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ABSTRACT

Standard Transformer-based language models (LMs) scale poorly to long con-
texts. We propose a solution based on dynamic contextual compression, which ex-
tends the NUGGET approach of Qin & Van Durme (2023) from BERT-like frame-
works to decoder-only LMs. Our method models history as compressed “nuggets”
which are trained to allow for reconstruction, and it can be initialized with off-the-
shelf models such as LLAMA. We demonstrate through experiments in language
modeling, question answering, and summarization that NUGGET2D retains capa-
bilities in these tasks, while drastically reducing the overhead during decoding in
terms of time and space. For example, in the autoencoding task, NUGGET2D can
shrink context at a 20x compression ratio with a BLEU score of 98% for recon-
struction, achieving nearly lossless encoding.

1 INTRODUCTION

Standard Transformer-based language models Vaswani et al. (2017) suffer from quadratic computa-
tional complexity w.r.t. sequence length, making it challenging to scale to long sequences. Proposed
solutions (Tay et al., 2022) include sparsifying attention patterns (Beltagy et al., 2020; Ding et al.,
2023) or approximating the attention computation with kernel methods (Choromanski et al., 2021).
However, not all these approaches are proven effective for NLP tasks (Qin et al., 2023), and very
few of them are applied to large language models (LLMs), such as LLaMA (Touvron et al., 2023a).
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Figure 1: Text compression by ICAE and
NUGGET2D . ICAE appends memory slot tokens
and uses their last-layer hidden states as the text
representation. NUGGET2D adapts the hidden
states of a selected subset of input tokens.

We propose a solution called 2-Dimensional
Neural Agglomerative Embedding for Text,
or NUGGET2D for short, inspired by the ap-
proach of Qin & Van Durme (2023) for BERT-
like (Devlin et al., 2019) transformer encoders.
Instead of attending to all previous tokens,
NUGGET2D allows a decoder-only transformer
model to attend to a selected subset of to-
kens, called “nuggets,” thus greatly reducing
the computing and memory overhead. This se-
lection can be learned in an unsupervised man-
ner with a residual connection built between
nuggets and self-attention modules. Moreover,
unlike pattern-based efficient attention methods
that evenly chunk the text (Rae et al., 2020), the
attention behavior learned by NUGGET2D is
linguistically meaningful, naturally splitting
the text into subsentential units. We illustrate the architecture of NUGGET2D in fig. 1 in comparison
to the recently proposed ICAE (Ge et al., 2023), which appends extra memory slots to the input
sequence to be used as a compressed representation.

NUGGET2D can be trained through autoencoding or next-token prediction objectives, turning
it into an efficient context compressor. In experiments on autoencoding, we demonstrate that
NUGGET2D can achieve near lossless encoding with a compression ratio as high as 20x, a marked
improvement over (Ge et al., 2023, ICAE). After fine-tuning, NUGGET2D is effective in downstream
NLP tasks such as question answering (QA) and summarization, where NUGGET2D performs on par
with or even better than the original LMs while achieving a compression ratio as high as 10x.
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We also show that by re-assigning the parameters in NUGGET2D , we can plug it into LMs and
autoregressively aggregate history information into nuggets, delivering an efficient LM. We exper-
imentally demonstrate that NUGGET2D can achieve a perplexity score lower than the original LM
with restricted memory, outperforming the baseline model of Rae et al. (2020).

In summary, NUGGET2D adapts Qin & Van Durme (2023) to decoder-only transformers through
innovations in its architecture, including a multi-layer memory to compress the history tokens and a
residual connection in the self-attention for end-to-end training. In addition, we make it an efficient
autoregressive LM by reassigning its parameters. NUGGET2D is shown to be effective in tasks such
as autoencoding, language modeling, and applications including QA and summarization.

2 APPROACH

In this section, we introduce the architecture of NUGGET2D , including how it adapts NUGGET
“1D” into a decoder-only transformer, two of its variants, and the training objective.

2.1 BACKGROUND: NUGGET TEXT REPRESENTATION

NUGGET (Qin & Van Durme, 2023) is a text representation method that maps a sequence of n tokens
into k ≤ n vectors, where a hyperparameter ensures a given compression ratio. E.g., ensuring
k = n

10 . NUGGET first uses a transformer encoder to map n tokens into a sequence of vectors:

(x1,x2, . . . ,xn) = TransformerEncoder(w1, w2, . . . , wn),

where wi and xi ∈ Rd are the input token and corresponding contextualized vector representation
and d is the hidden size of the transformer. A scorer takes xi as input and outputs a score si, where
a higher score indicates that the token contains more context information. A select operator picks
the top-k vectors as the representation of the input text:

(z1, z2, . . . , zk) = TopK(x1:n, s1:n, k), si = Scorer(xi), (1)

where (z1, z2, . . . , zk) are selected from (x1,x2, . . . ,xn) and serve as the resultant representation
for the input text. To learn the parameters of Scorer, NUGGET build a residual connection between
the encoder and decoder (appendix C). NUGGET was designed for encoder-decoder transformer
architectures and was shown to be trainable through autoencoding or machine translation tasks.

2.2 NUGGET2D: EFFICIENT TEXT REPRESENTATION IN A DECODER-ONLY LM

Suppose we have a decoder-only transformer LM, such as LLAMA (Touvron et al., 2023a;b), with
L self-attention layers. Simplifying, such an LM takes as input the hidden states of past tokens to
represent the next token wi in the l-th layer:

xl+1
i = Attnϕ(x

l
i,x

l
<i,x

l
<i), (2)

where xl
i is the vector representation of the i-th vector in the l-th layer of the transformers, and Attn

is a dot-product attention module parameterized by ϕ that takes query, key, and value as input. To
generate a distribution of the token wi+1, an FFN classifier, denoted by LMHead, is applied to the
hidden state xL

i , the last-layer hidden representation of the i-th token.

