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Abstract

Temporal reasoning is a critical component of
natural language understanding, yet it remains
a challenging task due to the inherent ambigu-
ity and implicit nature of temporal information
in language. The rise of large language models
(LLMs) has sparked interest in assessing their
ability to reason about time. However, existing
research adopts diverse methodologies, propos-
ing different tasks, benchmarks, and evaluation
strategies, making it difficult to form a cohe-
sive view of the field. In this survey, we pro-
vide a comprehensive overview of recent work
on temporal reasoning in the context of LLMs.
We examine the range of tasks, benchmarks,
and fine-tuning approaches, and compare these
with pre-LLM temporal reasoning tasks. Our
analysis reveals that current works, instead of
building on previous findings in terms of tempo-
ral tasks and datasets, define their own tasks of
temporal reasoning and create new datasets to
solve them. Finally, we discuss how temporal
reasoning evaluation can be advanced to better
understand the temporal reasoning capabilities
of language models.

1 Introduction

One of the essential aspects of natural language
understanding (NLU) is being able to reason about
time: to draw correct temporal conclusions from
information expressed in language, and to success-
fully solve other language tasks related to time
(Vashishtha et al., 2020). In particular, it refers to
the ability of a natural language processing (NLP)
system to understand, interpret, and reason about
time-related information within a text in order to
answer questions or make inferences about events.
Temporal reasoning capabilities are essential for
understanding narratives, answering time-sensitive
questions, and performing commonsense inference.
Many real-world applications require temporal un-
derstanding, for example, summarization, story-
telling, timeline construction, such as in the med-

ical field, where constructing a timeline from a
patient’s medical records can assist in Al models
for healthcare (Sun et al., 2013).

When provided with a text, a model should be
able to detect temporal cues and reason about as-
pects such as temporal relations between events,
their duration and frequency, in order to perform
a time-related task (which could be formulated as
classification or question answering (QA)). How-
ever, temporal information is often expressed in
text implicitly or in an ambiguous form. Moreover,
temporal narratives can be described with complex
structures, where the events are not mentioned in
chronological order. These issues make the rea-
soning challenging as it requires extra context or
knowledge in order to be able to correctly inter-
pret the temporal information (Leeuwenberg and
Moens, 2019). In early works on temporal NLU,
this has led to datasets with low inter-annotator
agreement, a large amount of “vague” relations,
and different annotation schemes proposed, which
causes inconsistencies in existing works (Table 1).

While LLMs are state-of-the-art in many tasks
(Bubeck et al., 2023), prior work has shown that
they struggle with complex and abstract reasoning
(Tan et al., 2023; Jain et al., 2023). Moreover, the
inconsistencies in temporal reasoning that existed
in previous works still hold in the LLM era, with
the lack of a unified benchmark to evaluate the tem-
poral reasoning capabilities of LLMs and without
a consistent definition of temporal reasoning and
its tasks. Current evaluation is largely still limited
on accuracy metrics on a few simplified tasks, and
the full reasoning capabilities of LLMs remain un-
derexplored (Huang and Chang, 2023). For LLMs,
some works have explored their abilities in dif-
ferent settings, such as zero-shot, few-shot, and
fine-tuning (Yuan et al., 2023; Kougia et al., 2024;
Chan et al., 2024; Zhou et al., 2020; Xiong et al.,
2024). The results show that this type of tasks and
specifically temporal relation prediction still pose



a challenge to LLMs.

Based on the aforementioned challenges, we sur-
vey previous attempts to answering the following
research question: how good are LLLMs in reason-
ing over time-related concepts in order to solve
temporal tasks? We examine two important aspects
in order to also give valuable insights for future
research on this task. First, the current datasets and
benchmarks are presented. Second, the existing
approaches for temporal reasoning are discussed.

To this end, we categorize temporal reasoning
tasks, and analyze fundamental works in this field.
We study the performance of LLMs on temporal
reasoning and discuss current evaluation practices.
We compare previous deep learning approaches
with recent LLM benchmarks and discuss the chal-
lenges and future directions towards achieving and
evaluating temporal reasoning. To the best of our
knowledge, this is the first survey covering all
temporal reasoning datasets and benchmarks be-
fore and after the emergence of LLMs, giving an
overview of their internal relations and addressed
tasks.

