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Multi-Scale Adaptive Graph Neural Network for
Multivariate Time Series Forecasting

Ling Chen , Donghui Chen , Zongjiang Shang , Binqing Wu , Cen Zheng , Bo Wen , and Wei Zhang

Abstract—Multivariate time series (MTS) forecasting plays an
important role in the automation and optimization of intelligent
applications. It is a challenging task, as we need to consider both
complex intra-variable dependencies and inter-variable dependen-
cies. Existing works only learn temporal patterns with the help of
single inter-variable dependencies. However, there are multi-scale
temporal patterns in many real-world MTS. Single inter-variable
dependencies make the model prefer to learn one type of promi-
nent and shared temporal patterns. In this article, we propose a
multi-scale adaptive graph neural network (MAGNN) to address
the above issue. MAGNN exploits a multi-scale pyramid network
to preserve the underlying temporal dependencies at different
time scales. Since the inter-variable dependencies may be different
under distinct time scales, an adaptive graph learning module
is designed to infer the scale-specific inter-variable dependencies
without pre-defined priors. Given the multi-scale feature represen-
tations and scale-specific inter-variable dependencies, a multi-scale
temporal graph neural network is introduced to jointly model
intra-variable dependencies and inter-variable dependencies. After
that, we develop a scale-wise fusion module to effectively promote
the collaboration across different time scales, and automatically
capture the importance of contributed temporal patterns. Ex-
periments on six real-world datasets demonstrate that MAGNN
outperforms the state-of-the-art methods across various settings.

Index Terms—Multivariate time series forecasting, multi-scale
modeling, graph neural network, graph learning.

I. INTRODUCTION

MULTIVARIATE time series (MTS) are ubiquitous in
various real-world scenarios, e.g., the traffic flows in a

city, the stock prices in a stock market, and the household power
consumption in a city block [1]. MTS forecasting, which aims
at forecasting the future trends based on a group of historical
observed time series, has been widely studied in recent years. It is
of great importance in a wide range of applications, e.g., a better
driving route can be planned in advance based on the forecasted
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traffic flows, and an investment strategy can be designed with
the forecasting of the near-future stock market [2], [3], [4], [5].

Making accurate MTS forecasting is a challenging task, as
both intra-variable dependencies (i.e., the temporal dependen-
cies within one time series) and inter-variable dependencies (i.e.,
the forecasting values of a single variable are affected by other
variables) need to be considered jointly. To solve this problem,
traditional methods [6], [7], [8], e.g., vector auto-regression
(VAR), temporal regularized matrix factorization (TRMF), vec-
tor auto-regression moving average (VARMA), and gaussian
process (GP), often rely on the strict stationary assumption and
cannot capture the non-linear dependencies among variables.
Deep neural networks have shown superiority on modeling
non-stationary and non-linear dependencies. Particularly, two
variants of recurrent neural network (RNNs) [9], namely the
long-short term memory (LSTM) and the gated recurrent unit
(GRU), and temporal convolutional networks (TCNs) [10] have
significantly achieved impressive performance in time series
modeling. To capture both long-term and short-term temporal
dependencies, existing works [3], [11], [12], [13], [14] introduce
several strategies, e.g., skip-connection, attention mechanism,
and memory-based network. These works focus on modeling
temporal dependencies, and process the MTS input as vectors
and assume that the forecasting values of a single variable are
affected by all other variables, which is unreasonable and hard
to meet in realistic applications. For example, the traffic flows of
a street are largely affected by its neighboring streets, while the
impact from distant streets is relatively small. Thus, it is crucial
to model the pairwise inter-variable dependencies explicitly.

Graph is an abstract data type representing relations be-
tween nodes. Graph neural networks (GNNs) [15], [16], which
can effectively capture nodes’ high-level representations while
exploiting pairwise dependencies, have been considered as a
promising way to handle graph data. MTS forecasting can be
considered from the perspective of graph modeling. The vari-
ables in MTS can be regarded as the nodes in a graph, while the
pairwise inter-variable dependencies as edges. Recently, several
works [17], [18], [19] exploit GNNs to model MTS taking
advantage of the rich structural information (i.e., featured nodes
and weighted edges) of a graph. These works stack GNN and
temporal convolution modules to learn temporal patterns, and
have achieved promising results. Nevertheless, there are still
two important aspects neglected in above works.

First, existing works only consider temporal dependencies on
a single time scale, which may not properly reflect the variations
in many real-world scenarios. In fact, the temporal patterns
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Fig. 1. The power consumptions of 4 households within two weeks (from
Monday 00:00 to Sunday 24:00). Households 1 and 4 have both daily and weekly
repeating patterns, while households 2 and 3 have weekly repeating patterns.

hidden in real-world MTS are much more complicated, includ-
ing daily, weekly, monthly, and other specific periodic patterns.
For example, Fig. 1 shows the power consumptions of 4 house-
holds within two weeks. There exists a mixture of short-term
and long-term repeating patterns (i.e., daily and weekly). These
multi-scale temporal patterns provide abundant information to
model MTS. Furthermore, if the temporal patterns are learned
from different time scales separately, and are then straight-
forwardly concatenated to obtain the final representation, the
model is failed to capture cross-scale relationships and cannot
focus on contributed temporal patterns. Thus, an accurate MTS
forecasting model should learn a feature representation that
can comprehensively reflect all kinds of multi-scale temporal
patterns.

Second, existing works learn a shared adjacent matrix to
represent the rich inter-variable dependencies, which makes the
models be biased to learn one type of prominent and shared
temporal patterns. In fact, different kinds of temporal patterns
are often affected by different inter-variable dependencies, and
we should distinguish the inter-variable dependencies when
modeling distinct temporal patterns. For example, when mod-
eling the short-term patterns of the power consumptions of a
household, it might be essential to pay more attention to the
power consumptions of its neighbors. Because the dynamics of
short-term patterns are often affected by a common event, e.g.,
a transmission line fault decreases the power consumptions of
a street block, and a sudden cold weather increases the power
consumptions. When modeling the long-term patterns of the
power consumptions of a household, it might be essential to pay
more attention to the households that have similar living habits,
e.g., working and sleeping hours, as these households would
have similar daily and weekly temporal patterns. Therefore,
the complicated inter-variable dependencies need to be fully
considered when modeling these multi-scale temporal patterns.

