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ABSTRACT

Causal inference is widely practiced in various domains. Existing literature pre-
dominantly focuses on causal estimators for scalar or vector outcomes. However,
real-world scenarios often involve response variables that are better represented as
distributions. This paper addresses the need for causal inference methods capable
of accommodating the distributional nature of responses when the treatments are
continuous variables. We adopt a novel framework for causal inference within
a vector space that incorporates the Wasserstein metric. Drawing upon Rubin’s
causal framework, we introduce three estimators, namely the Distributional Direct
Regression (Dist-DR), Distributional Inverse Propensity Weighting (Dist-IPW),
and Distributional Doubly Machine Learning (Dist-DML) estimators, tailored for
estimating target quantities, i.e., causal effect maps. We thoroughly examine the
statistical properties of these estimators. Through two experiments, we validate
the efficacy of the proposed methodology, establishing its practical utility.

1 INTRODUCTION

The investigation of how treatments influence outcomes, known as causal inference, is a common
practice across diverse domains, e.g., medical (Robins et al., 2000) and finance Huang et al. (2021).
To explore these effects, researchers have introduced and studied different causal estimators, such as
the average treatment effect (ATE), the quantile treatment effect (QTE), and the conditional average
treatment effect (CATE) (Chernozhukov & Hansen, 2005; Chernozhukov et al., 2018; Abrevaya
et al., 2015; Hartman et al., 2015).

However, all the aforementioned causal quantities that appear in the literature primarily center on
scenarios where the realization of the outcome variable for each unit can be represented as a scalar
or vector. However, there are many practical situations where the response for each unit should be
described as a distribution. An illustrative example can be found in the investigation of the impact
of working hours on individuals’ activity intensity behaviors. One’s activity intensities are typically
recorded at regular intervals (e.g., 1 min), and these records collectively form an activity distribution
that encapsulates an individual’s activity behavior. Notably, different users may exhibit various
activity distributions. For instance, as depicted in Figure 1a, the activity intensity distributions of 10
users are displayed, each exhibiting distinct preferences for various activity intensities.

Moreover, consider the scenario in Figure 1b, where two users (A and B) initially have the same ac-
tivity intensity distribution with a mean of 30. Upon adopting treatments, User A increases intensity
for all activities by 20 units, resulting in a rightward shift of the distribution by 20 units, while the
shape remains unchanged. Consequently, the mean of the distribution increases from 30 to 50. On
the other hand, User B only enhances intensity for high-intensity activities, leading to a significant
transformation in the distribution’s shape. Nonetheless, the distribution’s mean remains at 50. In
this context, focusing solely on scalar outcomes as causal quantities in literature, e.g., the mean of
the activity intensity distribution, fails to reveal the distinct behavioral patterns of these two users.

As such, there arises a need for causal inference methods that can account for the distributional
nature of responses, enabling a more accurate characterization of treatment effects. This paper en-
deavors to fill this gap by exploring causal inference within a vector space encompassing a spectrum
of distributions in scenarios featuring continuous treatment variables. We first equip such vector
space with a suitable metric for quantifying dissimilarity between distributions. In contrast to the
conventional Euclidean metric, which merely averages distributions pointwisely, we opt for the
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Figure 1: Example of Activity Intensity Distributions.

Wasserstein metric, renowned for preserving the inherent structure of random distributions more
effectively.

Grounded in Rubin’s foundational causal framework, we introduce three distinct estimators for tar-
get quantities, termed the causal effect map, which is analogous to the ATE in the classical causal
framework. We comprehensively explore the statistical asymptotic properties that underlie these
estimators. Subsequently, to empirically ascertain the efficacy of our proposed methodologies, we
conduct two experiments, including one simulation and one real-world dataset. Our findings under-
score the effectiveness of all three estimators.

The contributions of this paper are threefold:

• We introduce a novel non-parametric framework and three distinct cross-fitted estimators
for inferring causal effects when the treatment variable takes continuous values.

• We study the asymptotic properties characterizing the cross-fitted estimators, offering valu-
able insights into the statistical performance and reliability of the proposed estimators.

• We perform two experiments to validate our proposed estimator, and the results from the
numerical experiments are consistent with our theoretical findings.

2 RELATED WORK

The key assumption of classical causal inference is that, given the treatment A = a, the realiza-
tion of response variables for each unit is a scalar point drawing from the same potential out-
come distribution. Under the assumption, several causal quantities are introduced and studied.
For instance, ATE (Chernozhukov et al., 2018) is the difference between the means of any two
potential outcome distributions (i.e., E[Y (A = ā)] − E[Y (A = a)]). CATE is the mean differ-
ence of two potential outcomes in the total population conditioning on some covariates (Fan et al.,
2022). Instead of studying the mean of potential outcome distribution, QTE (Chernozhukov &
Hansen, 2005) focus on the difference between two potential outcome distributions at τ -quantiles
(i.e., Q(τ, Y (A = ā))−Q(τ, Y (A = a))).

The general approach to estimating the causal effect between treatment and outcome is constructing
the estimators for the target quantities. The simplest method, called the Direct Regression (DR)
approach, is regressing the relation between the response and the features pair of treatment and
covariates. However, the estimated relation from the observed dataset can be biased since the dataset
is always not randomized. To address the issues, the inverse propensity weighting (IPW) method
is introduced (Rosenbaum & Rubin, 1983; Hirano et al., 2003), aiming to formulate a pseudo-
population and obtain the estimators for the target quantities in the pseudo-population. However,
using the estimated extreme propensity score always gives the estimates with large variance. To
overcome the challenges, the Doubly Machine Learning (DML) approach is proposed, which is
endowed with a doubly robust property (Chernozhukov et al., 2018), (Colangelo & Lee, 2019).

The above methods are restricted when the outcome of each unit includes many observations or
points, and they constitute a distribution. Thus, it is necessary to seek alternative frameworks for
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distributional outcomes. Indeed, the distribution can be treated as a special case of functional out-
come and is closely related to the field of functional data analysis (FDA) that analyzes data under
information varying over a continuum (Cai et al., 2022; Chen et al., 2016). Specifically, Ecker et al.
(2023) considers a causal framework to study the impact of treatment on the functional outcome.
However, their work conducts causal inference in Euclidean space, in which the random structure
of the distributional outcome can be destroyed (Verdinelli & Wasserman, 2019; Panaretos & Zemel,
2019). As such, Lin et al. (2021) considers the causal study in the Wasserstein space, but they only
consider the treatment variable taking binary values. We consider extending their framework to
continuous treatment and propose three distinct estimators. We provide more detailed comparisons
between our framework and classical framework in Appendix B.

3 BACKGROUND

3.1 NOTATIONS

In this paper, we adopt the notation A ∈ A ⊂ R to denote the continuous treatment variable. The
m-dimensional vector X = [X1, · · · , Xm] ∈ X corresponds to the covariates/confoundings. The
response variable is denoted as Y , and we use Y(a) to signify the response variable associated
with a specific value a. We assume that the realization of Y and Y(a) is a distribution instead of a
scalar value. Specifically, we focus on a sub-case where the functional response corresponds to the
cumulative distribution function (CDF) within the Wasserstein space denoted asW2(I). We finally
assume that there exist N samples denoted as (Xs, As,Ys)Ns=1.

3.2 CAUSAL ASSUMPTIONS

As with the previous studies Rubin (1978; 2005), our approach relies on four assumptions. They are
(1) Stable Unit Treatment Unit Assumption, (2) Consistency , Ignorability , and (4) Overlap . We
defer detailed assumptions about these assumptions in Appendix A.

3.3 WASSERSTEIN SPACE

Given that the outcome in our paper is selected as the CDF, it becomes crucial to define a vector space
that encompasses the CDF and establish an appropriate distance measure to compare and contrast
two CDFs effectively. To begin, let I ⊂ R, we define the vector spaceWp(I) that comprises CDFs
defined on I and satisfying the condition:

Wp(I) =
{
λ is a CDF on I |

∫
I
tpdλ(t) <∞

}
, where p ≥ 1.

Using Jensen’s inequality, we can conclude that
(∫

I t
qdλ(t)

) 1
q

≤
(∫

I t
pdλ(t)

) 1
p

when 1 ≤ q ≤

p. Hence, Wp(I) contains all the CDF λ with all the finite order central moment up to p-th order.
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Figure 2: Examples for the average
distribution of the 10 distributions
using the Euclidean and Wasser-
stein metric.

We then establish a distance metric between two CDFs. The
simplest measure that can be employed is the Euclidean p-
measure, where the distance between two CDFs can be com-
puted as the differences between the two CDFs point-wisely.
Mathematically, given two CDFs λ1 and λ2 defined on I, the
Euclidean p-measure is (

∫
I |λ1(t)− λ2(t)|

pdt)
1
p .

However, the Euclidean p-measure is not an optimal metric for
characterizing the distance between two CDFs since averaging
all the values of the distributions will destroy the structural
properties of the resulting distribution, leading to a loss of es-
sential characteristics. A concrete illustration of this issue is
provided in Figure 2, which showcases ten distributions with
distinct means and variances in the top plot. When these distri-
butions are averaged using the Euclidean metric, the resulting
green line in the bottom plot demonstrates that the bell shape
characteristic of a normal distribution is not preserved.
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Apart from the usual Euclidean measure, we can also use the p-Wasserstein metric (Villani, 2021;
Panaretos & Zemel, 2019; Feyeux et al., 2018), which is defined as

Definition 1 Given two random variables V1 and V2, let the marginal CDFs of V1 and V2 be λ1
and λ2 that are defined on I. Besides, let Λ be the set containing all the joint densities of V1 and
V2. The p-Wasserstein metric is given as Dp(λ1, λ2) such that

Dp(λ1, λ2) =

{
inf
λ̃∈Λ

∫
I×I

γ(s, t)pdλ̃(s, t)

} 1
p

. (1)

In Definition 1, γ(s, t) is a function such that γ(s, t) : R×R→ R satisfies the metric axioms: posi-
tivity axiom, symmetry axiom, and triangle inequality axiom. Moreover, γ(·, ·) represents the cost of
transporting a point mass located at s following the distribution λ1 to t following the distribution λ2.
As a result, the integral

∫
I×I γ(s, t)

pdλ̃(s, t) represents the total cost of transporting points from λ1

to λ2 given that the joint distribution of λ1 and λ2 is λ̃. Dp(λ1, λ2) is thus the minimum cost among
all joint distributions of (λ1, λ2).

The vector space Wp(I) equipped with the metric Dp(·, ·) forms the p-Wasserstein space (denoted as
(Wp(I),Dp(·, ·))). Since the function γ(s, t) in Definition 1 satisfies the metric axioms, the distance
measures Dp(·, ·) also satisfies the metric axioms. Consequently, the p-Wasserstein space is indeed
a metric space. In the sequel, we assume that p = 2 and γ(s, t) = |s− t|.
One of the significant advantages of using the Wasserstein metric is its ability to preserve the struc-
tural properties of the distributions being averaged. As in Figure 2, the red line represents the
average of all ten normal distributions computed using the Wasserstein metric, and it retains the
shape of normal distributions.

4 CAUSAL QUANTITIES

4.1 CAUSAL MAP AND CAUSAL EFFECT MAP

Similar to the ATE, the target quantity in our paper is called causal effect map, which provides a
comprehensive understanding of the treatment-response relationships.

Definition 2 The causal effect map△aā between treatments a and ā is defined as

△aā := △a −△ā := µ−1
a − µ−1

ā , (2)

where µa := argmin
v∈W2(I)

E
[
D2(Y(a), v)2

]
. We also term△a as the casual map of treatment a.

