) algorithms in this context.

Proposition 1 Let the WMV estimate using a single weight vector across all task j is defined as:

ŷW MV
j (w) := sgn

(
n∑

i=1
wiXij

)
, ∀j ∈ [d]

10
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for some weight vector w. We consider weight vectors belonging to the set wl ≤ |wi| ≤ wu for all workers
i with wl and wu two positive constants such that 0 < wl ≤ wu < ∞. Under this construction, for any
y ∈ {−1, +1}d, the average labeling error rate for the type-agnostic WMV algorithm can be lower bounded as

lim inf
n→∞

1
n

log min
w

E

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

) ≥ − lim sup
n→∞

max
w

min
k

φn(w, rk),

for any ground-truth vector y ∈ {−1, +1}d where the error exponent φn(w, rk) is given by

φn(w, rk) = − inf
t≥0

1
n

n∑
i=1

log
(

etwi
1 − rki

2 + e−twi
1 + rki

2

)
. (17)

The above result is a generalization of Theorem 5.1 in Gao et al. (2016); our proposition uses weighted
majority voting for arbitrary weights for a type k, whereas their result is for majority voting. The proof
of Proposition 1 is given in Appendix G. It’s worth noting that the paper Gao & Zhou (2013) has shown
lower bounds on labeling performance for a two-type model for these two algorithms: projected expected
maximization and majority voting (Theorems 4.2 and 4.3 in Gao & Zhou (2013)). Compared to them, we
have a lower bound on the performance of labeling for the weighted majority voting.
To understand the limitation of TA-WMV algorithms, it is instructive to compare the error rates in
Proposition 1 with the achievable rates by an algorithm that accounts for type difference among different
tasks under the setting when task types are known but the reliability vectors (re, rh) are unknown.

Proposition 2 Assume Vk = minimaxa,b̸=i

√
|rkarkb| > 0 for each k ∈ {e, h} which is satisfied if there

are at least two workers with non-zero reliability values for each type. If the number of workers n satisfies
n ≥

√
3ρ/r̄, and the number of tasks per type satisfies

dk ≥ C5
n2

V 4
k min(ρ2, r̄2)

(
nΦn(rk) + log(6n2)

)
. (18)

for some universal constant C5 then, the TE algorithm to estimate the reliability vectors followed by NP-WMV
for label estimation separately for each type (when type information is known) achieves a labeling error rate
satisfying

E

1
d

∑
j

1 (ŷj ̸= yj)

 ≤ 3
∑

k∈{e,h}

dk

d
exp (−nΦn(rk)) ,

where ŷj and yj are the estimated and true labels of task j, respectively, and

Φn(rk) = − 1
n

n∑
i=1

log
(√

(1 + rki)(1 − rki)
)

. (19)

The error exponent Equation 191 for type-dependent weighted majority voting can be related to the error
exponent for the type-agnostic weighted majoring voting in Equation 17 through the identity

Φn(rk) = max
w

φn(w, rk).

Recall from Proposition 1, the lower bound on the error exponent for type-agnostic Weighted Majority Vote is
maxw mink φ(w, rk) and from the definition of Φn(rk), it is clear that maxw mink φ(w, rk) ≤ Φ(rk), ∀k ∈ {e, h}.
It is easy to see that, in most cases, the inequality is strict for both k ∈ {e, h}. Therefore, TA-WMV is
strictly worse than WMV applied to each task type separately. The proof of Proposition 2 is provided in the
Appendix H.

1This error exponent also serves as the asymptotic lower bound for the labeling error for a one-coin DS model corresponding
to a reliability type rk (Gao et al., 2016).
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3.3.1 Labeling Error Guarantee for Our Two-Step Approach

By combining the perfect clustering result from Theorem 1 with the labeling error guarantee for the known-
type case from Proposition 2, we immediately obtain the labeling error guarantee for our two-step approach.
This approach consists of: (1) clustering tasks by type using Algorithm 1, and (2) applying the DS-based
algorithm TE with NP-WMV for label estimation within each cluster. For completeness, the labeling
guarantee of this two-step approach is provided in Theorem 2 in the Appendix D with its proof in Appendix I.

4 Experiments

In this paper, we present experiments with real-world datasets, pseudo-real datasets, and synthetic datasets
to supplement the theory presented in the previous sections. By pseudo-real datasets, we mean the following:
some real-world sets do not contain all the information we need to run our experiments and therefore, we
generate some of the data we need using the available data in the datasets. In such cases, we will explain
how we filled in the required data.

1. First, we compare our two-step algorithm (clustering tasks and then applying a DS algorithm to
each type of task) with a single-step DS algorithm (i.e., applying a DS algorithm to all the tasks).
Our experiments clearly show the benefit of clustering. Although our theoretical analysis primarily
employs TE followed by WMV with NP-weights as the Dawid-Skene (DS) algorithm, we also compare
DS algorithms with and without clustering across various other DS algorithms to demonstrate the
benefits of clustering: unweighted majority vote (MV), ratio of eigenvectors (ER, Dalvi et al. 2013),
TE (Bonald & Combes (2017)), and Plug-in gradient descent (PGD, Ma et al. 2022). A large number
of algorithms have been proposed for crowdsourcing including Spectral-EM (Zhang et al. (2016)),
and message-passing (Karger et al. (2014a)) to name just a few. Exhaustively comparing with all the
algorithms is difficult, so we have chosen to compare our algorithms to ER, TE, and PGD for the
following reason: many algorithms have been compared in Dalvi et al. (2013), Bonald & Combes
(2017) and Ma et al. (2022), where it was shown that ER, TE, and PGD consistently out-perform
other algorithms.

2. Next, we compare our algorithm with other algorithms that also consider tasks of different types.
We demonstrate that our algorithm performs better on the datasets considered.

The datasets we used for our experiments are the following:

1. Two of the real-world datasets we used which are called the “Bluebird” (Welinder et al., 2010) and
“HC-TREC” (Buckley et al., 2010) are complete datasets, i.e., the response matrix has no missing
entry.

2. Three other real-world datasets, “Dog” (Deng et al., 2009), “Temp” (Snow et al., 2008), and “RTE”
(Snow et al., 2008) are sparse datasets that do not provide responses corresponding to all worker-task
pairs as in our motivating example in the introduction. To handle this, for the “Dog” dataset that
contains 4 classes, we converted it to binary groups {0, 2} vs. {1, 3} following Bonald & Combes
(2017). Then we calculate the fraction of correct labels (given by workers) for each task based
on the ground truth and the available responses and classify half of them (the half with the most
accurate worker responses) as easy tasks and the rest as hard tasks. Then, we estimate the empirical
reliabilities of the workers for each type of task and use this to generate synthetic entries for the
missing worker-task pairs in the response matrix. Similar treatments for the no-response entries are
done for, “RTE” and “Temp”, each of which contains binary truth values. The number of workers
and tasks for all five datasets (“Bluebird”, “HC-TREC”, “Dog”, “Temp”, and “RTE”) are provided
in Table 2.

3. Obtaining real-world crowdsourcing datasets for healthcare examples that we mention in the Intro-
duction is difficult due to privacy reasons. With the limited information available from a radiology
dataset, we created a synthetic dataset and we report the results from the dataset in Appendix C.1.
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Table 2: Dataset Descriptions

Dataset # Workers # Tasks
Bluebird 39 108
Dog 78 807
RTE 164 800
HC-TREC 10 1000
Temp 76 462

Table 3: Label estimation errors for different crowdsourced datasets. “TA” and “C” indicate that labels were
estimated without (type-agnostic) or with clustering.

Dataset MV ER TE PGD
Bluebird-TA 24.07 27.78 17.59 25.93
Bluebird-C 24.07 11.11 12.96 12.96
Gain 0.00 16.67 4.63 12.97
Dog-TA 26.15 19.85 13.64 19.01
Dog-C 26.15 0.78 12.23 20.56
Gain 0.00 19.07 1.41 -1.64
HC-TREC-TA 33.70 68.80 67.30 30.80
HC-TREC-C 33.70 40.90 30.60 30.80
Gain 0.00 27.90 36.6 0.00

Comparing with Traditional DS Algorithms: We observe that clustering improves performance in the
dataset considered. In the case of RTE and Temp datasets, with or without clustering, the accuracy of label
estimation is 100%, which is why we did not include them in Table 3. Hence, our results show that clustering
does not hurt the accuracy even in cases where it may not be required.

Comparison with Task-Specific Reliability Models: As discussed in the related work section, several
previous papers address models with multiple types of tasks and use different task-specific reliability models
to infer task labels. Notable works include Khetan & Oh (2016), Shah et al. (2021), Shah & Lee (2018),
Kim et al. (2024) to name a few. The model in Khetan & Oh (2016) assumes that E(T ) is a rank-1 matrix.
Clearly, this is not true if there is more than one type of task. The algorithm in Shah et al. (2021) involves a
large number of parameters, leading to very poor performance on the datasets we used, therefore we are not
comparing it with our model. Thus, we restrict the comparison of our algorithm to those in Shah & Lee
(2018) and Kim et al. (2024).

Table 4: Comparison of our approach with Task-specific Reliability Models. ‘TE-C’ is our two-step approach
- clustering followed by TE-WMV.

Dataset TE-C SDP SS
Bluebird 12.96 24.81 22.62
Dog 12.23 34.56 51.70
TREC 30.6 38.22 49.39
Temp 0 1.93 50.35

In Table 4, columns “TE-C”, “SDP” and “SS” correspond to our two-step approach, SDP-based algorithm
in Kim et al. (2024) and SS algorithm from Shah & Lee (2018), respectively. We used the MATLAB code
provided by the authors in Kim et al. (2024) for running different ‘SDP’ and ‘SS’ algorithms and listed the
error minimized over the input parameter the number of specializations from {2, 3, 4} . We see that our
algorithm outperforms SDP and SS in the datasets considered above.
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Runtime Comparison: We report the runtime performance of our proposed two-step algorithm to illustrate
its practicality. In particular, we compare the type-agnostic DS-based TE algorithm (denoted TE-TA)
with our type-dependent pipeline (denoted TE-C), which consists of spectral clustering followed by TE and
NP-WMV applied separately to each task cluster.

The clustering step is dominated by the computation of the principal eigenvector of the task-similarity matrix
of size d×d, which can be performed in O(d2) time using power iteration. The TE algorithm (see Appendix B)
is dominated by the computation of the worker-similarity matrix and can be implemented in O(n2d) time.

Table 5 presents the average runtime (in seconds) of the algorithms on the three real-world datasets used in
our experiments. All runtimes were measured on a standard CPU using Google Colab. We observe that the
overhead due to clustering is negligible in practice. We observe that the clustering runtime increases from
Bluebird to HC-TREC, consistent with its polynomial dependence on the number of tasks d. In contrast,
the TE labeling step, which scales as O(n2d), is fastest on HC-TREC due to its small number of workers
(n = 10), and slowest on Dog, which has the largest n = 78.

Dataset (workers, tasks) Clustering Step TE-TA (DS-based) TE-C (Our approach)

Bluebird (39, 108) 0.0998 0.0318 0.1280
Dog (78, 807) 0.2217 0.2064 0.5935
HC-TREC (10, 1000) 0.2927 0.0212 0.3207

Table 5: Runtime comparison (in seconds) of TE algorithms with and without clustering.

For comparison with other type-dependent algorithms, we used the MATLAB implementation of the SDP-
based method proposed by Kim et al. (2024). Due to the complexity of parameter tuning and the reliance
on a semi-definite program solver, the runtime for this method is substantially higher, ranging from several
minutes to over 30 minutes on a standard laptop with 16GB RAM.

A broader question: A broader question in crowdsourcing, beyond the scope of this paper, is assessing the
validity of the DS model and its extensions in a data-driven manner for a given dataset. In Appendix C.2,
we present a dataset where plain majority voting outperforms weighted majority voting. This suggests that
the DS model or its variants may not be suitable in such cases, either because the underlying mathematical
assumptions do not hold or there is insufficient data to accurately estimate worker reliabilities.

5 Conclusion

We considered a crowdsourcing model which is more appropriate than the Dawid-Skene model when there
are tasks that require different levels of skill sets. Then we described a spectral clustering algorithm that
clusters tasks by difficulty and analyzed its performance to characterize the condition for perfect clustering.
Experiments with real-life datasets demonstrate the benefits of in label estimation when combined with TE
and NP-WMV for each task type separately.