2 Background

Temporal reasoning preliminaries. Temporal
reasoning requires understanding the temporal re-
lations between time elements, such as order, du-
ration, simultaneity, or frequency, and reasoning
over them in order to make inferences, predictions,
or conclusions based on temporal constraints. For
example, “Event A happened at 2 PM. Event B
happened at 3 PM. Which came first?” requires
reasoning over event order, and “If the train left
at 2 PM and the trip takes 3 hours, when does it
arrive?” requires reasoning over duration.

However, not all time-related questions require
reasoning—some queries can be answered with
simple fact retrieval (“What day is New Year’s
Eve?”) or pattern recognition (“The baby slept
for 8 hours. How long did she sleep?”).
Types of temporal reasoning. Based on the task
(e.g., temporal question), different reasoning strate-
gies can be required: 1. Temporal commonsense
reasoning, 2. Logic-based temporal reasoning, 3.
Discourse temporal reasoning, and 4. Arithmetic
temporal reasoning.

An important aspect that is often needed for tem-
poral tasks is temporal commonsense reasoning.
As in general reasoning,' this refers to the abil-

"For a detailed explanation of the different types of general

ity of leveraging everyday knowledge and assump-
tions humans use to understand and navigate the
world such as daily routines and time norms. For
example, “The event is at 5 PM. Is this in the after-
noon?” involves temporal commonsense reasoning
as it depends on conventions about time notation
(AM vs. PM) and knowledge of how we divide the
day. Time is often expressed in natural language
in implicit and vague ways, so world knowledge
and commonsense reasoning are often required to
solve real-world temporal tasks, sometimes com-
bined with other types of temporal reasoning (Zhou
et al., 2019). Logic-based temporal reasoning ap-
plies temporal logic to solve time-related tasks. For
example, the transitivity property can be used to
answer questions like “If event A happened before
event B, and event B happened before event C,
when did event A occur in relation to event C?”.
This question corresponds to the transitivity rule:
A before B and B before C = A before C, and is
used to infer the relation of pair (A, C). Another
property of temporal logic is symmetry, e.g., A be-
fore B = B after A. The rules that result from these
properties can be used to enforce and evaluate the
temporal consistency of systems, where a system
that follows these rules is considered consistent.
Temporal logic is a formal system for representing
and reasoning about time using logical operators
and strict syntax. Hence, temporal rules are ex-
plicit in logic; however, in natural language, they
are only implicitly followed, and time in general is
expressed in a non-formal way. In these cases, dis-
course temporal reasoning can be applied, which
involves understanding narrative flow and refer-
ence resolution by interpreting temporal cues and
grammatical patterns among others.? Finally, arith-
metic temporal reasoning involves arithmetic es-
timations of time or calculations between temporal
elements.

Datasets for benchmarking temporal reasoning
capabilities test those strategies to different degrees,
depending on the dataset composition and problem
formulation. The term temporal reasoning is de-
fined inconsistently among different works, and can
mean different types of temporal tasks. For exam-
ple, temporal reasoning refers to temporal relation
extraction in Feng et al. (2023), time-sensitive QA

reasoning we refer the reader to the survey of Huang and
Chang (2023).

%A study of temporal cues and how they are expressed
in language can be found in the survey by Leeuwenberg and
Moens (2019).



in Tan et al. (2023) and 38 different temporal sub-
tasks including duration, arithmetic etc. in Wang
and Zhao (2024).

Early approaches to temporal reasoning. One
of the first and most influential works on creating
a temporal reasoning framework is that by Allen
(1983), known as Allen’s interval algebra. First, he
considered events as time intervals and defined all
the possible ordering combinations between two
events. A relation was assigned to each combi-
nation (13 in total), and then, based on temporal
logic, transitivity rules were formed for this rela-
tion set. Building on Allen’s interval algebra, Puste-
jovsky et al. (2003a) created TimeML, an annota-
tion scheme designed to annotate events, tempo-
ral expressions, and the temporal relations (called
TLINKSs) between them. TimeML was used to an-
notate the TimeBank corpus (Pustejovsky et al.,
2003b) and the following datasets (Pustejovsky
et al., 2010; Cassidy et al., 2014; Styler IV et al.,
2014; Ning et al., 2018b; Naik et al., 2019).’

