
Generalized Top-k Mallows Model for Ranked Choices

Shahrzad Haddadan
Rutgers Business School

Piscataway, NJ
shaddadan@business.rutgers.edu

Sara Ahmadian
Google research

Seattle, WA
sahmadian@gmail.com

Abstract

The classic Mallows model is a foundational tool for modeling user preferences.
However, it has limitations in capturing real-world scenarios, where users often
focus only on a limited set of preferred items and are indifferent to the rest. To
address this, extensions such as the top-k Mallows model have been proposed,
aligning better with practical applications. In this paper, we address several chal-
lenges related to the generalized top-k Mallows model, with a focus on analyzing
buyer choices. Our key contributions are: (1) a novel sampling scheme tailored to
generalized top-k Mallows models, (2) an efficient algorithm for computing choice
probabilities under this model, and (3) an active learning algorithm for estimating
the model parameters from observed choice data. These contributions provide
new tools for analysis and prediction in critical decision-making scenarios. We
present a rigorous mathematical analysis for the performance of our algorithms.
Furthermore, through extensive experiments on synthetic data and real-world data,
we demonstrate the scalability and accuracy of our proposed methods, and we
compare the predictive power of Mallows model for top-k lists compared to the
simpler Multinomial Logit model.

1 Introduction

User preferences over a set of alternative items play a crucial role in various decision-making
scenarios. A key concept in this context is the choices customers make when presented with a subset
of alternatives, referred to as an assortment, drawn from a larger pool of items. The mathematical
modeling of preferences and choices is both essential and challenging. It enables researchers and
business leaders to analyze and predict customer behavior, thereby informing more effective decision-
making. Probabilistic models over rankings, such as the Plackett-Luce (PL) and Mallows models, are
widely used to represent user preferences. Based on the Plackett-Luce (PL) model, the Multinomial
Logit (MNL) model has been suggested for modeling choice, and it has been extensively applied in
choice modeling due to its simplicity and interpretability.

The Mallows model (Mallows, 1957) is a distance-based probability distribution defined over per-
mutations and is reminiscent of the Gaussian distribution for scalar variables. It has been used
successfully to model preferences, particularly where ranking data is available. Recent work has
demonstrated the high predictive power of the Mallows model in modeling choices (Désir et al.,
2023, 2021), sparking follow-up research into revenue management and assortment optimization in
this framework Désir et al. (2021, 2023); Feng & Tang (2022); Rieger & Segev (2023). One key
challenge in applying the Mallows model more broadly is that its classic definition is restricted to full
permutations.

In many real-world scenarios, however, user preferences are often observed as top-k lists rather than
full rankings. For example, many platforms display only a subset of items to customers and ask them
to rank a fixed number of preferred items. In recommender systems, advertising platforms, search
engines, news aggregators, and social media friend suggestions, users are typically shown only the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



top-k most relevant items, rather than an exhaustive list. Likewise, users often express preferences
for a limited number of favorite items and show indifference toward the remainder.

This recurring structure in many applications has motivated the extension of the Mallows model to
handle top-k lists. The design of algorithm for this variant is significantly more complex than in the
traditional permutation-based setting, leading to a growing body of research focused on learning,
inference, and aggregation under the top-k Mallows model (Lu & Boutilier, 2011; Chierichetti et al.,
2018a; Collas & Irurozki, 2021; Vitelli et al., 2018; Fotakis et al., 2021; Boehmer et al., 2023; Goibert
et al., 2023; Awadelkarim & Ugander, 2024; Qian & Philip, 2019; Akbari & Escobedo, 2022).

In this paper, we propose employing a generalized Mallows model for top-k lists for choice modeling,
and we develop efficient algorithms related to generating samples from it, learning its parameters
and finding choice probabilities. Our approach addresses more realistic preference structures, where
users are unlikely to hold complete rankings over a large set of items, an assumption that is often
impractical in real-world applications.

1.1 Related Work
In this section we present relevant related work on choice modeling and Mallows model.

Choice modeling Various probabilistic models have been developed to capture choice behavior,
with the Multinomial Logit (MNL) (Bradley & Terry, 1952) model being the most widely used due
to its simplicity and interpretability. In the MNL model each product is assigned a positive score
or weight, and the probability of selecting a product from an assortment is proportional to its score.
Importantly, the MNL model satisfies Luce’s Choice Axiom, also known as the Independence of
Irrelevant Alternatives (IIA). While this property makes the MNL model analytically convenient, it
also limits its expressiveness in capturing more complex choice behaviors.

To overcome the limitations of MNL, the mixture MNL model (also known as mixed logit) was
introduced and popularized by McFadden & Train (2000). Learning the parameters of a mixed MNL
model from observed choices—where each observation is an assortment and a chosen item—is a key
challenge. Early approaches used heuristics based on maximum likelihood estimation (Dempster
et al., 1977), and more recent work has provided statistically rigorous methods with provable sample
complexity guarantees (Chierichetti et al., 2018b; Oh & Shah, 2014; Ma et al., 2022).

Beyond MNL-based models, other frameworks such as the Mallows-based choice model (Désir et al.,
2021) and Markov chain-based models (Blanchet et al., 2016) have been proposed. These models
offer greater flexibility but come with added complexity: tasks that are straightforward in MNL, such
as computing choice probabilities or generating samples become substantially more challenging.

Mallows model The Mallows model (MM), originally introduced by Mallows (1957), defines
a distance-based distribution over full rankings, where the probability of a permutation decays
exponentially with its distance from a central (ground-truth) ranking. This property has made MM a
useful foundation for preference modeling in machine learning. To better accommodate real-world
data—where users often provide partial rather than full rankings—several extensions have been
proposed. Early work by Fligner & Verducci (1986) and Lebanon & Mao (2008) adapted MM to
top-k rankings. Later Chierichetti et al. (2018a) proposed a new distance measure on top-k lists and
defined a parametrized Mallows model for top-k lists based on it (TopKMM).

One of the strengths of the standard Mallows model on permutations is the closed-form expression of
its normalization constant which enables the design of several algorithms. For instance, the Repeated
Insertion Method (RIM) (Doignon et al., 2004) allows efficient sampling from the full-ranking
Mallows model. However, this tractability does not extend to TopKMM: computing probabilities
or generating samples becomes non-trivial due to the lack of a closed-form normalizing constant.
While Chierichetti et al. (2018a) proposed a dynamic programming approach to generate samples,
they highlighted the absence of an RIM-like sampling method for top-k lists as an open problem.

Désir et al. (2021) proposed leveraging the Mallows model to capture choice behavior, demonstrating
improved predictive accuracy over traditional models like the Multinomial Logit (MNL). However, a
key challenge in applying the Mallows model to choice modeling lies in computing choice proba-
bilities—i.e., the likelihood that a given item is selected from an assortment. Unlike MNL, where
such probabilities have closed-form solutions the Mallows model does not admit such tractable
computation in general. To address this, some works have introduced Mallows-like models designed
to simplify choice probabilities calculations (Feng & Tang, 2022). In contrast, Désir et al. (2023)

2



tackle the original model directly and develop a dynamic programming approach for computing
choice probabilities by leveraging key ideas form the Repeated Insertion Method (RIM).

Learning the parameters of the Mallows model or its mixtures from full permutation, or top-k list1,
samples has been extensively studied in prior work (Liu & Moitra, 2018a; Braverman & Mossel,
2008; Awasthi et al., 2014; Seshadri et al., 2020; Tang, 2019; Collas & Irurozki, 2021; Akbari &
Escobedo, 2022; Liu & Moitra, 2018b; Chierichetti et al., 2015). Some studies focus on learning
these parameters from historical data, while others consider an active learning setting, where upon
each consumer’s arrival, the platform adaptively selects the assortment of items to offer based on past
observations Susan et al. (2022). In contrast, learning model parameters from partial observations
presents a greater challenge. Several works address this problem by studying learning from pairwise
comparisons Lu & Boutilier (2014); Vitelli et al. (2018); Tang (2019). A less explored problem is
estimating the model parameters when only the users’ choices from offered assortments of arbitrary
sizes are observed. Existing methods in this setting often lack finite-sample complexity guarantees,
limiting their theoretical robustness.

1.2 Summary of Contributions

In this paper, we focus on Mallows model on top-k lists, and we make several algorithmic con-
tributions for the usage of this model. In order to obtain our results in full generality, we extend
Chierichetti et al. (2018a)’s model on Mallows model for top-k list to a generalized version by
associating a weight to each product. Our algorithmic contribution are listed as follows:

1. Sampling: PROFILE BASED REPEATED INSERTION METHOD (PRIM): The Repeated
Insertion Method (RIM) is a common method for sampling permutations in the classic
Mallows model. However, extending this method to the top-k Mallows model remains an
open problem. Our proposed algorithm, PRIM, offers similar functionality to RIM and
improves upon the prior dynamic programming approach by Chierichetti et al. (2018a),
reducing the runtime from O(k24k + k2 log n) to O(k2k + k2 log n) .

2. Choice Probabilities: DYNAMIC PROGRAMMING FOR CHOICE PROBABILITIES
(DYPCHIP): DYPCHIP is an algorithm to calculate the choice probabilities when they are
inferred from a Mallows model on top-k lists. This result extends the work of Désir et al.
(2021) who consider the classic Mallows model for permutations.

3. Learning the Center: BUILD CENTER FROM CHOICES (BUCCHOI): BUCCHOI is an
active learning algorithm designed to learn the center of a top-k Mallows model distribution.
It operates by presenting assortments of a specified size r to customers and, based on their
observed choices, infers both the ranking of the center and the size of the center k.