Note that xl
i contains not only the information of the current token wi but also of the past token w<i,

i.e. they are contextualized embeddings. Thus, we hypothesize that attending to a subset of past
tokens w<i, instead of all tokens, is sufficient to support a viable hidden representation xl

i.

We also hypothesize that some tokens can become more valuable than others if only a subset of
them can be attended to. Therefore, we propose a scorer that learns to pick out those top-k tokens
that should be attended to by future tokens. (see fig. 2) Formally, we have:

(xl
i1 ,x

l
i2 , . . . ,x

l
ik
) = TopK(xl

1:n, s1:n, k), si = Scorerφ(x
λ
i ), (3)

where Scorer is an FFN with parameters φ, xλ
i is the λ-th layer representation of the token i (cf.

eq. (1)) and λ is a hyperparameter. 1 (i1, i2, . . . , ik) are the indices of the tokens selected by Scorer.
1Note λ does not depend on l, and the selected tokens are the same for all layers.
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Figure 2: An illustration of how to use NUGGET2D to compress context. From left to right,
Scorer select top-k tokens, then Nugget2D encodes the document from the selected tokens, making
“nuggets”. Finally, LM autoregressively decodes the answer from nuggets and prompt tokens.

We re-write the hidden states of k selected tokens (xl
i1
. . .xl

ik
)Ll=1 with (zl1, z

l
2, . . . , z

l
k)

L
l=1 and use

them as compressed representation of the text. 2 As the hidden states for each selected token span
over all L layers rather than only the last layer, the approach is named NUGGET2D . In the remainder
of this paper, we use Nugget2Dϕ,φ to encode a sequence of tokens w1:n:

z1:k = Nugget2Dϕ,φ(w1:n), k ≤ n, (4)

which involves encoding with self-attention (ϕ) in eq. (2) and token sub-selection (φ) in eq. (3). The
k selected tokens are called nuggets, and future tokens may attend to nuggets z1:k instead of the
corresponding tokens x1:n to access the texts w1:n.

Here k depends on the input texts, and we will discuss the selection of k in sections 2.4 and 2.5.

2.3 RESIDUAL CONNECTION: ENSURING DIFFERENTIABILITY

The nugget selector relies on the TopK operator to select tokens, which is not differentiable, hin-
dering end-to-end training. Inspired by Qin & Van Durme (2023), we build a residual connection
between the nugget scores and the self-attention logits. Suppose that token xi attends to nugget zj ,
we revise the attention computation as

ξli,j =
1√
d

[(
WQxl

i

)⊤ (
WKzlj

)
+sj

]
, (5)

where ξli,j is the weight for the attention from token xl
i to nugget zj at the l-th layer before the nor-

malization of softmax, and sj is the score of j-th nugget: sj = Scorerφ(zj). Therefore, Scorerφ
receives gradients via the self-attention module from future tokens at all layers. 3

To understand how the end-to-end training works, we rewrite the gradients on sj with the chain rule:

∂ℓ

∂sj
=
∑
i∈Ij

L∑
l=1

(
∂ξli,j
∂sj

· ∂ℓ

∂ξli,j

)
=

1√
d

∑
i∈Ij

L∑
l=1

∂ℓ

∂ξli,j
(6)

where ℓ is the loss value and Ij are the indices of tokens that will attend to the nugget j. eq. (6)
means that the nuggets that are paid more attention by future tokens will by assigned a higher score
sj by Scorerφ, averaged across all layers and future tokens. 4

2.4 COMPRESSING CONTEXTS WITH NUGGET2D

One can apply NUGGET2D to compress the context into nuggets. Suppose one asks an LM to decode
an answer, denoted by a, from a long context (e.g. a supporting document) and a prompt (e.g. a

2In the remainder we may omit superscript l, using zi to denote “2 dimensional” vectors across all layers.
3Qin & Van Durme (2023) has a similar mechanism to ensure differentiability but can only be applied to

encoder-decoder transformers like BART (Lewis et al., 2020a). The residual connection proposed in this paper
is built between any token pairs, and thus can be applied to any transformers.

4One can also use straight-through estimator (Bengio et al., 2013) to train Scorer. See appendix B.
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query for question answering), denoted by d and q, they can input the document in the form of
nuggets instead of tokens, shown as follows:

p(a | d,q; θ, ϕ, φ) =
∏
i

LMθ
(
[Nugget2Dϕ,φ(d);q;a<i]

)
, (7)

where [ ; ] indicates the concatenation 5 of sequences, LM is a decoder-only LM with the parameters
θ and Nugget2D is the NUGGET2D model with parameters ϕ (for transformers) and φ (for Scorer).
We suppose that ϕ and θ are initialized from the same pretrained LM but they are not tied.

Choice of k As the input document is known prior to the compression, the number of nuggets k
is set to be proportional to the sequence length: k = r · n, where the ratio r is a hyperparameter.
Because the LM uses causal masking and Scorer may not naturally select the last token, we require
Scorer always selects the last token as a nugget.

Training objective Given a dataset D with document, prompt, and answer triples, one can train a
NUGGET2D model with the next-token prediction objective:

(θ̂, ϕ̂, φ̂) = argmax
θ,ϕ,φ

∑
(d,q,a)∈D

∑
i

log p(ai | d,q,a<i; θ, ϕ, φ). (8)

Depending on the task, one may selectively freeze either one or two of the parameter sets among θ,
ϕ, and φ. Here we discuss 3 situations of training.

Autoencoding: NUGGET2D can be trained as an autoencoder, where d and a are the same text, while
q ∈ Rd is a single-token soft prompt for text reconstruction (Ge et al., 2023; Qin & Eisner, 2021).
From the perspective of an autoencoder, Nugget2Dϕ,φ is an encoder, the nuggets are the bottleneck,
and LMθ is a decoder. All parameters θ, ϕ, φ, and q are trainable.

