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Abstract

Large Language Models (LLMs) have emerged with many intellectual capacities.
While numerous benchmarks assess their intelligence, limited attention has been
given to their ability to explore—an essential capacity for discovering new informa-
tion and adapting to novel environments in both natural and artificial systems. The
extent to which LLMs can effectively explore, particularly in open-ended tasks,
remains unclear. This study investigates whether LLMs can surpass humans in
exploration during an open-ended task, using Little Alchemy 2 as a paradigm, where
agents combine elements to discover new ones. Results show most LLMs underper-
form compared to humans, except for the o/ model, with those traditional LLMs
relying primarily on uncertainty-driven strategies, unlike humans who balance
uncertainty and empowerment. Results indicate that traditional reasoning-focused
LLMs, such as GPT-40, exhibit a significantly faster and less detailed reason-
ing process, limiting their exploratory performance. In contrast, the DeepSeek
reasoning model demonstrates prolonged, iterative thought processes marked by
repetitive analysis of combinations and past trials, reflecting a more thorough and
human-like exploration strategy. Representational analysis of the models with
Sparse Autoencoders (SAE) revealed that uncertainty and choices are represented
at earlier transformer blocks, while empowerment values are processed later, caus-
ing LLMs to think too fast and make premature decisions, hindering effective
exploration. These findings shed light on the limitations of LLM exploration and
suggest directions for improving their adaptability.

1 Introduction

Large Language Models (LLMs) have become landmarks of modern Atrtificial Intelligence, show-
casing remarkable human-like cognitive capacities through their ability to predict and generate text
recursively [4}141145]. The question of whether LLMs have reached or will achieve Atrtificial General
Intelligence (AGI) continues to spark debate, fueled by an ever-growing body of empirical evaluations.
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While extensive benchmarks have been developed to assess how LLMs perceive, think, reason, and
act across diverse environments, limited attention has been given to their capacity for exploration.
Exploration—defined as behaviors aimed at discovering new information, possibilities, or strategies,
often at the expense of immediate rewards—plays a crucial role in intelligence, enhancing long-term
understanding, adaptability, and performance. This behavior stands in contrast to exploitation, which
focuses on leveraging known information for immediate benefits.

Exploration has been extensively studied in the fields of Reinforcement Learning [19l 40] and
human learning [10, 49, [17]. In human learning, exploration strategies are typically categorized
into three types: random exploration, uncertainty-driven exploration, and empowerment. Random
exploration introduces stochastic noise into behaviors, enabling agents to stumble upon new informa-
tion. Uncertainty-driven exploration prioritizes sampling actions with uncertain outcomes to reduce
ambiguity and improve decision-making confidence. Empowerment, on the other hand, emphasizes
intrinsic rewards and open-ended discovery, driving agents to maximize possibilities rather than
optimizing specific outcomes. This type of exploration aligns closely with behaviors observed in
tasks like scientific research, where the goal is to uncover as many novel possibilities as possible.

Although preliminary research suggests that LLMs exhibit limited exploratory behavior compared to
humans [4], current investigations are narrow in scope, often focusing on bandit tasks [21}24]. These
studies provide an incomplete understanding, neglecting the diverse forms of exploration, particularly
empowerment. To bridge this gap, our study investigates LLMs’ exploration capacities in a broader
context, examining both uncertainty-driven exploration and empowerment.

We address three key research questions in this work:

¢ Can Large Language Models explore effectively in an open-ended task, comparable to
humans?

* What exploration strategies do LLMs employ, and how do these compare to human
strategies?

* Why do LLMs succeed or fail in exploratory tasks, and what mechanisms underpin
their performance?

To explore these questions, we adopt the experimental paradigm of Bréndle et al. [6], using the
video game Little Alchemy 2 (see methods [3.1). In this game, participants aim to create as many
elements as possible by combining known elements, a task that closely aligns with the concept of
empowerment and offers a robust framework for evaluating open-ended exploration. We then apply
regression models to analyze the exploration strategies of humans and LLMs, focusing on both
uncertainty-driven and empowerment-based behaviors (see methods[3.3)). Finally, we deploy Sparse
AutoEncoders (SAE) to probe the latent representations of exploration-related values, providing
insights into how LLMs process information and generate exploratory behavior. This study not only
enhances our understanding of LLMs’ exploratory abilities but also highlights exploration as a key
element for building more adaptive and intelligent Al systems.

2 Related Work

Exploration in Reinforcement Learning and Human Learning

Exploration, as a crucial intellectual capacity in both natural and artificial agents, has been extensively
investigated in both reinforcement learning and human learning. In reinforcement learning, decades
of research have led to the development of principled exploration mechanisms, including optimism
in the face of uncertainty [3]], posterior sampling [29]], and intrinsic motivation based on novelty or
prediction error [31} 18]]. More recent advances emphasize structured and scalable exploration using
ensemble-based uncertainty estimates [28], world-model disagreement [36], and offline unsupervised
skill discovery [13]. These algorithmic innovations not only aim to solve high-dimensional, sparse-
reward problems but also offer testable analogues to human strategies such as random exploration,
goal-directed novelty seeking, and strategic uncertainty reduction.

In human learning, cognitive scientists primarily focus on the neurocomputational mechanisms
underlying exploratory behavior. Through computational modeling, researchers have identified
exploration strategies commonly used by humans, such as random and directed exploration [49, |17,
47]], as well as empowerment [6]]. Numerous studies have shown that humans excel at balancing



exploitation and exploration [38, [14]], and at employing diverse exploratory strategies [48]. Using
neuroimaging and non-invasive brain stimulation techniques, neuroscientists have revealed the neural
correlates and causal mechanisms of exploration behaviors, strategies, and task representations in
regions such as the frontopolar cortex and intraparietal sulcus [10l 53]. These algorithmic and
implementational discoveries help explain how and why humans explore effectively.

Understanding LLM Cognition

Recent research has examined the cognitive capacities of large language models (LLMs), covering
domains such as decision-making [4], theory of mind [39]], analogical reasoning [45]], and temporal-
difference learning [[12]. However, most of these studies focus on evaluating task performance
across model variants, offering limited insight into the internal computational mechanisms behind
success or failure. Notably, Demircan et al. [12] applied sparse autoencoders (SAEs) [23. 7] to
investigate value-state representations in TD-learning, demonstrating both correlational and causal
links between activations and learned value structures—an approach that parallels techniques in
human neuroscience. Yet, despite growing interest in LLM cognition, the capacity of LLMs to
explore remains underexplored. Existing studies on LLM exploration are largely confined to bandit
tasks [24}121]], leaving open the question of whether—and why—LLMs fail to explore effectively in
open-ended environments.

