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Abstract—With the advancement of mobile devices and wire-
less communication technology, Mobile Crowdsourcing (MCS)
has emerged as a paradigm for recruiting workers to complete
tasks at specific locations. As a variant, social MCS has been pro-
posed to facilitate large-scale collaborative tasks among multiple
workers, leveraging MCS social network to expand the worker
pool and enhance task utility. This paper introduces the Worker
Recruitment approach based on Social Diffusion (WRSD). To
model and incentivize workers’ social diffusion behavior to-
wards task information, we designed a Social Trust Prediction
(SoTP) framework using Graph Convolutional Networks (GCNs)
and a social incentive mechanism. For effective worker-task
matching, we integrated cross-modal social recommendation data
using Graph Attention Networks (GATs) within a Social Task
Recommendation (SoTR) framework. The WRSD problem is
then modeled as a Constrained Multi-attribute Combinatorial
Optimization (CMCO) problem under budget constraints. We
define a heuristic neighborhood search strategy and propose the
Variable Neighborhood Tabu Search (VNTS) algorithm to solve
the WRSD problem, achieving an approximately optimal worker
solution for each task. Comprehensive experiments conducted on
three real-world datasets validate the effectiveness and efficiency
of the proposed approach.

Index Terms—Mobile Crowedsourcing, Worker Recruitment,
Social Network, Optimization Algorithm, Graph Neural Network

I. INTRODUCTION

With the rapid development and widespread application of
wireless sensing devices and wireless communication tech-
nologies, MCS has emerged as a prominent paradigm. MCS
leverages the sensing and computing capabilities of large-scale
mobile devices to collect, process, and analyze data, thereby
completing spatio-temporal tasks in the real world [?], [?],
[?]1, [1]. Typically, MCS involves task publishers, workers, and
the MCS platform [2], [3]. Task publishers release specific
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Fig. 1: Tllustration of WRSD Framework.

tasks based on their requirements, and qualified workers pro-
ceed to designated locations to perform the tasks. Upon task
completion, task publishers pay rewards to the workers [?],
[4]. The MCS platform is responsible for recruiting qualified
workers for tasks, incentivizing value-creating interactions [?],
[5], and coordinating the matching between task publishers and
workers [?], [6]. A key challenge in MCS worker recruitment
research is how to recruit high-quality workers for tasks within
a given task budget. Existing recruitment approaches usually
consider only the individual attributes of workers, such as
spatial, temporal, and ability attributes, while neglecting their
social attributes [7]. It has been observed that workers could
diffuse task information with cross-platform social friends via
social network interactions, improving task execution utility
[5], [8]. However, when modeling this social diffusion process,
existing approaches often rely on fixed trust rules, which fail
to capture the complex nonlinear relationships within social
networks [9], [10]. Moreover, incentivizing workers’ social
diffusion behavior is crucial for maintaining the stability of
this process. Therefore, the first challenge identified in this
paper is how to effectively model and incentivize workers’



social diffusion processes toward task information.

In social MCS, strong social relationships could motivate
workers to diffuse task information to social friends and
actively participate in the execution of tasks [11]. Studies have
shown that higher levels of sociality correspond to higher com-
pletion rates of tasks [12]. Additionally, by leveraging social
relationships, workers may exert some pressure on their social
friends to better execute tasks, thereby improving task quality
[13], [14]. Privacy problems are also somewhat alleviated
within social networks, as friends are less likely to disclose
each other’s privacy [?], [15]. Existing recruitment approaches
often consider only single-hop social relationships between
workers [16]. However, trust propagation is inherently multi-
hop. For instance, the social relationships between workers
are unobserved, but they can build trust indirectly through
mutual friends [15]. Therefore, the second challenge identified
in this paper is how to predict unobserved social relationships
between workers.

Additionally, before accepting tasks, workers typically rate
different tasks based on individual rationality. Existing worker
recruitment approaches often use historical preference data
to match workers with tasks [17]. However, these preference
ratings are generally limited, and for unknown tasks, workers’
preference ratings are missing. It has been found that a social
network can be used to enhance the prediction of missing
preference ratings [18]. Workers who are social friends with
each other often have similar preferences for tasks. Therefore,
how to predict preference ratings between workers and tasks
is identified as the third challenge in this paper. Finally, how
to model and solve the WRSD problem is another challenge
faced in this paper.

To address the aforementioned challenges, this paper pro-
poses a more suitable WRSD framework, as illustrated in Fig.
1. Firstly, SOTR framework based on GATs is designed to pre-
dict preference ratings between workers and tasks by integrat-
ing cross-modal trust and recommendation features combined
with an attention mechanism. Secondly, SoTP framework
based on GCNs is designed. Initial embeddings are obtained
through pre-training on SoTR framework, followed by the
independent propagation of workers as trustor and trustee
features to accurately predict social relationships between
workers. Based on the workers’ social relationships, the social
diffusion process towards task information is modeled, and a
social incentive mechanism is proposed to motivate the work-
ers’ social diffusion behavior. Finally, considering workers’
social influence, preference similarity, task response ability
and recruited worker scale, the WRSD problem is modeled as
a CMCO problem. A heuristic neighborhood search strategy
is defined, and a specific VNTS algorithm is proposed to
solve the WRSD problem, resulting in the approximate optimal
workers solution for tasks.