Here, the realization of Y(a) is a distribution. The quantity E
[
D2(Y(a), v)

]
represents the average

Wasserstein distance centered at v ∈ W2(I). As a result, the average Wasserstein distance centered
at µa is the smallest, and it is commonly referred to as the Wasserstein barycenter. Notably, µa is a
CDF, and thus µ−1

a is the inverse function of CDF, which is also known as the quantile function.

4.2 PROPERTIES OF CAUSAL MAP/CAUSAL EFFECT MAP

From the previous section, we have shown that △a = µ−1
a where µa := argmin

v∈W2(I)

E
[
D2(Y(a), v)2

]
.

The calculation△a(·) requires solving an optimization problem in the Wasserstein space. This opti-
mization step can be computationally demanding, particularly when dealing with high-dimensional
data or large sample sizes. To enhance the efficiency, we simplify the calculation of △a(·) and
eliminate the optimization step. We conclude this point in Proposition 1:

Proposition 1 Given that Assumptions 1 - 4 hold, we have△a = E
[
Y(a)−1

]
.

We defer the proof in Appendix C. E[Y−1(a)] represents the expectation of the inverse CDF when
all units in the population receive treatment a.
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4.3 ESTIMATORS

In practice, we often encounter situations where not all individuals receive treatment a, and in some
cases, no individuals receive treatment a, especially when A is a continuous variable. To address
this challenge and facilitate practical estimations from observed datasets, we further explore three
alternative estimators of E[Y−1(a)], namely Distributional Direct Regression (Dist-DR) estima-
tor, Distributional Inverse Propensity Weighting (Dist-IPW) estimator, and Distributional Doubly
Machine Learning (Dist-DML) estimator.

Dist-DR estimator can be obtained simply using Causal Assumptions (2) - (3). Indeed, we have

△a = E[Y(a)−1] = E[E[Y(a)−1|X]]
∗
= E[E[Y(a)−1|A = a,X]]

⋆
= E[E[Y−1|A = a,X]]. (3)

Here, ⋆ follows from Causal Assumption (2) while ∗ follows from Causal Assumption (3). Let us
define ma(X) = E[Y−1|A = a,X] which is a regression function that can be estimated using any
functional regression methods, e.g., Chen et al. (2016). As such, we obtain the Dist-DR estimator
△a;DR using sample averaging such that

△a;DR =
1

N

N∑
s=1

ma(Xs). (4)

However, the Dist-DR estimator neglects the potential influence of the covariates X on the treatment
variable A and is not suitable to construct estimators for causal analysis unless the observed dataset
is random. Thus, we consider to express E[Y(a)−1] as other forms.

Dist-IPW estimator uses the Horvitz–Thompson Theorem (Horvitz & Thompson, 1952; Overton
& Stehman, 1995), and we can show that

Proposition 2 Given that Assumptions 1 - 4 hold, we have

△a = E
[
δ(A− a)
p(a|X)

Y−1

]
. (5)

Here, δ(·) is known as the Delta Dirac function.

In Eqn. 5, the term δ(A−a)
p(a|X) serves as the weight to construct a pseudo-population, where groups with

a smaller portion in the dataset receive larger weights, while groups with a larger portion receive
smaller weights. These weights are usually constructed using the (generalized) propensity scores,
which capture the likelihood of receiving treatment based on covariates.

We defer the proof in Appendix D. Unlike the Dist-DR estimator, we cannot directly construct
estimators according to equation 5 using sample averaging due to the presence of the Delta Dirac
function δ(A− a). To overcome this, we usually replace the Delta Dirac function with some Kernel
Approximations.

Definition 3 (Kernel function)

1. Given that K(·) : R → R is a symmetric function (i.e.,K(v) = K(−v) ∀v ∈ R). We say
that K(·) is a kernel function if it satisfies

∫
RK(v)dv = 1.

2. A kernel function K(·) is said to have order ν (ν is an even number) if
∫
R v

jK(v) dv = 0

∀ 1 ≤ j ≤ ν − 1 and
∫
R v

νK(v) dv <∞.

In this paper, we concentrate on the second-order kernel function and present some commonly used
second-order kernels in Appendix D. For any arbitrary kernel function K(x), we can define the
scaled kernel with bandwidth h. It is denoted as Kh(x) such that Kh(x) := 1

hK(xh ). Due to the
fact that lim

h→0
Kh(x) = δ(x), we can replace δ(A − a) in equation 5 with Kh(A − a), and we can

then construct the Dist-IPW estimator△a;IPW using sample averaging such that

△a;IPW =
1

N

N∑
s=1

Kh(As − a)
p(a|Xs)

Y−1
s . (6)
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The Dist-DR estimator uses the nuisance parameter E[Y−1|A = a,X] only, while the Dist-IPW
estimator uses the nuisance parameter p(a|X) only. Naturally, we can derive an estimator that
requires both the nuisance parameters E[Y−1|A = a,X] and p(a|X).

Dist-DML estimator is indeed developed from the Doubly Machine Learning Theorem as de-
picted in Chernozhukov et al. (2018). The theorem provides a powerful framework that combines
the benefits of both the Dist-DR estimator and the Dist-IPW estimator. To start with, we show that
△a can be expressed in terms of E[Y−1|A = a,X] and p(a|X) in Proposition 3.

Proposition 3 Denote ma(X) = E[Y−1|A = a,X]. Suppose that Assumptions 1 - 4 hold, we have

△a = E
[
ma(X) +

δa(A)

p(a|X)
[Y−1 −ma(X)]

]
. (7)

We defer the proof in Appendix E. Moreover, as the Dist-DR and Dist-IPW estimators, we can also
estimate the Dist-DML estimator△a;DML using sample averaging such that

△a;DML =
1

N

N∑
s=1

[
ma(Xs) +

Kh(As − a)
p(a|Xs)

(Y−1
s −ma(Xs))

]
. (8)

The Dist-DML estimator possesses a valuable property known as doubly robustness, where equa-
tion 7 still hold even if either p(a|X) or ma(X), but not both, are misspecified. We prove this
property in Appendix F. Further, the estimation accuracy of ma(·) and p(a|X) can be reduced if
the Dist-DML estimator is used in lieu of the Dist-DR estimator and the Dist-IPW estimator (see
Theorem 2 in Appendix H).

4.4 ALGORITHM

In the previous section, we have derived the estimators △a;DR, △a;IPW , and △a;DML. In order
to obtain estimations of these estimators based on an observed dataset, we employ the cross-fitting
technique, which can help mitigate the risk of over-fitting (Chernozhukov et al., 2018).

In particular, we partition the N samples into K disjoint groups, where the kth group is denoted as
Dk and contains Nk samples, for all k = {1, . . . ,K}. Let D−k = ∪Kr=1,r ̸=kDr, and we use D−k to
learn the estimated nuisance parameters m̂k

a(X) and p̂k(a|X) of ma(·) and p(a|·). We also suppose
that the empirical estimation of Y is denoted as Ŷ . Subsequently, we utilize Dk to compute

△̂
k

a;DR =
1

Nk

∑
s∈Dk

m̂k
a(Xs), (9) △̂

k

a;IPW =
1

Nk

∑
s∈Dk

Kh(As − a)
p̂k(a|Xs)

Ŷ−1
s , (10)

△̂
k

a;DML =
1

Nk

∑
s∈Dk

[
m̂k

a(Xs) +
Kh(As − a)
p̂k(a|Xs)

(Ŷ−1
s − m̂k

a(Xs))
]
. (11)

Consequently, we can obtain the cross-fitted estimators △̂a;w such that

△̂a;w =

K∑
k=1

Nk

N
△̂

k

a;w, (12)

where w ∈ {Dist-DR, Dist-IPW, Dist-DML}. We finally present an Algorithm that summarizes
the procedures of getting the estimates of the cross-fitted estimators △̂a;w in Appendix G.

5 THEORY

In this section, we aim to study the asymptotic properties of the proposed estimator △̂a;w for any
w ∈ {Dist-DR, Dist-IPW, Dist-DML}. Let X be a random variable with distribution FX(x).
Generally, we consider three types ofL2 space containing different forms of function: i) f : X → R;
ii) g, g̃ : [0, 1]→ R; and iii) Γ : X × [0, 1]→ R. For the second type of L2 space, we can define an
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inner product ⟨·, ·⟩ such that ⟨g, g̃⟩ =
∫
[0,1]

g(t)g̃(t)dt where
∫
[0,1]
|g(t)|2dt,

∫
[0,1]
|g̃(t)|2dt < ∞.

For each L2 space, we have the corresponding norm: i) f(X) as ∥f(X)∥22 =
∫
X |f(x)|

2dFX(x) =

E[|f(X)|2]; ii) ∥g∥2 =
∫
[0,1]

g(t)2dt; and iii) |||f(X, t)|||2 =
∫
X ∥f(x, t)∥

2dFX(x).

We also let PN be the empirical average operator such that PNO = 1
N

∑N
s=1Os. We use m̃k

a(·)
and m̂k

a(·) to denote the estimates of ma(·) using the outcome Y and Ŷ based on the set D−k

respectively. Simultaneously, let ρ4m = sup{~m̃k
a − ma~4, a ∈ A} = sup{[

∫
∥m̃k

a(x) −
ma(x)∥2dFX(x)]2, a ∈ A} for 1 ≤ k ≤ K and define ρ4p = sup

a∈A
E[|p̂k(a|X)− p(a|X)|4]. Finally,

we present the convergence assumptions that are required in studying the asymptotic properties of
the proposed estimators.

Convergence Assumption 1 The estimates Ŷ1, · · · , ŶN are independent of each other. Further,
there are two sequences of constants αN = o(N− 1

2 ) and νN = o(N− 1
2 ) (note that o(N− 1

2 ) implies
o(1) automatically) such that

sup
1≤s≤N

sup
v∈W(I)

E[D2
2(Ŷs,Ys)|Ys = v] = O(α2

N ) and sup
1≤s≤N

sup
v∈W(I)

V[D2
2(Ŷs,Ys)|Ys = v] = O(ν4N ).

Convergence Assumption 2 ∀ a ∈ A and ∀ 1 ≤ k ≤ K, we have

1. sup
x∈X
∥m̃k

a(x)−ma(x)∥ = oP (1) and sup
x∈X
∥p̂k(a|x)− p(a|x)∥ = oP (1).

2. ~m̂k
a − m̃k

a~ = OP (N
−1 + α2

N + ν2N ).

3. There exist constants c1 and c2 such that 0 < c1 ≤ Nk

N ≤ c2 < 1 for all N .

In Theorem 1, we only present the asymptotic properties of △̂a;DML. For other cases, we defer the
asymptotic studies to the Appendix H.

Theorem 1 Suppose that p(a|x) ∈ C3 on A such that the derivatives (including 0-th order deriva-
tive) are bounded uniformly in the sample space for any x. Further, we assume that E

[
Y−1|A =

a,X
]
∈ C3 on [0, 1] × A and E

[
∥Y−1∥|A = a,X

]
∈ C3 on A which are bounded uniformly in

the sample space. If h → 0, Nh → ∞, and Nh5 → C ∈ [0,∞), then, under the convergence
assumptions, we have

√
Nh

(
△̂a;w −△a

)
=

√
Nh

[
PN{φ(A,X,Y)} −△a

]
+ oP (1), (13)

where φ(A,X,Y) = Kh(A−a){Y−1−ma(X)}
p(a|X) +ma(X) if w = DML and ρmρp = o(N− 1

2 ), ρm =

o(1), ρp = o(1). Additionally,
√
Nh{△̂a;w−△a−h2Ba} converges weakly to a centred Gaussian

process in L2([0, 1]) where Ba =
( ∫

u2K(u)du
)
×

(
E
[
∂ama(X)∂ap(a|X)

p(a|X)

]
+ 1

2E[∂
2
aama(X)]

)
.