The accuracy and complexity of these algorithms are demonstrated through rigorous mathematical
analysis as well as experiments on real-world and synthetic data.
Furthermore, we apply these algorithms and fit a top-k Mallows model to a real-world publicly
available dataset including users’ preferences over 100 sushi types, represented as top-10 lists
(Kamishima et al., 2005). This model helps us predict choice probabilities with high accuracy,
and our results demonstrate that the top-k Mallows model achieves significantly higher predictive
accuracy than the Multinomial Logit model on this dataset

2 Preliminaries and Definitions
Let N = [n] := {1, 2, · · · , n} represent a universe of n elements. A top-k list is a partial order on N
structured as i1 ≻ i2 ≻ · · · ≻ ik ≻ {ik+1, · · · , in} , where the top-k elements are strictly ordered,
while the remaining n− k elements are incomparable to each other. The collection of all top-k lists
over N is represented by Tk,N , where Tn,N = SN corresponds to the symmetric group on N .

For a top-k list τ and a position l ∈ [k], τ(l) refers to the element ranked at position l, while τ̄ denotes
the set of elements ranked below the top-k. For simplicity, we sometimes use τ to represent the top-k
elements {τ(1), τ(2), . . . τ(k)}. Thus, i ∈ τ indicates that i is ranked among the top-k elements of
τ , and set operations like ⊆ and ∩ are applied accordingly. For i, j ∈ N , i ≻τ j means i is ranked

1We remark that some prior work considers scenarios where users select multiple items or a list of k
items—referred to as a top-k choice. In contrast, our focus is solely on the selection of a single item, and we use
the term top-k only as a parameter of the Mallows model.

3



above j in τ , i.e., i ∈ τ and either j ∈ τ̄ or j ∈ τ but ranked below i. Additionally, i ∥τ j indicates i
and j are incomparable (both are in τ̄ ), while i ⊥τ j means they are comparable (i ≻τ j or j ≻τ i).

In this paper, we utilize the widely recognized Kendall’s Tau distance, a commonly used metric
that quantifies the number of pairwise disagreements between two permutations (Fagin et al., 2003;
Critchlow, 2012). This concept has been extended to top-k lists, where it no longer forms a true
metric but retains useful mathematical properties. Given a parameter p ≥ 0, the p-parametrized
distance between τ, τ ′ ∈ Tk,N is defined as

Kp(τ, τ ′) =
∑

i,j∈τ∪τ ′:i<j

Kp
i,j(τ, τ

′), where Kp
i,j(τ, τ

′) =


1 if (i ≻τ ′ j & j ≻τ i) or vice-versa
p if (i ⊥τ ′ j & i ∥τ j) or vice-versa
0 otherwise.

(1)

Using this distance measure, Chierichetti et al. (2018a) define the Mallows model for the top-k lists.
Given a center τ∗ and a decay parameter β, the probability distribution D over top-k lists Tk,N is
defined as:

PD [τ ∈ Tk,N ] ∝ exp (−β Kp(τ, τ∗)) . (TopKMM)

To simplify our notation, we assume, without loss of generality, that the center τ∗ is always the
identity list 1 ≻ 2 ≻ · · · k ≻ {k + 1, · · · , n}. Therefore, we denote Kp(τ, τ∗) as Kp(τ). For full
rankings, where all elements are comparable, we simply use K(τ).
A natural extension of this model arises when the elements have associated weights. Generalized
Mallows Model (GMM) Fligner & Verducci (1986) considers this case for full rankings: Given a
decay parameter β and non-negative weights wi ∈ R≥0 for each i ∈ N , the probability distribution
D over rankings is defined as:

PD [τ ∈ Tn,N ] ∝ exp

−β ∑
i,j:i<j

wiKi,j(τ)

 (GMM)

whereKi,j(τ) is 1 iff τ disagrees with τ∗, i.e., τ ranks j before i for j > i and 0 otherwise, as defined
in (1). In this model, each disagreement contributes the weight of the item ranked higher in τ∗. This
formulation can be simplified by the use of inversion vectors as follows:

PD [τ ∈ Tn,N ] ∝ exp

−β ∑
i∈[k]

wiIi(τ)

 where Ii(τ) =
∑
j:j>i

Ki,j(τ) =
∑
j:j>i

𝟙 (j ≻τ i)

where 𝟙 is an indicator function that takes the value 1 when true and 0 otherwise.

The generalized mallows model has traditionally been defined only for full rankings, and we extend
it to Generalized Mallows Model for Top-k lists. In this setting, each element j ∈ τ∗ is assigned a
non-negative weight, i.e., wi ∈ R≥0 for i ∈ [k], along with an additional weight w0 ∈ R≥0 for any
element in τ̄∗. We use w ∈ Rk+1

≥0 to represent this collection of weights, which uses the following
extension for inversion vectors:
Definition 2.1 (Inversion Vectors of a Top-k list). Given a top-k list τ ∈ Tk,N , there are three
components for inversion vectors: vectors I(τ),P(τ) ∈ Rk

≥0 where for i ∈ [k]:

Ii(τ) =
∑
j:j>i

𝟙 (j ≻τ i) , Pi(τ) =
∑
j:j>i

𝟙 (i, j ∈ τ̄)

and Q(τ) =
(
k−ℓ
2

)
where ℓ = |τ ∩ τ∗|.

Note that this definition is an alternative way to count the disagreement between τ and τ∗ where the
disagreement is always assigned to the higher-ranked element by τ∗. When neither element is ranked
higher (i, j /∈ τ∗), disagreements are assigned to Q. For example, for τ = (2, 1, 6, 5) ∈ T4,[8], we
have I(τ) = [1, 0, 2, 2], P(τ) = [0, 0, 1, 0], Q(τ) = 1. I1(τ) = 1 since element 2 is ranked higher
than 1 by τ , I3(τ) = 2 since elements 5 and 6 are ranked higher than 3 and the same argument
applies to I4(τ). P3(τ) = 1 since elements 3 and 4 are not comparable by τ (but they are ranked by
τ∗) and this disagreement is assigned to element 3 as it is ranked higher than element 4 by τ∗. Q
counts disagreements for elements not ranked by τ∗, i.e., elements 5 and 6.

4



Generalized Mallows Model for Top-k lists Given the center τ∗ ∈ Tk,N and parameters β ≥ 0,
w ∈ Rk+1

≥0 and p > 0, the probability distribution D over Tk,N is defined as:

PD [τ ∈ Tk,N ] ∝ exp (−β Kp,w(τ, τ∗)) (TopKGMM)
where

Kp,w(τ, τ∗) := w0pQ(τ) +
∑
i∈[k]

wi · (Ii(τ) + pPi(τ)).

Note that setting w = 1, we obtain Equation (TopKMM), and k = n, recovers Equation (GMM).

3 Sampling from TopKGMM
We begin by investigating the challenge of efficiently sampling from TopKGMM. Although
Chierichetti et al. (2018a)’s sampling algorithms for TopKMM can easily be extended to incor-
porate weights as in TopKGMM, here our concentration is to develop a sampling algorithm with
similar functionality to the repeated insertion model, which was left open (Chierichetti et al., 2018a).
The theory we develop here not only helps in the design of the sampling algorithm PRIM but also
plays a crucial role in the development of DYPCHIP, our proposed algorithm for choice probabilities.
Theorem 3.1 (Sampling from TopKGMM). For a given instance D of TopKGMM there exists an
algorithm that efficiently samples a top-k list according to D in time complexity O(k · 2γ + k log n),2
and space complexity O(k · 2γ); where γ = min{k, n− k}.

Similar to the RIM method for permutations (Doignon et al., 2004), the core idea of our approach
involves iteratively adding elements to a partially ordered sequence until exactly k elements are
sampled. While this strategy results in a correct sampling scheme in the context of permutations,
for top-k lists it is essential to partition the sample space based on several features before iterative
insertions begin. Our careful definition of inversion vectors in Equation (1) plays a crucial role here,
as it allows us to focus on the behavior of elements in [k] and specifically those sampled by τ . This
insights leads us to introduce profiles which represent the shared top-k elements τ and τ∗.

3.1 Profile-based TopKGMM Distribution

Let profile S ⊆ [k] represent the subset of sample top-k elements for a given top-k list τ . Formally,
Definition 3.2 (top-k Profile). Given a center τ∗ ∈ Tk,N with corresponding TopKGMM distribution
D, we call a set S ⊆ τ∗a profile and we define Tτ∗(S) and its probability with respect to D as:

Tτ∗(S) = {τ |τ ∩ τ∗=S}, PD [S] =
∑

τ∈Tτ∗ (S)

PD [τ ] . (2)

When the center is clear from the context, we may simply use T (S).

For any τ ∈ T (S), since Q(τ) =
(
k−|S|

2

)
only depends on S, we simply write Q(S). The inversion

vector P counts the number of lower-priority elements that were previously ranked strictly lower but
are now incomparable. An element j has a positive Pj(τ) only if it is not ranked by τ , in which case
its value is given by Pj(τ) = n− k − (k − ℓ) as exactly k − ℓ elements from {k + 1, · · · , n} are
now ranked by τ . Since P strictly depends on S, we can use P (S) instead of P (τ).

The inversion vector I is defined for elements in [k], and for each element, is the number of lower-
priority elements (w.r.t. the center) that are now ranked higher in τ . For any element j not ranked by
τ , i.e., j ∈ [k] \ S, Ij(τ) = |{j + 1, · · · , k} ∩ S|. Thus part of vector I , is entirely determined by
S and independent of τ . Since Q(S), P(S), and Ij∈[k]\S(τ) are independent of rankings among τ ’s
elements and depend only on S, we compute the probability of S given this information.
Lemma 3.3. Given a TopKGMM distribution D with parameters β, p and w, any profile
S = {s1, s2, . . . , sℓ} ⊆ [k] (s1 < s2 < · · · < sl) has probability PD [S] proportional to
exp (−βf(S))Z(S), where:

f(S) = w0pQ(S)+
∑

j∈[k]\S

wj(Ij(S)+pPj(S)) , and Z(S) =

(
n− k

k − ℓ

)
(k−ℓ)!

