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Figure 1: Multi-stage pipeline for discovering and steering interpretable concepts in generative
music models. (1) Music from a large corpus is passed through a pre-trained generator to extract
activations from multiple layers. (2) Sparse autoencoders reconstruct activations (also usable for
steering), and features are filtered to retain the most viable candidates. (3) Retained features are
characterized via musical examples and labeled using generative labeling with a multimodal LM and
classifier-based labeling with pre-trained models.

Abstract

The fidelity with which neural networks can now generate content such as music
presents a scientific opportunity: these systems appear to have learned implicit
theories of such content’s structure through statistical learning alone. This offers
a potentially new lens on theories of human-generated media. When internal
representations align with traditional constructs (e.g. chord progressions in music),
they show how such categories can emerge from statistical regularities; when
they diverge, they expose limits of existing frameworks and patterns we may
have overlooked but that nonetheless carry explanatory power. In this paper,
focusing on music generators, we introduce a method for discovering interpretable
concepts using sparse autoencoders (SAEs), extracting interpretable features from
the residual stream of a transformer model. We make this approach scalable and
evaluable using automated labeling and validation pipelines. Our results reveal
both familiar musical concepts and coherent but uncodified patterns lacking clear
counterparts in theory or language. As an extension, we show such concepts can be
used to steer model generations. Beyond improving model transparency, our work
provides an empirical tool for uncovering organizing principles that have eluded
traditional methods of analysis and synthesis.1

1https://musicdiscovery.media.mit.edu/
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1 Introduction

When humans create, we draw upon a rich vocabulary of concepts. Some we can name and explicitly
reason about; terms like “symmetry” or “gradient” in the visual arts, for instance. Others shape our
media long before we have language for them: consider how the “Hero’s Journey” narrative structure
infused myths, legends, and epics across cultures for millennia before Joseph Campbell theorized it
in the 20th century [1]. This gap between practice and theory is emblematic of a more fundamental
pattern: our ability to recognize and use structure often precedes our ability to describe it.

This poses an interesting puzzle for machine learning: how do we bridge the gap between the raw
statistical horsepower of generative models and the structured conceptual vocabulary we humans use?
While these models demonstrate remarkable capacity to generate coherent content across domains
through statistical learning alone, their neural activation patterns may not correspond directly to
theoretical constructs. Music provides an ideal domain for investigating this alignment problem due to
its combination of well-developed theoretical vocabulary with patterns resistant to verbal description,
its statistical regularities alongside cultural diversity, and the absence of large-scale paired training
data that facilitates concept discovery in other domains.

This paper introduces a method for doing exactly this (illustrated in Figure 1). Using sparse au-
toencoders, we extract features from the residual stream activations of a transformer-based music
generation model. We emphasize that our work operates at a proto-theoretical level. It surfaces latent
operational concepts from within a model’s internal representations. These concepts may support
coherent generations, but they lack the formal structure, completeness, or normative grounding
required of a formal musical theory. Our goal is to investigate the distinctions that emerge when
generative models are trained to produce music. These latent regularities may eventually serve for
developing new formal theories. Please refer to Section A for an extensive review of related work.

2 Methods

2.1 Dataset and Activation Extraction

We use the MusicSet [2] dataset, a collection of around 160,000 samples, most of which are ≈10
seconds long. MusicSet is a combination of data from MTG-Jamendo [3], MusicCaps [4], and
MusicBench [5]. This dataset offers a diverse range of genres, instrumentation, and musical charac-
teristics at a larger scale than many alternative publicly available datasets. We produce activations by
feeding the music into two pre-trained MusicGen [6] models: MusicGen-Large (MGL) and MusicGen-
Small (MGS). For each model, we extract activation vectors from five layers in the residual stream:
the early layer (layer 2), late layer (second-to-last), middle layer, and layers at 25%, 50%, and
75% depth. This corresponds to LayerMGS ∈ {2, 6, 12, 18, 22}, and LayerMGL ∈ {2, 12, 24, 36, 46}.
Activation dimensionality is 1024 for MGS and 2048 for MGL.