The main contributions of this paper are summarized as
follows:

e SoTR and SoTP frameworks based on GATs and GCNs

respectively are designed, integrating cross-modal social
network and social recommendation networks to achieve

accurate predictions of workers’ preference ratings for
tasks and social relationships between workers.

o The social diffusion process of workers toward task in-
formation is modeled and incentivized based on workers’
social relationships, expanding the worker recruitment
solution space.

e The WRSD problem is modeled as a CMCO problem
under budget constraints, considering workers’ social
influence, preference similarity, task response ability, and
recruited worker scale. A heuristic neighborhood search
strategy is defined, and the VNTS algorithm is designed
to solve the WRSD problem, obtaining an approximately
optimal worker solution.

« Extensive experiments are conducted on three real-world
social recommendation datasets, demonstrating that the
proposed approach outperforms the state-of-the-art ap-
proaches in the literature.

II. RELATED WORK
A. Social Diffusion in MCS

As a large number of workers establish social relationships
on the MCS platform, a large and stable social network is
formed, allowing task and worker information to be dissem-
inated through these networks [8]. Many researchers have
studied task diffusion models. Wang et al. [9] proposed
the Acceptance-Aware Worker Recruitment (AWR) approach
for MCS, defining the probability of task diffusion among
workers as the ratio of common friends to total friends, and
randomly diffusing tasks based on this probability. Wang et
al. [19] designed a worker recruitment algorithm using social
relationships and mobility trajectories of workers, greedily
selecting workers by observing the geographic interdependen-
cies between friends in the social network. Chen et al. [10]
proposed a task recommendation algorithm for MCS, aiming
to maximize task completions by utilizing the social network
for task diffusion based on the proportion of common friends
among workers. Xiao et al. [20] addressed the problem of
maximum span-sensitive task allocation in social network,
proposing to use workers’ mobility to diffuse tasks among
workers with overlapping locations, relying on social relation-
ships for autonomous coordination in task execution. Although
this paper also considers task diffusion in social network,
the fundamental difference lies in the consideration of the
diffusion range. In the aforementioned studies, task diffusion
is based on observed social relationships, while this paper
predicts social relationships between workers who are socially
reachable but not observed, thereby significantly expanding
the task diffusion range compared to the approaches in the
aforementioned studies.

B. Worker Recruitment in MCS

Worker recruitment has always been a critical issue in MCS
research, with a focus on how to recruit suitable workers for
tasks [21]. Several approaches have been proposed. Wang et
al. [17] proposed a graph theory-based algorithm to solve the
single-round worker recruitment problem and an Multi-armed



Bandit (URMB) model for multi-round recruitment under bud-
get constraints, aiming to maximize data quality. Zhan et al.
[15] proposed a tabu search recruitment algorithm to maximize
task completion under privacy loss constraints. Gao et al. [22]
proposed a Learning-based Credible Participant Recruitment
Strategy (LC-PRS) to recruit trustworthy workers and inspire
them to contribute high-quality data, aiming to maximize the
benefits of platform and worker. Gao et al. [23] converted
the problem of unknown worker quality into an multi-armed
bandit problem, proposing a UCB-based worker recruitment
algorithm. However, the worker recruitment approaches pro-
posed in the aforementioned studies typically target fixed or
isolated MCS worker sets, which are not suitable for the
WRSD problem that considers the social diffusion of tasks.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model

In this section, the definitions of terms and process descrip-
tions involved in the approach in this paper will be elaborated
upon.

Definition 1: Worker. The worker set is represented as
W = {wy,ws, ..., wn}. This set is dynamically changing to
accommodate worker w; € W to invite social friends through
social diffusion to join W. The historical task interaction
set of w; € W is represented as I(w;) = {t1,...,¢x}. The
location of w; is represented as loc; = {lon;,lat;} € L. The
MCS social network is denoted as G = (V,,, E, ©), where
V., represents the set of social workers, including w; € W
and their social friends. e;; € E denotes the directed social
relationship between w; and w;, and 6;; denotes the trust score
of social relationship between w; and w;. 6;; = 1 denotes that
w trusts w;, while 6;; = 0 denotes that w; does not trust w;.
Definition 2: Task. The set of tasks is represented as T' =
{t1, %2, ..., t, }. The historical worker interaction set of ¢; € T'
is represented as I(t;) = {ws,...,wy}. The location of ¢,
is represented as loc; = (lonj,lat;) € L. The budget of
t; for worker recruitment is represented as ;. Furthermore,
a hypergraph G = (Vi,Vi, By, Ey, R) is introduced to
represent heterogeneous worker-task elements, as shown in
Fig. 2a. In G,V represents the set of historical tasks,
E, = {I(t;),Vt; € V;} represents the set of task hyperedges,
E, = {I(w;),Yw; € V,} represents the set of worker
hyperedges, and R represents the set of preference ratings. It
is noteworthy that the preference rating of w; for t; is equal
to the preference rating of ¢; for w;, i.e., r;; = ;.