Text continuation: Training θ risks impacting the language generation performance of the LM (Ra-
masesh et al., 2021). Therefore, one may freeze θ and only train ϕ and φ in eq. (8). A document is
split into 3 parts, serving as the d, q, and a. Note the 3 parts may simply be consecutive texts and
not necessarily a triple of document, prompt, and answer.

Fine-tuning for downstream tasks: One may also make all parameters trainable and fine-tune the
LM toward a downstream task. In this scenario, the LM learns to answer the query in the prompt q
by reading the compressed contexts Nugget2D(d).

2.5 AUGOREGRESSIVE NUGGET2D

A common issue with some text compression models (Qin & Van Durme, 2023; Ge et al., 2023) is
that they separate the text to be compressed and apply different parameters to the compressor and the
decoding module (e.g. Nugget2Dϕ,φ and LMθ in section 2.4), which makes it extremely expensive
to do autoregressive decoding. Therefore, we introduce a variant of NUGGET2D that restricts the
usage of parameter ϕ only to the nugget tokens to solve this issue.

The intuition of language modeling with compression is that the distant tokens are less correlated
with the next token, and thus can be gradually compressed with NUGGET2D . We illustrate the
architecture of autoregressive NUGGET2D in fig. 3. Suppose we have a context of t tokens w1:t and
we split them into distant tokens w1:τ and recent tokens wτ+1:t, then the distribution of the next
token wt+1 can be modeled as:

(z1, z2, . . . , zk) = Nugget2Dϕ,φ(x1:τ ), 1 ≤ k ≤ τ (9)

xl+1
t = Attnθ

(
xl
t,
[
zl1:k;x

l
τ+1:t

]
,
[
zl1:k;x

l
τ+1:t

])
, 1 < τ < t (10)

p(wt+1 | w1:t) = LMHeadθ
(
xL
t

)
(11)

where τ is an index that splits past tokens w1:t into distant and recent tokens, xL
t is the last-layer

representation of the t-th token, and Nugget2D compresses the hidden representation of distant
tokens x1:τ into z1:k. In eq. (10), the hidden state of the t-th token is derived by attending to recent
texts as tokens (i.e. xl

τ+1:t) and attending to distant texts as nuggets (i.e. zl1:k).

5The concatenation of nuggets and tokens means concatenating their hidden states.
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Parameter reassignment In section 2.4, both nugget and non-nugget tokens on the Nugget2Dϕ,φ
side use ϕ to parameterize the self attention (eq. (2)), and all tokens on the LMθ side use θ. However,
an autoregressive NUGGET2D does not have encoder and decoder sides. Instead, the nugget tokens
use ϕ (in eq. (9)) while the non-nugget tokens use θ (in eq. (10)) to attend previous tokens. In eq. (9),
Nugget2Dϕ,φ encodes a nugget token zi by attending to its previous tokens x<i′ by

zl+1
i = Attnϕ(z

l
i,x

l
<i′ ,x

l
<i′), (12)

where i′ is the index of the token corresponds to nugget zi. In contrast, the hidden states of the
non-nugget tokens are encoded with θ as we show in eq. (10).

Nugget selection Another function of Nugget2Dϕ,φ is to select nugget from tokens with Scorerφ.
Unlike section 2.4, an autoregressive LM does not know the length of sequence. Therefore, we make
k dynamic by setting a threshold s on the nugget score si to select nuggets. s is set such that a ratio
r of tokens are selected nuggets, averaged over all documents. However, the choice of s depends on
a trained Scorerφ, while training Scorerφ needs a specified s. To solve this cold-start problem,
we reuse the Scorerφ in the autoencoding experiments in section 2.4 and freeze the parameters φ.

…

…

…

…
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Figure 3: An illustration of the autoregressive NUGGET2D ,
where Scorer(φ) selects nugget tokens, Nugget2D(ϕ) aggre-
gates the information of distant tokens into nuggets. When pre-
dicting a new token, LM(θ) has direct access to recent tokens but
needs the nuggets to access the distant information.

To make the inference time finite
for arbitrarily long sequences,
we suppose NUGGET2D can
read recent ωr tokens as tokens
and another ωd compressed
tokens. Texts that are ωr + ωd
tokens away are discarded. In
this case, τ = t − ωr. We set
ωr and ωd as hyperparameters.
Note that although the attention
range of each token is restricted
to ωr + ωd tokens, xL

i can get
access to the information that is
L · (ωr +ωd) tokens away, where
L is the number of transformer
layers because the information can be retained layer-by-layer (Dai et al., 2019).

Training We use the next-token prediction as the training objective. However, eqs. (9) and (11)
are not easy to parallelize because τ shifts for every new token. So we approximate eqs. (9) and (11)
by sampling sentences with up to (ωd + ωr + ωp) tokens from a corpus D, using the first ωd tokens
as distant tokens to be compressed by Nugget2Dϕ,φ and the following ωr tokens as recent tokens,
and letting the model learn to predict the last ωp tokens. Formally, we have:

(θ̂, ϕ̂) = argmax
θ,ϕ

∑
x∈D

ωd+ωr+ωp∑
i=ωd+ωr

log LMHeadθ
(
xL
i

)
(13)

xL
i = LMθ

([
Nugget2Dϕ,φ(x1:ωd);xωd+1:i

])
. (14)

Note that φ is not optimized, because we reuse the Scorer in section 2.4 without further fine-tuning.

3 OVERALL EXPERIMENT SETUP

We adopt the architecture of LLAMA (Touvron et al., 2023a;b) as our base model. For the autoen-
coding experiment, we use the checkpoint of LLaMA-7B following ICAE (Ge et al., 2023). We use
the checkpoint of LLaMA-2-7B-chat for the downstream NLP tasks and LLaMA-2-7B for the
autoregressive language modeling experiments.

