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Abstract

Regime transitions routinely break stationarity in time series, making calibrated1

uncertainty as important as point accuracy. We study distribution-free uncer-2

tainty for regime-switching forecasting by coupling Deep Switching State Space3

Models (DS3M) with Adaptive Conformal Inference (ACI) and its aggregated4

variant (AgACI). We also introduce a unified conformal wrapper that sits atop5

strong sequence baselines—including S4, MC-Dropout GRU, sparse Gaussian6

processes, and a change-point local model—to produce online predictive bands7

with finite-sample marginal guarantees under nonstationarity and model misspec-8

ification. Across synthetic and real datasets, conformalized forecasters achieve9

near-nominal coverage with competitive accuracy and generally improved band10

efficiency.11

1 Introduction12

Time-series forecasting often comprises hidden regime switches, which include abrupt transitions13

between latent operating modes characterized by changes in level, trend, volatility, or seasonality.14

Such shifts induce distributional nonstationarity, making not only point prediction but especially15

Uncertainty Quantification (UQ) highly challenging. By UQ, we mean the construction of well-16

calibrated predictive intervals, rather than merely accurate mean forecasts, since reliable decisions17

depend on risk-aware intervals rather than single-value predictions.18

Why UQ under regime switching is difficult. When regimes change, predictive distributions can19

become severely miscalibrated: intervals may undercover or inflate excessively, even when point20

errors remain small. Classical UQ approaches fail to handle in a proper way regime switches. For21

e.g. Gaussian processes with stationary kernels or Bayesian models with smooth priors implicitly22

assume differentiability or stationarity. These assumptions fail at regime boundaries, where calibra-23

tion typically breaks down. Thus, UQ in this setting requires methods that are both adaptive and24

robust to nonstationarity, capable of reacting online to structural shifts.25

Our approach. We combine two complementary tools: (a) Deep Switching State–Space Model26

(DS3M) that explicitly incorporates a discrete regime variable to capture mode transitions while re-27

taining continuous latent dynamics for within-regime forecasts Xu et al. [2021]; and (b) Adaptive28

Conformal Inference (ACI) and its aggregated variant (AgACI), which yield distribution-free pre-29

dictive intervals by correcting miscoverage online in dependent time series Zaffran et al. [2022].This30

coupling achieves both explicit regime modeling and online calibration. In particular, DS3M pro-31

vides regime-aware point forecasts, while ACI/AgACI ensures valid coverage guarantees despite32

temporal dependence and non-i.i.d. residuals. Whereas vanilla conformal prediction relies on ex-33
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changeability and fails under regime switches, adaptive updates together with regime-aware residu-34

als make the wrapper effective in streaming, nonstationary settings. To summarize, our contributions35

are as follows:36

• A new agnostic calibration protocol: We introduce a protocol-agnostic calibration layer for37

regime-switching forecasting by combining DS3M with adaptive conformal methods, yielding reli-38

able, distribution-free prediction intervals.39

• A new conformal-based wrapper: We propose a consistent residual-based conformal wrap-40

per applicable across strong baselines (S4 Gu et al. [2022a], MC-Dropout GRU, CPD Truong et al.41

[2020], and Sparse GP), ensuring fair comparisons.42

• Empirical validation in different datasets: We conduct experiments on synthetic and real43

datasets exhibiting regime changes, reporting coverage at 90% and median interval width. Results44

demonstrate that our approach produces well-calibrated, adaptive intervals that respond to regime45

shifts without sacrificing point accuracy.46

2 Related Work47

Regime-switching state-space models. Classical switching state-space models (SSMs), as well48

as recent deep variants such as DS3M, incorporate a discrete regime variable to capture transitions49

while maintaining continuous latent states for within-regime dynamics. Variational inference en-50

ables scaling to long sequences Gu et al. [2022b]. These models provide strong regime-aware fore-51

casting capabilities, but their uncertainty quantification typically relies on Bayesian approximations,52

which may be computationally expensive and prone to miscalibration after abrupt switches.53