LLM Agents Exploration

In a parallel line of research, several works have explored the use of language models as agents
in text-based games [1} 2,152} [30]. In addition, recent studies have deployed LLMs in open-ended
environments such as Minecraft [44} [15, [16] or for hypothesis testing [20]. There is also algorithmic
and mechanistic research on the exploration of LLM agents, such as applying RL algorithms (e.g.,
Posterior Sampling for Reinforcement Learning) to LLM agents [3| 18], or leveraging known
abilities like in-context learning to enable exploration [35} 33]. However, these efforts primarily
aim to optimize task performance and often lack deeper investigation into the algorithmic and
implementational mechanisms underlying the exploration capabilities of LLMs in such environments.

3 Method

3.1 Task Description: Little Alchemy 2

Little Alchemy 2 involves discovering new elements by combining a predefined set of basic elements:
water, fire, earth, and air. These elements serve as the initial inventory, and players (humans or LLMs)
attempt to discover new combinations based on deterministic rules (see Figure[T). The total is 720
elements and the elements range across categories including nature, space, animals, plants, food,
inventions, technology, science, tools, buildings, lore, and myths. Among these elements, only 3,452
combinations (out of 259,560) can successfully create other elements and therefore, it requires a
semantic understanding of the elements (i.e., empowerment) to explore effectively. This framework
mimics a creative combinatorial space exploration task, challenging participants to explore patterns
to expand their inventory.

3.2 Experimental Setup

Data from 29,493 human participants across 4,691,033 trials establish the benchmark. The players
were instructed in the rules of the game and tasked with discovering new elements. Performance was
measured by the average number of new elements discovered.

We evaluated the performance of five LLMs: gpt-40-2024-08-06 (GPT-40 [26]), 01-2024-12-17 (ol
[27]), Meta-Llama-3.1-8B-Instruct (LLaMA3.1-8B [22]]), Meta-Llama-3.1-70B-Instruct (LLaMA3.1-
70B [22]]), and DeepSeek-R1 [[L1]. These models were selected to represent a range of model sizes
and architectures, closed source as well as open source, allowing us to analyze impacts from model
variations on exploration and discovery. Each model was prompted with game rules, current inventory,
and trial history to contextual reasoning (Figure[I). Their outputs were constrained to valid game
actions, in the format of element + element (for complete prompts, see Figure [§A).

To investigate the impact of randomness on exploration, we varied the sampling temperature across
four settings: 0.0, 0.3, 0.7, and 1.0 (o1 is not available to set parameters and defaults as 1), and under
each temperature, there are five repetitions for running the experiment. Lower temperatures encourage



deterministic outputs, favoring exploitation, while higher temperatures introduce stochasticity, pro-
moting exploration. These settings allowed us to examine the trade-offs between exploring uncertain
combinations and leveraging known strategies. OpenAl and Deepseek-R1 models experiment are
conducted via API calls. LLaMA3.1-70B and LLaMA3.1-8B are launched in computing cluster, with
an NVIDIA A100-80GB running 13 hours and 2 hours to complete all the experiments (with all the
settings and repetitions).

3.3 Regression: Empowerment vs. Uncertainty-Driven Strategies

To analyze exploration dynamics in Little Alchemy 2, we assessed the roles of empowerment and
uncertainty in decision-making:

3.3.1 Empowerment

Empowerment: In the context of Little Alchemy 2, empowerment translates into the players’ intrinsic
desire to create elements that offer many new successful combinations, selecting those that maximize
future potential (e.g., unlocking paths to more elements). For example, the element “human” in
combination with other elements leads to 83 new elements, while “alien” leads to only 1 new element.
Thus, the “human” element is more empowering than the “alien” element. Brindle et al. [6] uses a
neural network to predict empowerment because it effectively models the complex combinatorial
relationships and potential outcomes within Little Alchemy 2. By leveraging the neural network,
the method incorporates multiple factors, including the probabilities of successful combinations,
the likelihood of specific results, and the intrinsic empowerment values of resulting elements. This
approach ensures an accurate estimation of the empowerment value by capturing both the immediate
and future potential combinations.

To align with the original methodology, we use the same empowerment value of each combination
from the neural network model in our regression. Empowerment E(e., ) for a combination c4 p is

modeled as:
720

E(ec, ) = P(link,, ,)- > P(result,, , = i) - E(e;)
1=0
where:

* P(link., ): Probability of successfully combining A and B.

* P(result = ): Probability that c4 p results in element 1.

CA,B

* E(e;): Empowerment of ¢, based on future combinations.

As new trials occur and outcomes are observed (e.g., combining water and fire leads to a novel
inventory steam), these outcomes provide evidence to update the empowerment values of elements
used in the combination. The success or failure of attempts refines the empowerment scores, which
directly influence choices made by the LL.Ms in the following trials. The empowerment value for
each trial’s elements is updated using dynamic updates, based on the empowerment values predicted
by a neural network. Empowerment is updated as follows: when a successful combination creates
a novel result, the empowerment values of the involved elements are increased. If a successful
combination is repeated and no new elements are created, empowerment remains unchanged. On
failure, the empowerment values are slightly decreased. This method captures the intrinsic motivation
of selecting combinations with higher future potential, refining element values dynamically as the
game progresses. Empowerment scores are updated via dynamic updating based on trial outcomes.

E(e;) - increase_factor, if success
L(E(e;)) = | E(e;) - decrease_factor, if fail
E(e;), if repeat

3.3.2 Uncertainty-Driven Exploration

Uncertainty reflects the novelty of element use, defined as:

log(T")

U. =
te+1




where T is the total trials, and ¢, is the count of element e being chosen. Higher U, encourages
exploration of less-used elements.

3.4 Statistical Analysis

To examine the relationship between temperature, empowerment, uncertainty, and performance in
Little Alchemy 2, we employed generalized linear mixed-effects models (GLMMs) with varying
configurations tailored to different aspects of the task. This approach allowed us to assess how
LLMs and humans adapt their exploration strategies under different conditions. Model 1: We
modeled the decision-making process to explore the influence of empowerment and uncertainty
on element selection. Model 2: To investigate how sampling temperature interacts with empower-
ment and uncertainty, we extended the above model, interaction terms (temperature*empowerment,
temperature*uncertainty) to assess how temperature impacts empowerment- and uncertainty-driven
strategies.

3.5 Thought Analysis

To investigate the differences in reasoning processes between traditional LLMs and specialized
reasoning models, we compared GPT-40 and DeepSeek-R1. For GPT-40, reasoning traces were
elicited using Chain-of-Thought (CoT) prompting and extracted from its responses. In contrast,
DeepSeek-R1 natively generates reasoning tokens without explicit prompting.

