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Abstract

Regime transitions routinely break stationarity in time series, making calibrated
uncertainty as important as point accuracy. We study distribution-free uncer-
tainty for regime-switching forecasting by coupling Deep Switching State Space
Models (DS*M) with Adaptive Conformal Inference (ACI) and its aggregated
variant (AgACI). We also introduce a unified conformal wrapper that sits atop
strong sequence baselines—including S4, MC-Dropout GRU, sparse Gaussian
processes, and a change-point local model—to produce online predictive bands
with finite-sample marginal guarantees under nonstationarity and model misspec-
ification. Across synthetic and real datasets, conformalized forecasters achieve
near-nominal coverage with competitive accuracy and generally improved band
efficiency.

1 Introduction

Time-series forecasting often comprises hidden regime switches, which include abrupt transitions
between latent operating modes characterized by changes in level, trend, volatility, or seasonality.
Such shifts induce distributional nonstationarity, making not only point prediction but especially
Uncertainty Quantification (UQ) highly challenging. By UQ, we mean the construction of well-
calibrated predictive intervals, rather than merely accurate mean forecasts, since reliable decisions
depend on risk-aware intervals rather than single-value predictions.

Why UQ under regime switching is difficult. When regimes change, predictive distributions can
become severely miscalibrated: intervals may undercover or inflate excessively, even when point
errors remain small. Classical UQ approaches fail to handle in a proper way regime switches. For
e.g. Gaussian processes with stationary kernels or Bayesian models with smooth priors implicitly
assume differentiability or stationarity. These assumptions fail at regime boundaries, where calibra-
tion typically breaks down. Thus, UQ in this setting requires methods that are both adaptive and
robust to nonstationarity, capable of reacting online to structural shifts.

Our approach. We combine two complementary tools: (a) Deep Switching State—Space Model
(DS3M) that explicitly incorporates a discrete regime variable to capture mode transitions while re-
taining continuous latent dynamics for within-regime forecasts Xu et al. [2021]; and (b) Adaptive
Conformal Inference (ACI) and its aggregated variant (AgACI), which yield distribution-free pre-
dictive intervals by correcting miscoverage online in dependent time series Zaffran et al. [2022].This
coupling achieves both explicit regime modeling and online calibration. In particular, DS*M pro-
vides regime-aware point forecasts, while ACI/AgACI ensures valid coverage guarantees despite
temporal dependence and non-i.i.d. residuals. Whereas vanilla conformal prediction relies on ex-
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changeability and fails under regime switches, adaptive updates together with regime-aware residu-
als make the wrapper effective in streaming, nonstationary settings. To summarize, our contributions
are as follows:

e A new agnostic calibration protocol: We introduce a protocol-agnostic calibration layer for
regime-switching forecasting by combining DS®M with adaptive conformal methods, yielding reli-
able, distribution-free prediction intervals.

e A new conformal-based wrapper: We propose a consistent residual-based conformal wrap-
per applicable across strong baselines (S4 Gu et al. [2022a], MC-Dropout GRU, CPD Truong et al.
[2020], and Sparse GP), ensuring fair comparisons.

e Empirical validation in different datasets: We conduct experiments on synthetic and real
datasets exhibiting regime changes, reporting coverage at 90% and median interval width. Results
demonstrate that our approach produces well-calibrated, adaptive intervals that respond to regime
shifts without sacrificing point accuracy.

2 Related Work

Regime-switching state-space models. Classical switching state-space models (SSMs), as well
as recent deep variants such as DS®>M, incorporate a discrete regime variable to capture transitions
while maintaining continuous latent states for within-regime dynamics. Variational inference en-
ables scaling to long sequences Gu et al. [2022b]. These models provide strong regime-aware fore-
casting capabilities, but their uncertainty quantification typically relies on Bayesian approximations,
which may be computationally expensive and prone to miscalibration after abrupt switches.

Distribution-free uncertainty for time series. Conformal Prediction (CP) offers distribution-free
guarantees of marginal coverage under exchangeability. However, the i.i.d. assumption breaks in
time-series settings. Adaptive Conformal Inference (ACI) addresses this by correcting online for
temporal dependence and distributional shifts, while Aggregated ACI (AgACI) stabilizes updates by
combining multiple experts Zaffran et al. [2022]. These methods yield valid coverage in streaming
data, but they do not explicitly model regime structures, limiting their responsiveness to abrupt mode
changes.

Long-context state-space sequence models. Recent structured state-space layers, such as S4, ef-
ficiently capture long-range dependencies and have become strong neural backbones for sequential
modeling Gu et al. [2022a]. While highly effective for point forecasting, they do not inherently
address the challenges of calibrated UQ under regime switching.