An intriguing direction for future research is extending our clustering approach to models with more than two
task types. While our algorithm naturally generalizes to multiple types—by applying k-means clustering to
entries corresponding to dominant eigenvectors—accurate label estimation in such settings requires sufficiently
distinct reliability vectors across task types. Moreover, estimating multiple reliability vectors introduces
additional data requirements. Though our focus in this work has been on the two-type setting, the extension to
more than two types presents rich theoretical challenges, making it a promising avenue for further exploration.

Broader Impact Statement

In accordance with the TMLR guidelines on potential societal impacts and ethical conduct, the authors are
not aware of any direct or indirect negative implications of this work. The proposed method may help reduce
labeling costs in crowdsourcing by enabling more accurate label aggregation in heterogeneous task settings.
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Our findings suggest that two task-type modeling approach captures meaningful structure in real datasets,
and may serve as a foundation for more general task-type inference in future work.
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A Contents: Appendix Sections

The appendix sections are organized as follows:

1. In Appendix B, a detail description of a DS algorithm is provided. The algorithm we discussed is TE
followed by NP-WMV following the discussion in the related work: Dawid-Skene model from the
main paper.

2. In Appendix C.3, we plotted the eigenspectram of the datasets used in the experiments. The
description of the datasets is given in Table 2 in the main paper. The idea here is to give an intuition
on the benefit of clustering.

3. In Appendix C.1, we provide some additional experiments. Here we synthetically generate different
datasets from the meta-data available from a radiology database.

4. In Appendix D, we provide a performance guarantee (Theorem 2) on the label estimation of our
two-step approach described in the main paper: clustering by Algorithm 1 plus label estimation
using TE followed by NP-WMV.

5. Appendix E establishes the spectral properties of the signal matrix n−1Ry which serves as a key
motivation for our analysis in the main paper. It also proves Lemma 1 and Lemma 2.

6. Appendix F proves the main result in the paper: Theorem 1.

7. The proof of the Proposition 2 is given in Appendix H.

8. We provide the proof of the Theorem 2 in Appendix I.

9. In Appendix G, we prove Proposition 1 of the main paper.
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B Detail Description of DS Algorithms: TE and NP-WMV

In this section, we provide a brief description of the DS-based algorithm used in our experiments for label
estimation for each task type after separating the tasks into different clusters according to their types. It
consists of two steps: first, estimate the reliability vector and then use a weighted majority vote (WMV)
algorithm for estimating task tasks. We will review the WMV algorithm first. Consider the Dawid-Skene
model so that the distribution of the binary worker response matrix X ∈ {−1, +1}n×d is determined by a
single reliability vector r ∈ [−1, +1]n, i.e. all tasks are of the same type. Given known reliabilities r and
focusing on a single task with worker responses x = (x1, . . . , xn), the maximum likelihood decision rule for a
given task j is then given by the map

g∗(x) = sgn
(

n∑
i=1

wixi

)
, (20)

with (possibly infinite) weights
wi = log 1 + ri

1 − ri
. (21)

Based on this observation, a common approach is to estimate the reliability vector r from the responses X,
denoted as r̂, and use the Nitzan-Paroush decision rule (Nitzan & Paroush, 1983) to infer the labels as

ŷNP
j = sgn

(
n∑

i=1
log 1 + r̂i

1 − r̂i
Xij

)
, ∀j ∈ [d].

Equation 2 corresponds to a weighted majority vote of the form Equation 20 with weights wi = log 1+r̂i

1−r̂i
.

Next, we review the TE algorithm for estimating reliabilities proposed in Bonald & Combes (2017), which we
will use in our theoretical results. The reason we focus on this algorithm is that it has been compared to
other algorithms and shown to perform better in real datasets. Additionally, by comparing the probability of
labeling error expression derived from Bonald & Combes (2017) with the lower bounds in Gao et al. (2016),
it can be seen that the algorithm is provably asymptotically optimal. We give a brief description of the TE
algorithm for completeness. The TE algorithm designed for estimating a reliability vector for the DS model
first computes the worker-covariance matrix

Wab = 1
d

d∑
j=1

XajXbj , ∀a, b ∈ [n].

For every worker i ∈ [n], the most informative pair of co-workers arg maxa,b∈[n]:a ̸=b ̸=i |Wab| denoted by (ai, bi)
is computed, and the magnitude of the ith worker’s reliability is estimated as

|r̂i| =


[√∣∣∣WaiiWbii

Waibi

∣∣∣]
[2ρ−1,1−2ρ]

if |Waibi
| > 0

0 else
. (22)

The sign of r̂i is estimated by letting

i∗ = arg max
i∈[n]

∣∣∣∣∣∣r̂2
i +

∑
j∈[n]:j ̸=i

Wji

∣∣∣∣∣∣ .
and by setting the sign of r̂ according to

sgn(r̂i) =
{

sgn
(

r̂2
i∗ +

∑
j∈[n]:j ̸=i∗ Wji∗

)
if i = i∗

sgn (r̂i∗Wii∗) else
.

This concludes our discussion of the TE algorithm.
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C Additional Experiments :

C.1 Synthetically Generated Radiology Data

Obtaining real-world datasets for healthcare examples mentioned in the Introduction is difficult. Due to
privacy reasons, such datasets do not contain much of the information we require, including ground truths
and responses. Nevertheless, we considered one radiology dataset: the Japanese Society of Radiological
Technology (JSRT) Database and its report (Shiraishi et al., 2000) to conduct a synthetic experiment. These
datasets only contain information about the reliability of the doctors who looked at the data. In other words,
this dataset only provides a range of realistic reliabilities, but we had to generate synthetic ground truths
and response matrices.

C.1.1 Setup

In this subsection, we describe how we generate our synthetic datasets from the JSRT report in Shiraishi
et al. (2000). The JSRT report contains the performance of 20 radiologists for identifying solitary pulmonary

Table 6: JSRT dataset. Size is in millimeters, and a subtlety of 0 indicates that a nodular pattern is absent.

Subtlety 0 1 2 3 4 5
Count 93 25 29 50 38 12
Size 0.0 23.0 17.9 17.2 16.4 14.6
Mean sensitivity (accuracy) of experts 80.9 99.6 92.6 75.7 54.7 29.6

nodules in chest radiographs. Its dataset statistics are summarized in Table 6. Expert performances are
reported for various levels of subtlety defined by the size of nodular patterns. It is clear that detecting
nodular patterns becomes significantly more difficult as the size is decreased, demonstrating a multi-type
phenomenon with varying levels of task difficulty. Our setup for the JSRT experiments is given as follows.
There is a total of 6 types according to the mean sensitivity reported across all radiologists for 6 different
subtlety levels. These values are used as the accuracy for each type as described next.

1. For the JSTR-6 data, we use the reported means and standard deviations of sensitivities of a type k′ ∈ [6]:
(r̃k′ , σk′) as: for each type, we sample the probability parameter for each worker i, pk′i as a sample from
the uniform distribution with support r̃k′ ± σk′ . Then we set rk′i = pk′i+1

2 .

2. To get an easy-hard model from this, we generate the dataset JSRT-2. Here, we combine the higher
and lower 3 accuracy parameters: for the easy type, the sensitivity is estimated as having a mean of
1
3
∑3

k′=1 r̃k′ and standard deviation as the root mean square of the standard deviation of the first three
subtlety levels. The parameters for the hard types are generated similarly from the next 3 subtlety levels.

Each truth value yj is drawn randomly from its class distribution defined by the sample mean of positive
(presence of nodules) cases. We then sample the crowd’s response following the number of tasks per type in
Table 6.

C.1.2 Results

The performance of crowdsourcing algorithms with and without our clustering algorithm on the JSRT-6 and
JSRT-2 datasets is shown in Table 7. As shown, separation consistently increases accuracy over Dawid-Skene
algorithms. Because experts labeled the JSRT dataset, we observe a high accuracy using the simple majority
vote. However, failing to identify nodules can be consequential and even a small gain in accuracy is critical.

C.2 An Example of Majority Voting Performing Better than Weighted Majority Voting

Working with the “Duck” dataset (Welinder et al., 2010), we observed an interesting phenomenon: majority
voting outperforms weighted majority voting when using existing algorithms for this dataset. The label
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Table 7: Label estimation errors (%) for the JSRT experiments. “TA” and “C” after dataset names indicate
whether label estimation was performed without (type-agnostic) or with clustering, respectively.

Dataset MV ER TE PGD
JSRT-2-TA 5.65 5.65 4.74 5.06
JSRT-2-C 5.65 4.39 3.16 3.81
Gain 0.00 1.26 1.58 1.25
JSRT-6-TA 10.30 10.30 9.96 9.72
JSRT-6-C 10.30 10.02 9.84 9.76
Gain 0.00 0.28 0.12 -0.04

estimation errors of the various algorithms considered in this paper for this dataset are presented in Table
8. The plain majority voting is denoted as “MV-TA” and the weighted majority voting algorithms without
clustering are “ER-TA”, “TE-TA” and “PGD-TA”. The “Duck” dataset consists of 53 workers labeling 240
tasks. To align this dataset with the framework used in this paper, we handle missing entries similarly to
other datasets such as “Dog”, “Temp”, and “RTE”. Specifically, we compute the fraction of correct labels
provided by workers for each task based on ground truth and available responses. We then classify the
half of tasks with the most accurate worker responses as easy tasks and the rest as hard tasks. Using this
classification, we estimate the empirical reliabilities of workers for each task type and generate synthetic
entries for the missing worker-task pairs in the response matrix.

As discussed in the Experiment Section 4, this finding suggests that the DS model and its variants may not
be applicable in certain cases, either because the underlying mathematical assumptions do not hold or due to
insufficient data to accurately estimate worker reliabilities. From Table 8, we observe that the SDP-based
algorithm outperforms all other methods, with TE with clustering and plain majority voting coming in second
and third, respectively. Notably, the SDP algorithm clusters workers and tasks separately and then applies
plain majority voting for label estimation. On the other hand, the main approach in the paper: TE with
clustering uses weighted majority voting based on the reliability estimation by the TE algorithm.

These results highlight an open question in crowdsourcing: how can we determine when majority voting
outperforms weighted majority voting? A data-driven approach to this decision could improve label aggregation
in cases where standard models like DS may not apply.

Table 8: Label estimation errors for the “Duck” dataset using different algorithms. “-TA” and “-C” indicate
that labels were estimated without (type-agnostic) or with clustering. Algorithms compared are: unweighted
majority vote (MV), ratio of eigenvectors (ER, Dalvi et al. 2013), TE (Bonald & Combes (2017)), and Plug-in
gradient descent (PGD, Ma et al. 2022), SDP-based algorithm in (Kim et al., 2024)(SDP) and SS algorithm
from (Shah & Lee, 2018)(SS), respectively

MV-TA MV-C ER-TA ER-C TE-TA TE-C PGD-TA PGD-C SDP SS
32.58 32.58 59.37 24.33 41.04 41.67 38.96 32.58 19.88 56.58

C.3 Eigenspectrum of Task-Similarity Matrix in the Datasets Used for Experiments

In the Table 3 of the main draft, we have seen that clustering improves performance if used before a DS-based
algorithm. To get an intuition of why this is the case, we plotted the eigenspectrum of the matrix T in
Figure 1. As we can see, all the datasets exhibit at least two eigenvalues which are larger than the rest of
them which are close to zero, thus indicating that there is more than one type of task. Therefore, clustering
helps to separate tasks by their reliabilities.

C.4 Synthetic Validation of the Clustering Performance

We simulate a controllable synthetic setting to verify the clustering bound in Theorem 1.
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(a) Bluebird Eigenspectrum (b) TREC Eigenspectrum (c) Dog Eigenspectrum

(d) Duck Eigenspectrum (e) RTE Eigenspectrum (f) Temp Eigenspectrum

Figure 1: Eigenspectrum of T for different datasets: (a) Bluebird, (b) TREC, (c) Dog, (d) Duck, (e) RTE, and
(f) Temp. For each plot, the y-axis represents the eigenvalues, and the x-axis represents the corresponding
index of each eigenvalue.

Setup. We create d = 1000 tasks (600 easy, 400 hard) and vary the number of workers n ∈ {20, 30, 40, 50, 60}.
For each worker i we draw a base accuracy qi ∼ Unif[0.6, 0.9] and set

re,i = 2qi − 1, rh,i = 2 max{qi − ∆, 0.51} − 1,

where the reliability gap ∆ ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35} simultaneously controls the ℓ2-norm gap
and the angle between re and rh. Responses are generated via Xij = yj with probability (rk,i + 1)/2, else −yj ,
with yj

iid∼ Rademacher. We apply the clustering step of Algorithm 1 and report the fraction of mis-clustered
tasks, averaged over five independent trials.