In this paper, we propose a general framework termed
Multi-scale Adaptive Graph Neural Network (MAGNN) for

MTS forecasting to address above issues. Specifically, we in-
troduce a multi-scale pyramid network to decompose the time
series with different time scales in a hierarchical way. Then,
an adaptive graph learning module is designed to automati-
cally infer the scale-specific graph structures in the end-to-end
framework, which can fully explore the abundant and implicit
inter-variable dependencies under different time scales. After
that, a multi-scale temporal graph neural network is incorpo-
rated into the framework to model intra-variable dependencies
and inter-variable dependencies at each time scale. Finally, a
scale-wise fusion module is designed to automatically consider
the importance of scale-specific representations and capture the
cross-scale correlations. In summary, our contributions are as
follows:
� Propose MAGNN, which learns a temporal representation

that can comprehensively reflect both multi-scale temporal
patterns and the scale-specific inter-variable dependencies.

� Design an adaptive graph learning module to explore the
abundant and implicit inter-variable dependencies under
different time scales, and a scale-wise fusion module to pro-
mote the collaboration across these scale-specific temporal
representations and automatically capture the importance
of contributed temporal patterns.

� Conduct extensive experiments on six real-world MTS
benchmark datasets. The experiment results demonstrate
that the performance of our method is better than that of
the state-of-the-art methods.

The remainder of this paper is organized as follows: Sections
II and III give a survey of related work and preliminaries. Section
IV describes the proposed MAGNN method. Section V presents
the experimental results and Section VI concludes the paper.

II. RELATED WORK

We briefly review the related work from two aspects: the MTS
forecasting and graph learning for MTS.

A. MTS Forecasting

The problem of time series forecasting has been studied for
decades. One of the most prominent traditional methods used for
time series forecasting is the auto-regressive integrated moving
average (ARIMA) model, because of its statistical properties
and the flexibility on integrating several linear models, includ-
ing auto-regression (AR), moving average, and auto-regressive
moving average. However, limited by the high computational
complexity, ARIMA is infeasible to model MTS. Vector auto-
regression (VAR) and vector auto-regression moving average
(VARMA) are the extension of AR and ARIMA, respectively,
that can model MTS. Gaussian process (GP) [6] is a Bayesian
method to model distributions over a continuous domain of
functions. GP can be used as a prior over the function space in
Bayesian inference and has been applied to MTS forecasting.
However, these works often rely on the strict stationary as-
sumption and cannot capture the non-linear dependencies among
variables.
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Recently, deep learning-based methods have shown superior
capability on capturing non-stationary and non-linear dependen-
cies. Most of existing works rely on LSTM and GRU to capture
temporal dependencies [20]. Compared with RNN-based ap-
proaches, dilated 1D convolutions [18], [21] are able to handle
long-range sequences. However, the dilation rates of dilated 1D
convolutions may cause the loss of local information, which
brings in negative effects on modeling short-term dependencies.
Some other efforts exploit TCNs and self-attention mecha-
nism [22] to model long time series efficiently. To capture both
long-term and short-term temporal dependencies, LSTNet [3]
introduces the convolutional neural network to capture short-
term temporal dependencies, and a recurrent-skip layer that can
exploit the long-term periodic property hidden in time series.
TPA-LSTM [13] utilizes an attention mechanism, which enables
the model to extract important temporal patterns and focus on
different time steps for different variables. MTNet [12] exploits
the memory component and attention mechanism to effectively
capture long-term temporal dependencies and periodic patterns.
However, these works assume that each variable affects all other
variables equally, which is unreasonable and hard to meet in
realistic applications.

B. Graph Learning for MTS

Graph neural networks (GNNs) [15], [16], which can model
the interaction between nodes through weighted edges, have
received increasing attention. Recently, there are many works
using GNNs to capture inter-variable dependencies in the area
of MTS modeling. One of the challenges of the GNNs-based
MTS forecasting is to obtain a well-defined graph structure as
the inter-variable dependencies. To solve this problem, existing
methods can be roughly divided into three major categories:
prior-knowledge-based, rule-based, and learning-based meth-
ods.

Prior-knowledge-based methods [23], [24], [25], [26] often
exploit the extra information (e.g., road networks, physical struc-
tures, and extra feature matrices) in their specific scenarios. For
example, in traffic flow forecasting [23], [25], the graph structure
can be constructed by the connections of road networks. If there
is a connected road between two nodes, an edge is constructed in
the graph structure, as the traffic flow at the upstream node will
affect the traffic flow at the downstream node. In skeleton-based
action recognition [26], the graph structure can be constructed
by the physical structure of the human body, e.g., the multiple
joints on the same arm are linked by the human skeleton, and
edges can be constructed between these joints. In the ride-hailing
demand forecasting [24], multiple different graph structures are
constructed from different views: the proximity of spatial dis-
tance, the connection of urban road network, and the similarity
of region functionality. However, these methods require domain
knowledge to design a graph structure, which is difficult to
transfer between different scenarios.

Rule-based methods [19], [27], [28], [29], as non-parametric
methods, provide a data-driven manner to construct the graph
structure. These methods usually include causal discovery (e.g.,
Granger causality and additive noise model) [27], [29], entropy-
based methods (e.g., transfer entropy and relative entropy) [19],

similarity-based methods (e.g., Pearson correlation, mutual in-
formation, DTW distance, and edit distance) [28]. For example,
Huang et al. [29] used Granger causality to construct a causal
graph. Xu et al. [19] calculated the pairwise transfer entropy
between variables, which is regarded as the adjacency matrix of
the graph structure. He et al. [28] exploited dynamic time warp-
ing (DTW) algorithm, which is competent to capture the pattern
similarities between two time series. However, these methods are
non-parameterized methods and have limited flexibility, which
can only learn a kind of specific inter-variable dependency.