2.2 Training the Sparse Autoencoders

We train SAEs to extract interpretable features from the residual stream activations of MusicGen. Each
is trained to reconstruct the original activations x ∈ Rd from a learned sparse latent representation
h ∈ REF ·d, where EF is an expansion factor. The SAE architecture generally consists of an encoder
(h = ReLU(Wex+ be)) and a decoder (x̂ = Wdh+ bd), both implemented as single linear layers
where We ∈ REF ·d×d, Wd ∈ Rd×EF ·d, be ∈ REF ·d, and bd ∈ Rd are the learned weights and
biases. We apply a k-sparse projection operator Pk : REF ·d → REF ·d to h, yielding the sparse latent
code z = Pk(h). These are typically called k-sparse autoencoders [7, 8]. Where Sk is the set of
indices of the top-k values ∈ h: z = Pk(h) = hi if hi ∈ Sk(h) and 0 otherwise.

We minimize the mean squared reconstruction error, subject to the sparsity constraint. We experiment
with expansion factors EF ∈ {4, 32} and sparsity levels k ∈ {32, 100}, all of which are values
encountered in prior SAE literature [8, 9].

2.3 Feature Mapping and Filtering

SAE latents may correspond to meaningful musical features, but interpreting them is challenging
since music tokens are only ∼20 ms chunks. Therefore, we compute a per-track summary statistic
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for each feature based on its activation profile over time. Let fi denote the i-th learned feature,
and let αi,j = (αi,j,1, . . . , αi,j,Tj ) ∈ RTj×d represent its activation time series over the Tj time
steps of track j. The mean activation of feature fi in track j is: µi,j = 1

Tj

∑Tj

t=1 αi,j,t, which
corresponds to the average prominence over the duration of the track. We then filter features by
their corpus-level activation rate ri = 1

N

∑N
j=1 δi,j where δi,j = I

(
max1≤t≤Tj

αi,j,t > τ
)

indicates
whether feature fi activates in track j, and N is the number of validation tracks. We retain only those
with 0.01 < ri < 0.25 to exclude inactive, overly common, or too rare features. Then, we select the
top 10 highest-activating examples. Thresholds are informed by [9].

2.4 Automated Interpretability

Human interpretation of features quickly becomes infeasible due to scale: with expansion factor 32x,
a single layer may contain 65,536 features requiring 18+ hours of listening time, multiplied across
multiple layers. Since musical concepts present more variedly than linguistic ones and lack strong
music-language models for automated interpretation, we employ a multi-step labeling pipeline: (1)
querying a multimodal model (Gemini Flash 1.5) with concatenated audio from top-10 max activating
examples to produce a set of concept tags, confidence scores for each, and an overarching label
and description for the feature; (2) extracting candidate labels using pre-trained Essentia [10] audio
classifiers; and (3) using CLAP [11] to measure alignment between labels and activating examples.

2.5 Human Validation

We run a human validation study (IRB approved) where participants are presented with 3 audio
examples for each feature randomly subselected from SAEs with significant valid feature counts,
alongside proposed labels. They are then asked to rate which label best captures common features
and their confidence in that selection, while also providing their own intuitive labels.

2.6 Generation Steering

Steering generations modifies the forward pass by adding scaled feature vectors to the residual stream
at the SAE’s hook point. For a given SAE feature j, we perform steering by adding the corresponding
decoder weight vector Wd,j to the residual stream activations during generation: x′ = x+α·β ·Wd,j

where x are the original residual stream activations, α ∈ (0, 1) is the steering strength, and β is the
maximum activation strength for feature j computed over the feature j’s max. activating examples.