We analyzed the reasoning traces by first segmenting them into individual sentences. Each sentence
was then annotated with one of seven predefined reasoning labels: state goals, check current inventory,
past trial analysis, element property reasoning, combination analysis, outcome prediction, and final
choice. We employed GPT-4.1 as an automated classifier to assign labels to each sentence.

To reduce redundancy and better capture the structure of coherent reasoning segments, consecutive
sentences with the same label were merged into a single labeled unit. This allowed for a more
interpretable and concise representation of the reasoning flow.

3.6 Sparse Autoencoder (SAE) Analysis

SAE is a type of auto-encoder structure that can reconstruct inputs with L2 norms in the latent space
[23]:
}A( = g(f(xa W67 bE); Wda bd)?

where:

o z = f(x; Wg,b.) = 0(Wx + b,) is the encoder output (latent representation).
* X =g(z; Wy, bys) = W4z + by is the decoder output (reconstructed input).
e W, € R™ ™ and Wy € R"*™ are the encoder and decoder weights, with W, = WeT
¢ b, € R™ and b; € R™ are the encoder and decoder biases.
* o(-) is the activation function (i.e., ReLU).
The goal of training SAE is to minimize the reconstruction loss, as well as the L2 norm which forces

the latent space to be sparsity:

m
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where:

¢ ||x® — %@ |2 is the mean squared reconstruction error for sample i.
* )\ is the weight for the sparsity regularization term.

* z; is the activation of the j-th neuron in the latent representation z.

|lw;||2 is the L2 norm of the corresponding encoder weight vector w;.



Recently, SAE has been proposed to understand the latent representation in language models [[7, [12].
To explore how Large Language Models (LLMs) represent cognitive variables such as empowerment
and uncertainty in the context of the alchemy game, we used Sparse Auto-Encoders (SAEs) to learn
the latent representations of elements within the model. For each layer, we extracted embeddings
from each trial’s available element in the choice set and train them in the SAE. Then we correlate
each neuron in the hidden layer in SAEs with our target cognitive variables (i.e., choices, uncertainty
values, and empowerment values) and find out the most correlated neuron, where we suppose
the relevant variable is most strongly represented. This analysis will help us understand how the
model represents and processes cognitive information through the transformer blocks. Finally, we
conduct an intervention to examine whether ablating the most correlated neuron causally reduces the
corresponding exploration strategy employed by the LLM in the task. Training and analyzing SAEs
across all the layers takes 42 hours with an NVIDIA V100 GPU.

4 Results

A B C

Final Inventory Distribution Across Player Types (Density)

Player Type
595 LLaMA3.1-8B (Mean: 8.6)
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Figure 1: A: LLMs Game Process. LLMs select two elements per trial based on the inventory and
trial history. B: Human Game Interface. Players select two elements to discover new elements,
added to the inventory. C: LLMs and Human Performance.

4.1 Most LLMs Performed Worse Than Humans, Except o1

From 29,493 human players, 90% completed fewer than 500 trials. Experiments were set up with
500 trials for the LLMs. On average, LLaMA3.1-8B discovered 9 elements, LLaMA3.1-70B
discovered 25 elements, GPT-40 discovered 35 elements, DeepSeek-R1 discovered 85 elements, and
ol discovered 177 elements (Figure[I)). In comparison, humans discovered 42 elements on average
within 500 trials and 51 elements across all trials.

ol and DeepSeek-R1 significantly outperformed humans (o1: ¢ = 9.71, p < 0.001; DeepSeek-R1:
t = 3.40,p < 0.027), while the other LLMs performed worse (GPT-40: ¢t = —5.48,p < 0.001;
LLaMA3.1-70B: t = —6.39,p < 0.001; LLaMA3.1-8B: t = —28.12,p < 0.001). Perfor-
mance improved with larger model sizes, with LLaMA3.1-70B outperforming LLaMA3.1-8B
(t = —6.02,p < 0.0001) and GPT-4o slightly surpassing LLaMA3.1-70B (¢t = 3.27, p = 0.003).

Exploration success declines in later trials as the inventory grows, and it becomes much harder as the
probability of success decreases (see Appendix [A). Therefore, different exploration strategies could
yield very different performances in the task in different phases. Effective strategies in the latter
phase rely on understanding latent game structures (empowerment) rather than uncertainty-driven
exploration. Sampling temperatures were manipulated to assess their impact on exploration strategies.
Higher temperatures moderately improved performance (8 = 0.124, z = 5.060, p < 0.001).

Behavioral patterns (Figure[2) highlight 01’s superior strategy, achieving more successful outcomes
with new combinations and avoiding repetition of failed or already-successful pairings (Figure [IOJA).
This underscores ol’s strong exploratory capacity and innovative approach. For other LLMs, our
result shows that for even larger models, as temperature increases, the percentage of choosing existing
combinations decreases (Figure[7). This reveals a diminishing number of redundant behaviors among



LLMs. More importantly, a majority of these new combinations do not generate new elements,
suggesting that the high temperatures only alter the uncertainty-driven exploration strategies but not
empowerment, since in larger spaces, only random combinations are not sufficient to perform the task
effectively (see Appendix [B). This also explains why higher temperatures can moderately improve
the model performance but are still distant from human behaviors.

LLaMA3 1-88(temp = 0.0)

175 LLaMA3.1-8B(temp = 0.7)
LLaMA3.1-8B(temp =

Average Inventory
Average Inventory
Average Inventory

100 200 360 400 500
Trial Trial Trial

Figure 2: Human and LLMs different Temperatures’ Performance. LLM and Human Perfor-
mance Across Temperatures. For LLMs, we set four temperatures (0, 0.3, 0.7, 1). LLMs (GPT-4o,
LLaMA3.1-8B, LLaMA3.1-70B) achieve their best performance at temperature = 1.

4.2 LLMs Primarily Use Uncertainty-driven Strategies but Not Empowerment

To examine the exact strategies that the models are using, we calculated uncertainty and empowerment
values for each element (see methods[3.3). Then, based on each LLM’s choices of combinations, each
of the elements is encoded as “chosen” or “not chosen”. We also used random sampling to balance
the proportion of chosen elements and not-chosen elements. Then we use trial numbers, uncertainty
values, and empowerment values to predict whether an element is chosen or not. In particular, we
used a linear mixed-effects model with the consideration of random slope on each of these variables,
so that we could get individual estimates of each sample.

Most LLMs show near-zero empowerment weights, significantly lower than humans (Figure 3] left
panel). This suggests that LLMs rarely use empowerment for decision making. In contrast, o/
demonstrates the highest empowerment weights, surpassing humans, indicating a human-like strategy
of focusing on actions that expand future possibilities.

Higher temperatures lead to increased reliance on uncertainty-driven strategies (temperature x
uncertainty : 5 = 2911,z = 7.440,p < 0.001), but empowerment remains unaffected (5 =
0.196, z = 1.067, p = 0.286). Among all models, only o/, with a fixed temperature of 1, balances
uncertainty and empowerment effectively, enabling robust exploration in later task stages.