Results. Figure 2 shows the average clustering error versus ∆. Error decreases (i) as the reliability gap
widens and (ii) as the worker count rises.

D Label Estimation for Hard-Easy Tasks

In this section, we provide a performance guarantee of the overall clustering plus label estimation in terms
of the expected labeling error. If we denote ŷ as the label estimation in our approach, then the expected
labeling error is defined as: E

(
1
d

∑
j 1(ŷj ̸= yj)

)
. Before giving an upper bound on the expected labeling

error by our overall algorithm, few quantities and notations are to be introduced as follows.
After having divided the tasks into two clusters, in practice, one can simply apply a DS algorithm, such as
TE, to each task type separately. However, analyzing such an algorithm is difficult because the clustering step
and label estimation steps are correlated due to the fact that we use the same dataset for both. Therefore, as
is common in the literature (see Shah et al. (2021), for example), we split the n workers into two disjoint
groups and use the responses of one group for clustering and the other group for label estimation. We present
these details next.

For the following analysis, let Ncl be the set of workers used for clustering, and define Nrl = [n] − Ncl to be
the set of workers that is used for reliability estimation as well as label estimation. Let the responses of the
workers in the set Ncl be denoted by

Xcl := (Xij : (i, j) ∈ Ncl × [d]),
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Figure 2: Clustering error on synthetic data versus reliability gap ∆.

and the worker responses of the set Nrl be

Xrl := (Xij : (i, j) ∈ Nrl × [d]).

We cluster the tasks in Xcl using Algorithm 1 (with the substitution X = Xcl) resulting in the following type
assignment for all task j ∈ [d]:

Tk =
{

j ∈ [d] : k̂j = k
}

, k ∈ {e, h}.

We then use the TE algorithm to estimate reliabilities r̂k = (r̂ki : i ∈ Nrl) from the responses
(Xij : (i, j) ∈ Nrl × Tk) for each k. Lastly, the labels yj are estimated using the NP decision rule

ŷT E
j = sgn

( ∑
i∈Nrl

log
1 + r̂k̂ji

1 − r̂k̂ji

Xij

)
. (23)

Now we are ready to present the theorem characterizing the accuracy of our combined clustering and label
estimation algorithm. Let ncl and nrl be the number of workers in the sets Ncl and Nrl, respectively. Let
rk(Ncl) and rk(Nrl) be the reliability vector associated with each task type k for the set of workers Ncl and
Nrl, respectively.

Theorem 2 Suppose (nrl, de, dh, rk(Nrl)) satisfy the conditions stated in Proposition 2 and
(ncl, de, dh, rk(Ncl)) satisfy the conditions from Theorem 1. Then, for the hard-easy crowdsourcing
model under Assumption 1, the labels ŷ estimated using Equation 23 satisfy

E

1
d

∑
j

1 (ŷj ̸= yj)


≤ 3

 ∑
k∈{e,h}

dk

d
exp (−nrlΦk,Nrl

)

+ 2d2 exp (−C2nclD(re(Ncl), rh(Ncl), α, d))
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where Φk,Nrl
:= ΦNrl

(rk(Nrl)) and D(re(Ncl), rh(Ncl), α, d) is defined similarly to D(re, rh, α, d) in Equa-
tion 12, with the obvious changes to account for the fact that we are only using the reduced dataset Xcl for
clustering. Here, C2 is the same positive universal constant as in the Theorem 1 in the main paper.

The proof of Theorem 2 is an immediate application of Theorem 1 and is provided in Appendix I.

E Spectral Properties of the Expected Task-Similarity Matrix

In this section, we establish the spectral properties of the signal matrix n−1Ry and give the proofs to the
Lemma 1 and Lemma 2.

Given the ordered response matrix X we consider in Section 3.2, where the easy and hard tasks are listed
consecutively in the columns, the true response matrix with arbitrary task ordering is obtained by a column
permutation of X. It is easy to see that the ordered task-similarity matrix T = n−1XT X is then related
to the true task-similarity matrix with type-permutations by a similarity transform. All eigenvalues and
eigen-spectrum are therefore related by the same permutations, and as long as the algorithm does not utilize
an unknown prior on the ordering of these types, its analysis still pertains to the un-ordered case.

Recall the decomposition of the expected task-similarity matrix E[T ] into

E[T ] = n−1diag(y)
(

∥re∥2
21de×de

rT
e rh1de×dh

rT
h re1dh×de ∥rh∥2

21dh×dh

)
diag(y)︸ ︷︷ ︸

n−1Ry

−n−1diag
(
[∥re∥2

211×de
, ∥rh∥2

211×dh
]T
)

+ Id︸ ︷︷ ︸
S

= n−1Ry + S, (24)

where S is a diagonal matrix. First, we prove the above decomposition by analyzing the entries of the
expected task-similarity matrix E[T ]. From the definition, T = n−1O⊤O. That is for all j1 ∈ [d], j2 ∈ [d], we
have, T (j1, j2) = n−1∑n

i=1 O(i, j1)O(i, j2). Now, from the probabilistic crowdsourcing model considered in
Section 2.1, if j ∈ [de], then, E[O(i, j)] = reiyj . Similarly, if j /∈ [de], then, E[O(i, j)] = rhiyj . Now if j2 = j1,
then, E[T (j1, j2)] = E[T (j1, j1)] = 1. But for j1 ̸= j2, we have,

E[T (j1, j2)] =


n−1⟨re, re⟩ = n−1∥re∥2

2 if j1 ∈ [de], j2 ∈ [de], j1 ̸= j2

n−1⟨re, rh⟩ if j1 ∈ [de], j2 /∈ [de], else if, j1 /∈ [de], j2 ∈ [de]
n−1⟨rh, rh⟩ = n−1∥rh∥2

2 if j1 /∈ [de], j2 /∈ [de], j1 ̸= j2

where, the above relations for j1 ≠ j2 is due to the fact that for a worker i, the labels provided to different
tasks are independent of each other. The above observations yield us with the decomposition of the matrix
E[T ].

E.1 Proof of Lemma 1 and Lemma 2: Spectral Properties of n−1Ry

We restate Lemma 1 and Lemma 2 here.

Restatement of Lemma 1:

Define the matrix

n−1Ry

:= n−1diag(y)
(

∥re∥2
21de×de

rT
e rh1de×dh

rT
h re1dh×de ∥rh∥2

21dh×dh

)
diag(y)

and a diagonal matrix

S − Id − 1
n

diag
(
[∥re∥2

211×de
, ∥rh∥2

211×dh
]T
)

.
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The matrix n−1Ry is rank-ℓ with ℓ ≤ 2, and its normalized eigen-gap ν(n−1Ry) := d−1(λ1(n−1Ry) −
λ2(n−1Ry)) between its two largest eigenvalues λ1, λ2 can be expressed as:

ν(n−1Ry) =

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

nd
.

Further, we have the low-rank factorization

E[T ] = n−1Ry + S.

Restatement of Lemma 2:

Suppose r⊤
e rh ̸= 0. Then, the principal eigenvector of the matrix n−1Ry has the following form:

v(n−1Ry) = diag(y)

 s√
s2de+dh

1de×1
1√

s2de+dh

1dh×1


where

s = ω +
√

ω2 + dh

de

and
ω = de∥re∥2

2 − dh∥rh∥2
2

2derT
e rh

.

In the alternative case that r⊤
e rh = 0, we have that

v(n−1Ry) = diag(y)
[ 1√

de
1de×1

0dh×1

]
.

Proof:

Recall, n−1Ry is defined as, n−1Ry = n−1diag(y)
(

∥re∥2
21de×de rT

e rh1de×dh

rT
h re1dh×de

∥rh∥2
21dh×dh

)
diag(y). Clearly, the n−1Ry

is a rank-ℓ matrix with ℓ ≤ 2. Specifically,

ℓ =
{

1, when re and rh are colliner
2, else

Next, we calculate the eigenspectram of n−1Ry. First consider the case when r⊤
e rh ̸= 0.

Case 1: When r⊤
e rh ̸= 0 :

Consider a generic vector q of the form diag(y)[s11×de
, 11×dh

]T for some s as the ratio of the magnitude
between the entries of the vector corresponding to different types of tasks. A normalization of q serves as a
candidate eigenvector for the matrix n−1Ry, where

q

∥q∥2
= diag(y)

 s√
des2+dh

1de×1
1√

des2+dh

1dh×1

 .

The eigen-pair equation for the candidate eigenvector above is calculated to be:

1
n

Ryq = diag(y)

 [ 1
n (sde∥re∥2

2 + dhrT
e rh)

]
1de×1[ 1

n (sderT
e rh + dh∥rh∥2

2)
]

1dh×1

 =
[

1
n

(sderT
e rh + dh∥rh∥2

2)
]

q. (25)

Now as s is the ratio between the quantity 1
n (sde∥re∥2

2 + dhrT
e rh) and 1

n (sderT
e rh + dh∥rh∥2

2), we can write:

s

[
1
n

(sderT
e rh + dh∥rh∥2

2)
]

= 1
n

(sde∥re∥2
2 + dhrT

e rh). (26)
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The solutions to this quadratic equation are given by

s =
de∥re∥2

2 − dh∥rh∥2
2 ±

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2derT
e rh

. (27)

Let us call the solution de∥re∥2
2−dh∥rh∥2

2+
√

[de∥re∥2
2−dh∥rh∥2

2]2+4dedh(rT
e rh)2

2derT
e rh

as s and the other solution as s2.
The eigenvalues n−1(sderT

e rh + dh∥rh∥2
2) of n−1Ry corresponding to solutions s and s2 respectively are

λ1(n−1Ry) =
de∥re∥2

2 + dh∥rh∥2
2 +

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2n

and

λ2(n−1Ry) =
de∥re∥2

2 + dh∥rh∥2
2 −

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2n
, (28)

where λ1(n−1Ry) ≥ λ2(n−1Ry). By Assumption 1, we have ∥re∥2 > 0. Hence, for de ≥ 1 and dh ≥ 1, we can
write, λ1(n−1Ry) > 0 and λ2(n−1Ry) ≥ 0. When re and rh are co-linear, λ2(n−1Ry) = 0.
Case 2: when r⊤

e rh = 0 :
When the reliability vectors are orthogonal, we can write

n−1Ry = n−1∥re∥2
2diag(y1:de)1de×dediag(y1:de) ⊕ ∥rh∥2

2diag(yde+1:d)1dh×dh
diag(yde+1:d), (29)

where y1:de
and yde+1:d are the ground truth vectors corresponding to type easy tasks and type hard tasks

respectively and ⊕ is the notation for a direct sum. From the expression Equation 29, it is clear that
rank(n−1Ry) = 2 when ∥rh∥2 ̸= 0 with the following eigenvalues:

λ1(n−1Ry) = n−1 max
k∈{e,h}

dk∥rk∥2
2 = n−1de∥re∥2

2 ≥ λ2(n−1Ry) = n−1 min
k∈{e,h}

dk∥rk∥2
2 = n−1dh∥rh∥2

2,

with λ2(n−1Ry) ≥ λj(n−1Ry) = 0 for all j = 3, . . . , d.

Also, the eigenvectors of n−1Ry corresponding to the eigenvalues n−1de∥re∥2
2 and n−1dh∥rh∥2

2 are respectively

diag(y)
[ 1√

de
1de×1

0dh×1

]
and diag(y)

[ 0de×1
1√
dh

1dh×1

]
.

F Proof of Theorem 1: Perfect Clustering

This section gives the complete proof of Theorem 1 in the main paper. We restate the theorem here:

Restatement of Theorem 1:

Under Assumption 1, if the number of tasks d satisfies

d ≥ C1√
D(re, rh, α, d)

,

then Algorithm 1 returns task type estimates such that

P (η = 0) ≥ 1 − 2d2 exp (−C2nD(re, rh, α, d)) ,

where the problem-dependent quantity D(re, rh, α, d) characterizing the error exponent and the requirement
on d is defined as follows:

D(re, rh, α, d) =


(

(1−α)5ρ
α

ν(n−1Ry)||s|−1|√
s2+1

)2
when, r⊤

e rh ̸= 0,(
(1−α)5ρ

α ν(n−1Ry)
)2

when, r⊤
e rh = 0
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and C1 and C2 are universal constants, independent of the problem parameters.