Experimental Setup. We evaluate steering using a neutral prompt, "Simple melody" (as in [12]) for
steering strengths α ∈ {0.0, 1.0}. We used MusicGen-Large SAEs with exp. factor 32, k ∈ {32, 100},
and middle to late layers (24, 36, and 46), based on feature statistics.

Feature Selection and Evaluation. We identify the most steerable features by computing the cosine
similarity of CLAP embeddings [11] for each feature using cosine similarity between the feature’s
top 10 activating examples and (1) the steered example (α = 1), and (2) the baseline (α = 0).

3 Results

3.1 Statistics of Discovered Features

Before Filtering Before filtering, feature activations show a heavy-tailed distribution: some fire
in many tracks, while most activate only rarely (see Figure 4). SAE hyperparameters appear to
mediate this balance, i.e. larger k or expansion factor (EF ) increase overall recovery but also changes
the activation frequency distributions. This imbalance makes raw feature counts misleading and
motivates our explicit filtering approach, to isolate features that are both selective and interpretable.

After Filtering Table 1 reports the number of features that survive filtering across models, layers,
and SAE settings. For MGL, certain configurations yield thousands of retained features, while
MGS rarely produces more than 100. Expansion factor also has a predictable effect: higher EF
values increase feature counts, reflecting the greater representational pressure imposed by the wider
latent space. Interestingly, we find that this combined well with larger k, possibly suggesting that

3



musical clips tend to have many co-occurring activating features (e.g. in different layers and at
different time-steps). Early layers (e.g. L2) largely produce more features than later ones, though
interpretability does not necessarily track count. The consistent difference between MGL and MGS
indicates that scale does more than add parameters: it appears to alter the internal organization of
representations in ways that make interpretable structure more extractable.

3.2 Concept Representation

Do later layers encode more interpretable features? Figure 3 shows average CLAP scores
between feature audio and their automatically generated labels, stratified by layer. For MGL,
deeper layers yield higher scores, indicating that their features are more readily aligned with human-
interpretable concepts. This mirrors probing results from [13], which showed that musical properties
such as chords and roots are more strongly encoded in deeper transformer layers. Our results
generalize that observation: later layers not only encode specific theory-driven constructs more
clearly, but also produce features that can be labeled more consistently across diverse concepts.

Does model scale change how features are organized across layers? To test whether larger
models produce more layer-specific features, we trained a simple MLP probe to predict the layer of
origin from a feature’s activation profile. Accuracy was substantially higher for MGL (50.29±3.41)
than for MGS (40.51±3.60). This means that features in MGL are more distinctive by layer, whereas
those in MGS reflect a less differentiated representational structure. These results extend probing-
based findings on synthetic datasets [14]: scale not only increases the number of recoverable features,
but also sharpens the division of representational roles across layers.

3.3 Automated Interpretability

CLAP Scores We assessed label quality using CLAP [11] alignment between feature audio and
assigned labels. Figure 6 shows the distribution of maximum scores across all SAEs. Essentia tags
achieve stronger alignment than Gemini with considerable overlap between the two. Overall, no
single labeling strategy dominates. CLAP scores also provide a practical mechanism for filtering:
thresholds can be tuned to trade off label quality against feature coverage without exhaustive manual
review, though the optimal cutoff may depend on corpus and task.

Human Evaluation To compare methods directly, we evaluated 400 features per pipeline with 80
participants (40 per method, 10 features each). Participants chose the best label, rated confidence,
and could supply alternative labels. Confidence was higher for Essentia (3.96/5; 71% >4) than for
Gemini (3.19/5; 47% >4), suggesting that while multimodal LLMs can generate open-ended labels
beyond fixed taxonomies, classifier-based tags may be more reliable in practice.

3.4 Steering with Discovered Concepts

Table C.1 summarizes results. Depending on SAE configuration, between 15–35% of tested features
showed improved CLAP alignment with their top-activating examples under steering, starting from
the prompt “Simple Melody.” While our primary goal in this work remains feature discovery [15], a
non-trivial fraction of discovered features correspond to causal, manipulable directions in activation
space even under the automatic labeling scheme. This shows that interpretable features are not only
descriptive, but in many cases actionable for controlling outputs. Figure 7 illustrates such cases,
where steering shifts outputs toward the intended feature class while holding prompt and seed fixed.