ℓ∏
j=1

k−j∑
r=0

e−βwsj
r .

2Here O(k2γ) is the complexity of a pre-processing step, after that each sample can be generate at cost
O(k logn).

5



and it can be sampled in O(2γk); where γ = min{k, n− k}.

3.2 Sampling Algorithm

Building on the results from the previous section and leveraging the concept of a profile, we now
propose a method for sampling from the TopKGMM distribution (Algorithm 3). We first sample
a profile S with probability PD [S] (according to Lemma 3.3), and then we sample τ ∈ T (S) by
inserting the elements j ∈ S based on their contribution in inversion vectors Equation (TopKGMM)).
The later step can be viewed as generalizing the Repeated Insertion Method (RIM). We refer to our
method as PROFILE-BASED-REPEATED-INSERTION-METHOD (PRIM).

In PRIM, we generate a top-k list proportional to its sampling probability in D conditioned on the
fact that the common elements with the center top-k ranking is S. Specifically, let ℓ = |S|. We begin
with an empty array A and then sample k − ℓ elements from [n] \ [k] uniformly at random. Then we
sequentially, insert the elements in S in increasing order of their priority. When processing element s,
we insert s in the current array A at position j ∈ {0, 1, . . . , |A|} with probability proportional to

Pr(inserting s at position j) ∝ exp (−βws · j) (3)
as j is the number of inversion associated with element s when it is inserted at position j. Note that
higher priority elements do not contribute to inversion of s so when their position when they are
inserted later is not important for s. See Appendix A.1 for pseudocodes and proofs.

4 Choice modeling and probabilities
In this section, we focus on the problems related to choice. In particular we focus on the analysis
of problems which help us predict the (top) choice of a customer from a set of alternatives, a.k.a an
assortment using TopKGMM. After presenting definitions we design an algorithm which efficiently
calculates choice probabilities having the distributions parameters. In Section 5 we study the opposite
problem in this context, which is learning the center of a TopKGMM distribution by observing its
choice data.

Given a set of products [n], an assortment is any subset A of [n]. When A is offered to a customer,
she may choose any of its elements or the “no purchase” option denoted by ∅. We use N = [n]∪{∅}
to denote all purchase options and correspondingly, we define Tk,N to denote all top-k lists over N .
We assume that the preferences of customers are derived from TopKGMM, and if we have multiple
customer types, we use a mixture of several TopKGMM’s where each may have different parameters.

Given a top-k list τ ∈ Tk,N , we define the choice function Cτ : 2[n] → N as follows: for any
assortment A ⊂ [n], Cτ (A) = i, iff i is the highest ranked element in A ∪ {∅} with respect to τ . If
all elements of A ∪ {∅} are incomparable w.r.t. τ , then i is taken uniformly from A ∪ {∅}.
We focus on applying the TopKGMM model to represent customer preferences. Specifically, we
assume that τ is sampled from a distribution D, where D is a TopKGMM distribution characterizing
a single customer type. More generally, D can represent several customer types and we may use a
mixture distribution. Since choice probabilities of a mixture distribution can simply be obtained as a
linear combination of its singleton components, here we focus on singleton distributions.

4.1 Calculation of Choice Probabilities: DYPCHIP

Let D be a TopKGMM distribution on Tk,N . We let CD be a function mapping any assortment
A ⊆ [n] and an option i ∈ A ∪ {∅} to the probability that Cτ (A) = i where τ is sampled from D.
Formally, CD : N × 2[n] → [0, 1] is defined as follows:

CD(i,A) =
∑

τ∈Tk,N

PD [τ ] · 𝟙 (Cτ (A) = i) . (4)

We now introduce DYPCHIP which calculates choice probabilities as defined in Equation (4), and its
correctness and runtime complexity is stated in the following theorem:
Theorem 4.1 (Calculation of choice probabilities). Given an assortment A ⊆ [n] and a TopKGMM

instance D, DYPCHIP calculates CD(j,A) for all j ∈ A ∪ {∅} in O
(
2min{k,n−k}k3 |A|2

)
.

The main idea of this algorithm is to find these probabilities by conditioning on a given profile. Our
dynamic programming tables are defined based on the order in which items are considered in PRIM.

6



Overview of DYPCHIP Consider profile S ⊆ [k] with ℓ = |S|. Let A∅ = A ∪ {∅}. For a top-k
list τ ∈ T (S), item a from A is picked if (i) τ does not include any item from A∅ and so a is picked
randomly from A∅ ⊆ τ̄ , or (ii) a is top-ranked in A∅ w.r.t τ . We handle the two cases separately:

1. Let π̄S(a) denote the probability associated to case (i). Note that τ ∩A∅ = ∅ implies that τ
is from a profile S with S ∩ A = ∅. Thus for any a ∈ A∅:

π̄S(a) = P
(
τ ∩ A∅ = ∅

)
· 1

|A|+ 1
= 𝟙

(
A∅ ∩ S = ∅

)
·
(
n−k−(|A|+1)

k−ℓ

)(
n−k
k−ℓ

) · 1

|A|+ 1
.

2. Let Ā .
= A∅ ∩ τ̄ . The elements in A∅ who have a non-zero probability of being top

ranked at some iteration of DP table are only in Ā ∪ S. We calculate these probabilities by
conditioning on two other parameters: (1) where in PRIM algorithm they have a chance
of being sampled, and (2) the position in which they are positioned in the top-k list when
they are the winner, i.e, ranked highest among A∅. We use a three dimensional dynamic
programming table πS as follows: Let {a1, a2, . . . , ar, sℓ, sℓ−1, . . . , s1} be an ordering of
the elements in Ā ∪ S where the first segment is an arbitrary ordering of Ā and the second
is the ordering of S used in PRIM.
For q = 0, we let πS(i, j, q) be the probability that any element ai ∈ {a1, a2, . . . , ar} is
ranked jth and higher than all other elements of Ā (see Equation (6)). Then, by iterating
over q = 1, 2, . . . ℓ, we consider the qth iteration of the for loop in PRIM, and for any
position 1 ≤ j ≤ q, we define πS(i, j, q) be the probability that after completion of the qth
iteration of the for loop in PRIM, ai is the highest element in A∅ (the winner) which has so
far been sampled, and ai is so far ranked j-th.
We update these probabilities by conditioning whether the newly inserted element, i.e.,
sℓ+1−q is added before the prior winner, or after it. Note that, since we the profile S is fixed,
the probability of inserting a new element in a particular location may be obtained from
Equation (3). For details of the recursive definition of πS(i, j, q) please see Appendix A.2.
After the dynamic programming table is filled, we may calculate the choice probability of
each ai ∈ A∅ conditioned on profile S with |S| = ℓ by:

πS(ai) =

ℓ∑
j=1

πS(i, j, ℓ) .

In each cell of the table, we need to look at O(k) other cells which involves at most O(k |A|)
operations so each table entry can be calculated in O(k |A|) time. Finally, we may calculate the

∀a ∈ A, CD(a,A) =
∑
S⊆[k]

PD [S] (πS(a) + π̄S(a)) . (5)

Runtime of DYPCHIP The size of the dynamic programming table is |A| k2, and calculation of
each element needs k |A| + n operations. In Equation (5) we have a sum over all profiles; which
is bounded by O(2min{k,n−k}). Thus, in total all choice probabilities may be calculated in time
Θ(2γk3 |A|2 + 2γk2 |A|n); γ = min{k, n− k}.

5 Learning the center from choice data

In this section, we focus on the problem of learning the center of a TopKGMM distribution from
choice data. This task is more challenging than learning from complete top-k samples, as each data
point provides limited information and the choice data depends on the specific assortments presented.

Consider a TopKGMM distribution D on Tk,N , the goal is to construct the center of D, namely
τ∗ by observing choice data. The choice data consists of pairs (At, ct), where At represents the
assortment offered at round t, and ct is the item selected by the customer from At. Formally, we let
D = ⟨(c1,A1), (c2,A2), . . . , (cT ,AT )⟩; where for t = 1, 2, . . . , T we have ct = Cτ (At), τ ∼ D.
While in traditional learning algorithms D is given as input. Here, we focus of active learning and
collect choice data by presenting assortments to the customers and recording observed choices.

Our active learning algorithm for the estimation of the center is BUCCHOI. It takes as input the
set of products N and assortment size ℓ and offers a sequence of assortments A1,A2, . . .AT to the

7



Algorithm 1 FINDTOP

1: Input: Assortment A, a sequence
(c1, c2, . . . , cm) where ci = Cτ (A)
for τ sampled from D.

2: Output: Cτ∗(A) if τ∗ ∩ A∅ ̸= ∅.
3: X ← 0A∅×A∅

4: for i = 1 : m do
5: for a ∈ A∅ \ {ci} do
6: Xcia = Xcia + 1
7: Xaci = Xaci − 1
8: end for
9: end for

10: Y ← X/m

11: if ∃a : Yaa′ > 1+|A|
2 ∀a′ ∈ A∅ \{a}

then
12: Return a
13: else
14: Return None
15: end if

Algorithm 2 BUCCHOI

1: Input: N : set of products, r: assortment size, m: num-
ber of samples, choice oracle Cτ ; τ ∼ TopKGMMD.