Learning-based methods [17], [18], [30], [31], [32], [33],
[34], [35] introduce a parameterized module to learn pairwise
inter-variable dependencies automatically. Kipf et al. [32] first
introduced a neural relational inference model, which uses the
original time series as input and exploits the variational inference
to learn a graph structure. Subsequently, Webb et al. [34] pro-
posed a decomposition-based neural relational inference model
to learn multiple types of graph structure. Graber et al. [31] pro-
posed a neural relational inference model that achieves different
graph structures at each time step. The attention-based learning
methods use the attention mechanism to learn the pairwise
inter-variable dependencies. For traffic flow forecasting, Tang et
al. [33] used a graph attention module to learn graph structure.
Zheng et al. [35] used spatial attention mechanism to learn the
correlation of traffic flow at different nodes. In addition, several
works achieve this more directly, i.e., randomly intializing the
representation of each node, and calculating the pairwise sim-
ilarity of these nodes. The representations of the nodes can be
optimized to obtain the most suitable value for the current data
distribution. For example, Wu et al. [18] exploited a graph learn-
ing module to learn inter-variable dependencies, and modelled
MTS using the GNNs and dilated convolution networks. Bai et
al. [17] introduced a data adaptive graph generation module to
infer the inter-variable dependencies and a node adaptive param-
eter learning module to capture node-specific features. However,
existing works only learn single inter-variable dependencies,
making the models biased to learn one type of prominent and
shared temporal patterns among MTS.

III. PRELIMINARIES

A. Problem Formulation

Problem Statement: In this paper, we focus on MTS forecast-
ing. Formally, given a sequence of observed time series signals
X = {x1,x2, . . .,xt, . . .,xT }, where xt ∈ RN×1 denotes the
values at time step t, N is the variable dimension, and xt,i de-
notes the value of the ith variable at time step t, MTS forecasting
aims at forecasting the future values x̂T+h ∈ RN×1 at time step
T + h, where h denotes the look-ahead horizon. The problem
can be formulated as:

x̂T+h = F (x1,x2, . . .,xT ; θ) , (1)

where F is the mapping function and θ denotes all learnable
parameters.

Then, we give several definitions regarding MTS forecasting.
Definition 1. MTS to Graph: A graph is defined as G =

(V ,E), where V denotes the node set and |V | = N . E is the
edge set. Given the MTSX ∈ RN×T , the ith variable is regarded
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as the ith node vi ∈ V , the values of {x1,i,x2,i, . . .,xT,i} are
the features of vi, and each edge (vi, vj) ∈ E indicates there is
an inter-variable dependency between vi and vj .

Definition 2. Weighted Adjacency Matrix: The weighted ad-
jacency matrix A ∈ RN×N of a graph is a type of mathematical
representation to store the weights of the edges, whereAi,j > 0,
if (vi, vj) ∈ E, and Ai,j = 0, if (vi, vj) /∈ E.

To pure MTS data without any prior knowledge, the weighted
adjacency matrices of multiple graphs need to be learned to
represent the abundant and implicit inter-variable dependencies.
Accordingly, the formulation of MTS forecasting can be modi-
fied as:

x̂T+h = F (x1,x2, . . .,xT ;G; θ) , (2)

where G = {G1, G2, . . ., GK} represents the set of graphs that
can be utilized by GNNs for MTS forecasting.

B. Graph Neural Networks

Graph neural networks (GNNs) [15], [16] are a type of deep
neural network applied to graphs. Graphs can be irregular, a
graph may have a variable size of unordered nodes, and nodes
from a graph may have different numbers of neighbors. GNNs
can be easy to compute in the graph domain, which can overcome
the limitation of CNNs.

GNNs can be divided into two categories based on the imple-
mentation philosophy: spectral-based and spatial-based meth-
ods [15]. Spectral-based methods define the graph convolution
by introducing a filter from the perspective of graph signal
processing. The graph convolution operation can be interpreted
as removing noise from the graph signal. Space-based methods
define the graph convolution through information propagation,
which aggregates the representation of a central node and the
representations of its neighbors to get the updated representation
for the node.

We briefly describe the graph convolution operation applied
in our method, which can be defined as:

x ∗ Gθ = σ

(
θ

(
D̃

− 1
2 ÃD̃

− 1
2

)
x

)
, (3)

where G = (V ,E,A) is a graph with a weighted adjacency
matrix, x is the representations of nodes, σ is an activation
function, θ is the learnable parameter matrix, Ã = In +A is
the adjacency matrix with self-connection, D̃ is the diagonal
degree matrix of Ã, and D̃ii =

∑
j Ãij . By stacking the graph

convolution operation multiple layers, we can aggregate the
information of multi-order neighbors.

Multi-scale GNNs [36], [37], [38], named hierarchical GNNs
alternatively, usually construct coarse-grained graphs based on
the fine-grained graph hierarchically. MAGNN is concerned
about scales in the temporal dimension, which is very different
from general multi-scale GNNs that focus on scales in the spatial
dimension. MAGNN introduces a multi-scale pyramid network
to transform raw time series into feature representations from
smaller scale to larger scale, on which it learns scale-specific
graphs with the same size for each scale and utilizes basic GNNs
as defined in (3) for each graph.

IV. METHODOLOGY

A. Framework

Fig. 2 illustrates the framework of MAGNN, which consists
of four main parts: a) a multi-scale pyramid network to pre-
serve the underlying temporal hierarchy at different time scales;
b) an adaptive graph learning module to automatically infer
inter-variable dependencies; c) a multi-scale temporal graph
neural network to capture all kinds of scale-specific temporal
patterns; d) a scale-wise fusion module to effectively promote
the collaboration across different time scales.

B. Multi-Scale Pyramid Network

A multi-scale pyramid network is designed to preserve the
underlying temporal dependencies at different time scales. Fol-
lowing the pyramid structure, it applies multiple pyramid layers
to hierarchically transform raw time series into feature repre-
sentations from smaller scale to larger scale. Such multi-scale
structure gives us the opportunity to observe raw time series
in different time scales. Specifically, the smaller scale feature
representations can retain more fine-grained details, while the
larger scale feature representations can capture the slow-varying
trends.

Multi-scale pyramid network generates multi-scale feature
representations through pyramid layers. Each pyramid layer
takes the outputs of a preceding pyramid layer as the input
and generates the feature representations of a larger scale as
the output. Specifically, given the input MTS X ∈ RN×T , the
multi-scale pyramid network generates feature representations
of K scales, and the kth scale feature representation is denoted

as Xk ∈ RN× T

2k−1 ×ck , where N is the variable dimension, T
2k−1

is the sequence length in the kth scale, and ck is the channel size
of the kth scale.