As discussed in the proof sketch of the theorem, the first step is to show that the principal eigenvector
v(n−1Ry) of the signal matrix n−1Ry reveals the type information for each task. This is discussed in detail
in Lemma 1 and Lemma 2 and proved in Appendix E. Building upon the Lemma 2, the rest of the proof of
Theorem 1 is given in this section as enlisted below.

1. First, we prove Lemma 3 in Subsection F.1.

2. Then we show that the principal eigenvector v̂ of the task-similarity matrix T is a small perturbation of
v(n−1Ry) in the l∞ norm sense. This is stated in Lemma 4 and proved in the following Subsection F.2.

3. Next, we relate the event of perfect clustering, that is {η = 0} with a sufficient condition on the
concentration of v̂ with respect to v(n−1Ry) (see Proposition 3 in Subsection F.3).

4. Finally, we prove that the condition described in the Proposition 3 is satisfied with high probability. See
Subsection F.4 for this final step.

F.1 Proof of Lemma 3: Concentration of the Noise Matrix N

Restatement of Lemma 3:

For any t > 0 and any positive values of n and d, the task-similarity matrix T concentrates around its
expectation as follows:

P (∥N∥∞ ≥ t) ≤ 2d2 exp
(

− nt2

2d2

)
.

Proof:

The proof of the Lemma 3 stating the concentration of N is given as:

P (∥N∥∞ ≥ ϵ) = P

max
i∈[d]

d∑
j=1

|Tij − E[Tij ]| ≥ ϵ

 ≤︸︷︷︸
(a)

d∑
i=1

P

 d∑
j=1

|Tij − E[Tij ]| ≥ ϵ


≤

d∑
i=1

P
(

max
j∈[d]

|Tij − E[Tij ]| ≥ ϵ

d

)
≤︸︷︷︸
(b)

d∑
i=1

d∑
j=1

P
(

|Tij − E[Tij ]| ≥ ϵ

d

)

=
d∑

i=1

d∑
j=1

P

(∣∣∣∣∣ 1n
n∑

l=1
(XliXlj − E[XliXlj ])

∣∣∣∣∣ ≥ ϵ

d

)

≤︸︷︷︸
(c)

2d2 exp
(

−n
ϵ2

2d2

)
.

In (a) and (b) we use the union bound, and in (c) we employ Hoeffiding’s inequality for the independent
bounded random variables Xli, Xlj ∈ {±1}.

F.2 l∞ norm Concentration of the Principal Eigenvector

We prove the Lemma 4 here.

Restatement of Lemma 4: If ν(n−1Ry) satisfies : C3(1−α)4ρ
α ν(n−1Ry)d − 1 > 0, then, for every 0 < ϵ <

C3(1 − α)4ν(n−1R)d − 1, the event

min
θ∈{−1,+1}

∥θv̂ − v(n−1Ry)∥∞

≥ C4α

(1 − α)4ρν(n−1Ry)d
√

d
(ϵ + 1)
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occurs with probability at most 2d2 exp
(

−n ϵ2

2d2

)
where C3 and C4 are universal positive constants.

Proof:

We use a result from the paper Fan et al. (2018) that turns out to be more useful than the standard
Devis-Kahan perturbation result (Yu et al., 2014) for l∞ norm perturbation bounds on the eigenvectors of a
perturbed matrix in certain scenarios. In our case, recall that the task-similarity matrix T has the following
decomposition :

T = n−1Ry + S + N.

It turns out that the low-rank structure of n−1Ry and the fact that S is a diagonal matrix with a matrix
inf-norm as den−1∥re∥2 makes the above decomposition of T a suitable setting for getting a useful l∞ norm
perturbation bound on the principal eigenvector of T treating n−1Ry as the signal matrix. From the Lemma
1, we have S = − 1

n diag
(
[∥re∥2

211×de , ∥rh∥2
211×dh

]T
)

+ Id. Here we are interested in the distance between v̂
which is the principal eigenvector of T and v(n−1Ry) induced by the infinity norm.

Let n−1Ry,1 be the rank-1 approximation of the signal matrix n−1Ry. First, we state the result from Fan
et al. (2018) on l∞ norm perturbation that we use in our paper. Before stating the result from Fan et al.
(2018), we need to define a quantity called the coherence of the signal matrix n−1Ry and the coherence of its
best rank-1 approximation n−1Ry,1. Writing the modal matrix of n−1Ry which is of size d × ℓ as V so that its
columns correspond to the unit-norm eigenvectors of n−1Ry, the coherence M of matrix n−1Ry is defined as

M = d

ℓ
max
j∈[d]

ℓ∑
g=1

V 2
jg. (30)

Similarly the coherence M1 of the matrix n−1Ry,1 is defined as

M1 = d max
j∈[d]

(v(n−1Ry)[j])2. (31)

We utilize the following result by Fan et al. (2018), cf. Theorem 3.2

Lemma 5 Let C̃1 and C̃2 be two universal constants. Consider a d-dimensional rank-2 symmetric matrix A
and its eigen-decomposition

A =
2∑

g=1
λg(A)vg(A)vg(A)T .

Let m ∈ {1, 2}. We call Am as the best rank-m approximation of A. Clearly for our construction, A2 = A.
Define γm as γm = ∥A − Am∥∞. Clearly, γ2 = 0. Denote M(Am), λ1(A) and λ2(A) as the coherence of the
matrix Am, the largest and second largest eigenvalue of A. Let a perturbation of A be Ã and the perturbation
Ã − A is also symmetric with the same dimension as A. Then, for each m ∈ {1, 2}, if λm(A) satisfies:

|λm(A)| − γm ≥ C̃1r3(M(Am))2∥Ã − A∥∞ (32)

and if
min
g≤m

(λg(A) − λg+1(A)) > ∥Ã − A∥2 (33)

with a notation λ3(A) = 0, then,

min
θ∈{−1,+1}

∥v1(A) − θv1(Ã)∥∞ ≤ C̃2

(
m4(M(Am))2∥Ã − A∥∞

(|λm| − γm)
√

d
+ m

3
2
√

M(Am)∥Ã − A∥2

ming≤m(λg(A) − λg+1(A))
√

d

)
,

where, v1(Ã) denotes the principal eigenvector of the matrix Ã.

2The theorem in Fan et al. (2018) is for a matrix of rank ℓ where ℓ can take any finite value, we simplified it for our purpose
when ℓ = 2.

27



Under review as submission to TMLR

F.2.1 Characterizing the Suitable m Based on the Angle between re and rh

Before applying the above Lemma 5, we first characterize which m from the set {1, 2} is more suitable in this
setting to apply the lemma based on the angle between the vectors re and rh. Let us call the angle between
re and rh as ζ. The idea is that if | sin ζ| is sufficiently small, we use m = 1, and if it is sufficiently large, we
use m = 2.
To understand this, we study the error of the best rank-1 approximation of n−1Ry defined as: γ1 :=
∥n−1Ry − n−1Ry,1∥∞ and its implication in Equation 32 for the case of m = 1 with the signal matrix A
and the perturbed matrix Ã being replaced by n−1Ry and T . Let us denote v2(n−1Ry) as the eigenvector
corresponding to the eigenvalue λ2(n−1Ry) of n−1Ry. Then, we have

γ1 = |λ2(n−1Ry)|∥v2(n−1Ry)v2(n−1Ry)⊤∥∞ = |λ2(n−1Ry)| max
j∈[d]

|v2j(n−1Ry)|
d∑

j=1
|v2j(n−1Ry)|

where v2j(n−1Ry) is the jth element of the vector v2(n−1Ry). Let us first consider the case when λ2(n−1Ry) ̸=
0. We know from Appendix E, that the magnitude of the elements vector v2j(n−1Ry) are from the set{

|s2|√
des2

2+dh

, 1√
des2

2+dh

}
with |s2|√

des2
2+dh

corresponding to easy tasks and 1√
des2

2+dh

corresponding to hard
tasks where

s2 =
de∥re∥2

2 − dh∥rh∥2
2 −

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2derT
e rh

.

Under our Assumption 1 in the main draft, we have de∥re∥2
2 − dh∥rh∥2

2 ≥ 0. Hence, we have 0 ≤ |s2| ≤ 1.
Thus, we can write,

γ1 = |λ2(n−1Ry)| 1√
des2

2 + dh

(
de|s2|√

des2
2 + dh

+ dh√
des2

2 + dh

)

= |λ2(n−1Ry)| de|s2| + dh

de(s2)2 + dh

= |λ2(n−1Ry)|
de

dh
|s2| + 1

de

dh
(s2)2 + 1

.

Now a bit of calculus shows that the quantity
de
dh

|s2|+1
de
dh

|s2|2+1
as a function of |s2| with 0 ≤ |s2| ≤ 1 achieves a its

maxima at a value
de
dh

2
(√

1+ de
dh

−1
) which can be further upper-bounded by 1.25 de

dh
as de

dh
≥ 1. Thus, we can

write:
γ1 ≤ 1.25 de

dh
|λ2(n−1Ry)|.

Next, we would characterize the quantity |λ1(n−1Ry)| − γ1 which should be sufficiently large if we put m = 1
in the application of Lemma 5 in light of Equation 32. Recall from Appendix E, we can write:

λ1(n−1Ry) =
de∥re∥2

2 + dh∥rh∥2
2 +

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2n
≥ 0.

λ2(n−1Ry) =
de∥re∥2

2 + dh∥rh∥2
2 −

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2n

=
de∥re∥2

2 + dh∥rh∥2
2 −

√
[de∥re∥2

2 + dh∥rh∥2
2]2 − 4dedh(∥re∥2

2∥rh∥2
2 − (rT

e rh)2)
2n

≥ 0.

Then, we can write:

4dedh(∥re∥2
2∥rh∥2

2 − (rT
e rh)2) = 4dedh∥re∥2

2∥rh∥2
2(1 − cos ζ2) = 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2.
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Clearly, the quantity |λ1(n−1Ry)| − γ1 can be lower-bounded as:

|λ1(n−1Ry)| − γ1 ≥ λ1(n−1Ry) − 1.25 de

dh
λ2(n−1Ry)

=
(

1.25 de

dh
+ 1
) √[de∥re∥2

2 + dh∥rh∥2
2]2 − 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2

2n
−
(

1.25 de

dh
− 1
)

(de∥re∥2
2 + dh∥rh∥2

2)
2n

.

Now since,
[
de∥re∥2

2 + dh∥rh∥2
2
]2 − 4dedh∥re∥2

2∥rh∥2
2 =

[
de∥re∥2

2 − dh∥rh∥2
2
]2 ≥ 0, we have,[

de∥re∥2
2 + dh∥rh∥2

2
]2 ≥ 4dedh∥re∥2

2∥rh∥2
2. Hence,

[
de∥re∥2

2 + dh∥rh∥2
2
]2 − 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2 ≥[

de∥re∥2
2 + dh∥rh∥2

2
]2 (1 − (sin ζ)2) =

[
de∥re∥2

2 + dh∥rh∥2
2
]2 cos ζ2 giving us the following:

|λ1(n−1Ry)| − γ1 ≥
((

1.25 de

dh
+ 1
)

| cos ζ| −
(

1.25 de

dh
− 1
))

(de∥re∥2
2 + dh∥rh∥2

2)
2n

=
(

(1 + | cos ζ|) − 1.25 de

dh
(1 − | cos ζ|)

)
(de∥re∥2

2 + dh∥rh∥2
2)

2n
.

Clearly, if | cos ζ| ≥ 1 − 4dh

5de
, we have,

(
(1 + | cos ζ|) − 1.25 de

dh
(1 − | cos ζ|)

)
≥ 1 − 4dh

5de
≥ 1

5 . A sufficient
condition of | cos ζ| ≥ 1 − 4dh

5de
is (sin ζ)2 ≤ 4dh

25de
. So we have arrived at the following fact:

fact: When the angle between re and rh satisfy (sin ζ)2 ≤ 4dh

25de
, we can write:

|λ1(n−1Ry)| − γ1 ≥ (de∥re∥2
2 + dh∥rh∥2

2)
10n

.