4 Conclusion

Our results demonstrate the feasibility and potential of using sparse autoencoders to discover inter-
pretable concepts in large music generative models, i.e. using models for musical discovery [16].
We have shown that these models learn a rich set of musical patterns, ranging from well-established
concepts to emergent regularities that warrant further investigation. Through future work in this area,
we believe it is possible to build a comprehensive understanding of how neural networks represent
and generate music. Our pipeline offers a scalable path towards this goal.
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A Related Work

A.1 Statistical Learning of Musical Structure

Computational approaches to modeling music span rule-based systems, probabilistic models, and
modern neural networks. Early Markov models captured local dependencies like chord transitions
but failed at longer-range structure [17], while information-theoretic analyses have revealed statistical
bases for harmonic categories [18]. For several years, neural architectures have achieved impressive
results in both symbolic and audio modeling [19, 20, 21]. More recent systems often model audio
directly with transformers or diffusion approaches [4, 6, 22, 23]. Yet as these models generate
increasingly sophisticated music, our understanding of what musical knowledge they acquire lags
behind. The progress in generation has coincided with greater opacity of internal structure, motivating
our central question: what do these models actually learn about music? Our work seeks to make
progress on answering this question.

A.2 Interpretability Through Feature Extraction

Interpreting neural network computations has long been a central goal. Recent work shows that LLM
representations often encode concepts in surprisingly localized ways [24], echoing classic sparse
coding results where mammalian visual cortex was modeled as learning efficient codes for natural
images [25]. This broader lesson, namely that sparse latent structure can be computationally and
biologically advantageous, has motivated the development of interpretability methods. A recent line
trains sparse autoencoders (SAEs) [26, 24] on transformer activations, enforcing sparsity to extract
interpretable components. Formally, with encoder E and decoder D, one optimizes:

min
E,D

Ex[∥x−D(E(x))∥22 + λ∥E(x)∥1] (1)

This constraint is thought to encourage discovery of reusable “atomic” concepts rather than memorized
reconstructions. Learned features can then be labeled using automated methods (e.g. LLMs applied to
maximally activating sequences). Extending such approaches to music generators is non-trivial, given
their hierarchical temporal structure and mixed discrete–continuous features. Our work develops
adaptations to apply these principles to the musical domain.

A.3 Interpreting Music Generation Models

Given a vocabulary of known concepts and example data to match, one strategy toward interpreting
music generation models is probing. While probing has a rich history in NLP, work has recently
begun to apply it to music models. Prior work [14] introduced the SynTheory dataset to systematically
probe music foundation models on core music theory concepts like tempo, intervals, and chords,
revealing that certain layers capture these concepts more strongly than others. Similarly, other work
investigates chord and pitch representations in MusicGen and find that musical concepts become more
evident in deeper layers, yet may not be linearly separable without additional interventions in the
hidden space [27]. Beyond these direct probing and manipulation techniques, recent work [28] uses
the DecoderLens [29] method to interpret intermediate activations, offering an auditory perspective
on what each layer “hears” and how it evolves through the network. Such approaches exemplify
an emerging trend: there is increasing interest in understanding how these models do what they do.
However, these approaches have primarily focused on probing for known concepts, an important
but limited strategy. This raises a key question: what structures might we be missing by focusing
only on concepts we already know to look for? To answer this, we propose an unsupervised concept
discovery pipeline. In summary, probing asks “do models encode X concept we already know?”,
while our pipeline asks “what concepts do models encode?” without supervision.
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A.4 Automated Concept Discovery and Evaluation