Building on these foundations, subsequent works
focused on Temporal Information Extraction (TIE),
which included the extraction of temporal events
and expressions, and the creation of timelines by
assigning temporal relations. A lot of these works
applied temporal reasoning to different stages of
their proposed approach in order to achieve correct
and consistent relations. For example, temporal
logic was employed for creating the temporal graph
closure during the data annotation stage to obtain
more relations with less annotation effort (Puste-
jovsky et al., 2003b; Styler IV et al., 2014; Sun
et al., 2013; Naik et al., 2019). Other works have
employed temporal logic on classifier predictions,
either during training or at inference time, to en-
hance performance (Tang et al., 2013; Chambers
et al., 2014; Ning et al., 2017, 2018a; Wang et al.,
2022). Moreover, other approaches have incorpo-
rated linguistic or causality-based rules based on
how temporal cues are expressed in language and
on the fact that temporal and causal relations are
known to interact with each other (Chambers et al.,
2014; Ning et al., 2018a).

Current approaches to temporal reasoning.
Since 2019, there has been significant interest in
the field with new annotation efforts (Ning et al.,
2020; Zhou et al., 2021; Alsayyahi and Batista-
Navarro, 2023; Qin et al., 2021; Tan et al., 2024;

3Section 3 presents a detailed overview of temporal rela-
tion datasets.

Lal et al., 2024) and methods (Feng et al., 2023;
Fang et al., 2024; Wei et al., 2023; Su et al., 2024).
With the emergence of LLMs, the research interest
has shifted to QA benchmarks covering a broader
spectrum of temporal phenomena (e.g., event or-
dering, duration, frequency, etc.) and to evaluating
their temporal reasoning capabilities. In the fol-
lowing sections, we provide a detailed overview of
these works and describe the findings of our study.

3 Datasets and Benchmarks

Figure 1 depicts a structured overview of the tem-
poral datasets, organized by reasoning focus and
task, in line with the structure of this section. In
Table 1, we summarize key statistics and details for
each dataset.

3.1 Pre-LLM Temporal Datasets

First temporal relation annotation approaches.
TimeBank (Pustejovsky et al., 2003b), which re-
sulted from the TimeML guidelines (see Section
2), is the first dataset systematically annotated with
temporal relation annotations in natural language
text (i.e., news articles). However, TimeBank con-
tains 13 fine-grained relations, which are difficult to
annotate (Cassidy et al., 2014; Ning et al., 2018a)
and have sparse annotations because the annota-
tors were instructed to label only relations critical
to the document’s understanding, leaving much
of the document unlabeled (Cassidy et al., 2014).
This motivated subsequent datasets to create more
coarse-grained relation sets by merging some of
the original relations (Table 1) (Sun et al., 2013;
Cassidy et al., 2014; Ning et al., 2018b; Naik et al.,
2019). The TempEval shared tasks (2007-2013)
(Verhagen et al., 2007, 2010; UzZaman et al., 2013)
focused on identifying temporal relations between
events and time expressions using datasets based
on TimeBank. Also, the 2012 i2b2 challenge (Sun
et al., 2013) addressed temporal relation extraction
in Electronic Health Records (EHRSs) to support
patient timeline construction.

Temporal relation datasets based on TimeBank.
In order to address the annotation sparsity, TB-
Dense dataset (Cassidy et al., 2014) re-annotates
36 documents from TimeBank, adding denser tem-
poral links between event pairs within one or neigh-
bouring sentences. Building on the same docu-
ments, MATRES (Ning et al., 2018b) introduces a
new annotation scheme that focuses only on event
start points and applies multi-axis modeling to im-
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Figure 1: Overview of temporal reasoning datasets. The ones with “*” are not initially designed for temporal
reasoning tasks. Temporal tasks: event detection (ED), temporal expression detection (TED), and temporal relation
extraction (TempRE), ED: Event Duration, EO: Event Ordering, F: Frequency, S: Stationarity, TT: Typical Time.