We also defer the proofs of Theorem 1 to the Appendix H. Note that if estimators are constructed
from the Dist-DML form, the accuracy in estimating nuisance parameters can be relaxed. We only
require that ρmρp equals o(N− 1

2 ). For example, we can have both ρm and ρp equal o(N− 1
4 ) if

the Dist-DML estimator is used, but we must have ρm and ρp equal o(N− 1
2 ) if either the Dist-DR

estimator or the Dist-IPW estimator is used (see Appendix H).

6 SIMULATION EXPERIMENT

To validate our theoretical results, we conduct a simulated experiment where the treatment variable
A takes continuous values. The outcome Y−1

s for each unit is simulated as

Y−1
s (As) = c+ (1− c)(E[As] + exp(As))×

m
2∑

j=1

exp(X2j−1
s X2j

s )
m
2∑

k=1

exp(X2k−1
s X2k

s )

B−1(αj , βj) + ϵs. (14a)
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Table 1: The experiment results for three estimators on treatment A = 0.00. The reported values are
averages across 100 experiments, with Std. in parentheses. The best results are highlighted in bold.

Q=0.1 Q=0.2 Q=0.3 Q=0.4 Q=0.5 Q=0.6 Q=0.7 Q=0.8 Q=0.9 Error

Ground 0.0112 0.0462 0.1083 0.2271 0.5026 0.7782 0.8970 0.9591 0.9941

Dist-DR 0.0101
(0.0050)

0.0364
(0.0027)

0.1412
(0.0029)

0.3009
(0.0045)

0.4917
(0.0064)

0.6879
(0.0079)

0.8561
(0.0100)

0.9609
(0.0124)

0.9670
(0.0169)

Dist-DR-MAE 0.0011 0.0099 0.0329 0.0738 0.0109 0.0903 0.0409 0.0019 0.0271 0.0321

Dist-IPW 0.0071
(0.0004)

0.0557
(0.0014)

0.1240
(0.0031)

0.2424
(0.0063)

0.4817
(0.0129)

0.7064
(0.0208)

0.8190
(0.0240)
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of 5 simulated units.
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Figure 4: The estimated quantile function when A = 0.00 from
Dist-DR (left), Dist-IPW (middle), and Dist-DML (right) methods.

Here, m is an even number that indicates the number of covariates. B−1(α, β) is the inverse CDF of
Beta distribution with the shapes’ parameters α and β. We choose Beta distributions since they vary
widely given different parameters. The constant c controls the strength of the causal relationship
between As and Y−1

s . ϵs is the noise that follows N (0, 0.05). Then, the treatment As for each unit
is generated by

As ∼ N (γ⊤Xs, log(1 + exp(δ⊤Xs)). (14b)

Since the ground truth outcome and the predicted outcome are functions, we thus discretize them and
compare the mean absolute error (MAE) between ground truth outcome △a and estimated causal
effect map △̂a on 9 quantiles with levels ranging from 0.1 to 0.9. We repeat the experiment 100
times to report the mean and standard deviation of MAE.

Experiment Settings We choose m = 10 such that X1, X2 ∼ N (−2, 1), X3, X4 ∼
N (−1, 1), X5, X6 ∼ N (0, 1), X7, X8 ∼ N (1, 1), and X9, X10 ∼ N (2, 1). Within each unit,
100 observations are generated in accordance with equation 14a using the inverse transform sam-
pling technique. In total, 5,000 units are generated. Figure 3 offers a visual representation of 5
simulated instances, showcasing the variability in outcome functions across different units.

We first estimate the functional regression m̂a(Xs) by regressing Ŷ−1 w.r.t. (A,X). Then, con-
ventional methods might assume a specific form for p(a|X), such as a linear form (Su et al., 2019),
or employ kernel-based techniques (Colangelo & Lee, 2019). We adopt a generative approach to
estimate the density function, drawing inspiration from Grathwohl et al. (2019).

Experiment Results We conduct the experiment across three distinct treatment levels: A =
−0.05, A = 0.00, and A = 0.05. The true outcome distribution is computed using DGP equa-
tion 14a and 14b, with the corresponding results displayed in the first row of Table 1 for A = 0.00.
Subsequently, we list the estimation results (mean, std., and MAE) produced by the Dist-DR, Dist-
IPW, and Dist-DML estimators. We list the results for A = −0.05 and A = 0.05 in Appendix I. We
also plot the ground truth and recovered quantile function in Figure 4.

Overall, all estimators are effective in recovering the true outcome distribution. Nonetheless, the
Dist-DR estimator yields the largest MAE, and the Dist-IPW estimator offers improved estimations
but demonstrates the highest variance. These results are in line with our theoretical analysis. In
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Figure 5: The estimated counterfactual outcome function at quantile 0.1 to 0.9 when working hours
ranging from 0 to 80 hours.

contrast, the Dist-DML estimator can correct most of the bias in the Dist-DR estimator and the
variance in the Dist-IPW estimator, resulting in more accurate and robust estimates.

7 EMPIRICAL APPLICATION

We employ our approach to investigate the causal impact of working hours on physical activity
intensity based on a public dataset named the National Health and Nutrition Examination Survey
(NHANES), which aims to evaluate the health of people in the United States. The dataset includes
demographics, diet, socioeconomics, medical, physiological assessments, and laboratory tests of
participants. The physical activity intensity is recorded for successive 1-minute intervals, which
constitutes a specific distribution for each person, and we measure it by empirical CDF.

After data preprocessing, we obtain 2, 762 participants. We use the Dist-DML estimator to estimate
the causal map, which performs the best in the simulation experiment. We run the experiments 50
times. In each experiment, the estimator is computed 2-fold. Detailed data and statistical descrip-
tions, data preprocessing, and the training details are given in Appendix J.

Figure 5 presents the empirical findings. The lines correspond to the causal map illustrating the
distribution of activity intensity at quantiles 0.1, 0.3, 0.5, 0.7, and 0.9 across a range of working hours
spanning from 0 to 80 hours per week. The shaded bands represent the 50% and 95% confidence
intervals for our estimations.

In general, in the context of regular-level activity intensity (e.g., quantiles lower than 0.7), such as
activities like walking and jogging, our analysis reveals a consistent pattern: an increase in working
hours is associated with a decrease in activity intensity. This phenomenon can be attributed to the
fact that longer working hours tend to displace available time for physical exercise. Conversely,
when we focus on high-intensity activities (i.e., activity intensity beyond the 0.9 quantile), our ob-
servations suggest an opposite relationship. Specifically, an increase in working hours results in
heightened activity intensity. This phenomenon can be attributed to the observation that individuals
exhibiting higher levels of activity intensity typically engage in manual labor occupations. Thus,
an expansion of working hours among such individuals invariably results in an elevation of their
activity intensity levels.

8 CONCLUSION

In this paper, we present a novel approach to conducting causal inference in the Wasserstein space,
departing from the conventional practice in the Euclidean space. By leveraging Rubin’s causal
framework, we introduce three estimators: the Dist-DR, Dist-IPW, and Dist-DML estimators, en-
abling the investigation of the causal impact of continuous treatments on distributional outcomes.
Furthermore, we have conducted a comprehensive study of the statistical properties of these estima-
tors, providing valuable theoretical insights. To validate our theoretical findings, we conduct two
experiments, one simulation experiment and one empirical application. The results of our study
demonstrate the enhanced performance of the Dist-DML estimator. Future research includes i) ex-
tending the investigation to other causal estimators, such as ATTE and CATE; ii) exploring the ap-
plication of this methodology in various domains, including but not limited to healthcare, business,
and social sciences.
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A THE DETAILS OF CAUSAL ASSUMPTIONS

As with the majority of previous studies in causal inference Rubin (1978; 2005), our approach
relies on four fundamental assumptions. They are Stable Unit Treatment Unit Assumption (SUTVA),
Consistency, Ignorability, and Overlap.

Assumption 1 (SUTVA) It contains two parts:

1. The potential outcome of a unit is not influenced by the treatment assignment to other units.

2. For each unit, there are no different forms of treatment levels that lead to different potential
outcomes.

Assumption 2 (Consistency) If A = a, then Y = Y(a).

Assumption 3 (Ignorability) A ⊥⊥ Y(a) | X for any a ∈ A ⊂ R.

Assumption 4 (Overlap)
We assume that there exists c > 0 such that the conditional probability density function (or general-
ized propensity score) p(a|x) satisfies

inf
a∈A

ess inf
x∈X

p(a|x) ≥ c.

Furthermore, we assume that p(a,x) is a three-times differentiable function w.r.t. a with all three
derivatives being bounded uniformly over the sample space.

B DIFFERENCES FROM THE CLASSICAL FRAMEWORK

The proposed causal framework focuses on the case when the outcome of each sample is a distribu-
tion rather than a scalar value. It marks a significant departure from the traditional classical causal
framework. This approach opens up new possibilities for causal analysis, especially when dealing
with complex datasets and scenarios where scalar representations of outcomes may not adequately
capture the underlying heterogeneity in responses.

To further highlight the differences and advantages of our framework, we conduct a comprehensive
comparison with the traditional classical causal framework and summarize the results in Table 2 and
Figure 6, 7, 8. To distinguish the differences when the realization of the response variable is a scalar
or vector, we use Y , Y (a), PY (·), and PY (a)(·) to represent the response, the response whenA = a,
the probability measure of Y , and the probability measure of Y (a), respectively. Specifically, the
main differences can be summarized as three main points.

• Outcome/Potential outcome variable. In the classical framework when A = a, the re-
alization of potential outcome variable Y (a) is a scalar that is sampled from the potential
outcome distribution Pa(·) (Zhou et al., 2022). For example, if Pa(·) ∼ N (0, 1), the cor-
responding sample is one point drawn from N (0, 1). In contrast, within our framework,
the realization of potential outcome variable Y(a) is a distribution, which is sampled from
a high-dimensional potential outcome distribution Pa(·). For instance, a realization of
Y(a) could be a normal distributionN (µ, σ2), where (µ, log σ) is a realization drawn from
N (0, 1). Thus, the corresponding sample is a collection of points drawn from N (µ, σ2).
This comparison is shown in Figure 6.

• Ambient space of outcome variable (Ω). In the classical framework, the realization of the
outcome variable is a scalar value with the ambient space as the Euclidean space R. Since
the realization of the outcome variable is a distribution in our framework, we consider
the ambient space of the outcome variable as W2(I) which is the Wasserstein space of
distributions over I.

• Target quantity. In the classical framework, the essential component is E[Y (a)] which is
a scalar value. Specifically it is the expected value of the response when all units receive
treatment a. The left hand side (l.h.s) of Figure 7 illustrates the difference of E[Y (a)] and
E[Y (ā)]. In contrast, the response of each unit is characterized as the distribution in our
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Table 2: Comparisons between our framework and the framework given in the literature.