Baselines for uncertainty. Several families of methods have been applied to uncertainty in non-
stationary sequences. Change-point detection (CPD) explicitly segments data around structural
breaks Truong et al. [2020], Bayesian deep nets such as MC-Dropout GRU Gal and Ghahramani
[2016] provide scalable model-based uncertainty, and Gaussian processes (GPs) offer uncertainty
quantification through kernels Li and Wang [2025]. Yet each faces limitations: GP methods are un-
scalable and unadaptive; Bayesian deep nets lack guaranteed coverage and miscover after switches;
and UQ in deep switching models often inherits the limitations of approximate Bayesian inference.
Positioning. Vanilla CP ensures distribution-free coverage but assumes exchangeability, which is
violated under regime shifts. ACI relaxes this assumption through online calibration, while DS*M
directly models discrete regime transitions. Our work combines these complementary perspectives:
by embedding adaptive conformalization within a regime-switching model, we obtain calibrated,
distribution-free intervals that remain reliable across regime changes while retaining competitive
point forecast accuracy.

3 Method

DS*M forecaster. Let y; denote the target series. DS*M posits discrete regimes d; € {1,..., K}
(Markov), continuous states z;, and a learned history summary h;. Given observations up to ¢, we
form a one-step mean prediction §J; and define residual scores s; = |y; — G-

Adaptive Conformal Inference (ACI). Given a calibration buffer, ACI produces intervals @ =
[+ £ Q1-a,], Where @ is the empirical quantile of past scores. The miscoverage level is updated



84

85

86
87
88

89
90
91
92
93
94
95
96
97
98

99

100
101
102
103

104
105
106
107

109
110
111
112

113
114
115

116
117
118
119
120
121

122

123
124
125
126

127
128
129

online: R
Qpp1 = o + ’y(a -y ¢ Ct}) ,

with nominal & = 0.1 and learning rate v > 0. The pseudo-code is described in Appendix D.

Aggregated ACI (AgACI). We maintain a small set of ACI experts with different + values and ag-
gregate their quantiles (e.g., via fixed or exponentially weighted averaging). This reduces sensitivity
to the choice of 7.

Unified CP wrapper for baselines. We apply the same residual-based CP layer to each forecaster:

e S4 (S4D backbone): encoder — S4D blocks — decoder; long-range modeling with residual
CP.

e CPD: online change-point detection segments the stream; within the last segment, we fit a light
GRU forecaster.

e MC-Dropout GRU: GRU with dropout kept at test time (posterior samples are not used for
coverage); CP uses absolute residuals of the predictive mean.

eSparse GP: inducing points (GPyTorch); we use the posterior mean for residuals; CP bands
provide distribution-free coverage.

4 Experimental Setup

Datasets. Our evaluation harnesses both synthetic and real-world datasets. Synthetic components
include the toy autoregressive process endowed with articulated breaks and Lorenz-driven pertur-
bations. Real-world configurations encompass Sleep Apnea (2Hz), US Unemployment (monthly).
Please see in Appendix C for more details.

Protocol. The protocol executes one-step rolling forecasts across held-out test windows, with itera-
tive multi-step configurations permitted when meaningful. We standardize each target series using a
standard scaler derived from the training split and invert transformations post-prediction. Lag length
L is preselected as a hyperparameter, with defaults set at 48 for sub-hourly data and incrementally
smaller for monthly horizons.

Conformal settings. Conformal scenarios examined here operate at a nominal confidence level of
1—a = 0.9. ACI employs factors v € {107%,1073, 1072 }; the AgACI approach aggregates diverse
estimators to eliminate manual parameter tuning. Calibration relies on the latest non-overlapping,
autoregressive window that concludes prior to the target instance. CP intervals are centered on ;.

Metrics. Performance is quantified using root mean square error (RMSE) across the held-out win-
dow, alongside empirical Coverage@90% (fraction in band) and the median interval width. We
monitor the incidence of degenerate or infinite bands(rare in our runs).

Training details. Training regimes differ by model family. For parametric architectures (DS*M,
S4, GRU), we adopt Adam optimisers, micro-batch training across lagged sequences, and impose an
early stopping criterion based on validation RMSE; mixed-precision arithmetic is engaged wherever
the hardware supports it. Sparse Gaussian Processes are discipled via a variational evidence lower
bound, permitting learnable inducing point locations and subject to identical early stopping criteria
on validation RMSE.

5 Results

As shown in Figure 1: Orange bands from adaptive conformal inference are distribution-free and
adapt online. Where the gray MC band is too wide or narrow, the conformal band corrects mis-
calibration. Dataset-to-dataset differences show how regime complexity and periodicity shape both
residuals and interval efficiency.

Conformalization preserves all models relatively close to the 90% target across datasets, but the
regime also DS®M with AgACI achieves the best calibration overall—highest coverage on Lorenz,
Unemployment, and Sleep. For efficiency, DS®M generates the narrowest bands for large-scale
Sleep series, and the S4 backbone has the lowest interval on Lorenz. In summary, DS*M combined
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Figure 1: Prediction vs. truth with ACI intervals. Black: observed series; Blue: DS3M mean;
Grey: DS3M native MC interval; Orange: ACI band. Coverage near 0.90 indicates successful
calibration; narrower orange bands at similar coverage indicate more efficient uncertainty than the
native MC band.

with AgACI yields strong calibration on the harder, regime-heavy set, while S4 does best interval-
wise on the smoother, low-noise string.