2: Output: k size of center, τ∗ center of D
3: T = ∅, B = ∅, U = N
4: repeat
5: A = assortment of size r from U a

6: S = ∅ # collect choice data S by showing A repeatedly
7: for j = 1 : m do
8: S = S ∪ Cτ (A)
9: end for

10: a = FINDTOP(A, S)
11: if a ̸= None then
12: T = T ∪ {a}, U = U \ {a}
13: else
14: B = B ∪ A, U = U \ A
15: end if
16: until U = ∅
17: k = |U |
18: τ∗ = SORTCNTR(U, r,m) # (Algorithm 6)
19: Return k, τ∗

aIf |U | < r use some elements from B

customers, recoding corresponding choices ct for t = 1, 2, . . . , T . A Pseudocode of BUCCHOI is
presented in Algorithm 2. Assume TopKGMM distribution D with center τ∗, and parameters β, p,
w⃗. Let wmin

.
= mini∈k wi, and n = |N |. The following theorem shows the sample complexity of

BUCCHOI:

Theorem 5.1. Assume that β ≥ log 3/wmin and ∅ /∈ τ∗. By only receiving N and r as input and
being able to collect choice samples D by selecting assortments, with probability at least 1− o(1),
we are able to learn τ∗ and k from D using only Θ(r2 log n) choice samples.

The main building block of BUCCHOI is a procedure FINDTOP which given an assortment A and a
set of choice samples D, outputs i ∈ A∅ such that i has the highest rank w.r.t. τ∗ among elements of
A∅. If all elements of A∅ are incomparable in τ∗, FINDTOP returns None. We note that FINDTOP
in not an active learning algorithm and receives D as input. We also assume that the choice data were
collected by presenting a single arbitrary assortment A.

FINDTOP A pseudocode for FINDTOP is presented in Algorithm 1. The main idea is to maintain
for each i, j ∈ A∅, a variable Xij . For any choice sample ct we increment Xij if i is chosen over j,
i.e., i = ct and j ∈ A \ {ct}, and we decrement it otherwise. Taking Yij = Xij/m for all i, j ∈ A∅,
it is not difficult to see that:

E [Yij ] = Cτ (i,A)− Cτ (j,A), τ ∼ D .

Based on this observation and by calculating a lower bound on Cτ (i,A)− Cτ (j,A) when i is A∅’s
top element w.r.t. τ∗ and j ∈ A∅ \ {i} we are able to show that the top element will be found by
FINDTOP if the discrepancy parameter β is large enough and we have enough samples. Formally we
show the following lemma whose proof is presented in full details in Appendix A.3:

Lemma 5.2. Assume that β ≥ log(3)/wmin and let r = |A| and ζ ≥ 1 arbitrary constant. If A
appears at least Θ(ζ(r + 1)2 log n) times among the displayed assortments, with probability at least
1 − o(n−ζ) we have: if A∅ ∩ τ∗ ̸= ∅, FINDTOP will return i ∈ A∅ such that i ≻τ∗ j for any
j ∈ A∅ \ {i}, otherwise, it returns None, and we can conclude that A∅ ∩ τ∗ = ∅ .

BUCCHOI BUCCHOI first identifies all elements in N which are ranked above ∅ and are in τ∗.
To this end, we maintain three sets: T ⊆ τ∗ and B ⊆ τ̄∗, U unknown whether they are in τ∗ or
τ̄∗. Assortments of size r are selected repeatedly and after calling FINDTOP we either find the top

8



element in the assortment – which has to be in τ∗ or we find out that none of the elements in the
assortment are in τ∗. Note that the number of times that Repeat loop iterates is bounded by k + n/r.
Finally we call Algorithm 6 to find the rank of items in τ∗. Theorem 5.1 will be concluded from
Lemma 5.2 and using a union bound on all FINDTOP calls. We remark that if ∅ ∈ τ∗, BUCCHOI will
be able to return the top prefix of τ∗ constituting of the elements ranked above ∅ (see Appendix A.3).

6 Experiments
In this section, we present our experimental analysis, designed to achieve two main objectives: (1) to
compare the predictive power of the top-k Mallows model (TopKGMM) with that of the multinomial
logit model (MNL), and (2) to evaluate the accuracy and computational complexity of our methods,
namely PRIM sampling algorithm, the DYPCHIP choice probability computation, and the two
learning algorithms, FINDTOP and BUCCHOI. The code and log files are available publicly3. Results
are generated by running the code on a MacBook Pro M1 Max, 32GM RAM.

Predictive power of top-k MM compared to MNL: experiments on real-world data We used
“Sushi Preference Data Set”(Kamishima et al., 2005) which contains preference of customers over a
set of 100 different sushi types 4. The data-set includes 5K preferences in the form of top-10 lists.

Set-Up. We begin by randomly splitting the 5K top-10 preference data into a training set (80%) and
a test set (20%). We apply BUCCHOI using assortments of size one or two (Algorithm 7) to the
training set using various values of p and β to learn the center of the distribution. With the learned
parameters, we use DYPCHIP to compute the corresponding choice probabilities.
For evaluation, we use empirical choice probabilities on the test set by repeatedly sampling random
assortments and recording corresponding choices. These empirical estimates are then compared to
the predictions from DYPCHIP to assess out-of-sample accuracy; the errors are reported in Table 1.
Based on these results, we identify the values of p and β that yield the lowest test error. Figure 1a
shows the prediction error of the TopKGMM compared to MNL after tuning.

Considering multiple customer types, we cluster the training data (into 2–5 groups) using the
Kendall’s Tau distanceKp , varying p. Clusters with positive silhouette scores are retained, and choice
probabilities are computed within each cluster using both TopKGMM and MNL. Final predictions
are weighted averages based on cluster sizes. Figure 1b shows the results for the two-clusters.

(a) No clustering (b) Training-set partitioned into two clusters

Figure 1: Test error of the top-k Mallows model compared to MNL. Parameter β and p have been selected to
derive highest accuracy. Tables 1 and 2 show the test error for all choices of p and β.

Experimental Findings. Our findings show high accuracy of out-of-sample choice probability
prediction of TopKGMM compared to the accuracy obtained from MNL. These results are consistent
with findings of Désir et al. (2021) who observe the same for classic Mallows model on permutations.

Accuracy and complexity of algorithms: experiments on synthetic Data We use synthetic data
to evaluate the accuracy and complexity of our algorithms, as it provides access to ground-truth choice
probabilities and distribution centers—information unavailable in real-world datasets. This enables
controlled analysis of sample complexity trade-offs with respect to key parameters: n (number of
products), k (size of top-k), r (assortment size), β (decay parameter) and p (Kendall’s Tau parameter).

3Link to the code https://github.com/ShahrzadGit/topkmallows-choices
4Link to of Sushi Preference Data Set https://www.kamishima.net/sushi/.

9

https://github.com/ShahrzadGit/topkmallows-choices
https://www.kamishima.net/sushi/


Accuracy and time complexity of PRIM and DYPCHIP. We evaluate algorithm accuracy by gener-
ating samples from a TopKGMM using PRIM and comparing empirical choice frequencies over
random assortments to the probabilities predicted by DYPCHIP. This is repeated across 20 as-
sortments, with the mean and standard deviation of results shown in Figure 2a. The run-times of
DYPCHIP and PRIM are reported in Appendix B.2.

Accuracy and sample complexity of learning algorithms of BUCCHOI and FINDTOP. We evaluate
our two learning algorithms by generating m samples from TopKGMM distribution using PRIM
and running FINDTOP and BUCCHOI to learn the top element or distribution center. We assess the
convergence of these methods by comparing the learned and true values. When learning the center in
BUCCHOI, we use the Kendall’s Tau distance Kp of learned and true center. In FINDTOP we check
whether the learned top element is the same as the true top element and directly calculate accuracy
based on the frequency of matching values. Each experiments is repeated 10 times across a range of
model parameters and average and standard deviation are obtained; see Figure 2, and Appendix B.3.

(a) Accuracy of DYPCHIP for n = 200, k = 6, r =

4, p = 0.5, w = 21⃗.
(b) Sample complexity of FINDTOP, n = 900, k =

10, r = 5, p = 1, w = 21⃗.

(c) Sample complexity of BUCCHOI for n =

500, k = 10, p = 0.5, w = 21⃗.
(d) Sample complexity of BUCCHOI for n =
300, k = 8, p = 2, w = 32222111.

Figure 2: performance of algorithms DYPCHIP, FINDTOP and BUCCHOI on synthetic data.

Experimental Findings. Our experiments in this section support the theoretical results on the accuracy
and complexity of our algorithms. Notably, we observe that our methods achieve high accuracy with
a relatively small number of samples—often logarithmic in the number of items n.
For DYPCHIP, we find that time complexity increases rapidly with k, as expected due to its exponen-
tial dependence on this parameter (See Figure 3). In contrast, the runtime shows minimal sensitivity
to the number of products n. For PRIM, the exponential dependence on k is less restrictive since it
primarily affects the preprocessing step; once this step is completed, generating a large number of
samples remains efficient with low amortized cost (See Table 3).
In the learning algorithms BUCCHOI and FINDTOP, we observe that the sample complexity increases
as β decreases. This is expected, as smaller values of β cause the distribution to approach uniformity,
reducing the concentration of samples around the center and making learning more challenging.

7 Conclusion
In conclusion, the generalized Mallows model for top-k lists provides a more realistic framework for
understanding user preferences, particularly when users care only about a limited set of options. Our
work centers on applying TopKGMM to choice modeling and developing several key algorithms. An
important open direction is learning the model parameters for mixture versions of these models.

10



8 Acknowledgment
We are thankful to Anonymous NeurIPS reviewers for helping us strengthen the presentation of our
paper. Shahrzad Haddadan is supported by Rutgers Business School’s Dean’s Research Seed Fund.

References
Akbari, S. and Escobedo, A. R. Top-k list aggregation: Mathematical formulations and polyhedral

comparisons. In International Symposium on Combinatorial Optimization, pp. 51–63. Springer,
2022.