In the alternative case of ((sin ζ)2 > 4dh

25de
), the quantity of interest in light of the condition given in Equation 32

in Lemma 5 is the second largest eigenvalue of n−1Ry as the approximation error for a rank-2 approximation
in this case is 0. Next, we lower-bound the second largest eigenvalue of n−1Ry as follows:

λ2(n−1Ry) =
de∥re∥2

2 + dh∥rh∥2
2 −

√
[de∥re∥2

2 + dh∥rh∥2
2]2 − 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2

2n

≥︸︷︷︸
(d)

4dedh∥re∥2
2∥rh∥2

2(sin ζ)2

2n

(
de∥re∥2

2 + dh∥rh∥2
2 +

√
[de∥re∥2

2 + dh∥rh∥2
2]2 − 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2

)
≥ 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2

4n(de∥re∥2
2 + dh∥rh∥2

2)

≥︸︷︷︸
(e)

dh∥rh∥2
2(sin ζ)2

n

where in (d), we multiply the numerator and the denominator by(
de∥re∥2

2 + dh∥rh∥2
2 +

√
[de∥re∥2

2 + dh∥rh∥2
2]2 − 4dedh∥re∥2

2∥rh∥2
2(sin ζ)2

)
assuming | sin ζ| ≠ 0. In

(e), we use that de ≥ dh and ∥re∥2 ≥ ∥rh∥2.
Hence, for the case of (sin ζ)2 > 4dh

25de
, we have,

λ2(n−1Ry) >
2d2

h∥rh∥2
2

25den
.

Hence, the idea is to use m = 1 in the Lemma 5 when (sin ζ)2 ≤ 4dh

25de
, otherwise use m = 2.

F.2.2 Characterizing the Upper and Lower Bound on the Coherence Terms M and M1

Before applying the Lemma 5 in our case, we want to give an upper bound on the coherence parameter M
and M1 defined in Equation 30 and Equation 31 that will be used in the proof of this section. Recall the
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definition of M and M1 as:

M = d

ℓ
max
j∈[d]

ℓ∑
g=1

V 2
jg

and
M1 = d max

j∈[d]
(v(n−1Ry)[j])2.

From the Lemma 2 of the main draft, the elements of v(n−1Ry) corresponding to easy and hard tasks are as
s√

des2+dh

and 1√
des2+dh

, respectively. Similarly, for non-collinear re and rh, the two non-zero eigenvectors
for the signal matrix the corresponding entries of the second eigenvector of n−1Ry would be s2√

des2
2+dh

and
1√

des2
2+dh

. Here s and s2 takes the following values:

s, s2 =
de∥re∥2

2 − dh∥rh∥2
2 ±

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

2derT
e rh

.

From the expressions obtained above, we can write the coherence terms defined in Equation 30 and Equation 31
as

M = d

ℓ
max
i∈[d]

ℓ∑
j=1

V 2
ij = d

2 max
{

s2

des2 + dh
+ s2

2
des2

2 + dh
,

1
des2 + dh

+ 1
des2

2 + dh

}

M1 = d max
{

s2

des2 + dh
,

1
des2 + dh

}
.

Hence, we can lower bound the coherence terms as:

M ≥ 1
2

(
de

s2

des2 + dh
+ dh

1
des2 + dh

+ de
s2

2
des2

2 + dh
+ dh

1
des2

2 + dh

)
= 1.

M1 ≥ de
s2

des2 + dh
+ dh

1
des2 + dh

= 1.

Moreover, we can upper bound the coherence terms as:

M ≤ 1
2

(
ds2 + d

des2 + dh
+ ds2

2 + d

des2
2 + dh

)
≤︸︷︷︸
(f)

1
2

(
s2 + 1

αs2 + (1 − α) + s2
2 + 1

αs2
2 + (1 − α)

)
≤ 1

1 − α

M1 ≤ ds2 + d

des2 + dh
≤︸︷︷︸
(g)

s2 + 1
αs2 + (1 − α) ≤ 1

1 − α

where in (f) and (g), we use Assumption 1 in the main draft, specifically the assumption de = αd and
dh = (1 − α)d and α ≥ 0.5.

F.2.3 When (sin ζ)2 > 4dh

de

In this case, we apply Lemma 5 with m = 2. We substitute the matrix A with n−1Ry and the perturbation
Ã − A with S + N. The conditions to satisfy according to Equations 32 and 33 are:

λ2(n−1Ry) ≥ C̃123M2∥S + N∥∞

and
min(λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)) > ∥S + N∥2.
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Recall from the discussion above, M ≥ 1 and M ≤ 1
1−α . Also for a symmetric matrix B, ∥B∥∞ ≥ ∥B∥2.

Hence, letting C̃3 = max{1, C̃123} the sufficient condition to satisfy Equations 32 and 33 can be stated as

min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)} ≥ C̃3

(1 − α)2 ∥S + N∥∞

or equivalently

∥S + N∥∞ ≤ (1 − α)2

C̃3
min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)}.

Define the event EN as:

EN :=
{

∥N∥∞ ≤ (1 − α)2

C̃3
min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)} − 1

}
.

Clearly, on the event EN , the conditions given by Equations 32 and 33 are satisfied by the use of the triangle
inequality with the fact that ∥S∥∞ = 1 − n−1∥rh∥2

2 ≤ 1 for the diagonal matrix S.

Now conditioning on the event EN we can use Lemma 5 as:

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ ≤ C̃2

(
24M2∥S + N∥∞

(λ2(n−1Ry))
√

d
+ 2 3

2
√

M∥S + N∥2

min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)}
√

d

)

≤︸︷︷︸
(h)

C̃4∥S + N∥∞

(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)}
√

d

≤︸︷︷︸
(i)

C̃4 [∥N∥∞ + 1]
(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)}

√
d

. (34)

In (h), we let C̃4 = C̃2(24C̃3 + 2 3
2 ) and we use the fact that 1 ≤ M ≤ 1

1−α , in (i), we use ∥S∥∞ ≤ 1 .

We are interested in the event EN ∩ {∥N∥∞ ≤ ϵ} for some ϵ such that, 0 < ϵ ≤ (1−α)2

C̃3
min{λ1(n−1Ry) −

λ2(n−1Ry), λ2(n−1Ry)} − 1. On the event EN ∩ {∥N∥∞ ≤ ϵ}, the following is satisfied using Equation 34:

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ ≤ C̃4
ϵ + 1

(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)}
√

d
. (35)

It remains to show that the event EN ∩{∥N∥∞ ≤ ϵ} for some ϵ in the range 0 < ϵ ≤ (1−α)2

C̃3
min{λ1(n−1Ry)−

λ2(n−1Ry), λ2(n−1Ry)} − 1 occurs with high probability:

P (EN ∩ {∥N∥∞ ≤ ϵ}) =︸︷︷︸
(j)

1 − P({∥N∥∞ ≤ ϵ}c) ≥︸︷︷︸
(k)

1 − 2d2 exp
(

−nϵ2

2d2

)

where in (j) we use the fact that the event {∥N∥∞ ≤ ϵ} is a subset of the event EN and in (k), we use Lemma
3 in the main draft.

F.2.4 When (sin ζ)2 ≤ 4dh

de

In this case, we apply Lemma 5 with m = 1. The steps are similar to the other case with a few differences.
The conditions to satisfy according to Equations 32 and 33 are:

λ1(n−1Ry) − γ1 ≥ C̃1(M1)2∥S + N∥∞

and
λ1(n−1Ry) − λ2(n−1Ry) > ∥S + N∥2.
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Recall from the bounds on the coherence terms, M1 ≥ 1 and M1 ≤ 1
1−α . Hence, letting C̃3 = max{1, C̃1}

the sufficient condition to satisfy Equations 32 and 33 can be stated as

min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1} ≥ C̃3

(1 − α)2 ∥S + N∥∞

or equivalently

∥S + N∥∞ ≤ (1 − α)2

C̃3
min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1}.

Define the event E2
N as:

E2
N :=

{
∥N∥∞ ≤ (1 − α)2

C̃3
min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1} − 1

}
.

Clearly, on the event E2
N the conditions given by Equations 32 and 33 are satisfied by the use of the triangle

inequality with the fact that ∥S∥∞ = 1 − n−1∥rh∥2
2 ≤ 1 for the diagonal matrix S.

Now conditioning on the event E2
N we can use the Lemma 5 as:

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ ≤ C̃2

(
(M1)2∥S + N∥∞

(λ1(n−1Ry) − γ1)
√

d
+

√
M1∥S + N∥2

(λ1(n−1Ry) − λ2(n−1Ry))
√

d

)

≤︸︷︷︸
(l)

C̃4∥S + N∥∞

(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1}
√

d

≤︸︷︷︸
(m)

C̃4 [∥N∥∞ + 1]
(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1}

√
d

. (36)

In (l) use the fact that 1 ≤ M1 ≤ 1
1−α , in (m), we use ∥S∥∞ ≤ 1 .

We are interested in the event E2
N ∩ {∥N∥∞ ≤ ϵ} for some ϵ such that, 0 < ϵ ≤ (1−α)2

C̃3
min{λ1(n−1Ry) −

λ2(n−1Ry), λ1(n−1Ry) − γ1} − 1. On the event E2
N ∩ {∥N∥∞ ≤ ϵ}, the following is satisfied using Equation

36:

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ ≤ C̃4
ϵ + 1

(1 − α)2 min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1}
√

d
. (37)

It remains to show that the event E2
N ∩{∥N∥∞ ≤ ϵ} for some ϵ in the range 0 < ϵ ≤ (1−α)2

C̃3
min{λ1(n−1Ry)−

λ2(n−1Ry), λ1(n−1Ry) − γ1} − 1 occurs with high probability:

P (EN ∩ {∥N∥∞ ≤ ϵ}) =︸︷︷︸
(n)

1 − P({∥N∥∞ ≤ ϵ}c) ≥︸︷︷︸
(o)

1 − 2d2 exp
(

−nϵ2

2d2

)

where in (n) we use the fact that the event {∥N∥∞ ≤ ϵ} is a subset of the event E2
N and in (o), we use the

lemma 3 in the main draft.

F.2.5 Combining the Two Regimes: Completing the Proof of Lemma 4

Recall the following fact proved before in this section:
fact: When the angle between re and rh satisfy (sin ζ)2 ≤ 4dh

25de
, we can write:

|λ1(n−1Ry)| − γ1 ≥ (de∥re∥2
2 + dh∥rh∥2

2)
10n
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and for the case of (sin ζ)2 > 4dh

25de
, we have,

λ2(n−1Ry) >
2d2

h∥rh∥2
2

25den
.

We use the above fact to combine the two regimes to complete the proof of Lemma 4 of the main draft. When
(sin ζ)2 > 4dh

25de
, we can write:

min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)} ≥ min{λ1(n−1Ry) − λ2(n−1Ry), 2d2
h∥rh∥2

2
25den

}

= d min{d−1(λ1(n−1Ry) − λ2(n−1Ry)), 2(1 − α)2∥rh∥2
2

25αn
}.

Now recall from Lemma 1 of the main draft,

λ1(n−1Ry) − λ2(n−1Ry) =

√
[de∥re∥2

2 − dh∥rh∥2
2]2 + 4dedh(rT

e rh)2

n

≤
[
de∥re∥2

2 + dh∥rh∥2
2
]2

n
≤ d.

Also, from the Assumption 1 of the main draft, we have, ∥rh∥2 ≥ 2ρn. From the above two observations, we
can write, when (sin ζ)2 > 4dh

25de
,

min{λ1(n−1Ry) − λ2(n−1Ry), λ2(n−1Ry)} ≥ C̃5(1 − α)2ρ

α
(λ1(n−1Ry) − λ2(n−1Ry))

where, we let C̃5 = 4
25 .

Now for the alternative case of (sin ζ)2 ≤ 4dh

25de
, we can write,

min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1} ≥ min{λ1(n−1Ry) − λ2(n−1Ry), de∥re∥2
2 + dh∥rh∥2

2
10n

}.

Now as shown above, we have, λ1(n−1Ry) − λ2(n−1Ry) ≤ de∥re∥2
2+dh∥rh∥2

2
n , giving us: for the case of

(sin ζ)2 ≤ 4dh

25de

min{λ1(n−1Ry) − λ2(n−1Ry), λ1(n−1Ry) − γ1} ≥ 1
10(λ1(n−1Ry) − λ2(n−1Ry)).