Our framework Literature framework

Treatment/Covariates variable A/X A/X
Outcome/Potential outcome variable Y/Y(a) Y/Y (a)

Ambient space of outcome variable (Ω) W2(I) R
Probability measure P(ω), Pa(ω), where ω ∈ Ω P (ω), Pa(ω), where ω ∈ Ω

Metric Wasserstein Euclidean
Realization of outcome variable distribution scalar

Target quantity △a, △aā ∈ W2(I) E[Y (a)], E[Y (a)]− E[Y (ā)] ∈ R

𝑖𝑖th sample 𝑗𝑗th sample
pdf of 𝒴𝒴(𝑎𝑎)pdf of 𝑌𝑌(𝑎𝑎)

𝑗𝑗th sample𝑖𝑖th sample

Observed 
dataset

𝑖𝑖th sample

𝑗𝑗th sample

𝑖𝑖th sample

𝑗𝑗th sample

Classical Causal Framework Proposed Causal Framework

Figure 6: Comparisons between the classical causal framework and our causal framework. In the
classical causal framework, the observed dataset contains a finite number of points. Each point
represents a realization of a sample. In the proposed casual framework, the observed dataset contains
a finite number of collections. Each collection contains finitely many points, and each collection is
a realization of a sample.

framework. The essential component is △a that is the inverse of CDF (also known as the
quantile function). Further,△a represents the quantile function of the barycenter inW2(I)
provided all units receive A = a. The subtraction between △a and △ā (denoted as △aā)
is also called the quantile differences of causal effect map as it represents the difference at
various quantiles. Figure 8 displays the quantities △a, △ā, and △aā visually. By charac-
terizing causal effects as distributions, we gain a more comprehensive understanding of the
entire distribution of potential outcomes.

C PROOF OF PROPOSITION 1

Proof 1 If we can prove that E
[
Y(a)−1

]
= µ−1

a , then we have △a = µ−1
a = E

[
Y(a)−1

]
. Let Q

be the set containing all the left-continuous non-decreasing functions on (0, 1). If we view Q as a
subspace of L2([0, 1]), then it is isometric toW2(I) (e.g., see Panaretos & Zemel (2020)). Indeed,

Average Treatment Effect: 
𝔼 𝒀(𝒂) − 𝔼[𝒀(𝒂ഥ)]

Quantile Treatment Effect: 
𝑸(𝜶,𝑨 = 𝒂ഥ) − 𝑸(𝜶,𝑨 = 𝒂)

𝑄(𝛼, 𝐴 = 𝑎ത)

𝑄(𝛼, 𝐴 = 𝑎)

𝔼 𝑌(𝑎ത)

𝔼[𝑌(𝑎)]

𝑝(ത)(ȉ)

𝑗୲୦ sample𝑖୲୦ sample 𝑗୲୦ sample𝑖୲୦ sample

𝑖୲୦ sample 𝑗୲୦ sample𝑗୲୦ sample

𝛼

𝛼𝑖୲୦ sample

𝑝()(ȉ)
𝑝()(ȉ)

𝑝(ത)(ȉ)

Figure 7: ATE and QTE in the literature.
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𝛼
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𝛼

Figure 8: Causal Effect Map in our paper.
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µa = argmin
ν∈W2(I)

E
[
D2(Y(a), ν)2

] •
= argmin

ν∈Q
E
[ ∫ 1

0
|Y(a)−1(t)− ν−1(t)|2dt

]
. Here, •

= follows from

Theorem 2.18 of Villani (2021). Since we can interchange the integral sign
∫

and E, we notice
that E

[ ∫ 1

0
|Y(a)−1(t) − ν−1(t)|2dt

]
=

∫ 1

0
E
[
|Y(a)−1(t) − ν−1(t)|2

]
dt =

∫ 1

0
(E

[
Y(a)−1(t)

]
−

ν−1(t))2dt+
∫ 1

0
E[(E

[
Y(a)−1(t)

]
−Y(a)−1(t))2]dt, and E

[ ∫ 1

0
|Y(a)−1(t)− ν−1(t)|2dt

]
attains

its minimum when ν−1(t) = E
[
Y(a)−1(t)

]
. We can therefore conclude that µa =

(
E
[
Y(a)−1

])−1
.

D PROOF OF PROPOSITION 2

Heuristically, the Delta Dirac function δ(x) is defined such that δ(x) =

{
∞ x = 0

0 x ̸= 0
and∫

R δ(x)dx = 1. Furthermore, for any continuous function f defined on Ω such that 0 ∈ Ω, we
have

∫
Ω
f(x)δ(x)dx = f(0). Finally, we denote δ0(·) = δ(·) and δa(x) = δ(x− a).

Proof 2 Indeed, we have

E
[
δa(A)

p(a|X)
Y−1

]
= E

[
1

p(a|X)
E[δa(A)Y−1|X]

]
=E

[
1

p(a|X)

∫
ā∈A

E[δa(A)Y−1|A = ā,X]p(ā|X)dā

]
=E

[
1

p(a|X)

∫
ā∈A

δa(ā)E[Y−1|A = ā,X]p(ā|X)dā

]
= E

[
1

p(a|X)
E[Y−1|A = a,X]p(a|X)

]
=E[E[Y−1|A = a,X]]

⋆
= E[E[Y(a)−1|A = a,X]]

∗
= E[E[Y(a)−1|X]] = E[Y(a)−1] = △a.

Again, ⋆ is due to Causal Assumption (2) and ∗ is due to Causal Assumption (3).

In Table 3, we present some commonly used second-order kernels found in the literature.

Table 3: Some common kernel functions of order 2 that exist in the literature

Kernel Function K(u) Support

Uniform K(u) = 1
2 |u| ≤ 1

Triangular K(u) = (1− |u|) |u| ≤ 1

Epanechnikov K(u) = 3
4 (1− u

2) |u| ≤ 1

Quartic K(u) = 15
16 (1− u

2)2 |u| ≤ 1

Triweight K(u) = 35
32 (1− u

2)3 |u| ≤ 1

Tricube K(u) = 70
81 (1− |u|

3)3 |u| ≤ 1

Gaussian K(u) = 1√
2π
e−

u2

2 u ∈ R

Cosine K(u) = π
4 cos

(
π
2u

)
|u| ≤ 1

Logistic K(u) = 1
eu+2+e−u u ∈ R

Sigmoid K(u) = 2
π

1
eu+e−u u ∈ R

E PROOF OF PROPOSITION 3

Proof 3 We have proven that E[ma(X)] = △a in equation 3 under given Assumptions. Ad-

ditionally, we have proven that E
[

δa(A)
p(a|X)Y

−1

]
in Proposition 2. It suffices to prove that
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E
[

δa(A)
p(a|X)ma(X)

]
= △a. Indeed, we have

E
[
δa(A)

p(a|X)
ma(X)

]
= E

[
ma(X)

p(a|X)
E[δa(A)|X]

]
=E

[
ma(X)

p(a|X)

∫
ā∈A

δa(ā)p(ā|X)dā

]
= E

[
ma(X)

p(a|X)
p(a|X)

]
= E[ma(X)] = △a.

The proof is completed.

F PROOF OF DOUBLY ROBUST PROPERTY

Proof 4 We need to show that, if either ma(X) or P{A = a|X} is misspecified as m̄a(X) or
P̄{A = a|X} accordingly, then

E
[
m̄a(X) +

δ(A− a)
P{A = a|X}

(Y−1 − m̄a(X))

]
= △a and (15a)

E
[
ma(X) +

δ(A− a)
P̄{A = a|X}

(Y−1 −ma(X))

]
= △a. (15b)

Indeed, equation 15a follows from equation 5 and the following derivations:

E
[

δ(A− a)

P{A = a|X}m̄a(X)

]
= E

[
m̄a(X)

P{A = a|X}E[δ(A− a)|X]

]
= E

[
m̄a(X)

]
.

On the other hand, equation 15a follows from equation 3 and the following derivations:

E
[

δ(A− a)

P̄{A = a|X}
[Y−1 −ma(X)]

]
=

∑
ā∈A

E
[
E[δ(A− a)[Y−1 −ma(X)]|A = ā,X]P{A = ā|X}

P̄{A = a|X}

]

=E
[
(E[Y−1|A = a,X]−ma(X))P{A = a|X}

P̄{A = a|X}

]
= 0.

G ALGORITHM FOR CROSS-FITTED ESTIMATORS

Algorithm 1 Computations of △̂a;w, where w ∈ {DR, IPW,DML}

Require: Realizations of (As,Xs,Ys)Ns=1. Determine the kernel function K(·).
1: Estimate Ŷ−1 for each sample.
2: Split (As,Xs, Ŷs)Ns=1 to K disjoint samples Dk where k ∈ {1, · · · ,K} and formulate D−k.

The size of Dk is Nk.
3: for k ← 1 to K do
4: Estimate p̂k(a|·) based on D−k.
5: Estimate m̂a(·) based on D−k.

6: Compute △̂
k

a;DR, △̂
k

a;IPW , and △̂
k

a;DML according to equation 9, 10, and 11.
7: end for
8: Compute △̂a;w according to equation 12.

H PROOF OF THEOREM 1

Theorem 1 only gives the asymptotic property of △̂a;DML. Indeed, we can also study the asymp-
totic properties of △̂a;DR and △̂a;IPW . Before presenting the proofs of Theorem 1, let’s give the
asymptotic properties of △̂a;w where w ∈ {DR, IPW,DML}.
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Theorem 2 Suppose that p(a|x) ∈ C3 on A such that the derivatives (including 0 order derivative)
is bounded uniformly in the sample space for any x. Further, we assume that E

[
Y−1|A = a,X

]
∈

C3 on [0, 1] × A and E
[
∥Y−1∥|A = a,X

]
∈ C3 on A which are bounded uniformly in the sample

spaces. Then we have
√
N
(
△̂a;DR −△a

)
=

√
N [(PN − E)ma(X)] + oP (1) (16)

when ρm(N− 1
2 ). Further, for any w ∈ {IPW,DML}, if h → 0, Nh → ∞, and Nh5 → C ∈

[0,∞), then, under the convergence assumptions, we have

√
Nh

(
△̂a;w −△a

)
=

√
Nh

[
PN{φ(A,X,Y)} −△a

]
+ oP (1), (17)

1. where φ(A,X,Y) = Kh(A=a)Y−1

p(a|X) if w = IPW and ρp = o(N− 1
2 );

2. where φ(A,X,Y) = Kh(A−a){Y−1−ma(X)}
p(a|X) + ma(X) if w = DML and ρmρp =

o(N− 1
2 ), ρm = o(1), ρp = o(1).

Additionally, √
Nh{△̂a;w −△a − h2Ba} (18a)

converges weakly to a centred Gaussian process in L2([0, 1]) where

Ba =
( ∫

u2K(u)du
)
×

1
2E

[
ma(X)∂2

aap(a|X)
p(a|X)

]
+ E

[
∂ama(X)∂ap(a|X)

p(a|X)

]
+ 1

2E[∂
2
aama(X)] if w = IPW

E
[
∂ama(X)∂ap(a|X)

p(a|X)

]
+ 1

2E[∂
2
aama(X)] if w = DML.

(18b)

In lieu of proving Theorem 1, we prove Theorem 2. Nevertheless, the proof of Theorem 2 requires
two Lemmas.

Lemma 1 For G1, G2 ∈ W2(I), we have ∥G1 −G2∥ = D2(G1, G2).

Lemma 2 Under Convergence Assumption 1, we have 1
N

N∑
s=1
∥Ŷ−1

s − Y−1
s ∥2 = OP (α

2
N + ν2N ).

Proof 5 (Proof of Theorem 1) In the following proof, we first show that the case when the estimator
is △̂a;DR. Generally, we assume that K = 2. The general case is similar. For simplicity, we define

four operators PN , PNk
, EN , and ENk

such that given a random quantity O, PNO = 1
N

N∑
s=1
Os,

PNk
= 1

Nk

∑
s∈Dk

Os, EN = 1
N

N∑
s=1

E[Os], and ENk
= 1

Nk

∑
s∈Dk

E[Os]. Given the distributions λ.