Regression Estimates by Temperature and Model

& Empowerment & Uncertainty
4 e e e e s
] )
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g Model g Model
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z LLaMA3.1-708 | & LLaMA3.1-70B
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Figure 3: Regression Estimates by Temperature and Model. All models show lower empowerment
weights than humans, except ol. As temperature increases, uncertainty weights rise, with o/ showing
the highest weights across all models and humans.



4.3 Reasoning Depth and Token Usage in DeepSeek-R1 and GPT-40

To further elucidate the differences in reasoning depth between DeepSeek-R1 and GPT-40, we
analyzed their reasoning processes from in the subset of the first 150 trials, focusing on reasoning
length, diversity of reasoning labels used, and total token counts associated with each reasoning step.

(Figure ).
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Figure 4: Comparison of reasoning depth and token usage between DeepSeek-R1 and GPT-4o.
A: Per-Trial Reasoning Depth. DeepSeek-R1 shows substantially longer reasoning sequences and
consistently employs all reasoning labels, while GPT-40 exhibits significantly shorter sequences
and fewer reasoning types. B: Per-trial Token Usage by Reasoning Labels. DeepSeck-R1
allocates a significantly higher number of tokens across all reasoning labels, especially emphasizing
outcome_prediction and combination_analysis. GPT-40 uses substantially fewer tokens, limiting the
depth and breadth of analysis.

The results highlight clear distinctions between the models. DeepSeek-R1 consistently exhibits a
significantly longer reasoning length per trial, reflecting extensive deliberation before reaching a
decision. In contrast, GPT-40 uses minimal reasoning. Additionally, DeepSeek-R1 systematically
leverages all seven reasoning labels, and even shows self-reflection in the form of ’backtracing’
(see Appendix within each trial, ensuring diverse analytical coverage (Figure dA). The limited
engagement of GPT-4o in reasoning results in a narrower scope of label usage, confirming its tendency
toward shallow exploration.

Further analysis of token allocation across reasoning categories revealed substantial differences (Fig-
ure @B). DeepSeek-R1 distributes tokens broadly, with particular emphasis on outcome_prediction,
combination_analysis, and past_trial_analysis. This suggests a robust and methodical evaluation of
possible outcomes and historical context, consistent with its more effective exploratory performance.
GPT-40 allocates far fewer tokens, indicative of limited engagement in deeper analyses, especially in
critical reasoning steps such as outcome prediction and combination evaluation.

These findings reinforce that DeepSeek-R1’s superior task performance arises from more deliber-
ate, diverse, and deeper reasoning processes, whereas GPT-40’s weaker performance stems from
superficial reasoning strategies and inadequate exploration depth. This highlights the importance of
reasoning thoroughness and token resource allocation for effective exploration in open-ended tasks.

4.4 Uncertainty and Choices are Processed Much Earlier Than Empowerment in LLMs

This unbalanced strategy used in traditional LLMs makes us wonder why LLMs could not use
empowerment in the game. Theoretically, LLMs should be able to represent the semantic meaning
of these elements. Are they really representing such information as empowerment but not using it,
or do they lack of ability to understand empowerment? To investigate this question, we employed
Sparse Auto-Encoders (SAE) (see methods [3.6) to decompose the latent representation of elements
in LLMs to figure out whether both empowerment and uncertainty are properly represented during
the computation.

Our results suggest that, in LLaMA3.1-70B, the uncertainty value is highly correlated at layer
2 (r = 0.73, Figure [5). This suggests that in LLaMA3.1-70B, the uncertainty value is strongly
represented in the hidden states. We also discover a moderate correlation with empowerment value at
layer 72 (r = 0.55, Figure [3)), indicating LLaMA3.1-70B also represents empowerment values in



the middle layer. Despite both values being represented in the hidden states of the model, we found
that when we run logistic regression models for each neuron to predict the choices, the highest beta
weights also occur at layer 1 (beta = 1.08, Figure ), aligning with the representation of uncertainty
values. This explains why the model mainly deploys uncertainty-driven exploration strategies but
not empowerment. Interestingly, both choices and uncertainty values are strongly represented at the
beginning layers, which may indicate that the model already makes a decision before processing
the “empowerment” values of the elements in later layers. We additionally intervene (see Appendix

in those most correlated neurons to investigate causal relationships between them and model
behaviors. Ablating the SAE-identified empowerment neuron selectively suppresses empowerment-
guided behavior, while ablating the uncertainty neuron induces catastrophic performance failure,
thereby establishing causal control by these two latent representations.
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Figure 5: SAE Correlation Analysis. Maximum correlation of uncertainty values across layers,
peaking at layer 2. Maximum correlation of empowerment values across layers, peaking at layer 72.
Maximum beta weight of choices across layers, peaking at layer 1.

5 Discussion and Conclusion

Paper Summary. Exploration is critical for navigating complex, open-ended tasks, yet most LLMs
fall short of human-level performance. They tend to over-rely on uncertainty-driven strategies that
yield short-term gains but hinder long-term success. Although both uncertainty and empowerment
signals are present in their latent spaces, LLMs generally fail to balance them effectively. Notably,
models like ol outperform humans, suggesting that reasoning-trained LLMs can better leverage
diverse exploration strategies. Our thought analysis further shows that reasoning models engage in
deeper, more varied reasoning and allocate more tokens to deliberation, indicating more effortful
decision-making than standard LLMs.

Fast Thinking in Traditional LLMs. A key limitation of traditional LLMs in exploratory tasks
is their tendency to “think too fast.” In LLaMA3.1-70B, we observe that uncertainty-related sig-
nals dominate the early transformer layers and correlate strongly with immediate choices, while
empowerment signals emerge only in the middle layers. This temporal mismatch causes premature
decision-making, favoring short-term utility over sustained exploration. A similar pattern is replicated
in LLaMA3.1-8B (Appendix Figure[T6).

We argue that this limitation is largely driven by the autoregressive inference paradigm itself, where
next-token generation is conditioned on shallow context accumulation. This architecture may
inherently suppress deeper or delayed exploration. We evaluated several mitigation strategies,
including prompt engineering and activation intervention (feature steering) (Appendix [C)). Neither
prompt tuning nor intervention significantly improved performance.

In contrast, the reasoning model DeepSeek-R1 [[11]] and ol [27]], which explicitly support multi-step
reasoning, reached human-level performance and outperformed all traditional LLMs. Their superior
results suggest that architecture and training design—not just prompting—are crucial for enabling
effective exploration.