Definition 3: Social Reachability. Social reachability refers
to workers being connected through direct or indirect social
relationships. If w; can connect to w; via a series of social
friends, they are socially reachable, i.e., sr;; = 1. Specifically,
as shown in Fig 2.b, w; has a direct social relationship with
wo, and ws has a direct social relationship with ws. According
to the definition of social reachability, w; is socially reachable
to wo because of their direct social relationship, and wy is
socially reachable to w3 despite the lack of a direct social
relationship, as they are connected through ws via the social

Wi
/4]

W3
Wa

Ws

a. Hypergraph b. Social Reachability

Fig. 2: Tllustration of hypergraph G’ and social reachability.

chain wq-ws-ws3.

Definition 4: Social Diffusion. Based on social reachability,
the cross-layer social diffusion nature of workers towards tasks
in MCS social network is further considered. Specifically,
a worker diffuses task information to their social friends,
who then further diffuse task information to their own social
friends, forming a multi-layer social diffusion model. The
dynamic diffusion process is modeled based on social diffusion
probabilities. The social diffusion probability df;; from w; to
wj is calculated as follows:

where p(?ij = 1) represents the predicted probability that
0;; = 1. 0;; denotes the predicted trust score form w; to wj.
For t;, the worker recruitment solution space Sp; is obtained
through social diffusion and calculated as follows:

Sp; ={W Uw,}Vw, € W2

8T

Yw, € W if df,,,, > rd (2)

where rd € [0,1] is defined as the random variable for social
diffusion determination. W, represents the socially reachable
set of w,. Due to the impact of social diffusion probability,
the social diffusion process becomes more difficult with higher
diffusion layers.

Definition 5: Social Influence. The worker’s social influence
is a key factor affecting task utility. Through the MCS social
network, workers could seek help from their social friends
either directly or indirectly, thereby improving task utility.
Specifically, a worker’s social influence is determined by two
factors: the number of socially reachable workers and the
social diffusion probability. The social influence of w;, denoted
as si;, is calculated as follows:

si; = Z dfi; 3)

wj GW;T

Definition 6: Preference Similarity. The preference similarity
between workers and tasks is crucial for task utility. Higher
preference similarity means workers are more willing and
better able to complete tasks, resulting in greater task utility,
benefiting both parties. Therefore, SOTR framework, based
on GATs, is designed to precisely extract preference features
between workers and tasks, as detailed in Section 4. After the
release of ¢;, the predicted preference rating r; ; 1s obtained
based on the preference features of w; and t;, and mapped



as the preference similarity of w; for ¢;. The preference
similarity, denoted as p;;, is calculated as follows:

pij = Warphy @ hllarp )

where ® represents the concatenation operation. h}’ represents
the preference vector of w;, and h; represents the preference
vector of ;. Wy, p represents the weight matrix of the Multi-
Layer Perceptron (MLP).

Definition 7: Task Response Ability. A worker’s task re-
sponse ability is a key factor affecting task utility. Strong task
response ability means that workers could quickly arrive at the
task location and execute the task. Therefore, a worker’s task
response ability is closely related to the distance between the
worker and the task as well as the worker’s mobility speed. The
task response ability of w; to t;, denoted as tr;;, is calculated
as follows:

max(tm) — —dijf”

&)

tr.. =
" max(tm) — min(tm)

dist;; .
where % represents the task response time of w; for ¢;.

dist;; repfesents the distance between w; and t;. v; represents
the mobility speed of w;. max(tm) represents the longest
task response time among the workers in Sp;, while min(tm)
represents the shortest task response time among the workers
in Sp;.

Definition 8: Task Utility. After the release of t;, the task
utility T'u; is calculated by comprehensively considering the
social influence si;, preference similarity p;;, task response
ability tr;; of w; € Sp;, and the recruited worker scale |[W|.
The calculation is as follows:

T’LL]' = ‘Wj| Z Aijij Q Spj (6)
€W,
Nij =& sty - pij - tryj (N

where § represents the value coefficient, W represents the set
of recruited workers for ¢;, and A;; represents the value of w;
for ;.

Definition 9: Reward. Considering the energy consumption
of w; € W; during the execution of ¢;, the reward cr;; paid
by t; to w; is calculated as follows:

Crig =7 distij (8)

where v represents the distance reward coefficient.

Definition 10: Incentive Reward. The social incentive mech-
anism based on the economic theory of decreasing rewards
is designed, taking into account the dynamic changes in the
number of workers. Initially, higher incentive rewards are
paid by the MCS platform to those who successfully achieve
social recruitment when the number of workers in W is low.
Social recruitment is defined as workers inviting their social
friends to join the MCS platform and be recruited for tasks.
As the number of workers in W increases, new workers
are encouraged to join the MCS platform by the same-side
network effect in the MCS social network [24]. Subsequently,
the MCS platform gradually reduces the incentive rewards to

promote earlier participation in social recruitment, with later
participation yielding lower rewards. Overall, the worker base
of the MCS platform is rapidly expanded by this mechanism.
Specifically, after ¢; is released, the dynamic incentive reward
ciz; for w; who successfully achieve social recruitment is
calculated as follows:

>

w, E{W;NW{ .}

Ay
W]

where x represents the incentive reward coefficient.