Define Lλ = λ−1. Let Zs = LYs, and if the sth subject belongs to the k partition, then Ẑs = LŶs
and Rs = Ẑs − Zs. Define Dk

a(·) = m̂k
a(·) − m̃k

a(·). Under the causal assumptions, we can show

that △a = ψa = E[ma(X)]. Denote the corresponding sampled version using Dk as △̂
k

a;DR =

PNk
[m̂k

a(X)]. As a result, we have the cross-fitting estimator △̂a;DR such that

△̂a;DR =

2∑
k=1

Nk

N
△̂

k

a;DR =
1

N
(N1△̂

D;1

a;DR +N2△̂
2

a;DR).

Next, we consider the difference
√
N(△̂a;DR −△a). Indeed, we have

√
N

[
1

N
(N1△̂

1

a;DR +N2△̂
2

a;DR)−△a

]
=

√
N

[
1

N

∑
k=1,2

NkAk − ψa

]
,

16
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whereAk = PNk
[(m̃k

a(X) +Dk
a(X))]. We can then decompose

√
N

[
1
N

∑
k=1,2

NkAk −ψa

]
into the

sum of five quantities as follows:
√
N

N

∑
k=1,2

Nk(I + II + III + IV + V)

where
I = (PNk

− ENk
)[m̃k

a(X)−ma(X)]

II = (PNk
− ENk

)[ma(X)] = (PNk
− ENk

)φ(A,X,Y)
III = ENk

[(m̃k
a(X)−ma(X))]

IV = PNk
{Dk

a(X)}.
The proof follows from the Slutsky’s Lemma after we get the bounds of I, III, and IV.

Boundness of I: Let
H(A,X, Z) = m̃k

a(X)−ma(X).

Hence, we have E[∥I∥2] = E[∥(PNk
− ENk

)H(A,X, Z)∥2]. We now simplify the quantity
E[∥(PNk

− ENk
)H(A,X, Z)∥2]. Indeed, we have

E[∥(PNk − ENk )H(A,X, Z)∥2] = 1

N2
k

E[∥
∑
s∈Dk

{H(As,Xs, Zs)− E[H(As,Xs, Zs)]}∥2]

=
1

N2
k

∑
s∈Dk

E[∥H(As,Xs, Zs)− E[H(As,Xs, Zs)]∥2] +
1

N2
k

∑
s,s̄∈Dk
s ̸=s̄

Css̄ := I1 + I2,

where Css̄ = E[⟨Hs − E[Hs], Hs̄ − E[Hs̄]⟩] and Hs = H(As,Xs, Zs). Consider the term I1. We
have

I1 ≲
1

N2
k

∑
s∈Dk

E[∥H(As,Xs, Zs)∥2].

We can bound E[∥H(As,Xs, Zs)∥2]. Indeed, we have

E[∥H(As,Xs, Zs)∥2] = E[∥m̃k
a(X)−ma(X)∥2] ≤ ρ2m.

As a result, we have
I1 ≲

1

Nk
ρ2m ≲

1

N
ρ2m.

We now consider the quantity I2. Note that

E[⟨Hs − E[Hs], Hs̄ − E[Hs̄]⟩] = E[⟨Hs, Hs̄⟩]− ⟨E[Hs],E[Hs̄]⟩ ≲ ∥E[Hs]∥ × ∥E[Hs̄]∥.

Since
∥E[Hs]∥ ≲ E[∥ma(X)− m̃k

a(X)∥] ≤ ρm.
Hence, we have Css̄ ≲ ρ2m and I2 ≲

(
1− 1

Nk

)
ρ2m. As a result, we can show that

E[∥I∥2] = O(N−1ρ2m + ρ2m).

Thus, we have I = OP (N
− 1

2 ρm + ρm).

Boundness of III: For simplicity, we denote

A = ENk [(m̃
k
a(X)−ma(X))].

We consider the quantity E[∥A∥]. Since A is an expectation already, we have E[∥A∥] = ∥A∥.
Further, we can simplify ∥A∥ as follows:

∥A∥ = ∥E[(m̃k
a(X)−ma(X))]∥ ≤ E[∥(m̃k

a(X)−ma(X))∥] ≤ ρm.

Boundness of IV: Let A = PNk
{Dk

a(X)}. Consider ∥A∥2. We have

∥A∥2 = ∥PNk{D
k
a(X)}∥2 =

1

N2
k

∑
s∈Dk
s ̸=s̄

∥Dk
a(Xs)∥2

︸ ︷︷ ︸
IV1

+
1

N2
k

∑
s,s̄∈Dk
s̸=s̄

⟨Di,k(Xs), D
k
a(Xs̄)⟩

︸ ︷︷ ︸
IV2

.
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Consider IV1 first. Using Assumption 1, we see that IV1 ≤ C
N2

k

∑
s∈Dk

∥Dk
a(Xs)∥2 for some constant

C. Note that, for any δ > 0, we have

P
{

1

Nk

∑
s∈Dk

∥Dk
a(Xs)∥2 ≥ ~m̂k

a − m̃k
a~

2

δ

}
≤
δE

[
1

Nk

∑
s∈Dk

∥Dk
a(Xs)∥2

]
~m̂k

a − m̃k
a~2

=
δE[∥Dk

a(X)∥2]
~m̂k

a − m̃k
a~2

= δ.

Indeed, the inequality follows from Markov inequality. The last equality follows from the Definition
of ~ · ~2. According to the definition, we have E[∥Dk

a(X)∥2] = ~m̂k
a − m̃k

a~2. It means that
1
Nk

∑
s∈Dk

∥Dk
a(Xs)∥2 = OP

(
~m̂k

a−m̃k
a~2

)
. Hence, we note that IV1 = 1

Nk
× 1

Nk

∑
s∈Dk

∥Dk
a(Xs)∥2 =

N
Nk
× 1

N ×OP

(
~m̂k

a−m̃k
a~2

)
. Using Convergence Assumptions 2 and 3, we have IV1 = OP (N

−2+

N−1α2
N +N−1ν2N ). Next, we consider IV2. Let

A = (E[∥Dk
a(Xs)∥4])

1
4 (E[∥Dk

a(Xs̄)∥4])
1
4 .

Note that, for any δ > 0, we have

P
{

IV2 ≥ A
δ

}
≤

δ 1
N2

k

∑
s,s̄∈Dk
s ̸=s̄

E
[
⟨Dk

a(Xs), D
k
a(Xs̄)⟩

]
A

⋆

≤

δ 1
N2

k

∑
s,s̄∈Dk
s̸=s̄

A

A =
δNk(Nk − 1)

N2
k

= δ

(
1− 1

Nk

)
≤ δ.

Here,
⋆
≤ is due to the upper bound of the quantity E

[
⟨Dk

a(Xs), D
k
a(Xs̄)⟩

]
. Indeed, using the fact

that the unit s and the unit s̄ are independent of each other, we have

E[⟨Dk
a(Xs), D

k
a(Xs̄)⟩] ≲ (E[⟨Dk

a(Xs), D
k
a(Xs̄)⟩2])

1
2 (E[∥Dk

a(Xs)∥2∥Dk
a(Xs̄)∥2])

1
2

≤ (E[∥Dk
a(Xs)∥4])

1
4 (E[∥Dk

a(Xs̄)∥4])
1
4 = (E[∥Dk

a(X)∥4])
1
2 = OP

(
~m̂k

a − m̃k
a~

2).
Hence, we can conclude that IV2 = OP (N

−1 + α2
N + ν2). Consequently, we obtain that ∥IV∥2 =

OP (N
−2 + N−1α2

N + N−1ν2N ), implying that IV = OP (N
−1 + N− 1

2αN + N− 1
2 νN ). Finally,√

N
N

∑
k=1,2

NkII converges weakly to a centred Gaussian process due to the Central Limit Theorem.

The proof is completed.

Next, we prove the case when the estimators are chosen as △̂a;w, where w ∈ {IPW,DML}. We
only present the proofs for the estimator △̂a;DML. To prove the results for the estimator △̂a;IPW ,
we only need to replace the terms ma(X), m̂k

a(X), and Dk
a in the following proof with 0.

Again, we consider the case when K = 2 for simplicity; the general case can be proven in a
similar fashion. Let Z = LY and Ẑ = LŶ , where LY = Y−1. Write Ri = Ẑi − Zi and
Dk

a(x) = m̂k
a(x)− m̃k

a(x). Define

ψa = E
[
Kh(A− a)Z
p(a|X)

−
{Kh(A− a)

p(a|X)
− 1

}
ma(X)

]
, (19)

ψ̂a,k = PNk

[
Kh(A− a)Ẑ
p̂k(a|X)

−
{Kh(A− a)

p̂k(a|X)
− 1

}
m̂k

a(X)

]
. (20)

Hence, we have
△̂a;DML =

1

N
(N1ψ̂a,1 +N2ψ̂a,2).

Moreover, since h → 0, W.L.O.G., we assume that h < 1. Hence, we have 0 <
√
h < 1 and

0 <
√
Nh
N <

√
N
N = 1√

N
. Note that from Eqn. equation 19, we have

ψa = E
[
Kh(A− a)(Z −ma(X))

p(a|X)

]
+△a.

As a result, we have
√
Nh

(
△̂a;DML −△a

)
=
√
Nh

( 1

N
(N1ψ̂a,1 +N2ψ̂a,2)−△a

)
=
√
Nh

( 1

N
(N1ψ̂a,1 +N2ψ̂a,2)− ψa

)
+
√
NhE

[
Kh(A− a)(Z −ma(X))

p(a|X)

]
.

18
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We can then decompose
√
Nh

(
1
N (N1ψ̂a,1 +N2ψ̂a,2)− ψa

)
into the sum of five terms as follows:

√
Nh

( 1

N
(N1ψ̂a,1 +N2ψ̂a,2)− ψa

)
=
√
N

∑
k=1,2

Nk

N
I +

√
N

∑
k=1,2

Nk

N
II +

√
N

∑
k=1,2

Nk

N
III +

√
N

∑
k=1,2

Nk

N
IV +

√
N

∑
k=1,2

Nk

N
V,

where

I =
√
h(PNk − ENk )

[
Kh(A− a)(Z − m̃k

a(X))

p̂k(a|X)
+ m̃k

a(X)− Kh(A− a)(Z −ma(X))

p(a|X)
−ma(X)

]
II =

√
h(PNk − ENk )

[
Kh(A− a)(Z −ma(X))

p(a|X)
+ma(X)}

]
=

√
h(PNk − ENk )φ(A,X,Y)

III =
√
hENk

[
Kh(A− a)(Z −ma(X))

(p(a|X)− p̂k(a|X))

p̂k(a|X)p(a|X)

]
+

√
hENk

[
{m̃k

a(X)−ma(X)}{p̂k(a|X)−Kh(A− a)}
p̂k(a|X)

]
IV =

√
hPNk

[{
1− Kh(A− a)

p̂k(a|X)

}
{Dk

a(X)}
]
, V =

√
hPNk

[
Kh(A− a)R

p̂k(a|X)

]
.

Define

H1(A,X, Z) =
Kh(A− a)Z{p(a|X)− p̂k(a|X)}

p̂k(a|X)p(a|X)

H2(A,X, Z) =
Kh(A− a){p̂k(a|X)ma(X)− p(a|X)m̃k

a(X)}
p̂k(a|X)p(a|X)

H3(A,X, Z) = m̃a,k(X)−ma(X)

H(A,X, Z) = H1(A,X, Z) +H2(A,X, Z) +H3(A,X, Z).

It suffices to show that I, III, IV, and V are oP (1).