Awadelkarim, A. and Ugander, J. Statistical models of top-k partial orders. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24, pp. 39–48,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901. doi:
10.1145/3637528.3672014. URL https://doi.org/10.1145/3637528.3672014.

Awasthi, P., Blum, A., Sheffet, O., and Vijayaraghavan, A. Learning mixtures of ranking models.
In Proceedings of the 28th International Conference on Neural Information Processing Systems -
Volume 2, NIPS’14, pp. 2609–2617, Cambridge, MA, USA, 2014. MIT Press.

Blanchet, J., Gallego, G., and Goyal, V. A markov chain approximation to choice modeling.
Operations Research, 64(4):886–905, 2016.

Boehmer, N., Celis, L. E., Huang, L., Mehrotra, A., and Vishnoi, N. K. Subset selection based on
multiple rankings in the presence of bias: Effectiveness of fairness constraints for multiwinner
voting score functions. In Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 2641–2688. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/boehmer23a.html.

Bradley, R. A. and Terry, M. E. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

Braverman, M. and Mossel, E. Noisy sorting without resampling. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 268–276, USA, 2008.
Society for Industrial and Applied Mathematics.

Chierichetti, F., Dasgupta, A., Kumar, R., and Lattanzi, S. On learning mixture models for permuta-
tions. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ITCS ’15, pp. 85–92, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450333337. doi: 10.1145/2688073.2688111. URL https://doi.org/10.1145/2688073.
2688111.

Chierichetti, F., Dasgupta, A., Haddadan, S., Kumar, R., and Lattanzi, S. Mallows models for top-k
lists. Advances in Neural Information Processing Systems, 31, 2018a.

Chierichetti, F., Kumar, R., and Tomkins, A. Learning a mixture of two multinomial logits. In Dy, J.
and Krause, A. (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 961–969. PMLR, 10–15 Jul 2018b.
URL https://proceedings.mlr.press/v80/chierichetti18a.html.

Collas, F. and Irurozki, E. Concentric mixtures of mallows models for top-k rankings: sampling and
identifiability. In International Conference on Machine Learning, pp. 2079–2088. PMLR, 2021.

Critchlow, D. E. Metric methods for analyzing partially ranked data, volume 34. Springer Science &
Business Media, 2012.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from incomplete data via the
em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

Désir, A., Goyal, V., Jagabathula, S., and Segev, D. Mallows-smoothed distribution over rankings
approach for modeling choice. Operations Research, 69(4):1206–1227, 2021.

Désir, A., Goyal, V., Jiang, B., Xie, T., and Zhang, J. Robust assortment optimization under the
markov chain choice model. Operations Research, 2023.

11

https://doi.org/10.1145/3637528.3672014
https://proceedings.mlr.press/v202/boehmer23a.html
https://doi.org/10.1145/2688073.2688111
https://doi.org/10.1145/2688073.2688111
https://proceedings.mlr.press/v80/chierichetti18a.html


Doignon, J.-P., Pekeč, A., and Regenwetter, M. The repeated insertion model for rankings: Missing
link between two subset choice models. Psychometrika, 69(1):33–54, 2004.

Fagin, R., Kumar, R., and Sivakumar, D. Comparing top k lists. SIAM Journal on discrete mathemat-
ics, 17(1):134–160, 2003.

Feng, Y. and Tang, Y. On a mallows-type model for (ranked) choices. Advances in Neural Information
Processing Systems, 35:3052–3065, 2022.

Fligner, M. A. and Verducci, J. S. Distance based ranking models. Journal of the Royal Statistical
Society, 1986. URL http://www.jstor.org/stable/2345433.

Fotakis, D., Kalavasis, A., and Stavropoulos, K. Aggregating incomplete and noisy rankings. In
International Conference on Artificial Intelligence and Statistics, pp. 2278–2286. PMLR, 2021.

Goibert, M., Calauzènes, C., Irurozki, E., and Clémençon, S. Robust consensus in ranking data
analysis: Definitions, properties and computational issues. In International Conference on Machine
Learning, pp. 11584–11597. PMLR, 2023.

Kamishima, T., Kazawa, H., and Akaho, S. Supervised ordering — an empirical survey. In
Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM ’05, pp. 673–676,
USA, 2005. IEEE Computer Society. ISBN 0769522785. doi: 10.1109/ICDM.2005.138. URL
https://doi.org/10.1109/ICDM.2005.138.

Lebanon, G. and Mao, Y. Non-parametric modeling of partially ranked data. Journal of Machine
Learning Research, 9(79):2401–2429, 2008. URL http://jmlr.org/papers/v9/lebanon08a.
html.

Liu, A. and Moitra, A. Efficiently learning mixtures of mallows models. 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 627–638, 2018a.

Liu, A. and Moitra, A. Efficiently learning mixtures of mallows models. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 627–638. IEEE, 2018b.

Lu, T. and Boutilier, C. Learning mallows models with pairwise preferences. In Proceedings of the
28th international conference on machine learning (icml-11), pp. 145–152, 2011.

Lu, T. and Boutilier, C. Effective sampling and learning for mallows models with pairwise-preference
data. J. Mach. Learn. Res., 15(1):3783–3829, 2014.

Ma, J., Zhang, X., and Mei, Q. Fast learning of mnl model from general partial rankings with
application to network formation modeling. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, WSDM ’22, pp. 715–725, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450391320. doi: 10.1145/3488560.3498506.
URL https://doi.org/10.1145/3488560.3498506.

Mallows, C. L. Non-null ranking models. i. Biometrika, 44(1/2):114–130, 1957.

McFadden, D. and Train, K. Mixed mnl models for discrete response. Journal of applied Economet-
rics, 15(5):447–470, 2000.

Oh, S. and Shah, D. Learning mixed multinomial logit model from ordinal data. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. (eds.),
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/2014/file/
b33336b853dc43b9f4a96cedf6bd4b30-Paper.pdf.

Qian, Z. and Philip, L. Weighted distance-based models for ranking data using the r package rankdist.
Journal of Statistical Software, 90:1–31, 2019.

Rieger, A. and Segev, D. Quasi-polynomial time approximation schemes for assortment opti-
mization under mallows-based rankings. Math. Program., 208(1–2):111–171, December 2023.
ISSN 0025-5610. doi: 10.1007/s10107-023-02033-4. URL https://doi.org/10.1007/
s10107-023-02033-4.

12

http://www.jstor.org/stable/2345433.
https://doi.org/10.1109/ICDM.2005.138
http://jmlr.org/papers/v9/lebanon08a.html
http://jmlr.org/papers/v9/lebanon08a.html
https://doi.org/10.1145/3488560.3498506
https://proceedings.neurips.cc/paper_files/paper/2014/file/b33336b853dc43b9f4a96cedf6bd4b30-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/b33336b853dc43b9f4a96cedf6bd4b30-Paper.pdf
https://doi.org/10.1007/s10107-023-02033-4
https://doi.org/10.1007/s10107-023-02033-4


Seshadri, A., Ragain, S., and Ugander, J. Learning rich rankings. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems, vol-
ume 33, pp. 9435–9446. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/6affee954d76859baa2800e1c49e2c5d-Paper.pdf.

Susan, F., Golrezaei, N., Emamjomeh-Zadeh, E., and Kempe, D. Active learning for non-parametric
choice models. arXiv preprint arXiv:2208.03346, 2022.

Tang, W. Mallows ranking models: maximum likelihood estimate and regeneration. In Chaudhuri,
K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6125–6134. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/tang19a.html.

Vitelli, V., Sørensen, Ø., Crispino, M., Frigessi Di Rattalma, A., and Arjas, E. Probabilistic preference
learning with the mallows rank model. Journal of Machine Learning Research, 18(158):1–49,
2018.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/6affee954d76859baa2800e1c49e2c5d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6affee954d76859baa2800e1c49e2c5d-Paper.pdf
https://proceedings.mlr.press/v97/tang19a.html


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the introduction and abstract are later clearly stated in the main
body of the paper as theorems with a clear statement of all theoretical assumptions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The runtime of some algorithms are large and this is explained in the experi-
ments sections.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: The assumptions are clearly stated and all the proofs are presented in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of set-up, evaluation metrics and the data-set are explained in detail
in the appedix of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have used publicly available datasets and cited them in our paper. The
code is attached to this submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameter settings are explained in detail in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have ran all experiments 5 times and average results are reported but we
don’t have statistical significance analysis. We don’t think it is applicable to our problem.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: They are reported at the beginning of the experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It does.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We are not aware of any negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We belive that our work does not have such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We have only used publicly available datasets which are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t release new datasets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM


A Missing proofs and details

A.1 Missing details from Section 3.2

In this section, we prove Theorem 3.1. To this end, we first establish the correctness of Lemma 3.3
that proves profile S can be sampled according to PD [S].

Lemma (Restatement of Lemma 3.3). Given a TopKGMM distribution D with parameters β, p and
w, any profile S = {s1, s2, . . . , sℓ} ⊆ [k] (s1 < s2 < · · · < sl) has probability PD [S] proportional
to exp (−βf(S))Z(S), where:

f(S) := w0pQ(S) +
∑

j∈[k]\S

wj(Ij(S) + pPj(S))

Z(S) :=

(
n− k

k − ℓ

)
(k − ℓ)!

ℓ∏
j=1

k−j∑
r=0

e−βwsj
r

and it can be sampled in O(2kk).