Distribution-free uncertainty for time series. Conformal Prediction (CP) offers distribution-free54

guarantees of marginal coverage under exchangeability. However, the i.i.d. assumption breaks in55

time-series settings. Adaptive Conformal Inference (ACI) addresses this by correcting online for56

temporal dependence and distributional shifts, while Aggregated ACI (AgACI) stabilizes updates by57

combining multiple experts Zaffran et al. [2022]. These methods yield valid coverage in streaming58

data, but they do not explicitly model regime structures, limiting their responsiveness to abrupt mode59

changes.60

Long-context state-space sequence models. Recent structured state-space layers, such as S4, ef-61

ficiently capture long-range dependencies and have become strong neural backbones for sequential62

modeling Gu et al. [2022a]. While highly effective for point forecasting, they do not inherently63

address the challenges of calibrated UQ under regime switching.64

Baselines for uncertainty. Several families of methods have been applied to uncertainty in non-65

stationary sequences. Change-point detection (CPD) explicitly segments data around structural66

breaks Truong et al. [2020], Bayesian deep nets such as MC-Dropout GRU Gal and Ghahramani67

[2016] provide scalable model-based uncertainty, and Gaussian processes (GPs) offer uncertainty68

quantification through kernels Li and Wang [2025]. Yet each faces limitations: GP methods are un-69

scalable and unadaptive; Bayesian deep nets lack guaranteed coverage and miscover after switches;70

and UQ in deep switching models often inherits the limitations of approximate Bayesian inference.71

Positioning. Vanilla CP ensures distribution-free coverage but assumes exchangeability, which is72

violated under regime shifts. ACI relaxes this assumption through online calibration, while DS3M73

directly models discrete regime transitions. Our work combines these complementary perspectives:74

by embedding adaptive conformalization within a regime-switching model, we obtain calibrated,75

distribution-free intervals that remain reliable across regime changes while retaining competitive76

point forecast accuracy.77

3 Method78

DS3M forecaster. Let yt denote the target series. DS3M posits discrete regimes dt ∈ {1, . . . ,K}79

(Markov), continuous states zt, and a learned history summary ht. Given observations up to t, we80

form a one-step mean prediction ŷt and define residual scores st = |yt − ŷt|.81

Adaptive Conformal Inference (ACI). Given a calibration buffer, ACI produces intervals Ĉt =82

[ŷt ± Q̂1−αt
], where Q̂ is the empirical quantile of past scores. The miscoverage level is updated83
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online:84

αt+1 = αt + γ
(
α− 1{yt /∈ Ĉt}

)
,

with nominal α = 0.1 and learning rate γ > 0. The pseudo-code is described in Appendix D.85

Aggregated ACI (AgACI). We maintain a small set of ACI experts with different γ values and ag-86

gregate their quantiles (e.g., via fixed or exponentially weighted averaging). This reduces sensitivity87

to the choice of γ.88

Unified CP wrapper for baselines. We apply the same residual-based CP layer to each forecaster:89

• S4 (S4D backbone): encoder → S4D blocks → decoder; long-range modeling with residual90

CP.91

• CPD: online change-point detection segments the stream; within the last segment, we fit a light92

GRU forecaster.93

• MC-Dropout GRU: GRU with dropout kept at test time (posterior samples are not used for94

coverage); CP uses absolute residuals of the predictive mean.95

•Sparse GP: inducing points (GPyTorch); we use the posterior mean for residuals; CP bands96

provide distribution-free coverage.97

98

4 Experimental Setup99

Datasets. Our evaluation harnesses both synthetic and real-world datasets. Synthetic components100

include the toy autoregressive process endowed with articulated breaks and Lorenz-driven pertur-101

bations. Real-world configurations encompass Sleep Apnea (2Hz), US Unemployment (monthly).102