A pyramid layer takes convolutional neural networks to cap-
ture local patterns in the time dimension. Following the design
philosophy of image processing, different pyramid layers em-
ploy different kernel sizes. The beginning convolution kernel
has larger filter, and the size is slowly decreased at each pyramid
layer, which can control the receptive field size and maintain the
sequence characteristics of large scale time series. For example,
the kernel sizes can be set as 1×7, 1×6, and 1× 3 at each
pyramid layer, and the stride size of convolution is set to 2 to
increase the time scale. Formally,

Xk
rec = ReLU(W k

rec ⊗Xk−1 + bkrec), (4)

where ⊗ denotes convolution operator, W k
∗ and bk∗ denote the

convolution kernel and bias vector in the kth pyramid layer,
respectively. However, different pyramid layers are expected to
preserve the underlying temporal dependencies at different time
scales. The flexibility of using only one convolutional neural
network is limited, as the granularities of the temporal depen-
dencies captured in the feature representations at two consecu-
tive pyramid layers are highly sensitive to the hyperparameter
settings (i.e., kernel size and stride size). To alleviate this issue,
following the existing works in image processing [39], [40], we
introduce another convolutional neural network with kernel size
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Fig. 2. The Multi-scale Adaptive Graph Neural Network (MAGNN) framework, which consists of four main parts: (a) The two parallel convolutional neural
networks and point-wise additions at each layer transform feature representations from smaller scale to larger scale hierarchically. (b) An adaptive graph learning
module takes node embeddings and scale embeddings as inputs and outputs the scale-specific adjacency matrices. (c) Each scale-specific feature representation
and adjacency matrix are fed into a temporal GNN to obtain scale-specific representations. (d) Scale-specific representations are weighted fused to capture the
contributed temporal patterns. The final multi-scale representation is fed into the output module including two convolutional neural networks to obtain the predicted
values.

1× 1 and a 1× 2 pooling layer, which is a parallel structure
with the original convolutional neural network, formally,

Xk
norm = Pooling

(
ReLU(W k

norm ⊗Xk−1 + bknorm )
)
. (5)

Then, a point-wise addition is utilized to the outputs of these
two convolutional neural networks at each scale:

Xk = Xk
rec +Xk

norm. (6)

After that, the learned multi-scale feature representations
are flexible and comprehensive to preserve various kinds of
temporal dependencies. During the process of feature represen-
tation learning, to avoid the interaction between the variables of
MTS, the convolutional operations are performed on the time
dimension, and the variable dimension is fixed, i.e., the kernels
are shared between the variable dimension at each pyramid layer.

C. Adaptive Graph Learning

The adaptive graph learning module automatically generates
adjacency matrices to represent the inter-variable dependencies
among MTS. Existing learning-based methods [15], [16], [41]
only learn a shared adjacency matrix, which is useful to learn
the most prominent inter-variable dependencies among MTS
in many problems, and can significantly reduce the number
of parameters and avoid the overfitting problem. However, the
inter-variable dependencies may be different under different
time scales. The shared adjacency matrix makes the models
biased to learn one type of prominent and shared temporal

patterns. Therefore, it is essential to learn multiple scale-specific
adjacency matrices.

However, directly learning a unique adjacent matrix for each
scale will introduce too many parameters and make the model
hard to train, especially when the number of nodes is large [42].
To solve this problem, we propose an adaptive graph learning
(AGL) module that has K scale-specific layers. Inspired by
the matrix factorization, AGL has two kinds of parameters: 1)
node embeddings Enodes ∈ RN×de shared between all scales,
where de is the embedding dimension and de � N ; 2) scale
embeddings Escale ∈ RK×de . For the kth scale-specific layer,
scale-specific node embeddings Ek

spec are obtained by the point-

wise multiplication of the kth scale embedding Ek
scale ∈ R1×de

and node embeddings Enodes:

Ek
spec = Enodes �Ek

scale. (7)

By such a design, the number of parameters is limited,
while Ek

spec contains both the shared node information and the
scale-specific information. Then, similar to calculating the node
proximities by a similarity function, we calculate pairwise node
similarities as follows:

Mk
1 = [tanh(Ek

specθ
k)]T ,

Mk
2 = tanh(Ek

specϕ
k),

Ak
full = ReLU(Mk

1M
k
2 − (Mk

2)
T (Mk

1)
T ), (8)

where θk ∈ R1×1 and ϕk ∈ R1×1 are learnable parameters to
obtain the receiver and sender features of nodes from Ek

spec[18],
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Fig. 3. The detailed architecture of the adaptive graph learning module.

[43], i.e., Mk
1 and Mk

2 , respectively. The activation function
tanh is used to normalize the input values to [−1, 1]. The
values of Ak

full ∈ RN×N are then normalized to [0, 1] through
the activation function ReLU , which are used as the soft edges
among the nodes. To reduce the computation cost of the graph
convolution, reduce the impact of noise, and make the model
more robust, we introduce a strategy to make Ak

full sparse:

Ak = Sparse
(
Softmax(Ak

full)
)
, (9)

where Ak ∈ RN×N is the final adjacent matrix of the kth
layer, Softmax function is used to achieve normalization, and
Sparse function is defined as:

Ak
ij =

{
Ak

ij , Ak
ij ∈ TopK(Ak

i∗, τ)

0, Ak
ij /∈ TopK(Ak

i∗, τ)
, (10)

where τ is the threshold of TopK function and denotes the
max number of neighbors of a node. The overall architecture of
the AGL module is shown in Fig. 3. Finally, we can obtain the
scale-specific adjacent matrices {A1, . . . ,Ak, . . . ,AK}.

D. Multi-Scale Temporal Graph Neural Network

Given the multi-scale feature representations
{X1, . . . ,Xk, . . . ,XK} generated from the multi-scale
pyramid network, and the scale-specific adjacent matrices
{A1, . . . ,Ak, . . . ,AK} generated from the AGL module, a
multi-scale temporal graph neural network (MTG) is proposed
to capture scale-specific temporal patterns across time steps and
variables.