Further supporting this interpretation, our thought analysis reveals that reasoning models such
as DeepSeek-R1 generate more diverse reasoning types and spend significantly more tokens on
deliberation before making a decision. Compared to standard LL.Ms, which exhibit compressed
and repetitive patterns, reasoning models demonstrate richer and deeper cognitive structure in their
outputs. This may suggest the shift of paradigm, “test-time compute scaling” [27} 37]], is promising
for the open-ended exploration tasks through augmented reasoning capacity.



Limitations and Future Directions. Despite these findings, the underlying cause of LLMs “thinking
too fast” remains unclear and requires further investigation. Future research could explore the
interaction between model architecture and processing dynamics, as well as how LLMs weigh
uncertainty and empowerment during decision-making. Interventions such as integrating extended
reasoning frameworks like CoT, optimizing transformer block interactions, or training with explicit
exploratory objectives could enhance LLMs’ exploratory abilities. These efforts would not only
improve performance but also advance our understanding of creating Al systems capable of more
human-like exploration.

Broader Applications. Open-ended exploration is critical for LLM agents. It not only enables their
“physical bodies” to gather more information and experience from external world, but also facilitates
more creative knowledge acquisition in the mental space. For example, LLM agents have been used
for theorem proving [32], optimal search [34], and automatic scientific discovery [25}9]]. These are
inherently open-ended environments that require strong exploratory capabilities. Understanding the
strengths and limitations of LLMs’ open-ended exploration—and enhancing them—will directly
improve their efficiency in these real-world domains.

Data Availability

The LLM experimental data generated in this study are available at OSF repository (view-only link).
Third-party data of human participants playing the original Little Alchemy 2 game may be shared upon
reasonable request to the (franziska.braendle @tuebingen.mpg.de). All data used for benchmarking
and analysis adhere to open-access and ethical use principles.

Code Availability

All  custom code wused for data preprocessing, LLM experiments, and re-
gression  analysis, and Sparse Autoencoder (SAE) training is available at
https://github.com/Louannal208/LLMs-Exploration|
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A The Game Difficulty

We use a real game tree to calculate the probability of each player succeeding as the inventory size
increases. The simulation incorporates a random setting for selecting elements and combinations,
ensuring variability across trials. At each step, new elements are added to the inventory based on
the successful combinations, and the success probability is recalculated dynamically. The success
rate decrease in Figure [f]aligns with the convergence of inventory growth trends in Figure[2] As the
inventory size grows, the success rate decreases, making further growth increasingly difficult.

For example, when the inventory size n = 4, that is, the initial state, there are four elements: water,
fire, air, and earth. There are 10 combinations between two elements (including the same element),
and each combination can succeed. Therefore, when the inventory size is n = 4, the player’s success
rate is 100%. The success probability (Ps) is given by:

P=—=
C’!L

Where:

* n: Current inventory size.
n(n+1)

* (,: The total number of possible combinations given the inventory size n, C,, = ——

This includes combinations with repetition (e.g., A + A).

* S: Number of successful combinations for the current inventory size.

Game Difficulty vs. Inventory Size

1.0

o o o
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Figure 6: Game Difficulty vs. Inventory Size. Based on the real game tree, each inventory size has
a different success probability.
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B The LLM Behavior Across Different Temperatures

To better understand the exact changing behaviors of LLMs under different temperatures, we catego-
rized all combinations into four types: whether this generates a new element, and whether these two
combinations have been used before. Our result shows that for even larger models, as temperature
increases, the percentage of choosing existing failed combinations decreases. This reveals a diminish-
ing number of redundant behaviors among LLMs. In the meantime, the percentage of choosing new
but failed combinations increases significantly, which suggests that the model tends to choose new
combinations more often in higher temperatures than in lower temperatures. More importantly, a
majority of these new combinations do not generate new elements, suggesting that high temperatures
only alter uncertainty-driven exploration strategies but not empowerment, since in larger spaces only
random combinations are not sufficient to perform the task effectively. This also explains why higher
temperatures can moderately improve model performance, but are still distant from human behavior.

LLaMA3.1-8B Condition Percentages LLaMA3.1-70B Condition Percentages GPT-40 Condition Percentages
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Figure 7: Behavioral Categories of LLMs at Different Temperatures. Each trial is categorized into
five conditions: (1) Failure with Existing Combination: The trial repeats a previous combination that
does not generate a new element. (2) Failure with New Combination: The trial uses a new combination
for the first time, but it fails to generate a new element. (3) Success with New Combination: The
trial uses a new combination for the first time, successfully generating a new element. (4) Success
with Existing Combination: The trial repeats a previous combination that successfully generates an
element. (5) Invalid Trial: The chosen one or two elements are not present in the current inventory.
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C Attempts for Model Improvements

To investigate any potential general way to improve the performance of models, we had several
attempts, including prompt engineering, interventions, and experiments on alternative open-source
models.

C.1 Prompt Engineering

Because the model exhibited repeated behaviors and did not fully utilize “empowerment”, we
introduced more direct, guiding prompts (including the steps highlighted in Figure[8) to help GPT-40
(temperature = 1) make more diverse and forward-looking choices, including Chain-of-Thought
(CoT [46]), self-reflection [51]] and even explicit strategy hint. However, the result shows that
simply updating the prompt—even with explicit instructions and reasoning strategies—didn’t have
a significant improvement in performance (average inventory = 43,t = —1.17,p = 0.304). The
model continued to repeat combinations and did not significantly increase its ability to discover new
elements. It averages 43 elements. This suggests that while prompt engineering can help shape a
model’s outputs, it may not be enough on its own to overcome certain ingrained tendencies such as
repeating prior actions or failing to maximize exploratory behavior.

A: LLMs Game Original Prompt B: LLMs Game Prompt Engineering

Welcome to the Alchemy Game! You start with four basic Welcome to the Alchemy Game! You start with four basic elements: water, fire, earth, and air.
elements: water, fire, earth, and air.
The objective of the game is to combine elements to create new ones. Each successful

The objective of the game is to combine elements to create new combination adds a new element to your inventory, which can be used for future

ones. Each successful combination adds a new element to your combinations. You can choose the same element twice or two different elements, and the
inventory, which can be used for future combinations. Choose two order of the elements does not matter.

elements to combine by writing them in the format 'element +

element'. You can choose the same element twice or two Each combination produces deterministic results, meaning there is only one fixed outcome
different elements, and the order of the elements does not for each combination. Results cannot change upon repetition. Do not hypothesize new
matter. Each combination produces deterministic. outcomes for previously combinations.

Only output the combination, no other words. And you need try Step 1: Analyze past attempts to identify patterns (e.g., which elements combine well).
your best to create more elements. Let's get started! Step 2: Choose a new combination based on patterns and unused pairs.
And you need try your best to create more elements. Let's get started!