Table 1: Comparison of Coverage and Median Interval Length on different datasets.

Coverage@90% Median Interval Length
Datasets CPD GP MCD S4 DS°M CPD GP  MCD S4 DS*M
Lorenz 0.863 0.893 0.909 0.904 0.910 0.199 0.107 0.122 0.032 0.127
Unemployment 0.858 0.888 0.846 0.862 0.893  23.860 2.196 0.570 0.558 0.728
Sleep 0.901 0.898 0.901 0.900 0.904 4041.667 3915.016 3717.248 4297.769 3507.418

6 Discussion and Future Direction

A central finding is that adaptive conformal wrappers provide reliable, distribution-free uncertainty
largely independent of the underlying forecasting architecture. For S4, GRU, and SVGP, confor-
malization aligns coverage with targets while maintaining accuracy and interval efficiency, making
it a practical calibration layer in the presence of distribution shift. DS®M’s regime-aware structure
aids interpretability and point prediction, yet its native uncertainty can be fragile under sharp tran-
sitions and heavy-tailed residuals; residual-based conformalization corrects coverage but may still
inherit scale sensitivity in challenging regimes. Overall, calibrating via residual scores with online
adaptation offers a low-friction path to trustworthy intervals without retraining, complementing both
classical and deep modeling approaches and aligning with the broader goal of robust, foundation-
model-ready time-series evaluation.

The coverage guarantees offered here are marginal rather than conditional, meaning they do not
hold within specific regimes or covariate groups, which may be important for high-stakes applica-
tions. Using absolute residuals yields symmetric bands, which can be inefficient under skewed or
heteroskedastic noise, and the calibration buffer introduces a short delay before intervals adapt after
sudden shifts. Comparing median widths across datasets of very different scales can also distort
efficiency assessments, sometimes exaggerating interval size for scale-sensitive models. Finally, our
evaluation focuses on one-step predictions and does not fully examine the quality of native proba-
bilistic forecasts or decision-oriented performance under asymmetric costs. Future work will explore
regime-aware conformal methods that explicitly condition on inferred regimes to improve coverage
within each regime and tighten intervals.
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A Conformal Prediction Primer

Conformal prediction (CP) turns any point forecaster into a distribution-free interval predictor with
finite-sample marginal coverage. Given a forecaster producing one-step means ¢, and residual
scores 8¢ = |yt — ¢, a split-CP interval at time ¢ is

Cy = (¢ + @1—a},

where @ka is the empirical (1 — «)-quantile of calibration scores. Under exchangeability this

ensures Pr{y; € a} ~ 1 — a. In time series, exchangeability is violated; Adaptive Conformal
Inference (ACI) compensates by updating the target miscoverage online:

a1 =y +vy(a—1{y ¢ at});

So intervals widen after misses and narrow after hits. AgACI aggregates multiple ACI experts with
distinct learning rates v, stabilizing adaptation under heterogeneous conditions. In this work, the CP
layer is residual-based and model-agnostic; we center at ¢, and use absolute residuals by default,
with studentized/variance-aware scores left for future work. See Algorithm D for pseudo-code.

B What We Mean by Regimes and Switching

A regime is a latent operating mode with distinct dynamics (level, trend, variance, seasonality). We
write d; € {1,..., K} for the discrete regime (often Markov), a continuous state z;, and observation
Yt, €.2.,
zer1 = fa,(2¢) + 0, Yt = 9ga, (2t) + €

Switches in d; produce nonstationarity (abrupt changes in mean/variance/correlation). Unlike Gaus-
sian Processes or Bayesian NNs that typically encode nonstationarity via kernels or parameter uncer-
tainty, DSM explicitly models discrete mode changes while keeping continuous dynamics, which
improves interpretability and one-step accuracy. Change-point detection (CPD) instead segments the
series and fits local models on the last segment. Our conformal layer sits on top of either approach
and adapts online after switches (Appendix A).



1« C Datasets and Summary

195 Table 2 summarizes the used datasets. We standardize each series using training statistics and invert
196 the scale post-prediction.

Table 2: Description of the datasets. D is the dimensionality of the target series, 1" the total number

of datapoints.
Dataset Frequency D T
Lorenz synthetic 1 10000
Sleep Apnea 0.5 sec 1 2000
Unemployment month 1 879

17z D ACI Pseudo-code

Algorithm 1: Adaptive Conformal Inference (ACI) around a one-step forecaster

Input: Forecaster §;, nominal «, learning rate -, initial v, residual buffer Sy, .
for t = ty,t9+1,... do
Form &, from absolute residuals up to t—1.

198 Compute Q;_,,, the (1—a) empirical quantile.
Predict C = [t = Q1-a,]-
Observe y; and update a1 = oy + y(a — 1{y; ¢ Cy}).
end
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