)

Cijj = K-

B. Problem Formulation

Given Vt; € T, the task utility T'u; is calculated by
considering the preference similarity p;;, social influence si;,
task response ability ¢r;; of each worker w; € Sp;, and the
recruited worker scale |[W;|. Under the budget 3; constraint,
workers are recruited for ¢; to maximize T'u;. Formally, the
WRSD problem is formulated as a CMCO problem as follows:

Maxmize Y. Tu;
JET ! (10)
S.t. Z cr; Sﬂj,vt]‘ €T7Wj QSpj (1)
ieW;

The WRSD problem is NP-Hard.

Proof: In the WRSD problem framework, there exists a series
of items (corresponding to different workers), each with a
certain value (corresponding to the worker’s value) and a
certain weight (corresponding to the worker’s reward). Each
knapsack (corresponding to a task) has a certain weight
capacity (representing the task’s budget). The objective is to
select a combination of items that brings the maximum value
without exceeding the knapsack’s weight limit. Given that
the knapsack problem is known to be NP-hard, the WRSD
problem could be transformed into the knapsack problem using
polynomial time reduction approaches, thereby confirming that
the WRSD problem is also NP-hard.

IV. PROPOSED FRAMEWORK

SoTR and SoTP frameworks, based on GATs and GCNs,
respectively, are shown in Fig. 3a and Fig. 3b, respectively.

A. SoTR Framework

SoTR framework comprises four components: 1) The em-
bedding layer for initializing worker embeddings and task
embeddings. 2) The worker modeling layer for learning latent
features of workers. 3) The task modeling layer for learning
latent features of tasks. 4) The prediction layer for predicting
workers’ preference ratings for tasks to learn model parame-
ters.

1) Embedding Layer: The data in the social task recom-
mendation system includes social data between workers and
interaction data between workers and tasks. These data are
modeled as a MCS social network G and a worker-task
interaction hypergraph G’. The MCS social network captures
social relationships between workers, where mutually trusted
workers tend to exhibit similar task preferences, reflected in
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Fig. 3: Tllustration of SOTR and SoTP Frameworks.

their closely aligned preference ratings for tasks. To this end,
the Node2Vec pre-training method is employed to extract local
and global trust structure features of workers in G, which
are then used as the initial embeddings for w; € V,, in
the SOTR framework, denoted as e; € RP=*1, Additionally,
random embeddings are used to generate initial embeddings
for t; € V4, denoted as e; € RDex1,

2) Task Modeling Layer: Since G’ encompasses both in-
teractions between tasks and workers as well as preference
ratings, the modeling of task interaction awareness xj; must
account for both interaction features and preference rating fea-
tures. Specifically, x;; is formulated by fusing the interaction
information from t; € V; to w; € I(t;) with the preference
rating 7;, with its calculation detailed as follows:

Xji = gt [61‘ & €rji] (12)

where e; represents the embedding vector of w;, and e,
represents the embedding vector of 7;;. g; represents the
weight matrix of MLP for task interaction. Next, the worker
aggregation is employed to learn the task preference vector
h;- for t; € V;. Specifically, worker aggregation for t; is
performed by weighted aggregation of x;;, where w; € I(¢;),
to better learn h;. Mathematically, the worker aggregation for
t; to obtain h’ is calculated as follows:

t
Wi

exp ()
J 2 T ew@p™
wi€lt) 4, ET(e5)

(13)

Olji = WQ g (W1 . [ZL']‘Z‘ ® 6]'] + bl) + b2 (14)

where o;; represents the attention score of x;;, parameterized
by a two-layer neural network. e; represents the embedding

vector of ¢;. Wagg, Wi, and W, represents the trainable

parameters of the SoTR model. b; and by represents the
trainable bias terms of the SoTR model.

3) Worker Modeling Layer: By introducing the worker
interaction awareness x;; form w; € V,, to t; € I(w;), the
interaction process from wj; to t; is formulated. x;; integrates
the interaction information from w; to t; with the preference
rating 7;;, calculated as follows:

Tij = Gw - [ej & emj] (15)
where e, represents the embedding vector of r;;, and g,
represents the weight matrix of MLP for worker interaction.
Next, task aggregation is used to learn the preference vector
h} of w;. Specifically, task aggregation for w; is performed
by weighted aggregation of x;;, where t; € I(w;), to better
learn h;. Mathematically, the task aggregation for w; to obtain
h}” is calculated as follows:

exp (Oé,L)
h;” =0 W;Ugg Z J Xij o+ b
by €l(ws) | g(:wi) €xp (O‘z‘j)
(16)
:W2~U(W1 . [Xij®ei]+b1)+b2 (17)

where o;; represents the attention score of x;;, parameterized
by a two-layer neural network.