Existing works [17], [23] integrate the GRU and the GNN,
which replaces the MLP in the GRU with the GNN to learn
inter-variable dependencies. However, the RNN-based solutions
often suffer from the gradient vanishing and exploding problems,
and adopt the step-by-step strategy for recurrent layers, which
makes the model training inefficient, especially when the time
series is long enough [44]. Temporal convolutional networks
(TCNs) have shown superiority on modeling temporal patterns.
Thus, we propose a solution that combines the GNNs and tem-
poral convolution layers, i.e., replacing the GRU with temporal
convolution layers.

Specifically, the MTG consists of K temporal graph neu-
ral networks, each of which combines the TCNs and the
GNN to capture scale-specific temporal patterns. For the

Fig. 4. The detailed architecture of the scale-wise fusion module.

kth scale, we first split Xk at time dimension and ob-
tain{xk

1 , . . . ,x
k
t , . . . ,x

k
T

2k−1

}(xk
t ∈ RN×ck). Similar with [18],

[43], we introduce Ak and the transpose of Ak (i.e., (Ak)T ),
and exploit two GNNs to capture both incoming information and
outgoing information. Then, the results of GNNs are added:

h̃
k

t = GNNk
in(x

k
t ,A

k,W k
in) +GNNk

out(x
k
t , (A

k)T ,W k
out),
(11)

where W k
∗ denotes the trainable parameters of GNNs

in the kth scale. Then, we can obtain all the outputs

{h̃k

1 , . . . , h̃
k

t , . . . , h̃
k
T

2k
}, which are fed into a temporal convolu-

tion layer to obtain the scale-specific representations hk:

hk = TCNk
([

h̃
k

1 , . . . , h̃
k

t , . . . , h̃
k
T

2k

]
,W k

tcn

)
, (12)

whereW k
tcn denotes the trainable parameters in the kth temporal

convolution layer.
We can see the advantages of exploiting MTG: 1) it can

capture scale-specific temporal patterns across time steps and
variables; 2) the graph convolution operator enables the model
to explicitly consider the inter-variable dependencies.

E. Scale-Wise Fusion

All the scale-specific representations {h1, . . .,hk, . . .,hK}
can comprehensively reflect all kinds of temporal patterns,
where hk ∈ RN×ds , and ds denotes the output dimension of
TCNs. To obtain the final multi-scale representation, the in-
tuitive solution is to directly concatenate these scale-specific
representations or aggregate these representations by a global
pooling layer. However, this solution treats each scale-specific
representation equally and ignores the difference in contribution
to the final forecasting results. For example, the small scale
representations are more important for short-term forecasting,
while the large scale representations are more important for
long-term forecasting. Thus, we propose a scale-wise fusion
module to learn a robust multi-scale representation from these
scale-specific representations, which can consider the impor-
tance of scale-specific temporal patterns and capture the cross-
scale correlations.

Fig. 4 shows the overall architecture of the scale-
wise fusion module. Given the scale-specific representations
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{h1, . . .,hk, . . .,hK}, we first concatenate these representa-
tions to obtain the multi-scale matrix H ∈ RK×N×ds :

H = Concat(h1, . . . ,hk, . . . ,hK), (13)

where Concat denotes the concatenation operation. Then, we
exploit an average pooling layer on the scale dimension:

hpool =

∑K
k=1 H

k

K
, (14)

where hpool ∈ R1×N×ds . Then, we flat hpool and fed it into
a refining module that consists of two full connected layers
to compact the fine-grained information across different time
scales:

α1 = ReLU (W 1hpool + b1) ,

α = Sigmoid (W 2α1 + b2) , (15)

where W 1 and W 2 are weight matrices. b1 and b2 are bias
vectors. The sigmoid activation function is used in the second
layer. α ∈ RK is defined as the importance score vector that
represents the importance of different scale-specific represen-
tations. Finally, a weighted aggregation layer is exploited to
combine the scale-specific representations:

hm = ReLU

(
K∑

k=1

α[k]× hk

)
, (16)

where hm is the final multi-scale representation.

F. Output Module & Objection Function

The output module includes a convolutional neural network
with1× ds kernel size to transformhm ∈ RN×ds into the desired
output dimension, and a followed convolutional neural network
with 1× 1 kernel size to obtain the predicted values x̂ ∈ RN×1.

The objective function can be formulated as:

L =
1

Ttrain

Ttrain∑
i=1

N∑
j=1

(x̂i,j − xi,j)
2 , (17)

where Ttrain is the number of training samples, and N is the
number of variables. x̂i,j and xi,j are the predicted value and
ground-truth of the jth variable in the ith sample, respectively.

G. Complexity Analysis

The time complexity of MAGNN consists of the main four
modules. For the multi-scale pyramid network, the time com-
plexity of the kth scale is Θ(N × T

2k−1 × cin × cout) and the
overall time complexity is Θ(N × T × cin × cout), where N
is the variable dimension, T is the input sequence length, cin

and cout are the numbers of input channels and output channels,
respectively. Since cin and cout are regarded as constants, the time
complexity of the multi-scale pyramid network is Θ(N × T ).
For the AGL module, the time complexity is Θ(K ×N × d2e +
K ×N2 × de), where K is the number of scales and de is the
dimension of node or scale embedding. The first half part denotes
the point-wise multiplication between node embeddings and
scale embeddings. The latter part denotes the pairwise similarity

TABLE I
DATASET STATISTICS

calculation. Since de is regarded as a constant, the time complex-
ity of the AGL module is Θ(K ×N2). For the MTG module,
the time complexity is Θ(K(m× d1 +N × din × ds)), where
m denotes the number of edges. din and ds denote the input
dimension and output dimension, respectively. This result comes
from the message passing and information aggregation of GNN.
Regarding d1, din, and ds as constants, the time complexity of the
MTG module isΘ(K(m+N)). For the scale-wise fusion mod-
ule, the time complexity is Θ(N × ds × d1 + d1 ×K), where
d1 is the output dimension of the first full connected layer. Since
ds and d1 are regarded as constants, the time complexity of the
scale-wise fusion module is Θ(N +K).