Consider term I. Note that

Kh(A− a)(Z − m̃k
a(X))

p̂k(a|X)
+ m̃k

a(X)− Kh(A− a)(Z −ma(X))

p(a|X)
−ma(X)

=H1(A,X, Z) +H2(A,X, Z) +H3(A,X, Z) = H(A,X, Z).

We then compute E[∥I∥2] = E[∥
√
h(PNk

− E)H∥2]. Indeed, we can decompose it into the sum of
two terms as follows:

E[∥
√
h(PNk − E)H∥2] = h

N2
k

E
[∥∥∑

i∈Dk

{H(Ai,Xi, Zi)− E
[
H(Ai,Xi, Zi)

]
}
∥∥2

]

=
h

N2
k

∑
i∈Dk

E
[
∥H(Ai,Xi, Zi)− E

[
H(Ai,Xi, Zi)

]
∥2
]

︸ ︷︷ ︸
I1

+
h

N2
k

∑
i,j∈Dk
i ̸=j

E
[
⟨H(Ai,Xi, Zi)− E

[
H(Ai,Xi, Zi)

]
, H(Aj ,Xj , Zj)− E

[
H(Aj ,Xj , Zj)

]
⟩
]

︸ ︷︷ ︸
I2

We can bound I1. Since I1 = H − E[H] = H1 − E[H1] +H2 − E[H2] +H3 − E[H3], we have

I1 ≲
h

N2
k

3∑
p=1

∑
i∈Dk

E
[ ∥∥Hp(Ai,Xi, Zi)− E

[
Hp(Ai,Xi, Zi)

]∥∥2
]

≲
h

N2
k

∑
i∈Dk

E
[
∥H1(Ai,Xi, Zi)∥2

]
︸ ︷︷ ︸

I1−1

+
h

N2
k

∑
i∈Dk

E
[
∥H2(Ai,Xi, Zi)∥2

]
︸ ︷︷ ︸

I1−2

+
h

N2
k

∑
i∈Dk

E
[
∥H3(Ai,Xi, Zi)∥2

]
︸ ︷︷ ︸

I1−3

.
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Note that I1−1 = h
Nk

E
[
∥H1(A,X, Z)∥2

]
. We turn to consider hE

[
∥H1(A,X,Z)∥2

]
. We thus have

hE[∥H1(A,X, Z)∥2] = hE
[
Kh(A− a)2

∥∥∥∥Z{p(a|X)− p̂k(a|X)}
p̂k(a|X)p(a|X)

∥∥∥∥2 ]
≤ chE[

∣∣∣p(a|x)− p̂k(a|X)
∣∣∣2 E[Kh(A− a)2 ∥Z∥2 |X]].

Although Z = Y−1 is a function, ∥Z∥ is a scalar. Hence, E
[
∥Z∥2 | A = a,X

]
can be treated as a

function of a. Hence, we can express

E
[
∥Z∥2 | A = a+ uh,X

]
=E

[
∥Z∥2 | A = a,X

]
+ ∂aE

[
∥Z∥2 | A = a,X

]
uh+

∂2
aaE

[
∥Z∥2 | A = a,X

]
u2h2

2
+OP (h

3).

Further, since

p(a+ uh|X) = p(a|x) + ∂ap(a|X)uh+
∂2
aap(a|X)u2h2

2
+O(h3),

we have

E
[
Kh(A− a)2 ∥Z∥2 |X

]
=

∫
E
[
Kh(A− a)2 ∥Z∥2 |A = s,X

]
p(s|X)ds

=
1

h

∫
E
[
K(u)2 ∥Z∥2 | A = a+ uh,X

]
p(a+ uh|X)du

=
1

h

(∫
K(u)2du

)
E
[
∥Z∥2 | A = a,X

]
p(a|X)

+
h2

h

(∫
K(u)2u2 du

)
E
[
∥Z∥2 | A = a,X

]∂2
aap(a|X)

2

+
h2

h

(∫
K(u)2u2du

)
∂aE

[
∥Z∥2 | A = a,X

]
∂ap(a|X)

+
h2

h

(∫
K(u)2u2 du

)
∂2
aaE

[
∥Z∥2 | A = a,X

]
2

p(a|X) +OP (h
2).

Hence, we have

hE
[
∥H1(A,X, Z)∥2

]
≲ hE

[ ∣∣∣p(a|X)− p̂k(a|X)
∣∣∣2 E[Kh(A− a)2 ∥Z∥2 |X

]]
=

(∫
K(u)2du

)
E
[ ∣∣∣p(a|X)− p̂k(a|X)

∣∣∣2 E[ ∥Z∥2 |A = a,X
]
p(a|X)

]
︸ ︷︷ ︸

I1−1a

+ h2

(∫
K(u)2u2 du

)
E
[ ∣∣∣p(a|x)− p̂k(a|X)

∣∣∣2 E[ ∥Z∥2 |A = a,X
]∂2

aap(a|X)

2

]
︸ ︷︷ ︸

I1−1b

+ h2

(∫
K(u)2u2du

)
E
[ ∣∣∣p(a|x)− p̂k(a|X)

∣∣∣2 ∂aE[ ∥Z∥2 |A = a,X
]
∂ap(a|X)

]
︸ ︷︷ ︸

I1−1c

+ h2

(∫
K(u)2u2 du

)
E
[ ∣∣∣p(a|x)− p̂k(a|X)

∣∣∣2 ∂2
aaE

[
∥Z∥2 |A = a,X

]
2

p(a|X)

]
︸ ︷︷ ︸

I1−1d

+O(h3).

We find the bounds of I1−1a, I1−1b, I1−1c, and I1−1d. Note that, according to the given conditions,
we have

I1−1a, I1−1b, I1−1c, I1−1d ≲E[|p(a|X)− p̂k(a|X)|2] ≤ (E[|p(a|X)− p̂k(a|X)|4]) 1
2 ≤ ρ2p.

As a result, we conclude that

I1−1 ≲E[|p(a|X)− p̂k(a|X)|2] +O(h3) ≤ ρ2p +O(h3).
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We therefore have

I1−1 = O(
1

Nk
ρ2p +

h2

Nk
ρ2p +O(h3)).

To bound I1−2 = h
Nk

E
[
∥H2(A,X, Z)∥2

]
, we consider hE

[
∥H2(A,X, Z)∥2

]
. Indeed, we have

hE
[
∥H2(A,X, Z)∥2

]
= hE

[
Kh(A− a)2

∥∥∥∥ p̂k(a|X)ma(X)− p(a|X)m̃k
a(X)

p̂k(a|X)p(a|X)

∥∥∥∥2 ]
≤chE

[ ∥∥∥p̂k(a|X)ma(X)− p(a|X)ma(X)
∥∥∥2

E[Kh(A− a)2|X]
]

+ chE
[ ∥∥∥p(a|X)ma(X)− p(a|X)m̃k

a(X)
∥∥∥2

E[Kh(A− a)2|X]
]
.

We simplify the quantity E[Kh(A− a)2|X]. Standard derivations give

E
[
Kh(A− a)2|X

]
=

(∫
K(u)2du

)
p(a|X)

h
+

(∫
u2K(u)2du

)
∂2
aap(a|X)h

2
+OP (h

2).

As a result, we have

hE
[
∥H2(A,X, Z)∥2

]
≤ cE

[ ∥∥∥p̂k(a|X)ma(X)− p(a|X)ma(X)
∥∥∥2

(∫
K(u)2du

)
p(a|X)

]

+ ch2E
[ ∥∥∥p̂k(a|X)ma(X)− p(a|X)ma(X)

∥∥∥2

(∫
u2K(u)2du

)
∂2
aap(a|X)

2

]
+ cE

[ ∥∥∥p(a|X)ma(X)− p(a|X)m̃k
a(X)

∥∥∥2
(∫

K(u)2du

)
p(a|X)

]

+ ch2E
[ ∥∥∥p(a|x)ma(X)− p(a|X)m̃k

a(X)
∥∥∥2

(∫
u2K(u)2du

)
∂2
aap(a|X)

2

]
+O(h3)

Therefore, we have

I1−2 ≲
1 + h2

Nk
E
[
|p̂k(a|X)− p(a|X)|2

]
+

1 + h2

Nk
E[∥ma(X)− m̃k

a(X)∥2] +O(h3)

≤1 + h2

Nk
(E

[
|p̂k(a|X)− p(a|X)|4

]
)
1
2 +

1 + h2

Nk
(E[∥ma(X)− m̃k

a(X)∥4])
1
2 +O(h3).

Thus, we have

I1−2 = O(
1 + h2

Nk
ρ2p +

1 + h2

Nk
ρ2m + h3).

To bound I1−3, since hE
[
∥H3(A,X, Z)∥2

]
≲ hE

[
∥m̃k

a(X)−ma(X)∥2
]
, we have

I1−3 ≲
h

Nk
E
[ ∥∥∥m̃k

a(X)−ma(X)
∥∥∥2 ]

≤ h

Nk
ρ2m.

Thus, we have

I1−3 = O(
h

Nk
ρ2m).

Next, we bound I2. Define

G(A,X, Z) :=
Kh(A− a){Z − m̃k

a(X)}
p̂k(a|X)

+ m̃k
a(X)−ma(X)

F (A,X, Z) := −Kh(A− a){Z −ma(X)}
p(a|X)

.

From the definitions of G(A,X, Z) and F (A,X, Z), we have H(A,X, Z) = G(A,X, Z) +
F (A,X, Z). As a result, we have∣∣E⟨H(Ai,Xi, Zi)− E

[
H(Ai,Xi, Zi)

]
, H(Aj ,Xj , Zj)− E

[
H(Aj ,Xj , Zj)

]
⟩
∣∣

=
∣∣E⟨G(Ai,Xi, Zi), G(Aj ,Xj , Zj)⟩ − ⟨E

[
G(Ai,Xi, Zi)

]
,E

[
G(Aj ,Xj , Zj)

]
⟩
∣∣

+
∣∣E⟨G(Ai,Xi, Zi), F (Aj ,Xj , Zj)⟩ − ⟨E

[
G(Ai,Xi, Zi)

]
,E

[
F (Aj ,Xj , Zj)

]
⟩
∣∣

+
∣∣E⟨G(Aj ,Xj , Zj), F (Ai, Xi, Zi)⟩ − ⟨E

[
G(Aj ,Xj , Zj)

]
,E

[
F (Ai,Xi, Zi)

]
⟩
∣∣

+
∣∣E⟨F (Ai,Xi, Zi), F (Aj ,Xj , Zj)⟩ − ⟨E

[
F (Ai,Xi, Zi)

]
,E

[
F (Aj ,Xj , Zj)

]
⟩
∣∣ .
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Consider
∣∣E⟨G(Ai,Xi, Zi), G(Aj ,Xj , Zj)⟩ − ⟨E

[
G(Ai,Xi, Zi)

]
,E

[
G(Aj ,Xj , Zj)

]
⟩
∣∣. We have∣∣E⟨G(Ai,Xi, Zi), G(Aj ,Xj , Zj)⟩ − ⟨E

[
G(Ai,Xi, Zi)

]
,E

[
G(Aj ,Xj , Zj)

]
⟩
∣∣

≤|E⟨G(Ai,Xi, Zi), G(Aj ,Xj , Zj)⟩|+ |⟨E
[
G(Ai,Xi, Zi)

]
,E

[
G(Aj ,Xj , Zj)

]
⟩|

⋄
≤∥E

[
G(Ai,Xi, Zi)

]
∥∥E

[
G(Aj ,Xj , Zj)

]
∥+ ∥E

[
G(Ai,Xi, Zi)

]
∥∥E

[
G(Aj ,Xj , Zj)

]
∥

=2∥E
[
G(A,X, Z)

]
∥2.