4) Prediction Layer: After aggregation, the preference vec-
tors of workers and tasks (i.e., h{’, Vw; € V,, and h;, vt; € Vy)
are obtained, concatenated, and then input into an MLP for
preference rating prediction:

ho = [h}’ ® h!] (18)

hy =0 (Wi-hj_1+by) (19)

=W, h (20)

where [ denotes the number of hidden layers. rgj represents

the predicted preference rating of w; for ¢;. W;, W,, denotes
the trainable weight matrices of MLP, and b; represents the
trainable bias terms of MLP. To update model parameters, the
mean squared error loss function L’ is used as the objective
function, defined as follows:

DN

i,j€0

2y

where |O] is the number of observed preference ratings. r;;
denotes the ground truth preference rating of w; for ¢;.

B. SoTP Framework

SoTP framework consists of four parts: 1) the embedding
layer for initializing worker embedding; 2) the trust aggre-
gation layer to learn trust features of workers; 3) the trusted
aggregation layer to learn the trusted features of workers; 4)
the prediction layer to learn model parameters by predicting
social relationships between workers.



1) Embedding Layer: The initial embedding of each w,, €
V. in SoTP model is obtained through pre-training on SoTR
model, denoted as h¥ € RP<*! This ensures that the
initial embeddings of workers contain task preference features,
enriching the trust features of workers during the training of
SoTP model. Specifically, the initial trust vector h[u] and
initial trusted vector h%[u] of w, € V,, are given as follows:

hd[u] = h? (22)

h7lu] = hy (23)

2) Trust Aggregation Layer: Due to the asymmetric nature
of social relationships, workers could play both the roles of
trustor and trustee [15], [25]. First, considering workers as

trustors propagating trust, the trust interaction vector Atﬁw of
w,, trusting w,, is calculated as follows:
l -1 l
Aty = ho ' [0] ® (Wi - v} (24)

where | represents the propagation layers. W}, denotes the
trainable weight matrix of the trust interaction at layer [.
Further, trust aggregation is used to learn the trust features
of workers as trustors. Specifically, trust aggregation is used
to calculate the degree to which a worker trusts other workers.
The more a worker trusts others, the higher their trust degree.
Mathematically, the trust aggregation to obtain the worker trust
vector hl, is calculated as follows:

Wy =0 (W(l) (ZAH) + blo) (25)
where WlO denotes the trainable weight matrix of the trust
aggregation at layer [, b}, represents  the trainable bias term of
the trust aggregation at layer [, and A represents the adjacency
matrix.

3) Trusted Aggregation Layer: Considering workers as
trustees propagating trust, the trusted interaction vector Ptiu
of w,, trusted by w, is calculated as follows:

Pty, = hi [v] @ {Wy, - Ouu } (26)
where W, denotes the trainable weight matrix of the trusted
interaction at layer [. Trusted aggregation is used to learn the
trusted features of workers as trustees. Trusted aggregation
is used to calculate the degree to which a worker is trusted
by other workers. The more a worker is trusted by others,
the higher their trusted degree. Mathematically, the trusted
aggregation to obtain the worker trusted vector k' is calculated
as follows:

W =0 (W} (ZTPH) + bl,) 27)
where W' denotes the trainable weight matrix of the trusted
aggregation at layer /, and blI represents the trainable bias term
of the trusted aggregation at layer .

4) Prediction Layer: The trust vector h[u] of w, € Vi,
at layer [ and the trusted vector h![v] of w, € V,, at layer [
are concatenated, and then input into a Fully Connected (FC)
layer for predicting the social relationship, the predict trust
score éuv of social relationship is calculated as fellows:

éuv =0 (ch : (th[u} ® hl[[v]))

where Wy, represents the FC matrix. Then, cross-entropy loss
is utilized as the optimization objective to train the model
parameters, quantifying the discrepancy between the predicted
trust score and the ground truth trust score. The loss function
L is defined as follows:

(28)

1
L=——
1€
where CE represents cross-entropy function. |€2| represents the
number of observed trust scores. O represents the SOTP model
parameters. A\ represents the weight of the regularization term.

CE(6,0) + \|©|2 (29)

V. WORKER RECRUITMENT: PROPOSED APPROACH

After the tasks are released by task publishers, the social
diffusion process of workers towards the task information is
modeled based on their social relationships, thereby obtaining
the worker recruitment solution space for tasks. Next, the
preference similarity of workers towards tasks and their social
influence are calculated using the trained SoTR and SoTP
models. Subsequently, the task response ability of workers
is determined by considering their mobility speeds and the
distances between workers and tasks. The WRSD problem is
then modeled as a CMCO problem by comprehensively con-
sidering preference similarity, social influence, task response
ability, and recruited worker scale. Finally, the WRSD problem
is solved using the VNTS algorithm, and workers achieving
social recruitment are paid incentive rewards to promote their
active participation in task information diffusion. The specific
steps are as follows:

Step 1:Social Diffusion. For each t; € T, df,, of between
w, € W and w, € W, is calculated using Eq. (1). A
random variable rd € [0, 1] is iteratively generated, and social
diffusion is performed using Eq. (2) to obtain Sp; for ¢;.
Step 2:WRSD Problem Modeling. For each w; € Spj, pi;
and si; are obtained using the trained SoTP and SoTR models
with Eq. (3) and Eq. (4). tr;; is calculated using Eq. (5). Tu;
is calculated using Eq. (6), and the WRSD problem is modeled
as a CMCO problem using Eq. (10) and Eq. (11).