Hence, we can combine the two cases in the following statement. Let C̃6 = min{C̃5, 1
10 }. If ν(n−1Ry) satisfies:

C̃6(1 − α)4ρ

C̃3α
ν(n−1Ry)d − 1 > 0

then, for every ϵ such that 0 < ϵ < C̃6(1−α)4ρ

C̃3α
ν(n−1Ry)d − 1, we have the following:

P

(
min

θ∈{−1,+1}
∥v(n−1Ry) − θv̂∥∞ ≥ C̃4α

C̃6(1 − α)4ρ

ϵ + 1
ν(n−1Ry)d

√
d

)
≤ 2d2 exp

(
−nϵ2

2d2

)
,

where we used the following notation from the main draft: ν(n−1Ry) = d−1(λ1(n−1Ry)−λ2(n−1Ry)). Letting
C3 = C̃6

C̃3
and C4 = C̃4

C̃6
, we arrive at the statement in Lemma 4.
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F.3 Sufficient Condition for Perfect Clustering

Here, we relate the event of perfect clustering with the concentration of the principal eigenvector v̂ with
respect to v(n−1Ry).

Proposition 3 Under the stated assumptions, Algorithm 1 achieves perfect clustering, that is η = 0 when
the following event occurs :

El∞ :=
{

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ <
1
2 min

{
me(n−1Ry), mh(n−1Ry)

}}
.

The proof of the above proposition is given in Appendix F.6.3

F.4 Proof of the Theorem 1: Perfect Clustering

Now we complete the proof of the clustering Theorem 1. From Proposition 3, we know that,

P (η = 0) ≥ P
(

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ <
1
2 min

{
me(n−1Ry), mh(n−1Ry)

})
.

Now we show that the right hand side of the above equation is close to 1 for large values of n using lemma 4.
We also derive the corresponding necessary conditions on the problem parameters n and d.

One requirement of Lemma 4 is that C3(1−α)4ρ
α ν(n−1Ry)d − 1 > 0. This leads to the following requirement

on d:
d >

α

C3(1 − α)4ρν(n−1Ry) . (38)

Under Equation 38, we have from Lemma 4, for every 0 < ϵ < C3(1−α)4ρ
α ν(n−1Ry)d − 1,

P

(
min

θ∈{−1,+1}
∥θv̂ − v(n−1Ry)∥∞ ≥ C4

α(ϵ + 1)
(1 − α)4ρν(n−1Ry)d

√
d

)
≤ 2d2 exp

(
−n

ϵ2

2d2

)
,

Next, we choose a suitable ϵ with 0 < ϵ < C3(1−α)4ρ
α ν(n−1Ry)d − 1 such that

C4
α(ϵ + 1)

(1 − α)4ρν(n−1Ry)d
√

d
≤ 1

2 min
{

me(n−1Ry), mh(n−1Ry)
}

.

The following choice of ϵ satisfies the above requirement :

ϵ = 1
4 max{C3, C4, 1}

(1 − α)4ρ

α
ν(n−1Ry)d min(me(n−1Ry)d 1

2 , mh(n−1Ry)d 1
2 , 1)

, when we impose :

d >
4 max{C3, C4, 1}α

(1 − α)4ρν(n−1Ry) min
{

me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1
} . (39)

Notice that the requirement on d in Equation 39 is stronger than the requirement in Equation 38. Putting it
together, we get, when d satisfies Equation 39 the perfect clustering is guaranteed as

P (η = 0) ≥ P
(

min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞ <
1
2 min

{
me(n−1Ry), mh(n−1Ry)

})

≥ 1 − 2d2 exp

−n

2

(
(1 − α)4ρν(n−1Ry) min

{
me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1

}
4 max{C3, C4, 1}α

)2
 .
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When r⊤
e rh = 0, from the analysis of Appendix E.1 we have,

me(n−1Ry) = µe(n−1Ry) − µ(n−1Ry) = dh

d
(µe(n−1Ry) − µh(n−1Ry)) = dh

d

1√
de

.

mh(n−1Ry) = µ(n−1Ry) − µh(n−1Ry) = de

d
(µe(n−1Ry) − µh(n−1Ry)) = de

d

1√
de

.

Now, dh = (1 − α)d and de = αd with 0 < α < 1. Hence for this case, we have
min

{
me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1

}
≥ 1 − α. On the other hand when, r⊤

e rh ̸= 0, it is convenient to ex-
press the absolute margins me(n−1Ry) and mh(n−1Ry) as a function of the ratio s = µe(n−1Ry)/µh(n−1Ry)
between the easy and hard magnitudes µe(n−1Ry), µh(n−1Ry) so that

me(n−1Ry) = µe(n−1Ry) − µ(n−1Ry) = dh

d
(µe(n−1Ry) − µh(n−1Ry)) = dh

d

||s| − 1|√
des2 + dh

. (40)

mh(n−1Ry) = µ(n−1Ry) − µh(n−1Ry) = de

d
(µe(n−1Ry) − µh(n−1Ry)) = de

d

||s| − 1|√
des2 + dh

. (41)

Hence, we can lower bound the term min{me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1} as follows:

min{me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1} = min
{

dh

d

||s| − 1|√
des2 + dh

d1/2,
de

d

||s| − 1|√
des2 + dh

d1/2, 1
}

= min
{

α||s| − 1|√
αs2 + (1 − α)

,
(1 − α)||s| − 1|√

αs2 + (1 − α)
, 1
}

≥︸︷︷︸
(p)

min {α, 1 − α} ||s| − 1|√
s2 + 1

where in (p), we use the fact that min {α, 1 − α} ||s|−1|√
s2+1 ≤ 1. From the above bounds on M and

min{me(n−1Ry)d1/2, mh(n−1Ry)d1/2, 1}, we can write the sufficient number of tasks required for perfect
clustering as:

d ≥ C1√
D(re, rh, α, d)

and the probability guarantee of perfect clustering as

P(η = 0) ≥ 1 − 2d2 exp (−C2nD(re, rh, α, d)) ,

where the problem-dependent quantity D(re, rh, α, d) characterizing the error exponent and the requirement
on d is given by

D(re, rh, α, d) =


(

(1−α)5ρ
α

ν(n−1Ry)||s|−1|√
s2+1

)2
when, r⊤

e rh ̸= 0,(
(1−α)5ρ

α ν(n−1Ry)
)2

when, r⊤
e rh = 0,

with the positive universal constants C1 = 4 max{C3, C4, 1} and C2 = 1
25(max{C3,C4,1})2 .

F.5 Proof of Corollary 1

Restatement of Corollary 1:

If there exist some universal constant β with 0 < β ≤ 1,

∥re∥2
2 − ∥rh∥2

2
n

≥ β

then, under Assumption 1, Algorithm 1 achieves clustering error η = 0 with probability at least 1 − δ when

n ≥
C6α2 log

( 2d
δ

)
(1 − α)12ρ2β4
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where C6 = 160
C2

Proof:

We are assuming that there exist a positive β such that β ≤ 1, the following is true :

∥re∥2 − ∥rh∥2 ≥ βn.

We would like to lower-bound the following term:

D(re, rh, α, d) =


(

(1−α)5ρ
α

ν(n−1Ry)||s|−1|√
s2+1

)2
when, r⊤

e rh ̸= 0,(
(1−α)5ρ

α ν(n−1Ry)
)2

when, r⊤
e rh = 0.

Let us first lower-bound ν(n−1Ry). We have the following:

ν(n−1Ry) = λ1(n−1Ry) − λ2(n−1Ry

nd

=
√

(de∥re∥2
2 − dh∥rh∥2

2)2 + 4dedh(r⊤
e rh)2

nd

≥ de∥re∥2
2 − dh∥rh∥2

2
nd

≥ de∥re∥2
2 − de∥rh∥2

2 + de∥rh∥2
2 − dh∥rh∥2

2
nd

≥︸︷︷︸
(p)

de(∥re∥2
2 − ∥rh∥2

2)
nd

≥ αβ

where in (p), we used the assumptions de ≥ dh and ∥re∥2 ≥ ∥rh∥2. Next, let us lower-bound the term (|s|−1)2

s2+1 .
Recall from the Lemma 2 of the main draft, we have:

s = ω +
√

ω2 + dh

de

with
ω = de∥re∥2

2 − dh∥rh∥2

2der⊤
e rh

.

Using simple calculus, we can show that, (|s|−1)2

s2+1 ≥ min
{

1
25 , 1

20

(
|ω| − de−dh

2de

)2
}

. The rest is to lower-bound(
|ω| − de−dh

2de

)
. We can write:

|ω| − de − dh

2de
= de∥re∥2 − dh∥rh∥2

2 − (de − dh)|r⊤
e rh|

2de|r⊤
e rh|

= de∥re∥2 − dh∥re∥2
2 + dh(∥re∥2 − ∥rh∥2

2) − (de − dh)|r⊤
e rh|

2de|r⊤
e rh|

≥︸︷︷︸
(q)

dh(∥re∥2 − ∥rh∥2
2)

2de|r⊤
e rh|

≥ dhβ

2de
= β(1 − α)

2α

where in (q) we use ∥re∥2 ≥ ∥rh∥2 and in (c), we used that |r⊤
e rh| ≤ n. Thus, we can lower-bound (|s|−1)2

s2+1 as:

(|s| − 1)2

s2 + 1 ≥ min
{

1
25 ,

β2(1 − α)2

24 · 5α2

}
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Giving us:

D(re, rh, α, d) ≥ (1 − α)12ρ2β4

24 · 5α2 .

From Theorem 1, the requirement on n for an event of perfect clustering with probability ≥ 1 − δ becomes:

n ≥
log
(

2d2

δ

)
C2D(re, rh, α, d) .

Hence, we can write that, Algorithm 1 achieves clustering error η = 0 with probability at least 1 − δ when

n ≥
C6α2 log

( 2d
δ

)
(1 − α)12ρ2β4

where C6 = 160
C2

F.6 Remaining Part of Proofs for Theorem 1

Here we characterize the relation between the l∞ norm concentration of the eigenvectors with the event of
perfect clustering which leads to a proof of the Proposition 3.

F.6.1 Relating the Event of Misclustering to Eigenvector Concentration

Before stating the sufficient condition for the perfect clustering, we state a more general result that provides
the sufficient conditions for a clustering error η ≤ 1 − t for some t ∈ [0, 1] in the following proposition.

Proposition 4 Let θ be the sign that resolves the eigenvector ambiguity

θ = arg min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥2.

Fix any non-negative t ≤ 1, Algorithm 1 returns cluster membership with η ≤ 1 − t on the following event on
the random vector v̂ and the random variable µ̂:

1
d

d∑
j=1

1(Ev̂,j) ≥ t (42)

where,
Ev̂,j =

{
|vj(n−1Ry) − θv̂j | + |µ(n−1Ry) − µ̂| < min{me(n−1Ry), mh(n−1Ry)}

}
.

Proof 1 Assume the event defined in Equation 42 is true for a fixed t such that 0 ≤ t ≤ 1. Under this event
we show that there exists a permutation π from {e, h} to {e, h} such that η ≤ 1 − t.
First, consider the case of µe(n−1Ry) ≥ µh(n−1Ry). Our candidate permutation for this case is π = {e 7→
e; h 7→ h}. We claim that when event Ev̂,j is true, the task j is clustered into group 1 if kj = e and into
group 2 otherwise. Under this claim, it is easy to see that on the event Equation 42, at least t fraction
of tasks are correctly clustered, that is, η ≤ 1 − t. We are left to prove the claim now. Consider the
case kj = e for a task j. By definition of the absolute margins me(n−1Ry) and mh(n−1Ry), we have that
min{me(n−1Ry), mh(n−1Ry)} ≤ |vj(n−1Ry)| − µ. Suppose Ev̂,j is true . Then,

|v̂j | − µ̂ = |vj(n−1Ry)| − µ(n−1Ry) + µ(n−1Ry) − µ̂ + |θv̂j | − |vj(n−1Ry)|
≥ min{me(n−1Ry), mh(n−1Ry)} − |vj(n−1Ry) − θv̂j | + |µ(n−1Ry) − µ̂|
>︸︷︷︸
(r)

min{me(n−1Ry), mh(n−1Ry)} − min{me(n−1Ry), mh(n−1Ry)} = 0,

where (r) is due to event Ev̂,j. This implies |v̂j | > µ̂. This proves that task j is correctly clustered as k̂j = e

and π(k̂j) = e. By the similar arguments for kj = h, we obtain that π(k̂j) = h in the same event.
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Lastly, consider the case of µe(n−1Ry) < µh(n−1Ry). The flow is almost identical for the case of µe(n−1Ry) ≥
µh(n−1Ry) but, it is given below for completeness. Our candidate permutation for this case is π = {e 7→
h; h 7→ e}. We claim that when event Ev̂,j is true, the task j is clustered into group 1 if kj = h and into
group 2 otherwise. Under this claim, it is easy to see that under event Equation 42, at least t fraction
of tasks are correctly clustered, that is, η ≤ 1 − t. We are left to prove the claim now. Consider the
case kj = e for a task j. By definition of the absolute margins me(n−1Ry) and mh(n−1Ry), we have that
min{me(n−1Ry), mh(n−1Ry)} ≤ µ(n−1Ry) − |vj(n−1Ry)|. Suppose Ev,j is true. Then,

µ̂ − |v̂j | = µ(n−1Ry) − |vj(n−1Ry)| + µ̂ − µ(n−1Ry) + |θv̂j | − |vj(n−1Ry)|
≥ min{me(n−1Ry), mh(n−1Ry)} − |vj(n−1Ry) − θv̂j | + |µ(n−1Ry) − µ̂|
>︸︷︷︸
(s)

min{me(n−1Ry), mh(n−1Ry)} − min{me(n−1Ry), mh(n−1Ry)} = 0,

where (s) is due to the event Ev̂,j. This implies |v̂j | < µ̂. This proves that task j is correctly clustered as
π(k̂j) = e. Repeating the same argument for kj = h, we obtain that π(k̂j) = h in the same event.