Current Inventory:

Past Attempts: Current Inventory:

The output format should be 'element1 + element2'. Only output Past Attempts:

the element combination, no other words. Give me one Before finalizing, check:

combination every time. - Has this combination been tried before?

- If yes, choose a new one.

- If no, proceed.
The output format should be 'element1 + element2'. Only output the element combination,
no other words. Give me one combination every time.

Figure 8: A: LLMs Game Original Prompt. The prompt for each trial consists of three parts: the
system prompt, which provides the game rule guide; the current inventory including those from
the beginning and discoveries during the game; and the trial history. B: LLMs Game Prompt
Engineering. Each colored section highlights a specific goal: The green section encourages models
to explore more creative combinations by reminding them that a wider variety of elements can unlock
new possibilities. The blue section emphasizes avoiding repeated behavior by explicitly instructing
the model to check past attemnts.
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Figure 9: A: Best Temperature of Each Model and Human Performance. B: Best Temperature
of Each Model and Human Behaviors. Choose the LLM models’ (GPT-40, LLaMA3.1-8B,
LLaMA3.1-70B) best performance at temperature = 1, and compare it with human and o1, GPT-40
prompt-engineering (temperature = 1). Compare each model’s performance and behaviors.
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C.2 Open-Source Reasoning Model - DeepSeek-R1

To investigate whether a reasoning model, which is known as trained with RL algorithms in the
inference phase, would generate a better result than traditional LLMs, we also experimented with the
most recently publicly released open-source reasoning model, DeepSeek-R1[11]]. This model like ol
can do deep chain-of-thought reasoning automatically and the reasoning process is visible. Therefore,
we quickly investigated this model to see how the reasoning models perform and how their reasons
can relate to the actual thinking process in this task.

A: Human and LLMs Best Temperatures’ Behaviors B

Average Percentage of Each Condition
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Figure 10: A: Human and LLMs Best Temperatures’ Behaviors. According to whether the
combination selected by each trial is repeated, successful, and initial, the behavior of each LLM trial
is divided into 5 categories. Compare the temperature at which LLM performs best with humans and
ol behavior. B: LLM Inventory Performance Relative to Human Percentiles.

The result shows that DeepSeek-R1 reached near human-level task performance, but still under-
performs than ol. In the behavioral patterns, DeepSeek-R1, compared to traditional LLMs have
fewer attempts on existing combinations, showing a stronger exploration strategy usage. However,
compared to humans and o1, DeepSeek-R1 tried more on failed new element combinations but not
successful ones, suggesting DeepSeek-R1 may explore less effectively than humans and ol. Our
regression results confirm furtherly that DeepSeek-R1 exhibit stronger/weaker uncertainty-driven
exploration stratgies and stronger/weaker empowerment, echoing its underperformance than ol.

To conduct a deeper investigation, we also collected the model’s reasoning process along with the
experiment. Here, we use a qualitative analysis of some pieces of its reasoning process. For example,
in trial 200, the model discovered 48 elements. The specific reasoning process is in the Figure

The model engages in a systematic multi-stage reasoning process to propose a new combination from
its inventory. It begins by reviewing the inventory and cross-referencing prior failed attempts to avoid
redundancy. The model revisits successful paths (e.g., how “village” was created from “house + field”)
and evaluates logical relationships (empowerment) between elements, such as exploring combinations
involving larger structures like “continent”. But the model doesn’t choose a combination containing
“continent”. It discards irrelevant or infeasible paths, such as those requiring missing elements (“ash”,
“fruit”). After confirming the presence of both “city" and “water” in the inventory, it identifies that
“city + water” has not been tested and hypothesizes that this combination could yield a new element,
such as “port” or “harbor”. This iterative and logic-driven process highlights the model’s ability to
balance memory, deduction, and validation in problem-solving. However, the shortcoming is obvious.
Although there are many logical expressions, the model’s reasoning process is not straightforward
to its final choice, where we only see the last sentence in red can somehow explain the underlying
motivation. This could probably suggest that the model’s reasoning process is somehow redundant
and may need further refinement to make efficient decisions.

To facilitate an in-depth understanding of the reasoning processes employed by LLMs, we defined
seven labels characterizing different aspects of the reasoning steps:

* state_goal: Articulating the primary objective or high-level strategy.
* check_current_inventory: Reviewing or listing the currently available elements.

* past_trial_analysis: Considering previous attempts (success or failure) to avoid redundancy.
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Trial 200: city + water -> failed

"Okay, let's see. The current inventory has a lot of elements, but I need to figure out which combinations haven't been tried yet and could result in a new element. Let me start by reviewing the
existing elements and past attempts to avoid repeating them.
Looking at the inventory: village, steam, mist, barn, park, sandstone, lava, clay, fire, glasses, wall, granite, field, beach, city, water, sand, volcano, safe, eruption, pressure, blender, earth, land,
plow, obsidian, mud, continent, metal, smoke, glass, air, aquarium, grenade, dust, gunpowder, rust, bullet, house, geyser, blade, brick, gold, stone, sword, explosion, boiler, hourglass.
Past attempts are quite extensive. The user has tried many combinations, so | need to find something that hasn't been done yet. Let's think of possible combinations.
For example, combining elements that are part of structures or nature. Maybe combining 'field" with something else. In past attempts, Trial 99 combined plow + earth to get field. Then Trial 100
tried field + water, which failed. Maybe field + plow? But Trial 105 tried plow + field and failed. Hmm.
What about 'village' and 'field'? Village was made by combining house + house. Village + field created park in Trial 176. So maybe village + something else. Wait, city was created by village +
village. Maybe city can be combined with park? Trial 194 tried city + park and failed.