⋄
= holds due to the fact that (Ai,Xi, Zi) and (Aj ,Xj , Zj) are independent of each other and the
Cauchy Schwartz inequality. Similarly, we have∣∣E⟨G(Ai,Xi, Zi), F (Aj ,Xj , Zj)⟩ − ⟨E

[
G(Ai,Xi, Zi)

]
,E

[
F (Aj ,Xj , Zj)

]
⟩
∣∣

≤2∥E
[
G(A,X, Z)

]
∥∥E

[
F (A,X, Z)

]
∥,∣∣E⟨F (Ai,Xi, Zi), G(Aj ,Xj , Zj)⟩ − ⟨E

[
F (Ai,Xi, Zi)

]
,E

[
G(Aj ,Xj , Zj)

]
⟩
∣∣

≤2∥E
[
F (A,X, Z)

]
∥∥E

[
G(A,X, Z)

]
∥,

and ∣∣E⟨F (Ai,Xi, Zi), F (Aj ,Xj , Zj)⟩ − ⟨E
[
F (Ai,Xi, Zi)

]
,E

[
F (Aj ,Xj , Zj)

]
⟩
∣∣

≤2∥E
[
F (A,X, Z)

]
∥2.

Thus, we have∣∣E⟨H(Ai,Xi, Zi)− E
[
H(Ai,Xi, Zi)

]
, H(Aj ,Xj , Zj)− E

[
H(Aj ,Xj , Zj)

]
⟩
∣∣

≤2∥E
[
G(A,X, Z)

]
∥2 + 4∥E

[
F (A,X, Z)

]
∥∥E

[
G(A,X, Z)

]
∥+ 2∥E

[
F (A,X, Z)

]
∥2

=2
(
∥E

[
G(A,X, Z)

]
∥+ ∥E

[
F (A,X, Z)

]
∥
)2

≲ ∥E
[
G(A,X, Z)

]
∥2 + ∥E

[
F (A,X, Z)

]
∥2.

Note that ∥E[G(A,X, Z)]∥ = ∥E[E[G(A,X, Z)|X]]∥ ≤ E[∥E[G(A,X, Z)|X]∥], we have

∥E[G(A,X, Z)]∥2 ≤ (E[∥E[G(A,X, Z)|X]∥])2 ≤ E[∥E[G(A,X, Z)|X]∥2].

Thus, it suffices to consider ∥E
[
G(A,X, Z)|X

]
∥ and ∥E

[
F (A,X, Z)|X

]
∥. Now, from the definition

of G(A,X, Z), we have

E
[
G(A,X, Z)|X

]
=

(ma(X)− m̃k
a(X))(p(a|X)− p̂k(a|X))

p̂k(a|X)

+
(ma(X)− m̃k

a(X))(
∫
u2K(u)du)∂2

aap(a|X)h2

2p̂k(a|X)

+
∂aE[Z|A = a,X](

∫
u2K(u)du)∂ap(a|X)h2

p̂k(a|X)

+
p(a|x)(

∫
u2K(u)du)∂2

aaE[Z|A = a,X]h2

2p̂k(a|X)
+OP (h

3).

Thus, we have

∥E
[
G(A,X, Z)|X

]
∥

≲∥(ma(X)− m̃k
a(X))∥|(p(a|X)− p̂k(a|X))|+ ∥ma(X)− m̃k

a(X)∥|∂2
aap(a|X)|h2

+ ∥∂aE[Z|A = a,X]∥|∂ap(a|X)|h2 + |p(a|X)|∥∂2
aaE[Z|A = a,X]∥h2 +OP (h

3).

Similarly, we have

E
[
F (A,X, Z)|X

]
= −

∂aE[Z|A = a,X](
∫
u2K(u)du)∂ap(a|X)h2

p(a|X)

−
p(a|X)(

∫
u2K(u)du)∂2

aaE[Z|A = a,X]h2

2p(a|X)
+OP (h

3)

and

∥E
[
F (A,X, Z)|X

]
∥ ≲ ∥∂aE[Z|A = a,X]∥|∂ap(a|X)|h2 + |p(a|X)|∥∂2

aaE[Z|A = a,X]∥h2 +OP (h
3).

Then, we compute E[∥E
[
G(A,X, Z)|X

]
∥2] and E[∥E

[
F (A,X, Z)|X

]
∥2]. Note that

∥E
[
G(A,X, Z)|X

]
∥2 ≲ ∥(ma(X)− m̃k

a(X))∥2|(p(a|X)− p̂k(a|X))|2 +OP (h
4)

⇒ E[∥E
[
G(A,X, Z)|X

]
∥2] ≲

(
E[∥(mλ

a(X)− m̃k
a(X))∥4]

) 1
2
(
E[|p(a|X)− p̂k(a|X)|4]

) 1
2 +O(h4)
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and
∥E

[
F (A,X, Z)|X

]
∥2 ≲ OP (h

4) ⇒ E[∥E
[
F (A,X, Z)|X

]
∥2] ≲ O(h4).

Hence, we conclude that I2 = O(hρ2pρ
2
m + h5). Combining all the results, we can conclude that

I = oP (1).

Consider ∥III∥. We have

∥III∥ ≤
∥∥∥∥√hENk

[
{m̃k

a(X)−ma(X)}{p̂k(a|X)−Kh(A− a)}
p̂k(a|X)

]∥∥∥∥
+

∥∥∥∥√hENk

[
Kh(A− a)(Z −ma(X))

(p(a|X)− p̂k(a|X))

p̂k(a | X)p(a | X)

]∥∥∥∥
≲
√
h

∥∥∥∥ENk

[
{m̃k

a(X)−ma(X)}
p̂k(a|X)

ENk [{p̂
k(a|X)−Kh(A− a)}|X]

]∥∥∥∥
+

√
h

(
ENk

[
∥(Z −ma(X))∥2

]) 1
2
(
ENk

[
|p(a|X)− p̂k(a | X)2

]) 1
2

≲
√
h

∥∥∥∥ENk

[
{m̃k

a(X)−ma(X)}{p̂k(a|X)− p(a|X)− h2

2
∂2
aap(a|X)

∫
u2K(u)du+O(h3)}

]∥∥∥∥+
√
hρp

≲
√
hENk

[ ∥∥∥{m̃k
a(X)−ma(X)}{p̂k(a|X)− p(a|X)}

∥∥∥ ]
+

√
hENk

[
h2

2

∥∥∥∥{m̃k
a(X)−ma(X)}∂2

aap(a|X)

∫
u2K(u)du

∥∥∥∥ ]+O(h
7
2 ) +

√
hρp

≲
√
h

(
ENk

[ ∥∥∥m̃k
a(X)−ma(X)

∥∥∥2 ]) 1
2
(
ENk

[
| p̂k(a|X)− p(a|X) |2

]) 1
2

+
√
h

h2

(∫
u2K(u)du

)
2

(
ENk

[ ∥∥∥m̃k
a(X)−ma(X)

∥∥∥2 ]) 1
2
(
ENk

[
|∂2

aap(a|X)|2
]) 1

2

+O(h
7
2 ) +

√
hρp.

We can therefore conclude that III = O(h
1
2 ρp + h

1
2 ρpρm + h

3
2 ρm + h

7
2 ), and hence III = oP (1).

Consider the term IV. Note that

∥IV∥2 =
1

N2
k

∑
i∈Dk

∥∥∥∥{1− Kh(Ai − a)

p̂k(a|Xi)

}
{Dk

a(Xi)}
∥∥∥∥2

︸ ︷︷ ︸
IV1

+
1

n2
k

∑
i,j∈Dk
i ̸=j

⟨
{
1− Kh(Ai − a)

p̂k(a|Xi)

}
{Dk

a(Xi)},
{
1− Kh(Aj − a)

p̂k(a|Xj)

}
{Da,k(Xj)}⟩

︸ ︷︷ ︸
IV2

It can be shown that IV1 ≲ 1
Nk

∑
i∈Dk

∥∥Dk
a(Xi)

∥∥2. Besides, we can show that

~m̂k
a − m̃k

a~2 =
1

Nk
E
[∑
i∈Dk

∥∥Dk
a(Xi)

∥∥2].
Now, for any δ > 0, using Markov inequality gives

P
{

1

Nk

∑
i∈Dk

∥∥Dk
a(Xi)

∥∥2 ≥ δ−1~m̂k
a − m̃k

a~2

}
≤ δ

1
Nk

E
[ ∑
i∈Dk

∥∥Dk
a(Xi)

∥∥2 ]
~m̂k

a − m̃k
a~2

= δ.

Under the Convergence Assumptions, we conclude that
IV1 = OP (~m̂

k
a − m̃k

a~2) = OP (N
−2 +N−1ν2N +N−1α2

N ).

For the quantity IV2, we notice that

IV2 ≤ 1

N2
k

∑
i,j∈Dk
i ̸=j

∥∥∥∥{1− Kh(Ai − a)

p̂k(a|Xi)

}
{Dk

a(Xi)}
∥∥∥∥∥∥∥∥{1− Kh(Aj − a)

p̂k(a|Xj)

}
{Dk

a(Xj)}
∥∥∥∥

≤Nk − 1

Nk

1

Nk

∑
i∈Dk

∥∥∥∥{1− Kh(Ai − a)

p̂k(a|Xi)

}
{Dk

a(Xi)}
∥∥∥∥2

≤ 1

Nk

∑
i∈Dk

∥∥∥∥{1− Kh(Ai − a)

p̂k(a|Xi)

}
{Dk

a(Xi)}
∥∥∥∥2

.
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Similarly, we can show that IV2 = OP (N
−2 + N−1ν2N + N−1α2

N ). Hence, IV = OP (N
−1 +

N− 1
2 νN +N− 1

2αN ) which implies that IV = oP (1).

Consider the term V. Write

PNk

[
Kh(A− a)R
p̂k(a|X)

]
= PNk

[
Kh(A− a)R
p(a|X)

]
+ PNk

[
Kh(A− a)R
p̂k(a|X)

− Kh(A− a)R
p(a|X)

]
.

The second term is dominated by the first term since the second term involves the difference between
the estimated density function p̂k(a|X) and the true density function p(a|X). Now, we consider the
first term and we have

E
[

1

Nk

Nk∑
i=1

∥∥∥∥Kh(Ai − a)Ri

p(a|Xi)

∥∥∥∥ ] ≤ c

Nk

Nk∑
i=1

E[E[Kh(Ai − a)|Xi] ∥Ri∥]

=c

{
1

Nk

Nk∑
i=1

E[p(a|Xi) ∥Ri∥] +
h2

∫
u2K(u)du

2

1

Nk

Nk∑
i=1

E[∂2aap(a|Xi) ∥Ri∥]
}
+O(h3)

≲(1 + h2)

(
E
[

1

Nk

Nk∑
i=1

∥Ri∥2
]) 1

2

+O(h3)

Using Lemma 2 and assumptions on αN and νN , we have V = OP ((1+h
2)(αN +νN )+h3) which

implies that V = oP (1). As a result, we have
√
Nh

(
△̂

C;h

a;DML −△a

)
=
√
Nh

( 1

N
(N1ψ̂a,1 +N2ψ̂a,2)− ψa

)
+

√
NhE

[
Kh(A− a)(LY −ma(X))

p(a|X)

]
=
√
Nh

[
(PN − EN ){φ(A,X,Y)}+ EN

[
Kh(A− a)(LY −ma(X))

p(a|X)

]]
+ oP (1)

=
√
Nh

[
PN{φ(A,X,Y)} −△a

]
+ oP (1).