Dataset #Documents  # Relations Frequency
TimeBank (Pustejovsky et al., 2003b) 300 13 -
i2b2 (Sun et al., 2013) 310 3 -
TempEval (UzZaman et al., 2013) 20 13 1
TB-Dense (Cassidy et al., 2014) 36 5 2
TempEvalQA (Llorens et al., 2015) 28 11 1
CaTeRs (Mostafazadeh et al., 2016) 320 4 1
MATRES (Ning et al., 2018b) 36 4 5
TDDiscourse (Naik et al., 2019) 36 5 1
‘WikiHow (Zhang et al., 2020) 112,505 0 2
TIMELINE (Alsayyahi and Batista-Navarro, 2023) 48 4 1
MC-TACO (Zhou et al., 2019) 13225 0 5
TORQUE (Ning et al., 2020) 3200 2 1
TRACIE (Zhou et al., 2021) 5,400 2 2
TIME-DIAL (Qin et al., 2021) 1,100 0 2
TimeQA (Chen et al., 2021) 41,200 4 4
SituatedQA (Zhang and Choi, 2021) 12200 0 1
TempLAMA (Dhingra et al., 2022) 50,000 0 1
TempReason (Tan et al., 2023) 52,800 2 2
TODAY (Feng et al., 2023) 2,241 2 1
MenatQA (Wei et al., 2023) 2853 0 1
Complex-TR (Tan et al., 2024) 10,800 0 1
CAT-BENCH (Lal et al., 2024) 4260 2 1
TCELongBench (Zhang et al., 2024b) 88,821 0 1
CoTemp-QA (Su et al., 2024) 4,748 4 1

Table 1: Datasets with temporal tasks. We show the dataset sizes (# Documents), annotated relations, tasks
included—event detection (ED), temporal expression detection (TED), and temporal relation extraction (TempRE)—

and average number of words per document.

prove inter-annotator agreement by excluding tem-
porally incomparable events. Extending TB-Dense
further, TDDiscourse (Naik et al., 2019) adds anno-
tations for long-distance temporal relations across
sentences.

Temporal datasets beyond the TimeBank corpus.
In 2019, Zhou et al. (2019) introduced MC-TACO,
a multiple choice QA dataset targeting five com-
monsense temporal aspects (i.e., duration, temporal
ordering, typical time, frequency, and stationar-
ity), using single-sentence contexts from the Mul-
tiRC dataset (Khashabi et al., 2018). TORQUE
(Ning et al., 2020) features human-written ques-
tions about temporal relations between events that
are mostly implicitly mentioned in short news con-
texts, enabling deeper temporal reasoning evalua-

tion. In a recent temporal relation annotation effort,
Alsayyahi and Batista-Navarro (2023) published
TIMELINE, which introduces a multi-axis anno-
tation scheme where annotators answer questions
about event pairs, and an algorithm infers temporal
relations automatically.

3.2 Temporal Datasets in the LLM Era

Temporal QA datasets. Unlike the pre-LLM
temporal annotation efforts that mainly focused on
relation prediction, recent LLM-era datasets cover
a broader range of temporal aspects and tasks, in-
cluding event frequency and duration prediction,
temporal NLI, time-sensitive QA, dialogue-based
temporal reasoning, and multi-hop inference. The
TRACIE dataset (Zhou et al., 2021) focuses on im-