Maybe combining it with other large elements. Trial 189 tried continent + water, which failed. Maybe continent + earth? But continent was made by
land + earth, and land is earth + earth. Not sure.
Looking at 'eruption’ which was created by volcano + pressure. Maybe eruption can be combined with something else. The user tried eruption with air, water, smoke, earth, lava, dust, sand,
metal, blender, etc., but all failed. Maybe eruption + ash? But ash isn't in the inventory. Wait, maybe eruption + explosion? Trial 153 tried explosion + eruption and failed.
What about 'granite’? Trial 190 tried stone + earth to get land, which already exists.
Let's think of 'sandstone' which is sand + stone. Trial 141 tried sandstone + water and failed. Maybe sandstone + pressure? Trial 174 tried sandstone + pressure and failed.
How about 'blender'? It was made by blade + glass. They tried blender with water, clay, stone, sand, mud, metal, fire, etc., but all failed. Maybe blender + something else like fruit? But fruit isn't
in the inventory. Maybe not applicable.
Looking at ‘gunpowder’ and ‘bullet’. But bullet + gunpowder was tried in Trial 119 and failed. Maybe bullet + sword? That was Trial 66, failed.
What about 'aquarium'? Maybe aquarium + fish? But fish isn't in the elements. Not helpful.
How about 'geyser'? They tried combining geyser with boiler, metal, sand, eruption, etc. Maybe geyser + earth? Not sure. Trial 65 tried geyser + boiler and failed.
Looking at 'plow" which is metal + earth. Maybe plow + field? Tried in Trial 105 and failed. Plow + blade? Trial 73 tried plow + blade and failed.
Wait, ‘city' is present. But Trial 194 tried city + park and failed. What about city + brick? Trial 193 tried city + wall (brick +
brick is wall) and failed.
Let me check if 'earth' + 'continent' has been tried. Earth + continent might not be. But Trial 184 tried city + earth which failed, and Trial 188 combined land + earth to make continent. Not sure.
What about 'pressure' and 'glass'? Trial 130 tried glass + pressure and failed.
Maybe 'sand" + 'gunpowder'? Trial 90 tried that and failed.
Wait, 'volcano' and 'eruption’ are separate elements. What if combining volcano with something else? They tried volcano with air, water, metal, dust, smoke, pressure (made eruption), etc.
Maybe volcano + explosion? Trial 97 tried that and failed.
Another idea: 'obsidian’ + 'blade' to make a sharp tool. But Trial 52 tried obsidian + blade and failed.
Looking at the elements, maybe 'granite' + 'sandstone'? Not sure if that's a valid combination, but maybe creates a new type of rock? Not sure. Let's see if that's been tried. The user hasn't tried
that yet. But | need to check the inventory. They have sandstone and granite. Maybe combining them could make 'mountain' or something? But | don't know if that's a standard combination in
the game.
Alternatively, 'granite’ + 'pressure'\u2014maybe makes something like marble? But marble isn't in the inventory. Maybe not.

What about 'city' + 'water'? Trial 175 tried village + water and failed. Maybe city + water? That's not in the past attempts. Let me check. The user's past attempts up to Trial 199. [iSIISONSIIN
ait, Trial 175 is village + water (failed), and Trial 180 park + water (failed). City + water could be 'port' or 'harbor', but |
s s e o .55 by vt [ ot e checkTF ity and watarars botTa]

Figure 11: The reasoning process of DeepSeek-R1 in Trial 200. The model explores possible
combinations (blue color part) for discovering a new element in the game by systematically reviewing
inventory elements (orange color part), prior attempts (blue color part), and logical inferences to
make the decision (red color part). It also found some more empowerment elements (green color
part), but didn’t choose them.

* element_property_reasoning: Analyzing inherent properties or characteristics of elements
to justify potential combinations.

» combination_analysis: Evaluating specific element pairs for possible combinations.

* outcome_prediction: Predicting potential results or new elements from the proposed
combinations.

* final_choice: Making a definitive selection of an element combination to test.

To better illustrate the structural differences in reasoning between DeepSeek-R1 and GPT-40, we
analyzed the transition probabilities between reasoning labels. The transition heatmap comparison
(Figure[T2) demonstrates significant distinctions. DeepSeek-R1 exhibits an iterative reasoning process
characterized by repeated cycles of combination_analysis and past_trial_analysis, reflecting a me-
thodical and exhaustive exploration strategy. Conversely, GPT-40 shows a markedly different pattern,
progressing swiftly towards final_choice. This distinction suggests that reasoning in Deepseek-R1
is more self-reflective, showcasing a knowing search strategy, “‘backtracking” [50]], while GPT-40
is a more straightforward thinking without all the patterns involved each time. This further reveals
that traditional LLMs may not think as deeply and as hard as reasoning models, and likely explain
their underperformance compared to DeepSeek-R1 and human participants, suggesting that GPT-40’s
decisions might suffer from insufficient exploratory depth.

C.3 Open-Source Model - Qwen models

To further validate the generalizability of our findings beyond LLaMA- and GPT-style architectures,
we extended our experiments to the Qwen series—an open-source family of models widely used for
reasoning and reinforcement learning research. Specifically, we evaluated Qwen-2.5-32B [42]land
QwQ-32B[43]], a reasoning-enhanced variant of Qwen-2.5-32B fine-tuned with reinforcement learn-
ing to strengthen multi-step reasoning.

Our results confirm that the core findings of this paper generalize across architectures. Qwen-2.5-32B
discovered an average of 14 new elements, performing below the human average (42), whereas
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Transition Probability Heatmap Comparison
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Figure 12: Comparison of Transition Probabilities between DeepSeek-R1 and GPT-4o. Transition
matrices indicate that DeepSeek engages extensively in iterative cycles of combination analysis and
past trial analysis, reflecting a detailed exploration strategy. Conversely, GPT-40 rapidly progresses
towards the final choice, showing limited iterative reasoning steps and minimal diversity in transitional
paths, indicative of shallow exploration.

QwQ-32B discovered 48 new elements, outperforming humans. This demonstrates that explicit
reasoning training substantially enhances open-ended exploration.

Consistent with our earlier analyses, we computed empowerment and uncertainty regression weights
for both models. The QwQ-32B model exhibited a markedly higher empowerment weight (0.0886)
and uncertainty weight (2.75) compared to Qwen-2.5-32B (empowerment = —0.0178, uncertainty
= —1.35), aligning with its superior exploratory behavior (see Table[I]). These values suggest that
reasoning-enhanced QwQ better integrates empowerment-driven strategies, balancing novelty seeking
with uncertainty-driven exploration.

In line with our central claim, these results highlight that reasoning capability, not merely model
scale, is a decisive factor for effective exploration. Despite similar parameter counts and pretrain-
ing corpora, the QwQ-32B’s reinforcement-learned reasoning processes led to substantially richer
discovery dynamics and higher empowerment sensitivity. This supports our broader conclusion that
reasoning-trained LLMs—such as ol, DeepSeek-R1, and QwQ-32B—demonstrate slower, more
deliberate, and ultimately more human-like exploration compared to conventional autoregressive
models.

Table 1: Estimated empowerment and uncertainty regression weights across models and humans.

Model Estimated Empowerment Estimated Uncertainty
Qwen-2.5-32B -0.01777 -1.35386
QwQ-32B 0.08859 2.75241
LLaMA3.1-8B -0.05991 -1.25665
LLaMA3.1-70B -0.00409 -1.42584
GPT-4o -0.16928 0.24957
DeepSeek-R1 0.14007 4.18199

ol 0.72222 4.15111
Human 0.378 0.223
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C.4 Intervention Analysis on LLaMA3.1-70B Empowerment and Uncertainty Layers

To investigate the role of empowerment and uncertainty representations in LLaMA3.1-70B during
in-context learning, we analyzed the most correlated neurons with these values and performed tar-
geted interventions to assess their impact on model performance. Given that both empowerment
and uncertainty were highly demanding in the task (shown by the example of 01’s superior perfor-
mance), we wondered whether intervention to strengthen both representations could generate better
performance. We found that interventions in the uncertainty layer, which is located relatively early
in the model (similar to the choice layer), caused severe performance degradation, with even minor
adjustments rendering LLaMA3.1-70B unable to perform the task effectively. Conversely, enhancing
the empowerment layer also could not improve performance. Even when set to an intervention factor
of 1.5, which brought the model closer to the original level, other intervention values resulted in
decreased performance.