Proof. LetM be the normalizing factor in Equation (TopKGMM), soM =
∑

τ∈Tk,N
PD [τ ]. Then

PD [S] =
1

M
∑

τ∈T (S)

PD [τ ] (Equation (2))

=
1

M
∑

τ∈T (S)

exp

−β(w0pQ(τ) +
∑
j∈[k]

wj · (Ij(τ) + pPj(τ)))


(Equation (TopKGMM))

=
1

M
∑

τ∈T (S)

exp

−β(w0pQ(S) +
∑

i∈[k]\S

wj · (Ij(S) + pPj(S)) +
∑
j∈S

wj · Ij(τ))


=

1

M
∑

τ∈T (S)

exp

−β(w0pQ(S) +
∑

i∈[k]\S

wj · (Ij(S) + pPj(S)))

 · exp
−β∑

j∈S

wj · Ij(τ)


=

exp(−βf(S))
M

∑
τ∈T (S)

exp

−β∑
j∈S

wj · Ij(τ)


The remaining sum relates to the inversions of elements in S. Based on Definition 2.1, an element
sj ∈ S ⊆ [k] makes an inversion with another element s iff sj ≻τ∗ s and s ≻τ sj . Note that since
τ ∈ Tτ∗(S), the possibilities for such s are {sj+1, · · · , sℓ} and the elements of [n] \ [k] which are
now in τ , i.e., τ ∩ {k + 1, · · · , n}. Note that τ ∩ {k + 1, · · · , n} = k − ℓ. Thus, the inversion of j
can be any number between 0 to (ℓ− j)+ (k− ℓ) which is any number from 0 to k− j. Furthermore,
for any valid selection of these values for elements j ∈ S w.r.t. defined ranges, then the position
of these elements in τ are uniquely determined. This can be achieved by starting with a sequence
of k − ℓ stars which would correspond to any selection of elements from {k + 1, · · · , n}, and then
inserting element s ∈ (sℓ, sℓ−1, · · · , s1) iteratively based on their value of Is. This shows the 1:1
correspondence between values of Ijs and how elements of S are positioned in τ . Since there are(
n−k
k−l

)
(k − l)! possible cases for the arrangement of the remaining elements, we get that

∑
τ∈T (S)

exp

−β∑
j∈S

wj · Ij(τ)

 =

(
n− k

k − l

)
(k − l)!

∑
valid choice of Is

for all s∈S

exp(−β
∑
j∈S

wj · Ij) = Z(S).

where the last equality follows from the fact that depending on the value of Isj , any of the terms in
the summation 1+e−wsj

β + · · ·+e−(k−j)wsj
β appears once. Taking product over the terms selected

from these sums would exactly correspond to a valid selection of Is for all s ∈ S. Since M =

21



∑
τ∈Tk,N

PD [τ ] and each PD [τ ] contributes to the PD [S], the defined values form a probability
distribution over different subsets of [k] where PD [S] is proportional to exp (−βf(S))Z(S).

It remains to show that this value can be computed in O(2γk); γ = min{k, n− k}. We argue that
for each S, Z(S) and f(S) can be calculated in O(k), the total number of profiles is bounded by
2γ , hence all the computation can be done in O(2γk). For Z(S), the coefficient before sum has at
most 2k terms and there are at most k terms in the sum where each term corresponds to a geometric
series, so Z(S) can easily be calculated in O(k). f(S) can be calculated in O(k) using the following
algorithm which clearly has O(k) runtime.

Algorithm 3 TOPKGMMSAMPLING (TOPKGMM)

Input: TopKGMM D(β,w).
Output: Sampled Top-k ordering τ proportional to D
f(S) = PROFILE PROBABILITY
Sample S proportional to PD [S] = f(S) · Z(S).
Return PRIM(β,w, S).

Algorithm 4 PROFILE-BASED RIM(PRIM)

Input: TopKGMM(β,w), S = {s1, s2, . . . , sℓ} ⊆ [k] where s1 < s2 < · · · < sℓ.
Output: Top-k list τ ∈ Tσ(S).
A← ordered random k − ℓ elements from [n] \ [k]
for s← sℓ, sℓ−1, · · · , s1 do

Insert s at position j in A w.p. exp(−βwsj)∑|A|
x=0 exp(−βwsx)

.

end for
Return τ = A

Algorithm 5 PROFILE PROBABILITY

Input: Profile S = {s1, s2, . . . , sℓ} ⊆ [k].
Output:f(S)
Q(S)←

(
k−ℓ
2

)
.

x, y ← 0, 0
for j ∈ {k, k − 1, · · · , 1} do
Ij ← k − ℓ+ x
Pj ← n− 2k + ℓ+ y
if j ∈ S then

x← x+ 1
else
y ← y + 1

end if
end for
Return f(S) := w0pQ(S) +

∑
j∈[k]\S wj(Ij(S) + pPj(S)).

Using Lemma 3.3 and analyzing Algorithm 3, we can prove Theorem 3.1.

Proof of Theorem 3.1. Any τ ∈ Tk,N with S = τ ∩ [k], according to Algorithm 4, is sampled with
probability

1(
n−k
k−l

)
(k − l)!

·
∑

j∈S exp(−βwjIj)∑l
j=1

∏k−j
r=0 exp(−βwsjr)

=

∑
j∈S exp(−βwjIj)

Z(S)
.

Since each S, is sampled by exp(−βf(S))Z(S)∑
S⊆[k] exp(−βf(S))Z(S) , we get that τ is sampled with

exp(−βf(S))Z(S)∑
S⊆[k] exp(−βf(S))Z(S)

·
exp(

∑
j∈S −βwjIj)

Z(S)
=

exp(−β(f(S) +
∑

j∈S −wjIj))∑
S⊆[k] exp(−βf(S))Z(S)

22



where the denominator as previously discussed in proof of Lemma 3.3, is equal to normalizing factor
M =

∑
τ∈Tk,N

PD [τ ]. Since numerator is just restating Equation (TopKGMM), each τ is sampled
w.r.t Equation (TopKGMM).

Time complexity An upperbound on the number of profiles is 2γ ; γ = min{k, n− k}. Therefore
Z(S) and f(S) can be computed in O(2γk) by Lemma 3.3, and we can sample S in O(2γk). Next,
fixing S, we need to execute Algorithm 4, where we first need to sample k − ℓ elements which an
be done in O(k log n). And then inserting elements of S with respect to probabilities that can be
calculated in O(k) for each element of S, so requiring O(k2) time for the recursive insertion loop.
Hence overall the algorithm runs in O(2γk + k log n+ k2); γ = min{k, n− k}.

A.2 Missing details from Section 4.1

In this section, we provide the details in design of DYPCHIP. The main remaining part is the
calculation of πS(i, j, q) for given A, i = 1, . . . r, r + 1, . . . r + ℓ, q = 0, 1, . . . ℓ, and j = r + 1, r +
2, . . . r + q, k; where r = |Ā| and ℓ = |S|. We remind the reader that in π(i, j, q):

• i indicated the index of an item a whose choice probability is being calculated. We use L to
refer to the ordered set {a1, a2, . . . , ar, sℓ, sℓ−1, . . . , s1} a ranking of the elements in Ā∪S
where a1, a2, . . . , ar is an arbitrary ranking of Ā and sℓ, sℓ−1, . . . , s1 is the ranking of S
used in PRIM. Thus, when we say ai we mean the ith element in L.

• j indicates the position of ai if it is the winner until the qth iteration of the for loop in PRIM.
When j = k we mean that the winner is in τ̄ .

• q denote that so far we are considering only elements that have been sampled until the qth
iteration of the for loop in PRIM.

Since πS(i, j, q) can only take non-zero value when ai is sampled in the top-k list, we either have
ai ∈ τ̄ or ai ∈ S. We analyze each of these two possible cases separately. We first initialize the DP
table for q = 0 by considering i = 1, 2, . . . r. Then we consider items that are in S in the reverse
order of their priority (consistent with the Algorithm 4).

1. Let Ā = A∅ ∩ τ̄ . Before start of the loop in PRIM, only elements of Ā have been sampled
and have nonzero probability of being selected. These elements are the first r elements in
our list. Thus, for i = 1, 2, . . . , r, we store these probabilities in the DP table as:

π(i, j, 0) =
1

n− k − j + 1︸ ︷︷ ︸
the probability that

i is sampled at position j-

j−1∏
j′=1

(1− r

n− k − j′
)︸ ︷︷ ︸

the probability that
no element of Ā is sampled

in positions j − 1

for j ≤ r

π(i, k, 0) =
(n−k−(r+1)

k−ℓ )
(n−k
k−ℓ)

· 1
r+1 the case that Ā ⊆ τ̄

(6)

2. For q = 1, 2, . . . , ℓ, consider the for loop in PRIM and let acur be the element that is
inserted in the top-k list at iteration q of this loop. Therefore, aj = sℓ+1−q, and in our list
it is ranked (r + q)th, thus, cur = r + q . We distinguish between the two cases where
acur ∈ A∅ or not.

Case 1. acur /∈ A∅: since acur is not a choice option, we have that πS(cur, j, q) = 0 for
all j ≤ q. For any i < cur, if acur is inserted higher than the previous winner, the winner
position will increment. If acur is inserted lower than the previous winner, the winner
position will not change. Therefore ∀i < cur,

πS(i, j, q) = πS(i, j, q−1)·PRIMPOS(S,> j, q)+πS(i, j−1, q−1)·PRIMPOS(S,≤ j−1, q) ,

where PRIMPOS(S,> j, q) is the probability that at iteration q of PRIM we insert an element
in a position after (lower than) j, and PRIMPOS(S,≤ j, q) is it is inserted before (higher
than) j. Note that PRIMPOS(S,≤ j, q) = 1 − PRIMPOS(S,> j, q), and the probability
PRIMPOS(S,≤ j, q) can be directly calculated using Equation (3) by summing over all
insertion probabilities for j′ = 1, 2, . . . , j.