F.6.2 Concentration of the Threshold µ̂

Recall, the Algorithm 1 uses the following threshold to cluster the entries of |v̂| :

µ̂ = 1
d

d∑
j=1

|v̂j |.

Fact: For any vectors v, v̂ of dimension d the mean absolute error |µ − µ̂| between the average of magnitudes
µ = d−1∑d

j=1|vj | and that of v̂ satisfies

|µ − µ̂| ≤ d−1/2 min
θ∈{−1,+1}

∥v − θv̂∥2 ≤ min
θ∈{−1,+1}

∥v − θv̂∥∞. (43)

Proof 2

µ̂ − µ = 1
d

d∑
j=1

(|θv̂j | − |vj |) = 1
d

d∑
j=1

(|v̂j | − |vj |) .

Taking the absolute value and using the triangle inequality, followed by the root mean square - arithmetic
mean inequality,

|µ̂ − µ| ≤ 1
d

d∑
j=1

|v̂j − vj | ≤ d−1/2∥v̂ − v∥2 ≤ min
θ∈{−1,+1}

∥v − θv̂∥∞.

Using the above fact, we can relate the concentration of µ̂ with respect to
µ(n−1Ry) = 1

d

∑d
j=1 |vj(n−1Ry)| as

|µ̂ − µ(n−1Ry)| ≤ 1
d

d∑
j=1

|v̂j − vj(n1Ry)| ≤ d−1/2∥v̂ − v(n−1Ry)∥2 ≤ min
θ∈{−1,+1}

∥v(n−1Ry) − θv̂∥∞. (44)

F.6.3 Proof of Proposition 3: Relating the Event of Perfect Clustering with Eigenvector Concentration

The Proposition 3 is an immediate implication of Proposition 4 and Equation 44. On the event El∞ , using
Equation 44, the following is satisfied : |µ̂ − µ| < 1

2 min
{

me(n−1Ry), mh(n−1Ry)
}

. Hence, the event Ev̂,j is
satisfied for all j ∈ [n]. Hence η = 0 is achieved from Proposition 4.
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G Proof of Proposition 1: Error Rate Lower Bound of Type-Agnostic Weighted
Majority Vote

We restate the proposition for easy reference:

Restatement of Proposition 1:

Let the WMV estimate using a single weight vector w across all task j is defined as:

ŷW MV
j (w) := sgn

(
n∑

i=1
wiXij

)
, ∀j ∈ [d].

We consider weight vectors belonging to the set wl ≤ |wi| ≤ wu for all workers i with wl and wu two positive
constants such that 0 < wl ≤ wu < ∞. Under this construction, for any y ∈ {−1, +1}d, the average labeling
error rate for the type-agnostic WMV algorithm can be lower bounded as

lim inf
n→∞

1
n

log min
w

E

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

)
≥ − lim sup

n→∞
max

w
min

k
φn(w, rk),

for any ground-truth vector y ∈ {−1, +1}d where the error exponent φn(w, rk) is given by

φn(w, rk) = − inf
t≥0

1
n

n∑
i=1

log
(

etwi
1 − rki

2 + e−twi
1 + rki

2

)
.

Proof:

This proof technique uses large deviation analysis on a sum of independent random variables (Srikant & Ying,
2013). Let us first fix a task index j and let the type of that task be kj = k for some k ∈ {e, h}. For each
worker i and task j, let Gij be a random variable that takes the value +1 if worker i correctly labels task j
and is −1 otherwise. In other words, Gij = yjXij , which is +1 with probability 1

2 (1+rki). Let the probability
measure corresponding to type k be denoted by Pk and we can write the probability of mislabeling task j as:

Pk (ŷj(w) ̸= yj) ≥ Pk

(
yj

n∑
i=1

wiXij < 0
)

= Pk

(
n∑

i=1
wiGij < 0

)
,

where the inequality follows from the observation that when
∑n

i=1 wiXij = 0, we assign the label as +1.
where we drop the superscript ‘WMV’ in this section from ŷW MV

j (w). We notice that
∑n

i=1 wiGij can only
take finitely many values and

∑n
i=1 wiGij ≤

∑
i |wi|. Consider the set S = {s : s =

∑
i gi, gi ∈ {−wi, wi}}.

For any positive value of Sk with 0 < Sk ≤
∑

i |wi|,

Pk

(
n∑

i=1
wiGij < 0

)
= Pk

(
−

n∑
i=1

wiGij > 0
)

≥
∑

s∈S:0<s<Sk

Pk

(
−

n∑
i=1

wiGij = s

)
(45)

=
∑

s∈S:0<s<Sk

∑∑
i

gi=s,gi∈{−wi,wi}

n∏
i=1

Pk (−wiGij = gi) (46)

holds by the independence of the responses across workers. Now, we use a change of measure of the concerned
random variable. Define a new random variable corresponding to each i as G̃ij given by the following mass
distribution for some tn(k) ≥ 0

Q
tn(k)
k

(
G̃ij = 1

)
= (1 + rki)e−tn(k)wi

(1 + rki)e−tn(k)wi + (1 − rki)etn(k)wi
,

Q
tn(k)
k

(
G̃ij = −1

)
= (1 − rki)etn(k)wi

(1 + rki)e−tn(k)wi + (1 − rki)etn(k)wi
.
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Then we can express Equation 46 as∑
s∈S:0<s<Sk

∑∑
i

gi=s,gi∈{−wi,wi}

n∏
i=1

P (−wiGij = gi)

≥ Q
tn(k)
k

(
0 < −

∑
i

wiG̃ij < Sk

) ∏n
i=1
(
(1 + rki)e−tn(k)wi + (1 − rki)etn(k)wi

)
2etn(k)Sk

where to obtain the last step above, we have multiplied and divided each term in the product by
2etn(k)gi

(1+rki)e−tn(k)wi +(1−rki)etn(k)wi
and used the bound

∑n
i=1 gi ≤ Sk. Recall the expression

φn(w, rk) = − inf
t≥0

1
n

∑
i

log
(

1
2
(
(1 + rki)e−twi + (1 − rki)etwi

))
, (47)

Define tn(k) = t∗
n(k) to be a minimizing argument of 1

n

∑
i log

( 1
2
(
(1 + rki)e−tn(k)wi + (1 − rki)etn(k)wi

))
in

the domain tn(k) ≥ 0. Now, putting the minimizing argument t∗
n(k) in the place of tn(k) we obtain a lower

bound for type k as

Pk (ŷj ̸= yj) ≥ Q
t∗

n(k)
k

(
0 < −

∑
i

wiG̃ij < Sk

)
e−nφn(w,rk)−t∗

n(k)Sk .

Noting that the distribution of the random variable G̃i,j is invariant to task index j, we drop the index j in
the subsequent bounds on the error rate for positive values Sk, ∀k ∈ {e, h} (note that the following holds for
all y):

E

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

) ≥
∑

k∈{e,h}

dk

d
Q

t∗
n(k)

k

(
0 < −

∑
i

wiG̃i < Sk

)
e−nφn(w,rk)−t∗

n(k)Sk . (48)

To analyze this further, use the following Lemma on the distribution of −
∑

i wiG̃i, an extension to the
asymptotic analysis of majority voting in Gao et al. (2016).

Recall our definition ρ ≤ mini
1+rki

2 ≤ 1 − ρ, ∀k ∈ {e, h}. The following lemma is similar to Lemma 6.3 in
Gao et al. (2016). The proof is given next to it for completeness.

Lemma 6 Let ρ ≤ mini
1±rki

2 ≤ 1 − ρ, ∀k ∈ {e, h}, for some ρ ∈ (0, 1/2).

1. Let t∗
n(k) be the minimizer of 1

n

∑
i log

( 1
2 ((1 + rki)e−twi + (1 − rki)etwi)

)
. Then,

0 ≤ t∗
n(k) < − n

∥w∥1
log ρ, k ∈ {e, h}, ∀n ≥ 1.

2. For any y ∈ {±1} and any tn(k) ≥ 0,∑n
i=1

(
−wiG̃i − E

Q
tn(k)
k

[−wiG̃i]
)

√
Var

Q
tn(k)
k

(−
∑n

i=1 wiG̃i)
d−−−−→

n→∞
N (0, 1) , under the measure Q

tn(k)
k .

Moreover, at tn(k) = t∗
n(k),

−
∑n

i=1 wiG̃i√
Var

Q
t∗

n(k)
k

(−
∑n

i=1 wiG̃i)
d−−−−→

n→∞
N (0, 1) , under the measure Q

t∗
n(k)

k .

Proof 3 1. Let

βk(tn(k)) =
n∏

i=1

1
2

[
(1 + rki)e−tn(k)wi + (1 − rki)etn(k)wi

]
.

Then βk(0) = 1 and ∀tn(k) ≥ − n
∥w∥1

log ρ, we have that βk(tn(k)) >
∏n

i=1
(
ρetn(k)|wi|) ≥ 1. Therefore,

t∗
n(k) ∈

[
0, − n

∥w∥1
log ρ

)
.
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2. For the second part, we use Lindeberg’s condition for the Central Limit Theorem for the expression∑n
i=1 −wiG̃i. The Lindeberg’s condition in this context corresponds to

lim
n→∞

∑n
i=1 EQ

tn(k)
k

[(
−wiG̃i − E

Q
tn(k)
k

[−wiG̃i]
)2

1
{∣∣∣−wiG̃i − E

Q
tn(k)
k

[−wiG̃i]
∣∣∣ > ϵ

√
Var

Q
tn(k)
k

(∑n
i=1 −wiG̃i

)}]
Var

Q
tn(k)
k

(
∑n

i=1 −wiG̃i)

= 0, ∀ϵ > 0.

A direct calculation gives

E
Q

tn(k)
k

[−wiG̃i] =︸︷︷︸
(a)

wi
(1 − pki)etn(k)wi − pkie

−tn(k)wi

(1 − pki)etn(k)wi + pkie−tn(k)wi

=
d

dtn(k)
[
(1 − pki)etn(k)wi + pkie

−tn(k)wi
]

(1 − pki)etn(k)wi + pkie−tn(k)wi

= d

dtn(k) log
(

(1 − pki)etn(k)wi + pkie
−tn(k)wi

)
,

where in (a), we used the following relation : pki = 1+rki

2 , ∀k ∈ e, h, i ∈ [n].

The last two equalities imply: at tn(k) = t∗
n(k), E

Q
tn(k)
k

[∑n
i=1 −wiG̃i

]
= 0. Moreover, E

Q
tn(k)
k

[(−wiG̃i)2] =
w2

i . Therefore,

Var
Q

tn(k)
k

(−wiG̃i) = w2
i

[
1 − [(1 − pki)etn(k)wi − pkie

−tn(k)wi ]2
[(1 − pki)etn(k)wi + pkie−tn(k)wi ]2

]
= w2

i

4pki(1 − pki)
[(1 − pki)etn(k)wi + pkie−tn(k)wi ]2

≥ 4w2
i ρ2

(1 − ρ)2[etn(k)wi + e−tn(k)wi ] ≥ 2w2
i ρ2

(1 − ρ)2etn(k)|wi| ≥ 2w2
l ρ2

(1 − ρ)2etn(k)wu
,

and hence, Var
Q

tn(k)
k

(
∑n

i=1 −wiG̃i) ≥ n
2w2

l ρ2

(1−ρ)2etn(k)wu
→ ∞ as n → ∞.