Step 3: Solving WRSD Problem with VNTS Algorithm.
A specific VNTS algorithm is proposed to solve the WRSD
problem, aiming to maximize task utility by recruiting an
approximately optimal workers solution under budget con-
straints. The VNTS algorithm steps are as follows:

Substep 1: Initialization. Calculate A;; using Eq. (7), cry;
using Eq. (8), and 3—”] for all w; € Sp;. Sort Sp; in
descending order by ﬁ—j} Initialize the neighboring solutions
set W;lelghbor _ {}

Substep 2: Updating. Add w; € Sp; to Wil in - order
until Zwiew;nm] crij < f;, where W;““‘al represents the



initial worker solution. Set Wt = W""“a' where Wgurrent
represents the current worker solutlon Update Wf“"em to the
tabu list Ly,. Calculate T'u; (W) of Wguren,

Substep 3: Neighborhood Search. The n-th neighborhood
(n € [1,|Wtent]) is as follows: (a) Initialize L, = {}
and set W;”"em" = W™, where W;“"em" represents
the current worker solution for the n-th neighborhood, and
L,, represents the tabu sublist for the n-th neighborhood.
(b) Set Sp} = Sp; \ W™, where \ represents the
set difference operation, and Sp} represents the worker re-
cruitment solution space in the n-th neighborhood. (c) Set
Sglcomplete — W;urrenln \ {maxn (Crij)a w; c W;urrenln}, WhCI'C
Sincomplete ponresents the incomplete solution for the n-th
neighborhood, and {max, (cri;), w; € W;"™ "} represents
the set of top n workers in terms of cr;; from W;"™"". (d)
Update 3; = ;=3 _,, ¢ gmompiec €15 and set Sp’ = {w; | w; €
Splt,crij < B;}. (e) Add w; € Spj to Gincomplete 5 order until
D, gimomiee €T < (. Set Sy, = Smwmp e S, represents the
solution for the n-th neighborhood. If S,, € L,, then update
Sp% = Sp} \ Spj||repeat(S,)|] and repeat step (e), where
[repeat(S,,)| represents the number of times S, is repeated in
Ly, Spj[[repeat(S,,)|] represents the top |repeat(Sy,)| elements
3711]] in Sp;b Wpelghbor

in terms of Otherwise, update j

W]“mgmmr U S, and set Wcurrem” = S,. Repeat steps (b)-(e)
until the maximum 1terat10n count Iterationsy,,. for the n-th
neighborhood is exceeded.

Substep 4: Neighborhood Evaluation and Update.

Set VV"e]ghbor = argmax(Tu;(S),VS € Wne]ghbor, where
g j

e Tepresents the neighborhood solution with the highest

task utility. If Tu; (WISEM") > Ty (Weurrent) and TWIHEM0r ¢

Jmax Jmax

Ly, then set WEument = [ and add Wi 1o L,,
Otherwise, set Sp; = Sp;, \Spj[ |. Tterate back {0 the substep 2
until the maximum iteration count Iterationsyax is exceeded.
After the iteration ends, set W; = W;”m"m, W =WUuWw;.
Step 4:Payment and Social Incentive.

Substep 1: Payment. For each ¢; € T, calculate cr;; using
Eq. (8) for all w; € W;. Task publishers then pay cr;; to each
w; € Wj.

Substep 2: Social Incentive. Identify each w, € T; who is
socially recruited. Calculate ci;; using Eq. (9) for w; € W
who diffused ¢; to w,. The platform then pays ci;; to w;.

VI. PERFORMANCE EVALUATION

This section primarily introduces the experimental setup,
including datasets, baselines, metrics, parameters, and evalu-
ation results. The hardware configuration for the experiment
includes an Intel Core i5-12490F CPU, an NVIDIA GeForce
RTX 4060Ti GPU with 8GB VRAM, and 32GB RAM.

max

A. Datasets

Extensive experiments are conducted in this paper based
on three real-world datasets: Ciao, Epinions, and FilmTrust.
These datasets are sourced from popular social websites Ciao
(http://www.ciao.co.uk), Epinions (www.epinions.com), and
FilmTrust. Each dataset contains a large volume of user

TABLE I: Statistics of the datasets

Dataset Ciao Epinions  FilmTrust
Users 7,317 18,088 1,508
Items 104,975 261,649 2,071
Preference Ratings 283,319 764,351 35,497
of Density(Preference Ratings) 0.0368%  0.0161% 1.14%
Trust Scores 111,781 335,813 1,853
of Density(Trust Scores) 0.2087%  0.1087%  0.0688%

TABLE II: Statistics of SoTP and SoTR Models Performance

Datasets Ciao Epinions  FilmTrust
Acc(SoTP) 90.2% 93.4% 73.5%
F1-Score(SoTP)  82.7% 86.0% 69.2%
MAE(SoTR) 0.8179 0.9499 0.7099
RMSE(SoTR) 1.0426 1.1790 0.9321

preference ratings for items and social information among
users. User preference ratings for items are mapped to worker
preference ratings for tasks, and user social information is
mapped to MCS social network. The preference ratings range
from O to 5. Detailed statistical information about these
datasets is provided in Table I.