V. EXPERIMENTS

A. Datasets and Settings

Datasets: To evaluate the performance of MAGNN, we
conduct experiments on six public benchmark datasets: Solar-
Energy, Traffic, Electricity, Exchange-Rate, Nasdaq, and
METR-LA. Table I gives the summarized dataset statistics, and
the details about the six public benchmark datasets are given as
follows:
� Solar-Energy: This dataset contains the collected solar

power from the National Renewable Energy Laboratory,
which is sampled every 10 minutes from 137 PV plants in
Alabama State in 2007.

� Traffic: This dataset contains the road occupancy rates
(between 0 and 1) from the California Department of Trans-
portation, which are hourly aggregated from 862 sensors
in San Francisco Bay Area from 2015 to 2016.

� Electricity: This dataset contains the electricity consump-
tions from the UCI Machine Learning Repository, which
are hourly aggregated from 321 clients from 2012 to 2014.

� Exchange-Rate: This dataset contains the exchange rates
of eight countries, which are sampled daily from 1990 to
2016.

� Nasdaq: This dataset contains the stock prices of 82 cor-
porations, which are sampled per minute from July 2016
to December 2016.

� METR-LA: This dataset contains the average traffic speeds
from Los Angeles County, which are 5-minute aggregated
from 207 loop detectors on the highways from March 2012
to June 2012.

Following existing works [3], [13], [18], the six datasets are
split into the training set (60%), validation set (20%), and test
set (20%) in chronological order.
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TABLE II
SETTINGS OF NNI

Experimental Settings: MAGNN is implemented in Python
with PyTorch 1.7.1 and trained with one GPU (NVIDIA RTX
3090), and the source code is released on GitHub.1 For experi-
mental settings, unlike existing works that conduct grid search
over all tunable hyper-parameters, we exploit Neural Network
Intelligence (NNI)2 toolkit to automatically search the best
hyper-parameters, which can greatly reduce computation costs.
The search spaces of hyper-parameters and the configures of
NNI are given in Table II. Following existing works [3], [18],
the input window size T is set to 168. The learning rate is set
to 0.001. Adam optimizer is used and all trainable parameters
can be optimized through back-propagation. For all datasets, the
number of scales is 4. The kernel size of CNNs in the multi-scale
pyramid network is set to 1× 7, 1× 6, and 1× 3 from the first
layer to the final layer of the pyramid network, and the stride
size is set to 2 for all CNNs. We set horizon h = {3, 6, 12, 24},
respectively, which means the forecasting horizons are set from
3 to 24 minutes for Nasdaq dataset, from 15 to 120 minutes for
METR-LA dataset, from 30 to 240 minutes for Solar-Energy
dataset, from 3 to 24 hours for Traffic and Electricity datasets,
and from 3 to 24 days for Exchange-Rate dataset. The larger the
forecasting horizon is, the harder the forecasting is.

Evaluation Metrics: Root Relative Squared Error (RSE) and
Empirical Correlation Coefficient (CORR) are exploited as eval-
uation metrics, which are defined as:

RSE =

√∑Ttest
i=1

∑N
j=1 (x̂i,j − xi,j)

2√∑Ttest
i=1

∑N
j=1 (xi,j −mean(x))2

, (18)

CORR =
1

Ttest

N∑
j=1

∑Ttest
i=1(xi,j−mean(x∗,j))(x̂i,j−mean(x̂∗,j))√∑Ttest
i=1(xi,j−mean(x∗,j))

2(x̂i,j−mean(x̂∗,j))
2
,

(19)

where Ttest is the total time steps used for test. For RSE, a lower
value is better, while for CORR, a higher value is better.

B. Methods for Comparison

The methods in our comparative evaluation and the search
spaces of their key hyper-parameters are as follows.

Conventional methods:
� AR: It stands for the auto-regressive model. The number

of lags is chosen from {20, 22, 24, 26}.

1[Online]. Available: https://github.com/shangzongjiang/MAGNN
2[Online]. Available: https://nni.readthedocs.io/en/latest/

� TRMF [7]: It stands for the auto-regressive model using
temporal regularized matrix factorization. The hidden di-
mension size of latent temporal embedding and the reg-
ularization coefficient λ are chosen from {22, 23, . . ., 26}
and {0.1, 1, 10}, respectively.

� GP [6]: It stands for the Gaussian process time series model.
The RBF kernel bandwidth σ and the noise level α are
chosen from {2−10, 2−8, . . ., 210}.

� VAR-MLP [45]: It stands for a hybrid model that com-
bines auto-regressive model (VAR) and multilayer per-
ception (MLP). The size of dense layers is chosen from
{32, 50, 100}.

� RNN-GRU [9]: It stands for the RNN using GRU cell for
time series forecasting. The hidden dimension size of RNN
layers is chosen from {32, 50, 100}.

Attentive recurrent methods:
� LSTNet [3]: It introduces the CNNs to capture short-

term temporal dependencies, and a recurrent-skip layer
to capture long-term periodic patterns. The hidden di-
mension sizes of recurrent layers, convolutional layers,
and recurrent-skip layers are chosen from {32, 50, 100},
{32, 50, 100}, and {20, 50, 100}, respectively.

� MTNet [12]: It exploits the memory component and at-
tention mechanism to capture long-term temporal de-
pendencies and periodic patterns. The hidden dimension
sizes of GRU and convolutional layers are chosen from
{32, 50, 100}.

� TPA-LSTM [13]: It utilizes an attention mechanism to
extract important temporal patterns from different time
steps and different variables. The hidden dimension sizes
of recurrent and convolutional layers are chosen from
{32, 50, 100}.

MTS modeling with graph learning:
� Graph WaveNet [21]: It utilizes graph convolutions and di-

lated 1D convolutions to model spatial-temporal relations.
The hidden dimension size of node embedding is chosen
from {1, 3, 5, 10, 15, 20, 30}.

� AGCRN [17]: It exploits adaptive graph convolutional
recurrent network to infer the inter-variable dependencies.
The hidden dimension size of node embedding is chosen
from {1, 3, 5, 10, 15, 20, 30}.