A central challenge in interpretability is to discover concepts a model has learned organically, rather
than imposing them a priori. Recent frameworks address this across domains. InterPLM [9] trains
sparse autoencoders on a protein language model (ESM-2), uncovering thousands of latent features,
many aligning with known biological concepts and others appearing novel. Concept Bottleneck
Models (CBMs) [30] instead constrain intermediate layers to discrete, named concepts, though
typically with a hand-specified set. Recent variants invert this paradigm, using SAEs to first discover
latent concepts and then name them automatically or semi-automatically [31]. While developed
outside of music, these principles are broader: generative music models likely encode diverse concepts
without explicit labels. Automated discovery and evaluation of such features could reveal how these
models “understand” music, and enable finer control over generated outputs.

B Examples of Concepts

B.1 Examples of Finding Canonical Musical Concepts

Hardstyle/
Techno

Baroque
Harps.

Guitar
Solo

Elec. Beeps
& Boops

One Instr.
One Note

Oscillating,
Bell-Like

Taiko

MIDI
Piano

Figure 2: Examples of features discovered using the sparse autoencoders we train. Note: these
examples are labeled manually. Spectrograms highlight similarities across examples within a concept.

Retained features often correspond directly to established musical constructs, showing us how these
are encoded within the model. Figure 2 (left) shows manually annotated examples from MGL:

1. Taiko Drums (k=32, EF=4): activates on resonant Taiko and other low-pitched drums,
isolating a timbral family recognizable in theory and practice.

2. Hardstyle Techno (k=32, EF=32): consistently aligns with the hardstyle subgenre, captur-
ing a distinct rhythmic and production signature.

3. Baroque Harpsichord (k=32, EF=32): isolates the plucked timbre and contrapuntal
texture of harpsichord repertoire, as well as similar stylistic cues in Baroque string writing.

4. Rock Guitar Solos (k=32, EF=4): activates on electric guitar solos, integrating timbre,
ornamentation, and melodic phrasing characteristic of the style.

These cases demonstrate that SAEs can discover categories that existing vocabulary already recognizes
as meaningful. The match between latent features and canonical concepts indicates that the activations
are not arbitrary artifacts but can and do internally encode distinctions salient to musicians and
listeners in ways we can localize and recover from their internal activations.

B.2 Examples of Emergent Musical Regularities

Not all features map neatly to established verbal categories. Some capture patterns that are perceptu-
ally coherent but poorly described in existing theory (Figure 2, right):

1. Electronic Beeps and Boops (k=32, EF=4): activates on diverse synthetic tones and
glitches, a class of sounds central to electronic genres but not theoretically well-defined.

2. Single Instrument, Single Note (k=32, EF=32): isolates sustained single-note events
across instruments, suggesting that the model may have detectors for basic atomic units of
musical texture.
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3. Oscillating Bell-like Timbres (k=32, EF=32): responds to bell-like sounds with beating
or oscillations, pointing to sensitivity to fine-grained spectral phenomena.

4. Romantic Poppy MIDI Piano (k=32, EF=4): activates on MIDI piano in pop-ballad
contexts, apparently tuned to performance artifacts like rigid quantization and compressed
dynamics that co-occur with the poppy, romantic stylistic frame.

These examples surface coherent musical regularities that are not fully described by standard musical
terminology likely to be found in prompts or specified in probing experiments. They show that
models are not limited to reproducing canonical categories but also carve out distinctions that
reflect production practices, timbral subtleties, or emergent stylistic groupings. Identifying such
features provides concrete evidence that generative models encode structure beyond what human-led
interpretability, such as probing, is likely to anticipate. In turn, analyzing situations in which these
features arise may prove useful for building them into coherent theoretical constructs when studied in
detail over time by music theorists.

C Additional Results: Statistics of Discovered Features

C.1 Tables

Table 1 reports the number of features that survive filtering across models, layers, and SAE settings.
Section C.1 shows the proportion of features per SAE with positive steering improvement.