We ablated the most correlated neuron (zeroing the latent activation) identified by uncertainty and
empowerment values in experiments with identical settings. The regression analysis suggests that after
ablating the empowerment neuron in the SAE, the model’s empowerment strategy use is even smaller
(Figure [I4)), establishing a causal relationship that the neuron identified through SAE can control
the model’s empowerment strategy. Conversely, ablating the uncertainty neuron caused catastrophic
performance drops, rendering most trials invalid (Figure[I3J]A) and insufficient for regression analysis.
This indicates that the earlier layer of uncertainty is critical for understanding task contexts and
histories. Beyond ablation, we explored other intervention factors to determine whether they could
enhance performance through a “neuroscience” approach. Our results showed that both slightly
weakening and strengthening neuron activity hurt model performance, suggesting a deeper limitation
within the current infrastructure of LLMs for open-ended exploration tasks.

50 LLaMA3.1-70B Average Inventory of Uncertainty Intervention 50LLaM/3~3.1-7OB Average Inventory of Empowerment Intervention
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Figure 13: A: LLaMA3.1-70B Average Inventory of Uncertainty Intervention. Set 5 different
levels of uncertainty intervention (0.0, 0.5, 0.7, 1.0, 2.0). Increasing the uncertainty intervention
progressively disrupts the model’s ability to complete the task, indicating the critical role of early
uncertainty layers in processing task history and context. B: LLaMA3.1-70B Average Inventory of
Empowerment Intervention. Performance remains closer to the original level when the intervention
is set to 1.5, whereas other levels of intervention result in performance degradation.
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LLaMA3.1-70B Intervention Estimates
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Figure 14: LLaMA3.1-70B Intervention Regression Results. The regression estimates for empower-
ment, and uncertainty under the original condition (LLaMA3.1-70B, temperature = 1), empowerment
intervention (set to 0), and uncertainty intervention (set to 0).

D SAE Setup

We train all layers in LLaMA3.1-70B with the same set of hyper-parameters. Those hyper-parameters
are tuned to ensure reconstruction is satisfying as well as with a good sparsity representation. We set
the hidden size of latent as 8192, the same as the dimensions of the model embeddings. We set the
learning rate as le-4, with a batch size of 256. The L2 norm is only le-6. L2 norm above this value
will significantly amplify the reconstruction loss. A sanity check for this parameter. Same way for
LLaMA3.1-8B, we set the hidden size of latent as 4096, the same as the dimensions of the model
embeddings. We set the learning rate as le-4, with a batch size of 256. The L2 norm is only 1le-6.
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Figure 15: Sparse Autoencoder (SAE) Training Metrics. Each row represents different model
architectures. From left to right, the panels illustrate the layer-wise test L2 norm, test reconstruction
loss, and the number of active neurons during training. The top row corresponds to a smaller model
(LLaMA3.1-8B), and the bottom row corresponds to a larger model (LLaMA3.1-70B) with more
layers. Test Accuracy Between Original and Reconstructed Data. In both cases, reconstructed data
achieves higher accuracy across layers, demonstrating the SAE’s ability to preserve essential features
during encoding and reconstruction.
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E Replicated SAE Result in LLaMA3.1-8B

We investigated the role of the empowerment and uncertainty layers in LLaMA3.1-8B (temperature
= 1) by training a Sparse Autoencoder (SAE) to identify and interpret their activations, followed
by targeted interventions where each layer’s activation was set to zero. The results, summarized in
Figure[I6]A and Figure[I6B, show that setting the empowerment layer to zero had a minimal effect on
regression estimates and only slightly reduced model performance, suggesting that the empowerment
layer has a limited role in sustaining task performance. In contrast, setting the uncertainty layer to
zero led to a substantial reduction in regression estimates for uncertainty, accompanied by a marked
decline in model performance. This highlights the critical importance of the uncertainty layer in
facilitating exploration and maintaining robust decision-making capabilities within the model.
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Figure 16: A: SAE Correlation Analysis. Maximum correlation of uncertainty values across
layers, peaking at layer 7. Maximum correlation of empowerment values across layers, peaking at
layer 22. Maximum beta weight of choices across layers, peaking at layer 15. B: LLaMA3.1-8B
Intervention Regression Results. The bars represent the regression estimates for empowerment, and
uncertainty under the original condition (LLaMA3.1-8B, temperature = 1), empowerment intervention
(set to zero), and uncertainty intervention (set to zero). C: LLaMA3.1-8B Average Inventory of
Interventions. Uncertainty intervention leads to a significant reduction in the average inventory,
indicating its essential role in model performance.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution of this paper is to establish a human-centered computational
cognitive neuroscience way to understand whether LLMs explore effectively as humans
in the open-ended exploration task. The paper not only evaluates a variety of models
performance compared to humans, but also investigates why traditional LLMs and reasoning
models can have bipolar performance, by computational modeling, thought analysis, and
SAE. This paper provides an in-depth understanding towards LLM’s open-ended exploration
behavior.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discuss the limitation of the paper that we still lack a deeper

understanding of why traditional inference paradigms fail in open-ended exploration task,
as well as how we could potentially improve the capacity through experimentation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper does not involve theoretical proof to certain concepts or conclusions.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: We provided complete information about the task, data, and code in the
anonymous supplementary files for reproduction by reviewers and readers.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All analysis codes and data are provided in the submission supplementary files
and will be open-sourced upon publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the experiment setting, task ground truth rules, and analysis
details in the paper and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars in the plots are all standard error means. All the comparisons
are supported by an appropriate statistical analysis approach, with rationale corrections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

11.

Justification: We report API usage and compute power consumption for every method we
used.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is primarily an evaluation-based work and does not involve a
societal impact perspective.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not poses any such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The licence for the materials is protected by CC-BY 4.0.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper evaluates and investigates existing models and does not produce
new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does use human data, but from a previously published and open-
sourced literature, which has been properly cited and mentioned.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: this paper uses LLMs as the core content of the research, as well as assisting
in implementing codes, editing drafts, and formatting for the texts under guidance. The
originality, design, and conceptualization of the study do not involve any LLM usage. The
assisted part is finally reviewed by all the authors to ensure the quality.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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