� MTHetGNN [46]: It utilizes heterogeneous graph embed-
ding module to characterize complex relations among vari-
ables. The hidden dimension size of graph convolutional
layers is chosen from {5, 10, 15, 20, 50, 100, 200}.

� MTGNN [18]: It uses a graph learning module to learn
inter-variable dependencies, and models MTS using GNN
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TABLE III
RESULTS SUMMARY (IN TERMS OF RSE) OF ALL METHODS ON SIX DATASETS

TABLE IV
RESULTS SUMMARY (IN TERMS OF CORR) OF ALL METHODS ON SIX DATASETS

and dilated convolution. The number of neighbors for each
node is chosen from {5, 6, 7, 8, 15, 30}.

� MAGNN: It is our proposed method.
On Solar-Energy, Electricity, Traffic, and Exchange-Rate

datasets, most baselines (AR, TRMF, VAR-MLP, GP, RNN-
GRU, LSTNet, MTNet, TPA-LSTM, and MTGNN) have been
compared in the existing literature [3], [12], [13], [18]. Thus,
we directly adopt the experimental results in literature. For the
results of AGCRN, Graph WaveNet, and MTHetGNN on these
four datasets and the results of all baselines on Nasdaq and
METR-LA datasets, we use the code released in the original
papers and tune the key hyper-parameters according to the
validation error by NNI toolkit.

C. Main Results

Tables III and IV report the evaluation results of all the
methods on the six datasets, and the following tendencies can
be discerned:

1) Our method (MAGNN) achieves the state-of-the-art results
on these datasets. Particularly, on Traffic and Nasdaq datasets,

Fig. 5. The autocorrelation graphs of four sampled variables.

MAGNN outperforms existing methods on all the horizons and
all the metrics. The reason might be that the traffic and stock data
are very suitable for our assumption, as there are multi-scale
temporal dependencies and complicated inter-variable depen-
dencies. However, on Exchange-Rate dataset, MAGNN obtains
slightly worse performance than existing methods. To explore
the reasons, Fig. 5 shows the autocorrelation graphs of sampled
variables on Traffic and Exchange-Rate datasets. For Traffic
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Fig. 6. The results of MAGNN under different numbers of scales.

dataset, we can clearly observe the daily and weekly patterns.
In contrast, for Exchange-Rate dataset, we can hardly see the
multi-scale temporal dependencies. These observations provide
empirical guidance for the success of using MAGNN in model-
ing MTS.

2) Traditional methods (AR, TRMF, and GP) get worse results
than deep learning methods, as they cannot capture the non-
stationary and non-linear dependencies.

3) Deep learning methods (VAR-MLP, RNN-GRU, LSTNet,
MTNet, and TPA-LSTM) do not explicitly model the pairwise
inter-variable dependencies. Thus, they get worse performance
than AGCRN, Graph WaveNet, MTHetGNN, MTGNN, and
MAGNN on most datasets. However, for Exchange-Rate dataset,
TPA-LSTM and MTNet outperform most graph-based meth-
ods. Specifically, for the RSE evaluation metric, TPA-LSTM
achieves the best performance at horizons 3, 6, and 12, and
MTNet performs best at horizon 24. One possible explanation
for such a phenomenon is that Exchange-Rate dataset only
has 7588 samples, leading to the underfitting of graph-based
methods that have much more parameters than TPA-LSTM and
MTNet.

4) AGCRN, Graph WaveNet, MTHetGNN, and MTGNN are
the state-of-the-art methods that use graph learning modules to
learn inter-variable dependencies. However, they fail to consider
multi-scale inter-variable dependencies and get worse perfor-
mance than MAGNN in most cases, e.g., MAGNN outperforms
MTGNN in 19 out of 24 cases (6 datasets × 4 horizons) in terms
of both RSE and CORR, and exceeds Graph WaveNet in 22
out of 24 cases in terms of both metrics. In contrast, MAGNN
learns a temporal representation that can comprehensively re-
flect both multi-scale temporal patterns and the scale-specific
inter-variable dependencies.

D. Effect of Multi-Scale Modeling

To investigate the effect of multi-scale modeling, we evaluate
the performance of MAGNN with different numbers of scales
(i.e., 2 scales, 3 scales, 4 scales, and 5 scales). Fig. 6 shows
the results of MAGNN under different numbers of scales on
Traffic dataset. We can observe that when the number of scales
increases from 2 to 4, the performance of MAGNN is signif-
icantly improved. This is because MAGNN can capture more
diversified short-term and long-term patterns. When the number
of scales increases up to 5, the performance of MAGNN has
not improved, which might be because the number of scales is

already meet the needs of the task, and excessive parameters are
prone to overfitting.

E. Effect of Multi-Scale Feature Extraction

To investigate the effect of multi-scale feature extraction, we
conduct ablation study by carefully designing the following
variant.
� MAGNN-dila: It extracts multi-scale features by dilated

1D convolutions.
The results of MAGNN-dila and MAGNN on Electricity

dataset are shown in Table V. We can see that MAGNN achieves
better performance than MAGNN-dila. The reason is that the
dilation rates of dilated 1D convolutions may cause the loss
of local information, bringing negative effects on modeling
short-term dependencies.

F. Effect of the Parallel CNNs in the Multi-Scale Pyramid
Network

To demonstrate the effect of the parallel CNNs in the multi-
scale pyramid network, we conduct ablation study by carefully
designing the following variant.
� MAGNN-w/o parallel CNNs: It removes the convolutional

neural network with kernel size 1× 1 and a 1× 2 pooling
layer from pyramid layers.

The results presented in Table VI show that MAGNN achieves
the best performance in all cases on Traffic dataset, indicating
the effectiveness of the parallel CNNs. The possible reason for
these results is that using the parallel CNNs could make the
extracted multi-scale features more stable.

G. Effect of Adaptive Graph Learning

To demonstrate the effect of adaptive graph learning, we
conduct ablation study by carefully designing the following four
variants.
� MAGNN-dy: For the kth scale at time step t, the graph

learning module takes the dynamic feature representation
xk
t as input rather than the static node embeddings. Thus,

the graphs are different at different time steps.
� MAGNN-full: It removes the sparsity strategy and obtains

the multi-scale full-connected adjacent matrices.
� MAGNN-one: It only learns one shared adjacent matrix

to describe the inter-variable dependencies of multi-scale
feature representations.