We adopt LORA (Hu et al., 2022) with a rank of 32 to fine-tune the parameters of the LM, namely
θ and ϕ. We used the trick of mixed precision to save GPU memory. Following Qin & Van Durme
(2023), we set λ = 3 and derive xλ

i , the features fed into Scorer, from a frozen LM, so the
nugget selection is independent of θ or ϕ. For the rest of the training details, including training
hyperparameters, devices, and parameter count, readers may refer to appendix D.
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Figure 4: BLEU scores for autoencoding. Each
group corresponds to a sequence length (±5 to-
kens). Note the performance of ICAE is nearly
100% for sequence lengths shorter than 300.

Figure 5: Token frequency of nuggets selected
by NUGGET2D and the formal texts. These top
10 token types cover 95% of nuggets observed.

4 AUTOENCODING EXPERIMENT

4.1 TASK DEFINITION, DATASET, AND EXPERIMENT SETUPS

In this section, we use NUGGET2D as a context compressor (section 2.4) and apply it to the au-
toencoding task. A model is asked to reconstruct the input text from a compressed representation.
Following Ge et al. (2023), we fine-tune the LLaMA-7Bmodel on the Pile (Gao et al., 2020) dataset.
We manually split the corpus into train, dev, and test splits.

As stated in section 2.4, we use NUGGET2D to compress the input text into nuggets, and then use
the LM to decode the input sequence. The nugget ratio r is set as 0.05 and 0.1. The soft prompt
used for autoencoding is randomly initialized and the length is set as 1.

We use In-Context AutoEncoder (Ge et al., 2023, ICAE) as a baseline model. The key idea of ICAE
is to append 128 tokens to the input sequence as “memory slots,” (fig. 1) and train the decoder to
reconstruct the input from the memories:

(m̃1, m̃2, . . . , m̃128) = LM ([w1:n;m1:128])

p(wi+1 | w1:i) = LM ([w1:i; m̃1:128]) .

We measure using BLEU (Papineni et al., 2002) score on pairs of input and decoded texts. 6

4.2 EXPERIMENT RESULTS

In fig. 4 we see NUGGET2D has comparable performance with the ICAE baseline for short se-
quences and better performance for long sequences. Moreover, NUGGET2D successfully han-
dles longer inputs: performance improves on longer sequences because the number of nuggets
is proportional to the sequence length, unlike ICAE’s constant-sized memory. Despite its vari-
able memory, NUGGET2D maintains an advantage over ICAE in computational time and space.
First, NUGGET2D encodes sequences more efficiently: while ICAE always appends 128 tokens,
NUGGET2D reuses a fraction of the already-encoded tokens. Also, NUGGET2D uses fewer tokens
than ICAE: even for the longest sequences, NUGGET2D only uses 25 or 50 tokens, while ICAE
uses 128 for all sequences. 7 Lastly, NUGGET2D is more efficient than ICAE during decoding
because it uses fewer tokens and does not need to re-encode them. In short, compared to the base-
line, NUGGET2D demonstrates comparable or better performance, successful handling of long se-
quences, and much more efficient encoding and decoding.

4.3 NUGGET TOKENS ARE CLAUSAL TEXT DELIMITERS

In section 2.2, we employ Scorer to pick out nuggets, but what are the actual tokens selected?
We empirically sampled 128 documents with 50k tokens and run the Scorer from the checkpoint

6Ge et al. (2023) has no associated code, so we report ICAE results per their section 3.3.1.
7NUGGET2D uses all layers while ICAE only uses the last layer. However, ICAE needs to encode their

memory tokens into hidden states during decoding, while NUGGET2D can save this step.
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in section 4 with a nugget ratio of 0.1, and the results are shown in fig. 5. Readers may refer to
appendix E for case studies on sampled texts. From fig. 5, we observe similar phenomena as Qin
& Van Durme (2023), where the tokens preferred by NUGGET2D are mostly clausal text delimiters,
such as punctuation marks, new line symbols, and conjunction words.

5 AUTOREGRESSIVE LM EXPERIMENT

5.1 EXPERIMENT SETUP

We use the Pile (Gao et al., 2020) and WikiText-103 (Merity et al., 2017) as the corpus for language
modeling experiments with autoregressive NUGGET2D . We split the texts into distant and recent
segments, where an LM is asked to predict the next token based on recent tokens and compressed
distant tokens ( fig. 6). We introduce the method of Compressive Transformers (Rae et al., 2020)
as our baseline, which is a method that evenly chunks the text into segments and uses a pooling
algorithm to compress the hidden states of each segment into a single vector. We adopt the mean
pooling algorithm and make sure they have the same compression ratio as NUGGET2D .

Both models are initialized from the checkpoint Llama-2-7b with a compression ratio of 10x.
We apply the same training configurations to NUGGET2D and COMPRESSIVE , where we set ωd, ωr,
and ωp as 512, 0, and 128. In addition to those 2 models, we introduce FULL , which is the original
LLAMA without any compression. We train all three models on the Pile dataset.

. . . In the 1890s, armed standoffs were avoided narrowly several times. The Great Northern Railway, under
the supervision of president . . . (omitted 230 tokens) . . . The railway also built Glacier Park Lodge, adjacent
to the park on its east side, and the Many Glacier Hotel on the east shore of Swiftcurrent Lake. Louis Hill
personally selected the sites for all of these buildings, choosing each for their dramatic scenic backdrops
and views. Another developer, John Lewis, built the Lewis Glacier Hotel on Lake McDonald in 1913–1914.
The Great Northern Railway bought the hotel in 1930 and it was later . . .

Figure 6: An example of a setting of our LM experiment. Here, compressive models access 320
tokens of history (italics) which they must compress to 32 states, along with 32 explicit tokens of
most recent history (final portion of red, normal text). FULL gets explicit access only to the entirety
of the red text (64 tokens), with no access to longer history. Models need to complete the sequence
starting with The Great Northern Railway. We would hope both topical and explicit vocabulary
information (e.g., the underlined text) will be retained in the compressed history.