Besides, we can rewrite the above equality as follows:

√
Nh

{
△̂

C;h

a;DML −△a − E
[
Kh(A− a)(Y−1 −ma(X))

p(a|X)

]}
=

√
Nh

[
(PN − E){φ(A,X,Y)}

]
+ oP (1).

Now, note that

E
[
Kh(A− a)(Y−1 −ma(X))

p(a|X)

]
= E

[
1

p(a|X)
E
[
Kh(A− a)(Y−1 −ma(X))|X

]]
. (21)

Detailed derivations show that give Eqn. equation 21 equals the following quantity:

h2

(∫
u2K(u)du

){
E
[
∂aE

[
Y−1|X, A = a

]∂ap(a|X)

p(a|X)

]
+ E

[
∂2
aaE

[
Y−1|X, A = a

]
2

]}
︸ ︷︷ ︸

Ba

+O(h3).

Finally, by the Central Limit Theorem,
√
Nh

[
(PN −E){φ(A,X,Y)}

]
converges weakly to a Gaus-

sian process. The proof is now completed.
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I COMPLETE RESULTS OF SIMULATION EXPERIMENTS

Table 4: The numerical experiment results for the Dist-DR, Dist-IPW, and Dist-DML estimators on
continuous treatment values A = −0.05, 0.00, 0.05. The reported values are averages across 100
experiments, with standard deviations indicated in parentheses. The best results are highlighted in
bold.

Q=0.1 Q=0.2 Q=0.3 Q=0.4 Q=0.5 Q=0.6 Q=0.7 Q=0.8 Q=0.9 Error

A = −0.05

Ground 0.0107 0.0440 0.1030 0.2161 0.4783 0.7404 0.8535 0.9125 0.9458

DR 0.0089
(0.0048)

0.0347
(0.0027)

0.1344
(0.0029)

0.2858
(0.0044)

0.4666
(0.0062)

0.6528
(0.0077)

0.8129
(0.0097)

0.9133
(0.0119)

0.9207
(0.0162)

DR-e 0.0018 0.0092 0.0314 0.0697 0.0116 0.0876 0.0406 0.0008 0.0252 0.0309

IPW 0.0060
(0.0004)

0.0537
(0.0015)

0.1211
(0.0034)

0.2380
(0.0067)

0.4702
(0.0135)

0.6904
(0.0205)

0.8008
(0.0238)

0.8626
(0.0255)

0.9117
(0.0269)

IPW-e 0.0046 0.0097 0.0181 0.0219 0.0081 0.0500 0.0527 0.0499 0.0341 0.0277

DML 0.0064
(0.0005)

0.0550
(0.0009)

0.1269
(0.0008)

0.2508
(0.0020)

0.4913
(0.0013)

0.7201
(0.0021)

0.8376
(0.0015)

0.9040
(0.0019)

0.9533
(0.0020)

DML-e 0.0042 0.0110 0.0239 0.0347 0.0131 0.0204 0.0159 0.0086 0.0075 0.0155

A = 0.00

Ground 0.0112 0.0462 0.1083 0.2271 0.5026 0.7782 0.8970 0.9591 0.9941

DR 0.0101
(0.0050)

0.0364
(0.0027)

0.1412
(0.0029)

0.3009
(0.0045)

0.4917
(0.0064)

0.6879
(0.0079)

0.8561
(0.0100)

0.9609
(0.0124)

0.9670
(0.0169)

DR-e 0.0011 0.0099 0.0329 0.0738 0.0109 0.0903 0.0409 0.0019 0.0271 0.0321

IPW 0.0071
(0.0004)

0.0557
(0.0014)

0.1240
(0.0031)

0.2424
(0.0063)

0.4817
(0.0129)

0.7064
(0.0208)

0.8190
(0.0240)

0.8809
(0.0257)

0.9293
(0.0271)

IPW-e 0.0041 0.0095 0.0158 0.0153 0.0210 0.0718 0.0780 0.0781 0.0648 0.0398

DML 0.0080
(0.0006)

0.0589
(0.0010)

0.1353
(0.0009)

0.2658
(0.0021)

0.5195
(0.0034)

0.7591
(0.0024)

0.8846
(0.0019)

0.9547
(0.0021)

1.0039
(0.0019)

DML-e 0.0032 0.0127 0.0270 0.0387 0.0169 0.0190 0.0124 0.0044 0.0098 0.0160

A = 0.05

Ground 0.0118 0.0486 0.1138 0.2387 0.5283 0.8179 0.9428 1.0080 1.0448

DR 0.0114
(0.0053)

0.0381
(0.0028)

0.1483
(0.0030)

0.3167
(0.0046)

0.5179
(0.0065)

0.7246
(0.0082)

0.9014
(0.0104)

1.0109
(0.0129)

1.0158
(0.0176)

DR-e 0.0004 0.0105 0.0345 0.0780 0.0103 0.0933 0.0414 0.0029 0.0290 0.0334

IPW 0.0095
(0.0005)

0.0619
(0.0016)

0.1338
(0.0034)

0.2637
(0.0069)

0.5153
(0.0136)

0.7570
(0.0206)

0.8781
(0.0238)

0.9443
(0.0254)

0.9954
(0.0267)

IPW-e 0.0023 0.0133 0.0200 0.0251 0.0130 0.0609 0.0646 0.0637 0.0493 0.0347

DML 0.0104
(0.0005)

0.0649
(0.0009)

0.1434
(0.0006)

0.2831
(0.0017)

0.5460
(0.0010)

0.7994
(0.0023)

0.9307
(0.0013)

1.0034
(0.0014)

1.0558
(0.0017)

DML-e 0.0013 0.0164 0.0296 0.0444 0.0178 0.0184 0.0121 0.0046 0.0110 0.0173
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J EMPIRICAL DATASETS

J.1 NHANES DATASET AND PREPROCESSING

The National Health and Nutrition Examination Survey (NHANES) is a program designed to eval-
uate the health and nutritional status of adults and children in the United States. The survey col-
lected information mainly via interviews and physical examination. The data about participants’
demographics, diet, socioeconomics, and health status are gathered from interviews. The physical
examination includes medical, dental, physiological assessments, and laboratory tests executed by
medical professionals. Data from this survey can be used to explore the effects of risk factors on
diseases and physical activity patterns. In this section, we study the causal effect of the employment
status (full-time, part-time, or unemployed) on physical activity levels in American adults, with data
obtained from the NHANES 2005-20061.

In the experiment, the causal effect of working hours on physical activity levels is our interest, so we
also need to measure physical activity levels. Note that, in the 2005-2006 cycle of NHANES, par-
ticipants ages 6 and older were required to wear an Actigraph uniaxial accelerometer on a waist belt
throughout all non-sleeping hours for seven days. The accelerometer-based devices recorded ver-
tical acceleration for successive 1-minute intervals and can measure the physical activity intensity.
According to the recorded data, the physical activity intensity ranged from 0 to 32767 cpm.

To obtain robust and reliable results, we applied the following preprocessing procedures.

Firstly, the activity intensity data which were questionable were excluded. Then, we only considered
subjects with activity intensity records for at least 10 hours a day and valid records for 4 days at
least. Thirdly, we only took into account the observations with intensity values between 1 and 1200
cpm since most intensity values lie in the interval in this data set. The objective is to measure the
distribution. We delete samples with smaller than 100 observations.

Besides employment status, we also utilized some covariates, including gender, race/ethnicity, ed-
ucational level, marital status, occupation code as a categoric variable, age, BMI, the total number
of people in the family, and the poverty income ratio (PIR) as continuous variables. After removing
samples with missing data, there were 2762 participants left.

J.2 STATISTICAL ANALYSIS

Table 5 displays the statistical analysis, which was stratified by working hours, i.e., Full-time stands
for working hours exceeds 35 hours in one week, Part-time stands for working hours between 1 and
35 hours in one week, and Unemployed stands for working hours equal 0 hour in one weak. We
offer the means and standard deviations of the five continuous variables. As shown in Table 5, the
full-time group has an average age of 41.09 years old, with the lowest standard deviation (12.80).
The part-time job has the biggest average age and standard deviation with values of 42.18 and 17.26,
respectively, indicating that the age range of part-time work is relatively large. The highest average
income and PIR are found among those who work full-time, which is consistent with our intuition.
For the number of people living together, there is no significant difference between the average of the
full-time group and part-group, whereas the unemployed have a relatively high value. The average
BMIs in the three groups do not show much difference.

In terms of categoric variables, we show their counts and percentages in each category. The number
of males and females is slightly imbalance in the full-time and part-time groups. However, in the
unemployed group, the number of men and women is highly unbalanced. 78.41% are female, and
only 21.59% are male. For race/ethnicity, the percentages of various races in the full-time and part-
time groups are similar. Non-Hispanic White, Non-Hispanic Black, and Mexican American are
the first three races in the two groups. Different from the two groups, Mexican American in the
unemployed makes up the highest proportion, followed by non-Hispanic White. The proportions of
different education levels vary in three groups. The people with the highest educational level account
for the highest proportion of the full-time group and the lowest proportion of the unemployed group,
whereas the results of the lowest education level are the opposite. Among the three groups, more
than half are married. Never married is the second largest proportion.

1https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2005.
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Table 5: Statistics Analysis of Covariates

Covariates Full-Time
(N=1759)

Part-Time
(N=438)

Unemployed
(N=565)

Age 41.09±12.80 42.18±17.26 39.58±16.62
Poverty Income Ratio 3.15±1.56 2.78±1.62 1.86±1.40
BMI 28.78±6.17 28.05±6.24 28.88±7.22
Total number of people in the Household 3.26±1.58 3.17±1.51 3.84±1.74
Gender
Male 1000(56.85%) 182(41.55%) 122(21.59%)
Female 759(43.15%) 256(58.45%) 443(78.41%)
Race/Ethnicity
Mexican American 371(21.09%) 69(15.75%) 197(34.87%)
Other Hispanic 63(3.58%) 17(3.88%) 28(4.96%)
Non-Hispanic White 843(47.92%) 232(52.97%) 192(33.98%)
Non-Hispanic Black 409(23.25%) 99(22.60%) 121(21.42%)
Other Race
(including multi-racial) 73(4.15%) 21(4.79%) 27(4.78%)

Educational level
Less Than 9th Grade 151(8.58%) 35(7.99%) 107(18.94%)
9-11th Grade 206(11.71%) 47(10.73%) 127(22.48%)
High School Grad/GED 387(22.00%) 104(23.74%) 129(22.83%)
Some College/ AA degree 553(31.44%) 166(37.90%) 139(24.60%)
College Graduate or above 462(26.26%) 86(19.63%) 63(11.15%)
Marital status
Married 1008(57.31%) 263(60.05%) 308(54.51%)
Widowed 29(1.65%) 14(3.20%) 36(6.37%)
Divorced 172(9.78%) 35(7.99%) 30(5.31%)
Separated 53(3.01%) 9(2.05%) 16(2.83%)
Never married 314(17.85%) 87(19.96%) 107(18.94%)
Living with partner 183(10.40%) 30(6.85%) 68(12.04%)
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K COMPUTATION INFRASTRUCTURE

All experiments are run on Dell 7920 with Intel(R) Xeon(R) Gold 6250 CPU at 3.90GHz, and a
set of NVIDIA Quadro RTX 6000 GP. All models are implemented in Python 3.8. The versions of
the main packages of our code are: Pytorch 1.8.1+cu102, Sklearn: 0.23.2, Numpy: 1.19.2, Pandas:
1.1.3, Matplotlib: 3.3.2.
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