Please see in Appendix C for more details.103

Protocol. The protocol executes one-step rolling forecasts across held-out test windows, with itera-104

tive multi-step configurations permitted when meaningful. We standardize each target series using a105

standard scaler derived from the training split and invert transformations post-prediction. Lag length106

L is preselected as a hyperparameter, with defaults set at 48 for sub-hourly data and incrementally107

smaller for monthly horizons.108

Conformal settings. Conformal scenarios examined here operate at a nominal confidence level of109

1−α = 0.9. ACI employs factors γ ∈ {10−4, 10−3, 10−2}; the AgACI approach aggregates diverse110

estimators to eliminate manual parameter tuning. Calibration relies on the latest non-overlapping,111

autoregressive window that concludes prior to the target instance. CP intervals are centered on ŷt.112

Metrics. Performance is quantified using root mean square error (RMSE) across the held-out win-113

dow, alongside empirical Coverage@90% (fraction in band) and the median interval width. We114

monitor the incidence of degenerate or infinite bands(rare in our runs).115

Training details. Training regimes differ by model family. For parametric architectures (DS3M,116

S4, GRU), we adopt Adam optimisers, micro-batch training across lagged sequences, and impose an117

early stopping criterion based on validation RMSE; mixed-precision arithmetic is engaged wherever118

the hardware supports it. Sparse Gaussian Processes are discipled via a variational evidence lower119

bound, permitting learnable inducing point locations and subject to identical early stopping criteria120

on validation RMSE.121

5 Results122

As shown in Figure 1: Orange bands from adaptive conformal inference are distribution-free and123

adapt online. Where the gray MC band is too wide or narrow, the conformal band corrects mis-124

calibration. Dataset-to-dataset differences show how regime complexity and periodicity shape both125

residuals and interval efficiency.126

Conformalization preserves all models relatively close to the 90% target across datasets, but the127

regime also DS3M with AgACI achieves the best calibration overall—highest coverage on Lorenz,128

Unemployment, and Sleep. For efficiency, DS3M generates the narrowest bands for large-scale129

Sleep series, and the S4 backbone has the lowest interval on Lorenz. In summary, DS3M combined130
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(a) Lorenz: DS3M + ACI (b) Toy: DS3M + ACI

(c) Unemployment: DS3M + ACI (d) Sleep: DS3M + ACI

Figure 1: Prediction vs. truth with ACI intervals. Black: observed series; Blue: DS3M mean;
Grey: DS3M native MC interval; Orange: ACI band. Coverage near 0.90 indicates successful
calibration; narrower orange bands at similar coverage indicate more efficient uncertainty than the
native MC band.

with AgACI yields strong calibration on the harder, regime-heavy set, while S4 does best interval-131

wise on the smoother, low-noise string.132

Table 1: Comparison of Coverage and Median Interval Length on different datasets.
Coverage@90% Median Interval Length

Datasets CPD GP MCD S4 DS3M CPD GP MCD S4 DS3M

Lorenz 0.863 0.893 0.909 0.904 0.910 0.199 0.107 0.122 0.032 0.127
Unemployment 0.858 0.888 0.846 0.862 0.893 23.860 2.196 0.570 0.558 0.728
Sleep 0.901 0.898 0.901 0.900 0.904 4041.667 3915.016 3717.248 4297.769 3507.418

6 Discussion and Future Direction133

A central finding is that adaptive conformal wrappers provide reliable, distribution-free uncertainty134

largely independent of the underlying forecasting architecture. For S4, GRU, and SVGP, confor-135

malization aligns coverage with targets while maintaining accuracy and interval efficiency, making136

it a practical calibration layer in the presence of distribution shift. DS3M’s regime-aware structure137

aids interpretability and point prediction, yet its native uncertainty can be fragile under sharp tran-138

sitions and heavy-tailed residuals; residual-based conformalization corrects coverage but may still139