Table 1: Feature counts across models, layers, and SAE configurations (total 4697). For each model
layer, the configuration providing the max. num. of features is bolded.

MusicGen Large MusicGen Small

Exp. F k L2 L12 L24 L36 L46 L2 L6 L12 L18 L22

4 32 12 0 4 4 3 0 0 0 0 0
32 32 30 117 149 135 71 3 7 4 7 9
4 100 407 109 147 28 25 6 3 0 0 0
32 100 2344 222 412 131 177 59 47 4 4 17

Table 2: Proportion of features per SAE with positive steering improvement.

Model Exp. F k Layer Steering Improvement
MGL 32 100 24 96/408 (23.5%)
MGL 32 100 36 46/131 (35.1%)
MGL 32 100 46 27/177 (15.3%)
MGL 32 32 24 44/149 (29.5%)
MGL 32 32 36 39/135 (28.9%)
MGL 32 32 46 16/71 (22.5%)

C.2 Visualizations

Figure 3 shows the average CLAP scores across layers. Figure 4 presents feature activation statistics.
For each SAE, we plot the relationship between the average activation strength of each feature
(y-axis) and its prevalence, as defined by the fraction of the validation set for which the feature’s
mean activation is positive (x-axis). Figure 5 visualizes the results from Table 1 for an alternate view,
to facilitate overall comparisons. Figure 6 shows the distribution of maximum scores across all SAEs.
Figure 7 shows examples of steered features.
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Figure 3: Avg. CLAP [11] score across layers, comparing feature audio to automatic concept labels.
For MGL, later layers appear to produce more interpretable features on average.
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Figure 4: Distribution of learned feature activation characteristics across the MusicSet validation
cohort, prior to filtering, for various SAE configurations (log-log plot). The x-axis shows feature
prevalence (fraction of validation tracks on which a feature exhibits non-zero mean activation). The
y-axis indicates mean activation strength. The observed heavy-tailed distributions, with many features
exhibiting either very broad or very sparse activation patterns, suggest the need for a more principled
filtering method.
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Figure 5: Impact of SAE hyperparameters and target model on yield of viable musical features after
filtering. Each bar represents the number of features retained for a specific configuration, varying by
MusicGen model size (small or MGS/large or MGL), target layer, k-sparsity, and expansion factor
(EF ). The substantial variation in feature counts shows how these parameters affect discovery of
statistically robust features.
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Figure 6: Distribution of max. CLAP scores across all SAEs. Pooling both Gemini- and Essentia-
produced labels, we score them using CLAP, showing the trade-off between confidence and coverage
at different potential filter levels.
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Figure 7: Examples of steered features. Note: these examples were labeled automatically. (Baseline)
Generation without steering for “Simple melody.” (Feature Examples) Top max. activating examples
for the steering feature. (Steered) Generation steering with the same prompt and seed as the baseline,
and maximum strength empirically calculated from the maximum activations. The steering shows
close alignment with the feature examples, as seen in the spectrograms.

D Choice of Captioning Model

We compared several versions of Gemini models as a supplementary analysis, specifically Flash
1.5, Flash 2.0, Flash 2.5, and Pro 2.5, as automated labeling pipelines. We conducted a preliminary
evaluation of label quality using the CLAP score [11].

Figure 8 shows average CLAP scores per MusicGen layer across models. Figure 9 presents the ECDF
of maximum CLAP scores over all labeled features. Surprisingly, Gemini Flash 1.5 consistently
produces the highest CLAP alignment on the whole, despite being the oldest model tested.

Given these results, although we acknowledge there are significant limitations arising from using
CLAP as the evaluation metric, we use Flash 1.5 as the default captioning model for all automatic
labels in the paper’s primary analyses.