B. Baselines

TSR Algorithm (TMC 2024) [15]: Adjusted for the WRSD
problem under budget constraints, the algorithm utilizes a tabu
list and heuristic neighborhood strategy, dynamically adjusting
the solution structure driven by the value-to-reward ratio to
seek near-optimal solutions. MA-RAWR Algorithm (TMC
2021) [9]: Adjusted to solve the WRSD problem under budget
constraints, worker solution chromosomes are divided into
high, medium, and low segments based on workers’ values,
employing differential evolution and improved neighborhood
structures to find near-optimal solutions. Greedy Nearest Dis-
tance Algorithm (G-Dist) [20]: Selects the group of workers
closest to the task under budget constraints. Greedy Optimal
Value-to-Reward Ratio Algorithm (G-OptValue): Under bud-
get constraints, workers with the highest value-to-reward ratio
are recruited through this algorithm. Greedy Social Influence
Algorithm (Greedy-SI): Under budget constraints, workers
with the highest social influence are recruited through this al-
gorithm. Non-Social Diffusion VNTS (NoSD-VNTS): VNTS
algorithm without social diffusion. Random Recruitment Al-
gorithm (Random-R): Under budget constraints, workers are
randomly recruited in multiple rounds.

C. Metrics

F1-Score: A metric that combines precision and recall to
evaluate the performance of a classification model. Acc: The
ratio of correctly classified samples to the total number of sam-
ples is indicated by the classifier. MAE: The average absolute
error between the predicted values and the actual values is
measured in a regression model. RMSE: The evaluation error
is reflected by calculating the square root of the mean of the
squared differences between the predicted and actual values.



-@- VNTS ° -@- VNTS -8- VTS .9
400 X GOptvalue - 8007 - G.opvalue /’ 009 =X~ G-Optvalue
~¥- G-Solf . ~¥- G-Solf -¥- G-SolF
~4- MARAWR e 700] ~4- MARAWR -4~ MARAWR .
NoSD-VNTS o NoSD-VNTS 50 NoSD-VNTS ,’
TSR s TSR TSR /
| -m- Gpist e 6001 m- G.pist / -M- G-Dist
00 Random-R 4 Random-R e Random-R
. .
z »” Zw =
E E » =
=
= 5w 2
Az 200 ] 7] 8.
a Iz < e -
< E [ /
= = 300 . o
rj & 0 -
100 ,/" 200
4 e 0
100
- [ 2o R peosiiiiooo X
of Bemmmmzzms % 2 o] WmosssmssezzzsszagEsioess # 4 0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Budget Budget Budget
(a) Ciao (b) Epinions (c) FilmTrust
Fig. 4: Task Utility of Different Algorithms Under Various Budgets
-®- VNTS ' 501 -@- s ., 35 [
-X- G-OptValue L7 T X~ G-OptValue S
~¥- G-SolF -~ e “¥- GSolF
2001 -4 MARAWR .77 S ,/. 3001 -4~ MA-RAWR bt 30 - F h
NoSD-VNTS @ . . NoSD-VNTS N / NoSD-VNTS / .
TSR RN L TSR ‘e / TSR
-~ G-Dist AN 2501 M- GDist TTTeey ® / 25| "= G-Dist
. Random-R v Random-R Y, Random-R
o, 1% . > /l\\ /
£ = 20 = B ~d
5 S5 =} ]
-
% w0 % 150 / I
] z \ 8
= &= N =
» L)
100 0
%
0

Task

(a) Ciao

Task

(b) Epinions

Task

(c) FilmTrust

Fig. 5: Task Utility of Different Algorithms Under Various Tasks

Task Utility: The quality of the worker solution recruited for
the task. NoW: The number of workers after social diffusion.

D. Parameter Settings

In this paper, SoTR and SoTP are implemented using
PyTorch. SoTR generates 64-dimensional worker and task
embeddings using Node2Vec and random initialization, re-
spectively. The model uses a batch size of 256, with a learning
rate of 0.001, a decay factor of 0.1, and a decay step of 30. All
neural components use three hidden layers. For each dataset,
SoTR uses 80% of the data for training, 10% for validation,
and 10% for testing. SOTP pre-trained with SoTR, produces
64-dimensional initial worker embeddings for trustors and
trustees. The learning rate is 0.01, and the output dimensions
of the trust convolution layers are [64, 64, 64]. SoTP uses
80% of the data for training and 20% for testing. For the
VNTS algorithm, Iterationsy,,(n € [1,[WH™[]) is set to
100, Iterationsm,x to 50, and the tabu list size is adaptively
set. The default number of social diffusion layers is 1. |[W] is
set to 50, with task and worker locations randomly generated
within Manhattan, New York City. Worker mobility speeds
range from 4 km/h to 40 km/h. ¢ is set to 0.02. v and «
are set to 1.The maximum social influence per worker is 100.
Parameter settings for TSR and MA-RAWR are referenced
from [15] and [9].