inherit scale sensitivity in challenging regimes. Overall, calibrating via residual scores with online140

adaptation offers a low-friction path to trustworthy intervals without retraining, complementing both141

classical and deep modeling approaches and aligning with the broader goal of robust, foundation-142

model-ready time-series evaluation.143

The coverage guarantees offered here are marginal rather than conditional, meaning they do not144

hold within specific regimes or covariate groups, which may be important for high-stakes applica-145

tions. Using absolute residuals yields symmetric bands, which can be inefficient under skewed or146

heteroskedastic noise, and the calibration buffer introduces a short delay before intervals adapt after147

sudden shifts. Comparing median widths across datasets of very different scales can also distort148

efficiency assessments, sometimes exaggerating interval size for scale-sensitive models. Finally, our149

evaluation focuses on one-step predictions and does not fully examine the quality of native proba-150

bilistic forecasts or decision-oriented performance under asymmetric costs. Future work will explore151

regime-aware conformal methods that explicitly condition on inferred regimes to improve coverage152

within each regime and tighten intervals.153
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A Conformal Prediction Primer173

Conformal prediction (CP) turns any point forecaster into a distribution-free interval predictor with174

finite-sample marginal coverage. Given a forecaster producing one-step means ŷt and residual175

scores st = |yt − ŷt|, a split-CP interval at time t is176

Ĉt =
[
ŷt ± Q̂1−α

]
,

where Q̂1−α is the empirical (1 − α)-quantile of calibration scores. Under exchangeability this177

ensures Pr{yt ∈ Ĉt} ≈ 1 − α. In time series, exchangeability is violated; Adaptive Conformal178

Inference (ACI) compensates by updating the target miscoverage online:179

αt+1 = αt + γ
(
α− 1{yt /∈ Ĉt}

)
,

So intervals widen after misses and narrow after hits. AgACI aggregates multiple ACI experts with180

distinct learning rates γ, stabilizing adaptation under heterogeneous conditions. In this work, the CP181

layer is residual-based and model-agnostic; we center at ŷt and use absolute residuals by default,182

with studentized/variance-aware scores left for future work. See Algorithm D for pseudo-code.183

B What We Mean by Regimes and Switching184

A regime is a latent operating mode with distinct dynamics (level, trend, variance, seasonality). We185

write dt ∈ {1, . . . ,K} for the discrete regime (often Markov), a continuous state zt, and observation186

yt, e.g.,187

zt+1 = fdt
(zt) + ηt, yt = gdt

(zt) + ϵt.

Switches in dt produce nonstationarity (abrupt changes in mean/variance/correlation). Unlike Gaus-188

sian Processes or Bayesian NNs that typically encode nonstationarity via kernels or parameter uncer-189

tainty, DS3M explicitly models discrete mode changes while keeping continuous dynamics, which190

improves interpretability and one-step accuracy. Change-point detection (CPD) instead segments the191

series and fits local models on the last segment. Our conformal layer sits on top of either approach192

and adapts online after switches (Appendix A).193
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C Datasets and Summary194

Table 2 summarizes the used datasets. We standardize each series using training statistics and invert195

the scale post-prediction.196

Table 2: Description of the datasets. D is the dimensionality of the target series, T the total number
of datapoints.

Dataset Frequency D T

Lorenz synthetic 1 10000
Sleep Apnea 0.5 sec 1 2000
Unemployment month 1 879

D ACI Pseudo-code197

Algorithm 1: Adaptive Conformal Inference (ACI) around a one-step forecaster
Input: Forecaster ŷt, nominal α, learning rate γ, initial αt0 , residual buffer St0 .
for t = t0, t0+1, . . . do

Form St from absolute residuals up to t−1.
Compute Q̂1−αt

, the (1−αt) empirical quantile.
Predict Ĉt = [ŷt ± Q̂1−αt

].
Observe yt and update αt+1 = αt + γ(α− 1{yt /∈ Ĉt}).

end

198
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