E Prompt-Conditioned Activations

Our primary focus in this work was to analyze the musical representations that emerge without text
conditioning. These representations are especially important because they capture how the model
organizes musical structure in its own representational space, rather than simply responding to verbal
instructions. Whereas prompts are already verbal and thus relatively easy to align with human
categories, internal musical features may be tacit, difficult to describe, and poorly characterized in
existing theory. By targeting this layer of representation, we aim to surface structures that extend
beyond what can be easily named, and therefore hold greater potential for discovery.

We see text-conditioned analysis as a valuable future direction, but our findings suggest that it
is not tractable under current conditions. First, open datasets with paired text–music examples
remain limited. Captions are often sparse, noisy, or stylistically inconsistent, and prompt–audio
alignment is insufficient to support reliable, large-scale analysis. This means that conclusions about
text-conditioned representations would be confounded by dataset artifacts rather than model behavior.
Second, from a methodological standpoint, isolating the contribution of text requires ablation and
control techniques that go beyond existing ones. Mechanistic interpretability has not yet converged
on reliable tools for partitioning or disentangling multi-modal conditioning, making this a substantial
open problem.

Addressing these challenges would require both new datasets with carefully designed prompt–audio
correspondence and new methodological advances to interpret conditioning effects in multimodal
models. We believe this is a promising research agenda, but it demands significant additional work
beyond the scope of this paper. Our contribution here is therefore to establish a foundation by studying
the non-textual musical representations directly, which offers both theoretical value, in revealing the
categories that emerge independently of language, and practical value by providing a baseline for
future multimodal interpretability.
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Figure 8: Average CLAP scores by MusicGen layer for each Gemini model used as the captioning
pipeline. Gemini Flash 1.5 achieves the highest alignment on average.

F Instructions Given to Participants

Study Details

We are assessing the quality of a novel method for discovering interpretable concepts in
generative music models. You will be presented with a series of short sounds with a common
pattern or feature. Given a set of options, you will be asked to select the one that best
describes all the sounds, as well as your confidence in your prediction.

[FOR EACH SAMPLE]

Select the closest category representing what all these sounds have in common:

[Audio 1] [Audio 2] [Audio 3]

[Option 1]
[Option 2]
[Option 3]
[Option 4]
[Option 5]

How confident are you that this label describes the common feature(s) between these well?

[Completely confident]
[Fairly confident]
[Somewhat confident]
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Figure 9: ECDF of maximum CLAP scores across all features for each Gemini variant. Flash 1.5
yields a higher proportion of strong alignments than newer models.

[Slightly confident]
[Not confident at all]

Write down your own label for what these sounds have in common musically

[FREE TEXT]

G Compute Resources

All model training runs in this paper run on a node with 4x NVIDIA L40s GPUs, as well as some of
the experiments (e.g. CLAP score computation). Other experiments use a CPU compute node with
128 Intel Xeon Platinum 8375C CPUs @ 2.90GHz each for parallelization.

H LLM Use Disclosure

We used large language models for minor copy editing, including improving grammar and phrasing.
The authors reviewed all changes.

I Connections to Music Theory

This work is conceptually related to several core threads we are aware of in music theory, cognitive
musicology, and computational modeling of music structure. Here, we clarify how our approach
relates to existing work by seeking to uncover “operational” structures (what we refer to as features
or concepts) in generative models.
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Statistical foundations of music theory [32, 33] argues that listeners develop an understanding of
many core elements of Western music (such as meter, harmony, and voice leading) by internalizing
probabilistic regularities encountered in musical corpora. From this perspective, foundational con-
cepts within music theory, rather than being seen solely as elements of a formal axiomatic system,
can be understood as principles that often reflect this inductively learned, tacit knowledge of musical
likelihoods. Temperley’s computational cognitive models are themselves compact and idealized rep-
resentations which help explain why these music-theoretic constructs are perceptually and musically
relevant.

Our approach parallels this in an AI setting. Rather than analyzing human musical corpora directly
to infer cognitive principles, we seek to “reverse-engineer” generative models trained on such data
to recover the internal distinctions and abstractions they have formed. The concepts discovered in
our pipeline reflect these model abstractions, many of which correspond to statistical regularities
observed in music (e.g. genre, texture, instrument timbre, harmonic style).