� MAGNN-sym: It uses the symmetric adjacency matrix
obtained by Mk

1 and its transpose with one GNN rather
than the asymmetric adjacency matrixAk with two GNNs.

The results of these methods on Solar-Energy, Electricity,
and Exchange-Rate datasets are shown in Table VII, and the
following tendencies can be discerned:

1) MAGNN achieves the best performance in most cases,
which indicates the superiority of our learned scale-specific
adjacency matrices. Specifically, MAGNN performs better
than MAGNN-full, MAGNN-one, and MAGNN-sym, show-
ing the effectiveness of the sparsity strategy, the multiple
scale-specific graphs, and the asymmetric adjacency matrix,
respectively.
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TABLE V
THE RESULTS OF DIFFERENT MULTI-SCALE FEATURE EXTRACTION METHODS

TABLE VI
THE RESULTS OF DIFFERENT MULTI-SCALE PYRAMID NETWORKS

TABLE VII
THE RESULTS OF DIFFERENT GRAPH LEARNING METHODS

TABLE VIII
THE RESULTS OF DIFFERENT MULTI-SCALE TEMPORAL GRAPH NEURAL NETWORKS

TABLE IX
THE RESULTS OF DIFFERENT FUSION METHODS

TABLE X
THE COMPUTATION COSTS OF DIFFERENT METHODS

2) MAGNN-dy shows competitive performance on Solar-
Energy and Exchange-Rate datasets. The results imply the po-
tential of learning dynamic adjacency matrices to model time-
varying inter-variate dependencies for forecasting. However, the
dramatic fluctuation of adjacency matrices makes MAGNN-dy
difficult to maintain stable and excellent performance for all
horizons on all datasets.

H. Effect of Multi-Scale Temporal Graph Neural Network

To demonstrate the effect of two GNNs in the multi-scale
temporal graph neural network, we conduct ablation study by
carefully designing the following variant.
� MAGNN-one GNN: It only applies one GNN on the

learned asymmetric adjacency matrix.
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Fig. 7. Visualization of the weights of MAGNN for Traffic and Solar-Energy
datasets. Models are trained with 4 scales (Y -axis) and the forecasting horizon
are 3, 6, 12, and 24 (X-axis).

The results presented in Table VIII show that MAGNN
achieves the best performance in all cases on Solar-Energy,
Electricity, and Exchange-Rate datasets, indicating the effec-
tiveness of two GNNs. The possible reason for these results is
that using two GNNs could exploit more hidden complementary
information than using one GNN.

I. Effect of Scale-Wise Fusion

To demonstrate the effect of scale-wise fusion, we conduct
ablation study by carefully designing the following three vari-
ants.
� MAGNN-con: It removes the scale-wise fusion module and

directly concatenates these scale-specific representations.
� MAGNN-pooling: It removes the scale-wise fusion mod-

ule and aggregates these scale-specific representations by
a global pooling layer.

� MAGNN-att: It replaces the simple concatenation opera-
tion in (13) with attention-based aggregation.

The results of these methods on Solar-Energy, Electricity, and
Exchange-Rate datasets are shown in Table IX. We can see
that, MAGNN achieves the best performance in most cases.
The results imply that MAGNN learns a robust multi-scale
representation from these scale-specific representations, as our
scale-wise fusion can consider the importance of scale-specific
temporal patterns and capture the cross-scale correlations.

To investigate the effect of different scales, we visualize
the weights of temporal representations of different scales for
the different forecasting horizons on Traffic and Solar-Energy
datasets. The visual results are shown in Fig. 7, which indicate
that the representations of small scales are more important for
short-term forecasting while those of large scales play more
essential roles for long-term forecasting.

J. Parameter Study

We study the two important parameters (i.e., convolutional
channel size and the number of neighbors), which could influ-
ence the performance of MAGNN. Fig. 8(a) shows the results
of MAGNN on Traffic dataset by varying convolutional channel
size from 4 to 128. The best performance can be obtained when
convolutional channel size is 32. It might be that a small convolu-
tional channel size limits the expressive ability of MAGNN, and

Fig. 8. The effects of hyper-parameters.

a large convolutional channel size would make the model hard to
train. Fig. 8(b) shows the results of MAGNN on Traffic dataset
by varying the number of neighbors from 20 to 200. The best
performance can be obtained when the number of neighbors is
40. The reason may be that a small number of neighbors limits
the ability to exploit inter-variable dependencies, and a large
number of neighbors would introduce noises.

K. Computation Cost

To evaluate the computation cost, we compare the param-
eter numbers, training time, and forecasting performances of
MAGNN, LSTNet, TPA-LSTM, and MTGNN on Traffic dataset
in Table X. LSTNet has least parameter number and runs fastest
in these methods. But it gets worst forecasting results. Compared
with TPA-LSTM and MTGNN, MAGNN runs fastest and gets
best forecasting results. Overall, comprehensively considering
the significant forecasting performance improvement and the
computation cost, MAGNN demonstrates the superiority over
existing methods.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we propose a multi-scale adaptive graph neural
network (MAGNN) for MTS forecasting. By exploiting a multi-
scale pyramid network to model temporal hierarchy, an adap-
tive graph learning module to automatically infer inter-variable
dependencies, a multi-scale temporal graph neural network to
model intra-variable and inter-variable dependencies, and a
scale-wise fusion module to promote the collaboration across
different time scales, MAGNN outperforms the state-of-the-art
methods on six datasets. With the theoretical analysis and ex-
perimental verification, we believe that MAGNN can capture
multi-scale temporal patterns and complicated inter-variable
dependencies for accurate MTS forecasting.

In the future, it is of interest to extend this work in the fol-
lowing three aspects: First, we will design a method to learn dy-
namic adjacency matrices at different time steps, and introduce
a regularizer to constrain the dramatic fluctuation of adjacent
matrices. Second, we will design a neural architecture search
framework to automatically capture both inter-variable depen-
dencies and intra-variable dependencies. Third, we will further
develop a graph matching-based AGL module by evaluating the
structural and semantic similarities of multi-scale graphs, which
can reduce time complexity and enhance scalability.
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