Additionally,
∣∣∣−wiG̃i − E

Q
tn(k)
k

[−wiG̃i]
∣∣∣ ≤ 2|wi| ≤ 2wu almost surely (and therefore, Var

Q
tn(k)
k

(−wiG̃i) ≤
4w2

u). Thus, for every ϵ > 0 we have that

1

∣∣∣wiG̃i − E
Q

tn(k)
k

[−wiG̃i]
∣∣∣ > ϵ

√√√√Var
Q

tn(k)
k

(
n∑

i=1
−wiG̃i

) = 0, almost surely

for n >
2w2

u(1−ρ)2etn(k)wu

ϵ2w2
l

ρ2 . Lindeberg’s condition now follows.

Remark 3 We can see that Var
Q

t∗
n(k)

k

(−wiG̃i) > 0 as t∗
n(k) < − n

∥w∥1
log ρ.

Now, let us go back to proving the lower bound. We have the following:

E

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

) ≥
∑

k∈{e,h}

dk

d
Q

t∗
n(k)

k

(
0 < −

∑
i

wiG̃i < Sk

)
e−nφn(w,rk)−t∗

n(k)Sk .
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Setting Sk =
√

Var
Q

t∗
n(k)

k

(
∑

i −wiG̃ij), we write the following

Q
t∗

n(k)
k

(
0 < −

∑
i

wiG̃i < Sk

)

= Q
t∗

n(k)
k

0 < −
∑

i

wiG̃i <

√√√√Var
Q

t∗
n(k)

k

(∑
i

−wiG̃ij

)
=︸︷︷︸
(b)

Q
t∗

n(k)
k

0 <
−
∑

i wiG̃i√
Var

Q
t∗

n(k)
k

(
∑

i −wiG̃ij)
< 1

 .

In (b), we use Remark 3 from the proof of Lemma 6:
√

Var
Q

t∗
n(k)

k

(∑
i −wiG̃ij

)
> 0 at tn(k) = t∗

n(k). Also,

exp (−nφn(w, rk) − t∗
n(k)Sk) = exp

−nφn(w, rk) − t∗
n(k)

√√√√Var
Q

t∗
n(k)

k

(∑
i

−wiG̃i

) .

Evaluating VarQ(
∑

i −wiG̃i) ≤
∑

i w2
i and using the following bounds on the entries of w : wl ≤ |wi| ≤

wu, ∀i ∈ [n], and using the upper-bound on t∗
n(k) from the Lemma 6,

exp

−nφn(w, rk) − t∗
n(k)

√√√√Var
Q

t∗
n(k)

k

(∑
i

−wiG̃i

) ≥ exp
(

−n
∥w∥2| log(ρ)|

∥w∥1
− nφn(w, rk)

)

≥ exp
(

−
√

n
wu| log(ρ)|

wl
− nφn(w, rk)

)
.

Putting it all together, We can write from Equation 48,

E

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

)
≥

∑
k∈{e,h}

dk

d
Q

t∗
n(k)

k

0 <
−
∑

i wiG̃i√
Var

Q
t∗

n(k)
k

(
∑

i −wiG̃ij)
< 1

 exp
(

−
√

n
wu| log(ρ)|

wl
− nφn(w, rk)

)

≥ min
k

dk

d
exp

(
−

√
n

wu| log(ρ)|
wl

− n min
k

φn(w, rk)
)

min
k

Q
t∗

n(k)
k

0 <

∑
i −wiG̃i√

Var
Q

t∗
n(k)

k

(
∑

i −wiG̃ij)
< 1

 .

By first taking a minimum over weight vector w and then taking the lim inf as n → ∞ and using the Lemma
6,

lim inf
n→∞

1
n

logE

1
d

∑
j

1
(
ŷW MV

j (w) ̸= yj

) ≥ − lim sup
n→∞

max
w

min
k

φn(w, rk).

H Proof of Proposition 2

Restatement of Proposition 2: Assume Vk = minimaxa,b̸=i

√
|rkarkb| > 0 for each k ∈ {e, h} which is

satisfied if there are at least two workers with non-zero reliability values for each type. If the number of
workers n satisfies n ≥

√
3ρ/r̄, and the number of tasks per type satisfies

dk ≥ C5
n2

V 4
k min(ρ2, r̄2)

(
nΦn(rk) + log(6n2)

)
.
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for some universal constant C5 then, the TE algorithm to estimate the reliability vectors followed by NP-WMV
for label estimation separately for each type (when type information is known) achieves a labeling error rate
satisfying

E

1
d

∑
j

1 (ŷj ̸= yj)

 ≤ 3
∑

k∈{e,h}

dk

d
exp (−nΦn(rk)) ,

where ŷj and yj are the estimated and true labels of task j, respectively, and

Φn(rk) = − 1
n

n∑
i=1

log
(√

(1 + rki)(1 − rki)
)

.

Proof:

The statement is obtained by appropriately modifying Theorem 4.1 in Gao et al. (2016) and Theorem 2 in
Bonald & Combes (2017). For the known type case, we separate the tasks according to their type, and each
type is dealt with separately as two Dawid-Skene problem instances. Because task types are known for this
setting, the TE algorithm is applied separately to each type independently of the other to estimate each
type’s reliability vectors. Labels are estimated using the corresponding NP-WMV.

From Theorem 2 3 in Bonald & Combes (2017)4, we have that if the number of workers n satisfies

n2 ≥ 3ρ

r
(49)

and the number of tasks dk per type k ∈ {e, h} is

dk ≥ max
(

120 × 242 n2

V 4
k ρ2 (nΦn(rk) + log(6n2)), 30 × 82 n

V 2
k r̄2 (nΦn(rk) + log(4n2))

)
, (50)

then
P
(

∥r̂k − rk∥∞ ≥ ρ

n

)
≤ exp(−nΦn(rk)). (51)

The sufficient condition of d can also be written as

dk ≥ C5
n2

V 4
k min(ρ2, r̄2)

(
nΦn(rk) + log(6n2)

)
with C5 = 15 × 29.

Using the inequality | log x − log y| ≤ |x−y|
min{x,y} , ∀x, y > 0 implied by log x ≤ x − 1 for positive x, we have that

when dk satisfies Equation 50, ∑
i

max
{∣∣∣∣log 1 + r̂ki

1 + rki

∣∣∣∣ , ∣∣∣∣log 1 − r̂ki

1 − rki

∣∣∣∣} ≤ 1
2

with probability ≥ 1 − exp(−nΦn(rk)). Now define the event

Ek :=
{∑

i

max
(∣∣∣∣log 1 + r̂ki

1 + rki

∣∣∣∣ , ∣∣∣∣log 1 − r̂ki

1 − rki

∣∣∣∣) ≤ 1
2

}
.

3According to the TE algorithm described in Section B, the estimated reliabilities are projected onto the set ρ ≤ 1+r̂ki
2 ≤ 1−ρ.

This step was not included in the original TE algorithm proposed by Bonald & Combes (2017). Nevertheless, the concentration
of the reliability estimate derived from Theorem 2 of Bonald & Combes (2017) in the max-norm sense also holds under this
projection, as it acts as a contraction operator.

4One difference between our model and the model considered in Bonald & Combes (2017) is that we consider the true labels
as deterministic quantity and Bonald & Combes (2017) considers them to be random variables. The TE algorithm uses the
worker-similarity matrix and we can easily show that the worker-similarity matrix is independent of the true labels and thus the
performance bound on the TE algorithm in Theorem 2 in Bonald & Combes (2017) is valid for deterministic labels
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Under this event, the weights used by the NP estimate are approximately equal to the maximum likelihood
weights. Applying Equation 51,

P (Ec
k) ≤ exp (−nΦn(rk)) .

Without loss of generality, consider yj = 1 so that ŷj ̸= yj implies ŷj = −1. Let the type for task j be kj .
P(ŷj ̸= yj) ≤ P({ŷj ̸= yj} ∩ Ekj

) + P(Ec
kj

)

= P

({∑
i

(
log

1 + r̂kji

1 − r̂kji
Xij

)
< 0
}

∩ Ekj

)
+ P(Ec

kj
)

= P

({∏
i

(1 − r̂kji

1 + r̂kji

)1(Xij=1)(1 + r̂kji

1 − r̂kji

)1(Xij=−1)
≥ 1
}

∩ Ekj

)
+ P(Ec

kj
). (52)

Define the two random variables

A1 =
∏

i

(1 − rkji

1 + rkji

)1(Xij=1)(1 + rkji

1 − rkji

)1(Xij=−1)

A2 =
∏

i

( (1 − r̂kji)(1 + rkji)
(1 − rkji)(1 + r̂kji)

)1(Xij=1)( (1 + r̂kji)(1 − rkji)
(1 + rkji)(1 − r̂kji)

)1(Xij=−1)

.

Then, the expression
∏

i

( 1−r̂kj i

1+r̂kj i

)1(Xij=1) ( 1+r̂kj i

1−r̂kj i

)1(Xij=−1)
in the above probability is given by the product

of A1 and A2. On the event Ekj
,

A2 ≤ exp
(

2
∑

i

max
(∣∣∣∣log

1 + r̂kji

1 + rkji

∣∣∣∣ , ∣∣∣∣log
1 − r̂kji

1 − rkji

∣∣∣∣)
)

≤ exp(1).

Therefore,
P
(
{A1A2 ≥ 1} ∩ Ekj

)
≤ P

(
{A1 ≥ exp (−1)} ∩ Ekj

)
≤︸︷︷︸
(a)

P
({

A
1
2
1 ≥ exp

(
−1

2

)}
∩ Ekj

)

≤ P
({

A
1
2
1 ≥ exp

(
−1

2

)})
≤︸︷︷︸
(b)

exp
(

1
2

)
E[A1/2

1 ],

where in (a) we used the observation that A1 > 0 and in (b) we used Markov’s inequality on the random
variable A

1/2
1 > 0. Evaluating the expectation,

E[A
1
2
1 ] =

∏
i

[(1 − rkji

1 + rkji

) 1
2 1 + rkj ,i

2 +
(1 + rkji

1 − rkji

) 1
2 1 − rkj ,i

2

]

= exp
(

1
2
∑

i

log
(
1 − r2

ki

))
= exp(−nΦn(rk)).

Returning to Equation 52, we have that for a task j with type k,

Pk (ŷj ̸= yj) ≤ exp
(

1
2

)
E[A1/2

1 ] + P (Ek) ≤
(

exp
(

1
2

)
+ 1
)

exp (−nΦn(rk)) .

Averaging for all tasks j ∈ [d], we get the error rate for known types as

E

1
d

∑
j

1 (ŷj ̸= yj)

 = 1
d

d∑
j=1

P (ŷj ̸= yj) ≤ 3
∑

k∈{e,h}

dk

d
exp (−nΦn(rk)) .
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I Label Estimation Performance: Proof of Theorem 2

The expected rate of labeling error using the law of total expectation can be decomposed as :

E

1
d

∑
j

1 (ŷj ̸= yj)

 = E

1
d

∑
j

1 (ŷj ̸= yj) |Epc

P(Epc)

︸ ︷︷ ︸
I

+E

1
d

∑
j

1 (ŷj ̸= yj) |Ec
pc

P(Ec
pc)

︸ ︷︷ ︸
II

where Epc is defined as the event of perfect clustering, that is η = 0. We upper bound the second term II
as II ≤ P(Ec

pc). Now, when the condition described in the Equation 10 of Theorem 1 in the main paper is
satisfied by (ncl, d, rk(Ncl)) for each k ∈ {e, h} it is characterized by Theorem 1 as :

P(Ec
pc) ≤ 2d2 exp (−C2nclD(re(Ncl), rh(Ncl), α, d)) .

To upper bound the term I, we invoke the Proposition 2. Recall the partition of the set of workers to mutually
exclusive sets Ncl and Nrl for clustering and the labeling steps, respectively. Hence, given the event Epc, the
labeling step has perfect knowledge of each task’s type, and NP − WMV for the known type model would
yield the following error rate when (nrl, de, dh, rk(Nrl)) satisfy the conditions stated in Proposition 2:

I ≤ 3
∑

k∈{e,h}

dk

d
exp (−nrlΦk,Nrl

) .
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