5.2 EXPERIMENT RESULTS

Table 1: Perplexity on the Pile and WikiText-103, contrasting two 10x compressed solutions against
no use of compression. Cmpr. tokens: the number of compressed tokens that precede ctx. tokens:
the uncompressed context immediately before the token to be predicted. This adds up to total state,
which is directly comparable between systems, using two settings (128 and 64). NUGGET2D trades
off explicit context for larger history, with better perplexity results.

Model total cmpr. ctx. ppl. on WikiText ppl. on Pile
state tokens tokens subword word subword

FULL 128 0 128 6.87 11.69 5.35
COMPRESSIVE 128 640 64 7.09 12.18 4.93
NUGGET2D 128 640 64 6.58 11.06 4.49
FULL 64 0 64 7.95 14.08 5.80
COMPRESSIVE 64 320 32 7.64 13.39 5.65
NUGGET2D 64 320 32 6.91 11.78 5.01

Perplexity (PPL) is used to evaluate the model performance. Following previous work, we exclude
the tokens that are defined as out-of-vocabulary by Merity et al. (2017) from WikiText-103 . Because
WikiText is a tokenized corpus, we take production over the probabilities of subwords for each
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complete word to measure the word PPL. 8 Because Wikipedia is part of the training corpus of
LLAMA, we additionally evaluate the model performance on a held-out subset of the Pile, which is
randomly sampled and contains 100k tokens. We report the subword PPL on the Pile data and both
subword and word PPLs on WikiText.

The experiment results are shown in table 1. We conduct experiments with 2 context configura-
tions, where an LM has access to up to 64 or 128 past hidden states. For NUGGET2D and COM-
PRESSIVE , the first 32 or 64 states are compressed representation of the past 320 or 640 tokens.
NUGGET2D outperforms both COMPRESSIVE and FULL , showing that with a restricted size of hid-
den states, NUGGET2D is an effective method to encode history information.

6 DOWNSTREAM TASKS: QA AND SUMMARIZATION

6.1 EXPERIMENT SETTINGS

Training objective We train NUGGET2D with the text continuation objective (section 2.4) using
documents sampled from the Pile (Gao et al., 2020). Each document is split into d, q, and a with
up to 512, 16, and 128 tokens respectively (refer to section 2.4). After convergence, we either take
it to do downstream tasks in zero-shot settings or further fine-tune the model with (d,q,a) triples
sampled from the target task. The nugget ratio r is set as 0.1 and 0.2 in this section.

Baselines 9

FULL : Results of the original LM without any compression.
NODOC : LM is used to do the task without any documents, i.e. (q,a) pairs only.
LMSUMM : Use the LM to summarize the text into fewer tokens with prompts, which are

designed to guide the LM to roughly compress the texts into 10% of its length. 10

LM uses the summary instead of documents to do the task. (appendix F)
Dataset Datasets used in this section are SQuAD (Rajpurkar et al., 2016) for question answering,
and CNN/DailyMail v3.0.0 (See et al., 2017) for summarization (table 2).

Table 2: Dataset statistics. The text lengths are counted by the LLaMA tokenizer.

Dataset Split sizes Text length
train dev test doc prompt answer

SQuAD (Rajpurkar et al., 2016) 88k 10.5k - 231 17.0 -
CNN/DailyMail (See et al., 2017) 287k 13.4k 12k 878 - 68.9

6.2 QUESTION ANSWERING

Table 3: The accuracy (ACC.) of all
4 models on SQuAD. Cmpr. is the
compression of the method.

Model Cmpr. Acc.
NODOC ∞ 1.4
LMSUMM 10x 30.9
FULL 1x 64.5
NUGGET2D 5x 59.1
NUGGET2D 10x 49.8

In SQuAD a model is asked to extract a phrase from the pas-
sage to answer the query. We reformulate this problem as a
text-to-text task instead of annotation, using accuracy to eval-
uate the model performance. As the model tends to generate
tokens more than the answer itself or using different forms
(e.g. using “two” instead of “2”), we normalize the output to
match the answer. Readers may refer to appendix G for the
algorithm used to calculate the accuracy.

We consider all models: FULL , LMSUMM , NUGGET2D ,
and NODOC (table 3).All models are evaluated in a zero-shot
manner without fine-tuning. FULL and NUGGET2D easily
outperform the NODOC and LMSUMM , and we observe that
LMSUMM often omits details that are needed by the question. The performance of NUGGET2D can
be improved by lowering its compression ratio, and the performance of NUGGET2D (r = 0.2) is
close to FULL , confirming a compressed representation can still support LLM reasoning.

8Note our algorithm for the complete word PPL underestimates the model performance.
9We are unable to conduct experiments with ICAE (Ge et al., 2023) because they did not release their code,

nor can we run NUGGET2D on their data because this also is unreleased.

8



Under review as a conference paper at ICLR 2024

6.3 SUMMARIZATION

Table 4: Rouge scores (F1 of Rouge-1, Rouge-2,
LCS). ZS and FT are zero-shot and fine-tuning.

Model Cmpr. R1 R2 RL
FULL (ZS) 1x 32.5 9.7 28.2
FULL (FT) 1x 37.7 15.6 35.3
NUGGET2D 10x 39.9 14.6 37.0

CNN/DailyMail contains news articles, where
a model is required to generate a short sum-
mary. As no query is involved, we propose
a prompt as a statement of the task require-
ment (appendix F).

We consider FULL and NUGGET2D (r = 0.1).
FULL is evaluated in both zero-shot and fine-
tuning settings and NUGGET2D is fine-tuned.
The results are shown in table 4. We find that

NUGGET2D can achieve similar or even better performance than FULL after compression. We spec-
ulate that as the context of CNN/DailyMail is long, this may lead the LM to be “lost in the mid-
dle” (Liu et al., 2023), whereas the nugget representation generated by NUGGET2D is only 10% of
the original length and perhaps less susceptible. This is an interesting avenue for future exploration.