23



Case 2. acur ∈ A∅: In this case, if acur is positioned higher than the previous winner, it
will become the new winner. Otherwise, the position of the previous winner will increment.
Thus,

∀i < cur, πS(i, j, q) = πS(i, j, q − 1) · PRIMPOS(S,> j, q) .

Furthermore,

πS(cur, j, q) = PRIMPOS(S, j, q) ·
∑
i<cur

ℓ∑
j′=j

πS(i, j
′, q − 1) ,

where PRIMPOS(S, j, q) is the probability that at the qth iteration of PRIM we insert an
element in location j which again can be directly calculated from Equation (3).

Proof of Theorem 4.1. The above analysis forms a proof for the correctness of DYPCHIP.

A.3 Missing proofs and details from Section 5

In this section we provide the missing proof for correctness and sample complexity of BUCCHOI and
FINDTOP and we present the missing details.

Let us first present the pseudocode of SORTCNTR which is called in BUCCHOI.

Algorithm 6 SORTCNTR

Input:
choice oracle Cτ ; τ ∼ D where D is a topKGMM with center τ∗
U containing elements of τ∗ as an (unsorted) set,
r assortment size
m sample size
B set of elements out of center
Output: τ∗ sorted
k = |U |
for i = 1 : k do

# find the top element in U and delete it
T = U
repeat

# T maintains potential top elements of U
Divide T to non-intersecting assortments of size r: A1,A2, . . .Aγ ; γ = ⌈i/r⌉ # use elements
of B for Aγ if needed
for κ = 1 : γ do

T = ∅
# collect choice samples by showing Aκ to customers and find the top element of Aκ

S = ∅
for j = 1 : m do
S = S ∪ Cτ (Aκ)

end for
T = T ∪ {FINDTOP(Aκ, S)}

end for
until |T | = 1
U = U \ T

end for
Return τ∗

SORTCNTR When BUCCHOI finds all the elements that are in the center, we call SORTCNTR
to find the ranking of these items as a list. In the for loop the item which is positioned the ith will
be found and deleted from U . In other words, we first find the top element of U this is the element
ranked first, after deleting it, we find the top element in the remainder which is ranked second and so
on.

24



In order to find the top element we use a Repeat-Until loop. In this loop U is divided to assortments of
size r and using FINDTOP we find the winner in each assortment and continue by having a tournament
between the winners until the winner of all (which is the top element) is found.

Note that the repeat-until loop iterates at most logr(k) times. We call FINDTOP at each iteration
⌈k/r⌉ times, and since we have for loop the total number of times that FINDTOP is called is bounded
by Θ(k2 logr(k)).

We now present the proof lemmas and theorems. As before, without loss of generality we assume
that τ∗ = 1 ≻ 2 ≻ · · · k ≻ {k + 1, · · · , n}.
Lemma A.1. Let i < j ∈ At, and assume I = {i1, i2, . . . , iℓ} ⊆ At is such that i < iκ < j for all
iκ ∈ I. We have:

CD(i,At) ≥ CD(j,At) · exp

(
β(wi +

ℓ∑
κ=1

wiκ)

)
.

Consider now a fixed A and let ar, ar−1, . . . , a1,A0 be such that, for each ai, there are i elements
in A∅ which are ranked under it by τ∗, i.e., |{a ∈ A∅ | a > ai}| = i. As a consequence of this
definition we have: |A| = r and A∅ ∩ τ∗ = {ar, ar−1, . . . , a1}, and A0 ⊆ τ̄ . We denote any
arbitrary element of A0 by a0.

Lemma A.2. For any κ = r − 1, r − 2, . . . 1, 0, we have:

C(ar,A)− C(aκ,A) ≥
1− exp(−βwar

)

1 + r exp(−βwar
)

.

Proof. From Lemma A.1 we can immediately conclude that: for any κ = r − 1, r − 2, . . . 1, 0,
C(ar,A) · exp(−βwar ) ≥ C(aκ,A).
Let us now rearrange this inequality:

C(ar,A) · exp(−βwar ) ≥ C(aκ,A)
C(ar,A) · exp(−βwar

)− C(ar,A) ≥ C(aκ,A)− C(ar,A)
C(ar,A)[1− exp(−βwar

)] ≤ C(ar,A)− C(aκ,A) (7)

On the other hand we have that:
∑r

κ=1 C(aκ,A) +
∑

a0∈A0
C(a0,A) = 1. Thus,

1 ≤ C(ar,A) + rC(ar,A) · exp(−βwar
)

C(ar,A) ≥ 1/(1 + r exp(−βwar
)) .

We now substitute this lower bound in Equation (7) and obtain the premise.

Consider now for any for any i, j ∈ A∅, for t = 1, 2, · · · , T , assume we keep displaying assortment
A and consider the following random variable:

Xt
ij =


+1 if i is chosen
−1 if j is chosen
0 otherwise

We denote Yij =
∑T

t=1 X
t
ij/T , we have that:

E [Yij ] = C(i,A)− C(j,A) .

In the following lemma we let wmin be the minium weight assigned to the elements in τ∗, i.e.,
wmin

.
= mini∈k wi .

25



Lemma A.3 (Restatement of Lemma 5.2). Assume that wmin ≥ log(3)/β and let r = |A| and ζ ≥ 1
arbitrary constant. If A appears at least Θ(ζ(r + 1)2 log n) times among the displayed assortments,
with probability at least 1− o(n−ζ) we have: if A∅ ∩ τ∗ ̸= ∅ we are able to identify i ∈ A∅ such
that i < j for any j ∈ A∅ \ {i}, otherwise, we can conclude that A∅ ∩ τ∗ = ∅ .

Proof. Note that ifA∅ ∩ τ∗ ̸= ∅ there is at least one element with rank r inA∅. For this element we
may apply Lemma A.2. Note that this element is unique. If A∅ ∩ τ∗ = ∅, then the choice probability
of all the elements in A∅ are equal to 1/(r + 1).

Assuming wmin ≥ log 3/β, we may bound the right-hand side of Lemma A.2 as follows:

Since ar ∈ τ∗

1− exp(−βwar ) ≥ 1− exp(−βwmin) ≥ 1− exp(log 3)

≥ 2/3 .

Therefore,

1− exp(βwar
)

1 + r exp(βwar )
=

1− exp(−βwar
)

1− r (1− exp(−βwar )) + r

We substitute x = 1− exp(−βwar
), note 1 ≥ x ≥ 2/3.

1− exp(−βwar
)

1 + r exp(−βwar
)
=

x

1 + r − rx

Note that we have: 1+r
1+2r ≤ 2/3 for r ≥ 1.

Thus,

x

1 + r − rx
≥ 1

1 + r
⇐⇒ x(1 + r) ≥ 1 + r − rx

⇐⇒ x+ rx ≥ 1 + r − rx

⇐⇒ x(1 + 2r) ≥ 1 + r

⇐⇒ x ≥ (1 + r)/(1 + 2r)

⇐ x ≥ 2/3 .

We now consider random variables Yij for any i, j = 1, 2, . . . , n as defined before.

We have:

E[Yij ]

{
≥ 1/(r + 1) if i = ar
= 0 if i, j ∈ τ̄∗

(8)

Using Hoeffding bound, we have:

P (|Yij − E[Yij ]| ≥ 1/2(1 + r)) ≤ 2 exp

(
− T

32(1 + r)2

)
Which for T ≥ 64ζ(r + 1)2 log(n+ r) is bounded by:

2 exp

(
−64ζ(r + 1)2 log(n+ r)

32(1 + r)2

)
= 2 exp (−2ζ log(n+ r))

= 2n−2ζ · r−2ζ .

26



In order to find ar, we estimate Yij for all Θ(r2) pairs of ij in A∅. Using the above bound, and
applying a union bound over all pairs we have:

With probability 1− 2n−2ζ :

∀i, j ∈ A∅, |Yij − E[Yij ]| ≤ 1/2(1 + r)

Using Equation (8), this means that:

With probability 1− 2n−2ζ :

∀j ∈ A∅, Yarj > 1/2(1 + r), and
∀i, j ∈ τ̄∗ , Yij < 1/2(1 + r)

We use the above rule to find ar: first we find all Yijs, and output the i for which we have:

∀j ∈ A∅ \ {i}, Yij > 1/2(1 + r) . (9)

Note that if ar exists, there will be one unique i ∈ A∅ Equation (9) holds. Therefore, we take
ar = i. Alternatively, if there is no element with rank r we have ∀i, j ∈ A∅, i, j ∈ τ̄∗ thus,
Yij < 1/2(1 + r).

Theorem A.4 (Restatement of Theorem 5.1). Assume that β ≥ log 3/wmin and ∅ /∈ τ∗. By only
receiving N and r as input and being able to collect choice samples D adaptively, with probability at
least 1− o(1), BUCCHOI is able to learn τ∗ and k from D using only Θ(r2 log n) choice samples.

Proof. Note that BUCCHOI calls FINDTOP at most Θ(k + n/r + k2 logr k) = Θ(n/r + k2 logr k)
times. We take ζ = 3, and using Lemma 5.2 we have that by Θ

(
3(r + 1)2 log n

)
choice samples

which are obtained from presentation ofA with probability 1− o(n−3) we will be able to identity the
top element of A. Since the total number of pairs i, j is Θ(n/r + k2 log k) = (n2 log n), we need
to take a union bound over n2 log n variables thus, in total the probability of failure is bounded by
o(n2n−3) = o(1), from which we conclude the premise.

B Experimental setup and extra tables and figures

B.1 Details of learning choice probabilities on the Sushi data-set.