E. Evaluation Results: Evaluation performance of SoTR and
SoTP models

To realistically evaluate the performance of SoTR and
SoTP models in predicting preference ratings and trust scores,
experiments are conducted on three real datasets. SOTP model
demonstrated excellent performance in terms of F1-Score and
Acc, while SoTR model exhibited outstanding performance
in terms of MAE and RMSE.The specific evaluation results
are shown in Table II. It is noteworthy that trust prediction
with SoTP model performs poorly on the FilmTrust dataset.
The low density, sparse data, and unbalanced distribution of
the FilmTrust social network prevent SoTP model from ade-
quately learning the underlying patterns and features of worker
trust. In contrast, the SoTR model demonstrated excellent
performance in preference rating prediction on the FilmTrust
dataset. With its focus on social recommendation networks and
higher preference rating density, FilmTrust provided clearer
and more effective data for the SoTR model, facilitating
improved learning of worker-task preference relationships.

F. Evaluation Results: Task Utility of Different Algorithms
Under Various Budgets

The evaluation is conducted on three real datasets to eval-
uate the task utility of different algorithms under varying
budgets, ranging from 10 to 60 with a step size of 10. Fig. 4
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shows each algorithm’s task utility across varying budgets. The
proposed VNTS algorithm consistently outperforms others,
due to its comprehensive consideration of workers’ preference
similarity, social influence, task response ability, recruited
worker scale and an effective heuristic neighborhood search
strategy. Task utility also rises with larger budgets, as they
enable the selection of more high-quality workers. In contrast,
MA-RAWR performs poorly in solving the WRSD problem
due to its limited neighborhood strategy. Worker solutions are
categorized into high, medium, and low segments based on
value, focusing on crossover mutation within the high and
medium segments. This leads to minimal changes in neighbor-
hood solutions and inefficient exploration of the search space.

G. Evaluation Results: Task Utility of Different Algorithms
Under Various Tasks

The task utility of different algorithms was validated across
various tasks using three real datasets, with six tasks released
sequentially. Fig. 5 shows that the proposed VNTS algorithm
outperforms others in task utility across different tasks. How-
ever, VNTS’s performance varies across datasets due to differ-
ences in the number of social friends among workers. In the
FilmTrust dataset, which has a small-scale social network, the
limited number of social diffusion friends results in minimal
differences in recruitment solutions before and after diffusion.
Thus, VNTS shows only slight improvement over NoSD-

VNTS, as seen in Fig. 5c. In contrast, for datasets with large-
scale social networks, social diffusion enables more high-
quality worker solutions, amplifying VNTS’s advantages and
significantly surpassing algorithms without social diffusion in
task utility.

H. Evaluation Results: NoW of Different Algorithms Under
Various Social Diffusion Layers

To compare the NoW of different diffusion models, the ini-
tial number of workers was set to 1. VNTS-SocialD and MA-
RAWR-SocialD were established as the diffusion models for
VNTS and MA-RAWR, respectively. As shown in Fig. 6, the
NoW of VNTS-SocialD was found to rank second only to the
optimal baseline SocialD as social diffusion layers increased.
In contrast, SocialD and RandomD used simpler strategies,
setting diffusion probabilities for all socially reachable friends
to 1 and 0.5, respectively. VNTS-SocialD determined prob-
abilities by capturing complex nonlinear relationships in the
MCS social network and used a social incentive mechanism,
making diffusion more realistic. MA-RAWR-SocialD defined
its diffusion probability as the ratio of mutual to total friends,
leading to lower efficiency and unsuitability for the WRSD
problem based on social incentives.



L. Evaluation Results: NoW of VNTS with Different Social
Influences Across Various Social Diffusion Layers

To distinctly compare the NoW trends of VNTS under
different social influences as social diffusion layers increase,
the initial number of workers was set to 1, with Max Social
Influence, Med Social Influence, and Min Social Influence
representing the initial worker having maximum, medium, and
minimum social influence, respectively. As shown in Fig. 7,
NoW increases with diffusion layers and correlates positively
with social influence, with Max Social Influence performing
best. This is because social influence correlates positively with
diffusion probability and the number of socially reachable
friends. Greater social influence implies a higher probability of
spreading task information to more friends, with this advantage
further amplified as diffusion layers increase. In contrast, when
social influence is low, diffusion may be interrupted, causing
NoW to drop to zero.

VII. CONCLUSION

The SoTR framework is designed to handle social recom-
mendation data by extracting preference features through task
and worker aggregation to predict workers’ preference ratings
for tasks. Following this, the SoTP framework handles social
data by extracting worker trust and trusted features through
trust and trusted aggregation, respectively, to predict social
relationships among workers. The social diffusion process
of workers towards tasks is then modeled and incentivized.
Under budget constraints, the WRSD problem is modeled as
a CMCO problem. A heuristic neighborhood search strategy is
developed, and the VNTS algorithm is proposed to solve the
WRSD problem, yielding an approximately optimal worker
solution for tasks. Extensive evaluations on three real-world
datasets demonstrate that the proposed approach outperforms
state-of-the-art methods in the literature.
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