7 RELATED WORK AND DISCUSSION

Scaling transformers to long sequences is a popular topic in the NLP community (Tay et al., 2022).
Existing work includes sparsify the attention patterns (Beltagy et al., 2020; Zaheer et al., 2020;
Khalitov et al., 2023; Ding et al., 2023; Ainslie et al., 2023; Rae et al., 2020), employing low-
rank or kernel methods to approximate the attention matrix computation (Choromanski et al., 2021;
Katharopoulos et al., 2020), or applying recurrence (Dai et al., 2019; Yang et al., 2019; Bulatov
et al., 2022). Another line of work tries to extrapolate the ability of LMs to long contexts, such as
using linear bias (Press et al., 2022) or rotary position embeddings (Su et al., 2022). More akin to
our work, Bertsch et al. (2023) applied kNN search to select a subset of tokens for attention at each
layer of an encoder-decoder transformer, effectively extending the attention range of transformers.

In the context of large language models, recent work focuses on compressing the prompt tokens into
soft embeddings (Mu et al., 2023; Wingate et al., 2022) or encoding the supporting documents Ge
et al. (2023); Chevalier et al. (2023) into fewer vectors. Some recent work tries to train LLMs with
longer contexts, such as Li et al. (2023), GLM (Zeng et al., 2022), and Claude 2 (Anthropic, 2023).

Researchers also explored retrieval-based methods that infuse knowledge into LM decoding, some
notable work in this field includes FiD (Izacard & Grave, 2021), REALM (Guu et al., 2020), KNN-
LM (Khandelwal et al., 2020), and RAG (Lewis et al., 2020b). From the angle of the LLMs, Zheng
et al. (2023) found that providing contexts to LLMs can help them generate truthful answers.

In this paper, we demonstrate the capability of NUGGET2D from two perspectives. In language
modeling (section 5) and summarization (section 6.3), NUGGET2D is shown to generate a highly
condensed representation of the context, while the results in autoencoding (section 4) and question
answering (section 6.2) reflect that the details of the contexts can be recovered from nuggets. More-
over, in section 6.2 we show that NUGGET2D trained with text continuation preserves the capability
of instruction following. This demonstrates LLMs can encapsulate more of their input into fewer
hidden states than previously realized, suggesting a new direction for efficient foundation models.

8 CONCLUSION

Prior work introduced the NUGGET model, demonstrating that a compressed representation derived
from an encoder-decoder framework still allowed for tasks like reconstruction of the input. Moti-
vated by the community’s shift to decoder-only LLMs, we adapt this framework to models such as
LLAMA. While NUGGET utilizes states drawn from the last layer of an encoder as a compressed
representation, our NUGGET2D solution employs a representation that preserves state from all lay-
ers of a model for a given token. We demonstrated that these “2 (D)imensional nuggets” support
a variety of tasks, such as language modeling and text summarization, while offering significant
savings and scalability to longer input contexts. Future work will explore more specialized ver-
sions of this proposal for optimizing results on individual applications, such as in dialog, supervised
fine-tuning, reinforcement learning with human feedback, and in-context learning.
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A OPTIMAL NUGGET SELECTION

The nugget selection module, i.e. Scorer, is learned through the residual connection introduced
in section 2.3. With gradient signal from the self-attention, Scorer tends to select the tokens that
are mostly attended by the decoder (parameterized by θ), as we analyzed in eq. (6). However, it
remains a question whether the selection is optimal. Here we provide an empirical estimate of the
gap between the optimal nugget selection and Scorer.

Suppose we select k nuggets out of n tokens, we define a selection as a set of indices

I = {i1, i2, . . . , ik}, 1 ≤ ij ≤ n.

From the definition we can see I ⊆ {1, 2, 3, . . . , n}. We further define the optimal selection I∗ as
the selection that achieves the best performance on a downstream task, e.g. lowest perplexity for
language modeling. We denote the selection of Scorer as Ī . We want to answer two questions:
How similar are I∗ and Ī , and what is the performance gap between I∗ and Ī ?

Finding I∗ is a non-trivial combinatorial optimization problem. The only possible solution, as we
know, is to enumerate

(
n
k

)
different nugget selections, which is infeasible for large n and k. There-

fore, we approximate I∗ with a greedy algorithm. The basic idea is to start with I ← Ī. Iteratively,
for each index i ∈ I, we replace it with an optimal index from the un-chosen indices so that it
achieves the best downstream performance. We formalize it in algorithm 1 with an example down-
stream task of language modeling.

Algorithm 1 A greedy algorithm to find the “optimal” selection I∗ .

Input: k (number of nuggets) and n (number of tokens) (0 < k ≤ n), encoder outputs x1:n

Output: A selection I and the corresponding LM perplexity b
Initialize I = {i1, i2, . . . , ik} with Scorer.
Perplexity b← Decoder(x1:n, I) ▷ Lowest perplexity so far
for i ∈ I do

for i′ ∈ {1, 2, . . . , n}\I do ▷ All possible replacements from unchosen indices
I ′ ← (I\{i}) ∪ {i′} ▷ Replace i in I with i′

Perplexity b′ ← Decoder(x1:n, I ′)
if b′ < b then ▷ If i′ is better than i, make the replacement permanent

b← b′, I ← I ′
end if

end for
end for

We conduct experiments with the NUGGET2D checkpoint in section 5. We compress a sequence of
up to 128 tokens into nuggets with a nugget ratio of 10%. We present the model with another 64
tokens without compression. The model is required to predict the next 64 tokens, and we measure the
subword-level perplexity of NUGGET2D . Because algorithm 1 contains 2 for loops and is expensive
to execute, we only sample 1000 documents from the test set of WikiText-103 (Merity et al., 2017).

To measure the difference between Ī and I∗ , we count how many elements are replaced in Ī with
algorithm 1. On average, 24.7% nugget tokens are replaced, meaning Scorer is roughly 75.3%
“correct”. After replacing Ī with I∗ , the overall subword-level perplexity is improved from 7.74 to
7.13, or I∗ is roughly 7.9% better than Ī in terms of downstream task performance.