Operational concepts vs. formal theory Gjerdingen’s schema theory [34, 35] discusses the role
of learned patterns in shaping musical fluency. His analysis of Galant phrase structure proposes that
composers relied on a rich set of prototypical configurations (or stock musical phrases in particular),
acquired through exposure and practice rather than via formal rule systems. These schemata were
typically only formalized retroactively through pedagogical and analytical discourse, as we imagine
concepts of the type our pipeline discovers might be in the future. As such, our work focuses on
proto-theoretical regularities: we extract features that appear to be functionally meaningful to the
model regardless of whether they map cleanly to any established theoretical category. Some features
do align with known “schemata” but others do not, yet still display internal coherence. In this
sense, our pipeline seeks to unearth raw material from which a theory (either of a model’s music
understanding, or of some aspect of music itself) could potentially be formed.

Meta-theoretical implications This empirical approach may also serve as a testing ground for
meta-theoretical questions about music theory. If large-scale generative models learn internal rep-
resentations that resemble certain theoretical concepts but diverge from others, this may point to
systematic gaps or biases in how theory abstracts from musical practice. Conversely, the emergence of
coherent but non-canonical features suggests that models may encode distinctions that are musically
significant but neglected in prior analyses. In this way, our work does not propose a theory of music,
but can be seen as contributing a method for investigating the gap between musical practice and
theoretical formalism. We propose that such discovered features features be treated as hypotheses
about musical structure that may be refined, validated, or rejected through future research.

J Gemini Details

Our prompt to automatically label concepts using Gemini’s API, developed through iterative testing:

Prompt for Gemini’s Labeling

Listen very carefully to this set of audio clips, which consists of song snippets concatenated
in random order.

You need to discover common musical patterns across the whole set, to identify what musical
feature is shared across all clips. You will need to listen carefully. For each potential
concept you identify, output a name, a confidence score between 0 and 1 (where 1 is highest
confidence), and a concise description of the concept.

At a higher level, describe the overall concept shared across the set, give it a suitable name,
and provide an overall confidence score (0 to 1).

Describe the *underlying concepts* not the specific audio snippets (e.g. your description
could say "the concept" but not "the audio snippets"). However, try to avoid such verbiage
altogether and concisely describe the musical concept’s main attributes.

Include NO FILLER text.
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Focus on being specific. Concepts could relate to genre (e.g., hip-hop, salsa, reggaeton,
balkan), instruments (e.g., piano, cello, guitar, flute), recording/production techniques (e.g.,
reverberation, drones, noise, DJ scratching, beatboxing, drum machine, hi-hat patterns,
fingerpicking, live recording artifacts, low-pass filtering), or more nuanced musical ideas
(e.g., drum solo, chill dance rhythm, serene woodwinds arrangement). These are illustrative
examples, NOT a fixed list to choose from.

We use the following model definition to constrain Gemini’s response via structured output generation:

Gemini’s Response Schema

from pydantic import BaseModel, Field

class Concept(BaseModel):
"""Represents a single identified musical concept."""
name: str = Field(..., description="Concise name for the musical concept.")
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence

score (0.0 to 1.0).")↪→
description: str = Field(..., description="Brief description of the

concept.")↪→

class ConceptLabels(BaseModel):
"""Represents the overall analysis result for a set of audio clips."""
concepts: list[Concept] = Field(..., description="List of specific concepts

identified.")↪→
overall_summary: str = Field(..., description="Overall description of the

shared musical concept [no full sentences, concise summary of
underlying concept, ignore snippets].")

↪→
↪→
overall_name: str = Field(..., description="Concise name for the overall

shared concept.")↪→
overall_confidence: float = Field(..., ge=0.0, le=1.0, description="Overall

confidence score (0.0 to 1.0).")↪→
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