As explained in the main body, we have divided the data set into two non-intersecting parts for
training (80%) and test sets (20%). We use the training set to learn choice probabilities. First we
employ BUCCHOI-II (Algorithm 7). BUCCHOI-II uses the top-10 sushi types as samples generated
from an unknown distribution and collects choice data from it by actively selecting assortments. Since
the result of BUCCHOI-II may produce partial orders, we break the ties, by using a score function
based on the random variables Xij that are used in FINDTOP. In particular, since Xij shows the
number of times item i beats j we use

∑
j∈N Xij as a tie breaking score for item i.

This is needed because we need to feed the learned center from BUCCHOI-II to DYPCHIP to learn
choice probabilities and DYPCHIP receives as input a top-k list. Note that k is unknown to the
algorithm and we let BUCCHOI learn it. If k is too large (>15) we truncate the learned center to
reduce time complexity.

We tune parameters β and p by performing a grid search over a range of values as in Table 1. From
this table we conclude that p = 0.5 and β = 0.05 have the best test error. Thus, we select them as the
model parameters. The mean and std of test error of the best parameters are reported in Figure 1a.

We handle learning mixture models by clustering the data into several clusters. First we use Kp as a
distance metric taking p ∈ [0.01, 0.25, 0.05, 0.75, 0.1, 0.25, 0.5, 1, 1.5, 2.2.5, 5] and then we divide
data set to 2, 3 or 5 clusters. Most of the clusters we obtain have a negative silhouette coefficient, and
the only positive ones are:

27



Algorithm 7 BUCCHOI-II

Input, N : set of products, m: number of samples, choice oracle Cτ ; τ ∼ D where D is a
topKGMM.
Output center of D
T = ∅
for i ∈ N do
S = ∅
A = {i}
for j = 1 : m do

cj = Cτ (A)
S = S ∪ {cj}

end for
T = T ∪ FINDTOP(A, S)

end for
for i, j ∈ T do
A = {i, j}
for j = 1 : m do

cj = Cτ (A)
S = S ∪ {cj}

end for
if i == FINDTOP(A, S) then

σ[i] > σ[j]
else
σ[i] < σ[j]

end if
end for
Return σ

p= 0.1 num clusters = 2: silhouette score = 0.006287393358176328
p= 1.25 num clusters = 2: silhouette score = 0.007796245381136862
p= 2.5 num clusters = 2: silhouette score = 0.004498089502999035
p= 5 num clusters= 2: silhouette score = 0.011002010781645042
p= 5 num clusters = 3: silhouette score = 0.0023222431733978116

As we can see, even when the silhouette scores are positive they are pretty low, which suggests that
one cluster is the best choice. This is consistent with the test error we obtained, as the model trained
without clustering has a lower test error compared to the model trained on two clusters or more; see
Figure 1b.

p
β 0.05 0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.01 0.1162 0.1047 0.0888 0.0879 0.0925 0.0979 0.1030 0.1087 0.1145 0.1202
0.025 0.1133 0.1007 0.0858 0.0872 0.0922 0.09768 0.1028 0.1085 0.1144 0.1201
0.05 0.1083 0.0938 0.0817 0.0852 0.0907 0.0964 0.1017 0.1075 0.1135 0.1193
0.075 0.1032 0.0868 0.0797 0.0841 0.0898 0.0956 0.1011 0.1070 0.1130 0.1188

0.1 0.0980 0.0798 0.0768 0.0819 0.0880 0.0941 0.0997 0.1058 0.1119 0.1178
0.25 0.0709 0.0598 0.0658 0.0732 0.0808 0.0879 0.09433 0.1009 0.1075 0.1139
0.5 0.0445 0.0555 0.0629 0.07098 0.0789 0.0863 0.0929 0.0997 0.1064 0.1128
1 0.0504 0.0619 0.0677 0.0748 0.0821 0.0890 0.0953 0.1018 0.1083 0.1146

1.5 0.0696 0.07479 0.0773 0.0825 0.0885 0.09454 0.1001 0.1061 0.1122 0.1181
2 0.0791 0.08115 0.0821 0.0863 0.0917 0.0972 0.1025 0.1082 0.1141 0.1198

2.5 0.0825 0.0834 0.0838 0.08769 0.0928 0.09824 0.1033 0.1090 0.1148 0.1204
5 0.0851 0.0851 0.0851 0.0887 0.0937 0.0989 0.1039 0.1095 0.1153 0.1209

Table 1: Average tests errors for several choices of p and β used for parameter tuning. No clustering has been
performed. The average test error we obtain for MNL is 0.168.

28



β = 0.05 0.1 0.25 0.5 0.75 1 1.25 MNL
p = 0.1 0.0997 0.0771 0.0732 0.0748 0.0785 0.083 0.0876 0.1877
p = 1.25 0.0788 0.09273 0.1022 0.1116 0.1224 0.1324 0.1409 0.1883

Table 2: average test error of learning choice probabilities, comparison of Mallows model with different βs and
MNL; 2 clusters are generated based on distance function Kp for given p. The best values are highlighted.

B.2 Runtime of PRIM and DYPCHIP

pre-processing time amortized time per sample
k = 8 k = 10 k = 12 k = 14 k = 16 k = 8 k = 10 k = 12 k = 14 k = 16

n = 200 0.007 0.035 0.19 1.06 8.64 5.67e-05 9.59e-05 0.00022 0.00074 0.0032
n = 500 0.008 0.044 0.23 1.24 7.83 7.89e-05 0.00012 0.00025 0.00076 0.0028
n = 1000 0.012 0.079 0.29 1.46 8.39 0.00011 0.00022 0.00031 0.00082 0.0030

Table 3: average (among 10 runs) runtime of sampling algorithm PRIM in seconds, β = 0.2

Figure 3: Runtime of DYPCHIP (in seconds) for various choices of n, k. Here β = 0.6, p = 0.5 and
w = 2⃗1, size of assortment r = k − 2.

B.3 Additional tables and figures for the analysis of sample complexity of BUCCHOI and
FINDTOP on synthetic data

k = 6 k = 10
n = 1000 6.95± 5.06 0.4± 0.48
n = 5000 228.5± 53.3 228.6± 64.56
n = 10000 934.05± 209.35 870.1± 259.64
n = 20000 3505.05± 409.87 3282.55± 708.9

k = 6 k = 10
n = 1000 0.1± 0.3 0.0± 0.0
n = 5000 0.35± 0.50 1.92± 0.92
n = 10000 2.95± 2.28 3.0± 3.16
n = 20000 5.1± 3.5 9.0± 13.2

Table 4: Kendall’s Tau distance of true and learned center by BUCCHOI with 100 (left table) or 200 (right table)
samples for n = 1000, 5000, 10000, 20000 and k = 6, 10. We let β = 0.6. distance reported as mean± std
these numbers are taken from 10 runs of the algorithm.

β = 0.4 β = 0.6 β = 0.8 β = 1 β = 1.2
50 samples 12.75± 4.4 8.25± 7.7 7.05± 5.64 4.35± 7.5 0.7± 1.65
100 samples 3.5± 0.67 0.35± 0.549 0.0± 0.0 0.0± 0.0 0.0± 0.0

Table 5: Kendall’s Tau distance of true and learned center by BUCCHOI with 50 and 100 samples for various
β, n = 1000, k = 12, p = 0.5 reported as mean± std. mean and standard deviation is taken for 10 runs of
the algorithm for each set of parameters.

29



0 50 100 150 200 250
number of samples

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 o
f F

in
dT

op

beta=0.2
beta=0.4
beta=0.6
beta=0.8
beta=1
beta=1.2

(a) n = 1000, k = 12, r = 10, p = 0.5, w = 21⃗.

0 50 100 150 200 250
number of samples

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 o
f F

in
dT

op

beta=0.2
beta=0.4
beta=0.6
beta=0.8
beta=1
beta=1.2

(b) n = 1000, k = 14, r = 12, p = 0.5, w = 21⃗.

0 50 100 150 200 250
number of samples

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

 o
f F

in
dT

op

beta=0.2
beta=0.4
beta=0.6
beta=0.8
beta=1
beta=1.2

(c) n = 500, k = 12, r = 10, p = 0.5, w = 21⃗.

0 50 100 150 200 250
number of samples

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

 o
f F

in
dT

op

beta=0.2
beta=0.4
beta=0.6
beta=0.8
beta=1
beta=1.2

(d) n = 500, k = 14, r = 12, p = 0.5, w = 21⃗.

(e) n = 300, k = 8, r = 6, p = 1.5, w = 3221⃗. (f) n = 300, k = 8, r = 5, p = 2, w = 32222211.

Figure 4: Sample complexity of FINDTOP for a wide range of parameters.

30



(a) n = 1000, k = 10, p = 0.5, w = 21⃗. (b) n = 1000, k = 14, p = 0.5, w = 21⃗.

(c) n = 300, k = 8, p = 1.5, w = 3221⃗. (d) n = 300, k = 8, p = 2, w = 32222111.

Figure 5: Sample complexity of BUCCHOI for a wide range of parameters. y axis shows the Kendall’s
Tau distance between true and learned center while x axis shows sample complexity

31


	Introduction
	Related Work
	Summary of Contributions

	Preliminaries and Definitions
	Sampling from TopKGMM
	Profile-based TopKGMM Distribution
	Sampling Algorithm

	Choice modeling and probabilities
	Calculation of Choice Probabilities: DyPChiP

	Learning the center from choice data
	Experiments
	Conclusion
	Acknowledgment
	Missing proofs and details
	Missing details from sec:samplealg
	Missing details from sec:choice
	Missing proofs and details from sec:learning

	Experimental setup and extra tables and figures
	Details of learning choice probabilities on the Sushi data-set. 
	Runtime of PRIM and DyPChiP
	Additional tables and figures for the analysis of sample complexity of BuCChoi and FindTop on synthetic data