In conclusion, we conduct experiments to show that Scorer is adequate to select nuggets as it can
achieve similar performance as a decoder-aware optimal nugget selector.

B TRAINING SCORER WITH STRAIGHT-THROUGH ESTIMATOR

In section 2.3, we propose to build a residual connection between nugget scores and the self-attention
of the decoder transformers to back-propagate gradients to Scorer. We copy it here:

ξli,j =
1√
d

[(
WQxl

i

)⊤ (
WKxl

j

)
+sj

]
, i < j. (15)
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However, adding nugget scores to the attention logits affects the behavior of self-attention. In prac-
tice, we found that the nugget score (i.e. sj in eq. (15)) is of a similar scale of attention logits (i.e.(
WQxl

i

)⊤ (
WKxl

j

)
in eq. (15)) and the nugget scores are usually positive, meaning that nugget

tokens draw more attention because of the addition of sj .

Alternatively, we propose to remove the effect of sj in eq. (15) from the forward propagation of the
neural network:

ξli,j =
1√
d

[(
WQxl

i

)⊤ (
WKxl

j

)
+sj−StopGrad(sj)

]
, i < j, (16)

where StopGrad means detaching it from the computation graph. Therefore, sj receives the same
gradients as the attention logits, but they do not impact the attention distribution. This is akin to the
“straight-through estimator” discussed in Bengio et al. (2013).

In practice, the behavior of both eqs. (15) and (16) is similar: They quickly converge — the nugget
selection is stable after 3000 steps of training — and they have similar performance on the autoen-
coding experiments in section 4. One can even remove the residual connection in eq. (15) when the
Scorer converges (after 3000 steps of training) and the model can quickly adapt to the new attention
pattern. We speculate that Llama-7b permits more flexibility because of its tremendous size.

C A DETAILED COMPARISON BETWEEN NUGGET AND NUGGET2D

In this section, we show more details on the architecture of NUGGET and a succinct comparison
between NUGGET and NUGGET2D. While Qin & Van Durme (2023) provides a thorough discussion
of NUGGET.

Applicability Qin & Van Durme (2023) can be applied to the encoder-side of an encoder-decoder
transformer and NUGGET can be applied to decoder-only transformers, such as LLAMA.

The form of nuggets The decoder exclusively attends to the last-layer representation of the en-
coder side, thus each nugget in Qin & Van Durme (2023) is the last-layer representation of its
corresponding token (zi ∈ Rd). For a decoder-only transformer, each future token attends to all-
layer hidden states of past tokens. Therefore, a nugget in NUGGET2D is comprised of the hidden
states of the corresponding token in all the layers (zi ∈ RL×d, L is the number of layers).

The learning of nugget selection Both Qin & Van Durme (2023) and NUGGET2D have a nugget
selection module Scorer. In Qin & Van Durme (2023), Scorer takes features from the l-th layer
of the transformer encoder, thus they freeze the first l transformer layers to make the training stable.
In NUGGET2D , Scorer takes features from a frozen transformer decoder with l layers that are
initialized from LLAMA, thus all the layers of the encoder (ϕ) and decoder (θ) are trainable.

Although Qin & Van Durme (2023) uses a transformer encoder to represent text, a dual decoder
must be equipped during the training phase to learn the nugget selection module. Suppose Scorer
is used to select nuggets, which outputs a score si ∈ R for the i-th token, it is plugged into the
cross-attention to receive gradients:

ai,j =
1√
d

[(
WQxtgt

j

)⊤ (
WKzi

)
+ si

]
,

where ai,j is the attention score from the j-th token xtgt
j on the target side to the i-th nugget zi. Note

that the auxiliary decoder of Qin & Van Durme (2023) is discarded after training.

In contrast, NUGGET2D directly works on a transformer decoder, thus the training of the Scorer in
NUGGET2D is straightforward. In NUGGET2D , the residual connection between Scorer and the
self-attention is built to learn nuggets (refer to eq. (5). NUGGET2D does not require an auxiliary
module to learn nuggets.

Flexibility on text compression Qin & Van Durme (2023) compresses the entire text with a trans-
former encoder. NUGGET2D can compress any part of the text. Similar to our experiments on
sections 5 and 6, one may flexibly choose to compress a certain part of the text.
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Table 5: Parameter count of NUGGET2D . We do not distinguish Llama-7b, Llama-2-7b, and
Llama-2-7b-chat here as they have the same architecture. The parameters of the encoder and
decoder are counted as additional parameters with LoRA compared to the base model.

Module #parameters Percentage Trainable
Llama-7B 6.74B 99.01% no
encoder (w/ LoRA, ϕ) 25.2M 0.37% yes
decoder (w/ LoRA, θ) 25.2M 0.37% yes
Scorer (φ) 16.8M 0.25% yes
soft prompt (θ) 4,096 <0.0001% yes

Streaming decoding Due to the nature of the transformer encoder, Qin & Van Durme (2023) can
only encode the text. Its decoder can learn to decode new texts, but it cannot re-encode them to
nuggets in an efficient way. NUGGET2D , with parameter re-assignment described in section 2.5,
can naturally decode new texts and re-encode them auto-regressively, achieving streaming decoding.

Nugget type encoding Qin & Van Durme (2023) passes a “type embedding” during the encoding
process to inform the model what tokens are selected as nuggets (eq 8 in their paper). Empirically
we do not find any improvement after introducing the “type embedding”, thus our experiments in
the main paper are conducted without type embeddings. We speculate there are 2 reasons behind
this:

1. An encoder transformer may not naturally concentrate context information into a few to-
kens, as the cross-attention from the decoder side always covers all token representations.
In this case, a type embedding can guide the model to encode context semantics in nugget
tokens. However, during the pretraining phase of a decoder-only transformer, the em-
bedding of each token is used to predict the next token, thus it naturally gathers context
information. In this case, a type embedding is redundant.

2. In the architecture of autoregressive NUGGET2D in section 2.5, nugget tokens are encoded
with parameter ϕ instead of θ that are used for non-nugget tokens. A separate type embed-
ding to distinguish nugget tokens is obviously unnecessary in this case.

D IMPLEMENTATION & TRAINING DETAILS

D.1 IMPLEMENTATION

The training pipeline of NUGGET2D is implemented with the PyTorch (Paszke et al., 2019) and
Pytorch Lightning package (Falcon & The PyTorch Lightning team, 2019). We use the ZeRO
stage-2 provided by the DeepSpeed Rasley et al. (2020) package with mixed precision to accel-
erate the training. The implementation of NUGGET2D is based on the huggingface/transformers
package (Vaswani et al., 2017). We used the implementation of huggingface/peft (Mangrulkar et al.,
2022) for LoRA (Hu et al., 2022). Our dataset reader uses huggingface/datasets (Lhoest et al., 2021).

A soft prompt is involved for the training objectives of autoencoding and text continuation. The
soft prompt is treated as part of the model parameters. Each soft prompt contains 1 soft token to be
trained. We empirically found that the number of soft prompt tokens does not have a major impact
on model performance.

D.2 HYPERPARAMETERS AND TRAINING DEVICES

For all the experiments, we follow the training setup of Touvron et al. (2023b) and use an Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 1 × 10−4, β1 = 0.9, β2 = 0.95, and
ϵ = 10−5. We use a cosine learning rate scheduler (Loshchilov & Hutter, 2017) with warmup of
2k steps, and the period of the cosine annealing function is set as 150k steps. We train the models
on 16 NVIDIA Tesla V100 GPUs (32 GiB), each with a batch size of 1. Gradients are accumulated
for 2 batches before the execution of the optimizers. All the models are trained until early stopping
because of the convergence of the loss on the validation set.
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D.3 NUMBER OF PARAMETERS

In this section, we enumerate the number of parameters in NUGGET2D , as shown in table 5. Except
for the frozen Llama model, NUGGET2D has an encoder and decoder, which contains additional pa-
rameters to the Llama model with LoRA (Hu et al., 2022) (rank = 32), a scorer (2-layer feedforward
neural networks), and a soft prompt that adds a special token to the embedding matrix.

For the experiments in section 5, we use LoRA to train COMPRESSIVE , which contains a decoder
and a soft prompt as we shown in table 5. However, compared to the size of LLAMA, the trainable
parameters of both NUGGET2D and COMPRESSIVE are significantly fewer (<1%).

E EXAMPLE TEXT FOR NUGGET SELECTION ANALYSIS

We sample a passage from Wikipedia and run Scorer on the text, where we set the nugget ratio r
as 0.1. The results are shown in fig. 7.

The Brooklyn Nets have built themselves up from next to nothing . Devoid of anything
close to an asset before 2015 , the Nets had to make something out of nothing . They

have done so indeed , loading the roster and asset cupboards simultaneously . Unfor-
tunately , just as quickly as Marks acquired youngsters , he must also decide which ones

should stick around . It ’ s an arduous exercise , and even tougher for a team far from
contention . Most teams reach this stage just as they are close to playoff-caliber . The
Nets do not have this luxury , and must evaluate with a much longer view than the av-
erage young team . Put simply , they must think like a contender before becoming one .
Luckily , the current roster has distinct tiers of young players in terms of their long-term

potential . Eight of the nine under-25 players can be split into two tiers . Locks The group
of definite keepers is relatively simple . These players have the most potential of the current
Nets . Although D’Angelo Russell has gone through some rough patches , he has displayed

enough promising signs to warrant the “keeper” status . His crafty ball-handling , scoring
off the dribble, shooting off the catch, and great passing vision all make him an ideal fit for
Kenny Atkinson ’ s attack . Being the No. 2 overall selection in a draft is typically enough
credibility to keep a player around , but Russell has shown legitimate flashes of star poten-
tial as well . Giving up on him now would be a fatal mistake. Jarrett Allen, a rookie center
from the University of Texas, has done a wonderful job in his specialized role . With superb
athleticism that allows him to protect the rim and switch onto perimeter attackers , Allen
is quite capable of captaining a modern defense . This athleticism helps him on offense as
well , as he gets plenty of lobs to finish pick-and-roll plays . When in doubt, the guards can
chuck it up to him for an easy deuce . The vertical dimension of basketball is rarely appreci-
ated .

Figure 7: Example texts processed by the Scorer of NUGGET2D . Darker texts have a higher score
than light texts. The tokens in green background are selected as nuggets.

F PROMPTS USED IN THE PAPER

The prompt used by the LMSUMM method to generate a summary for a given text is:

[INST]
Please summarize the following text into $WORD words:
$TEXT
[/INST]

We replace $WORD with ⌈n · r⌉, where n is the number of words (counted by spaces) and r is a
desired ratio (in section 6, r is 0.1).
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In the SQuAD experiment (section 6.2), a prompt is used to answer a question given a document:

[INST]
$DOCUMENT
Based on the provided document, answer the following question:
$QUESTION
[/INST]

We replace $DOCUMENT with the context document and $QUESTION with the question.

In the summarization experiment (section 6.3), we use the following prompt:

[INST]
$DOCUMENT
Please summarize the above document in one sentence.
[/INST]

We replace $DOCUMENT with the document to be summarized.

G NORMALIZATION ALGORITHM FOR SQUAD ANSWERS

The output of the language model tends to have tokens other than the answer or have different forms.
For each pair of model output and SQuAD answer, we apply the following rules:

• Convert all English numbers to digits. E.g. convert “two” to “2”.
• Replace all punctuation marks with spaces.
• Remove side spaces on both sides.
• Lowercase the string.

After these steps, a program is used to check if the model output contains the answer. We restrict
the model to generate up to 64 tokens in case they generate many tokens to hit the answer. 11

11They rarely do, as they are not optimized to cheat SQuAD.
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