plicit events, hence testing models’ abilities to in-
terpret timelines in narratives, often requiring com-
monsense reasoning. TIMEDIAL (Qin et al., 2021)
is a multiple-choice cloze QA dataset that tests
temporal understanding in multi-turn dialogues by
asking models to fill in missing time expressions.
Tan et al. (2023) published a QA dataset called
TempReason extracted from WikiData in order to
serve as a benchmark for temporal reasoning. They
defined three temporal reasoning levels and con-
structed the questions based on them: 1. time-time
relations, 2. time-event relations, 3. event-event re-
lations. Complex-TR (Tan et al., 2024), inspired by
TempReason, is a multi-hop, multi-answer tempo-
ral QA dataset designed to probe complex reason-
ing over co-occurrence and event sequences. CAT-
BENCH (Lal et al., 2024) is a benchmark focusing
on step ordering. It evaluates whether a particular
step in a plan must occur before or after another,
emphasizing the understanding of causal and tem-
poral dependencies. TCELongBench (Zhang et al.,
2024b) focuses on temporal, long context evalu-
ation of QA pairs, tailored to three distinct tasks:
1)TLB-detail QA, which tests LLMs’ ability to
find evidence across numerous articles; 2)TLB-
order QA, focusing on understanding temporal
sequences; and 3)TLB-forecast QA, challenging
LLMs to predict future events based on past in-
formation. CoTemp-QA (Su et al., 2024) studies
another aspect, which they call co-temporal reason-
ing. It assesses LLMs’ capabilities to comprehend
and reason about events that occur concurrently
or have overlapping durations. The dataset is con-
structed from real-world temporal facts, including
biographical data of notable individuals.

A different direction of research has employed
techniques like modifications or contradictions of
the context in order to evaluate the performance
of the models when these changes are introduced.
(Feng et al., 2023) proposed a new task and dataset
called TODAY in which human annotators are
asked to write a sentence that, if added at the begin-
ning of the context, can change the current relation
between two events. The annotators also write an
explanation of how that change will occur. Wei
et al. (2023) introduced MenatQA, which is based
on TimeQA (Chen et al., 2021), but they added
changes to the original context or question of each
instance to make the dataset more complex. The
changes have three categories: 1. Scope: The time
range in a question is shifted so that it is not the
same as the range mentioned in the context, 2. Or-

der: the events in a context are shuffled so that they
are not mentioned chronologically in the context,
and 3. Counterfactual: a temporal hypothesis that
contradicts the context is added.

Temporal reasoning LLM benchmarks.Several
recent benchmarks have been introduced to assess
the temporal reasoning capabilities of LLMs using
existing datasets including a wide range of tem-
poral aspects (see Fig. 1). Jain et al. (2023) first
evaluated eight LLMs across six datasets, while
Wang and Zhao (2024) expanded this effort into
a larger multiple-choice QA benchmark with 8
datasets covering 38 temporal subtasks. Most re-
cently, TIMEBENCH merged 10 datasets into 16
fine-grained temporal subtasks to enable a more
comprehensive evaluation framework (Chu et al.,
2024).

4 Temporal Reasoning Methods

4.1 Temporal training

Pretraining with Temporal Span Masking. A
widely used approach for improving temporal QA
performance is Temporal Span Masking (TSM),
which builds upon the Salient Span Masking (SSM)
method, which involves reconstructing masked
named entities as a language model pretraining
objective (Guu et al., 2020). TSM extends this
idea by masking temporal expressions—such as
specific dates, time durations, or recurring tempo-
ral phrases—instead of or alongside named enti-
ties (Tan et al., 2023; Qin et al., 2021; Cole et al.,
2023). This adaptation aims to enhance the model’s
understanding of temporal information during pre-
training. Qin et al. (2021) and Cole et al. (2023)
trained base models using TSM and/or SSM, exper-
imenting with different configurations of masked
spans and model variants. Going a step further,
Tan et al. (2023) introduced a method called Time-
Sensitive Reinforcement Learning (TSRL). After
initial TSM and SSM pretraining, they construct
negative answer sets for each question—answers
that are structurally correct in terms of subject and
relation but pertain to incorrect time periods—and
use a reward function that penalizes selections from
these negative sets. Positive rewards are assigned
when model predictions match the correct, tempo-
rally aligned answers, reinforcing temporal sensi-
tivity in the decision-making process.

Fine-tuning strategies. Several methods have
been proposed to fine-tune pretrained models for
improved temporal reasoning. Feng et al. (2023)



Dataset Model Human

Ref. Type Setting Acc F1 | Acc F1
MC-TACO Chu et al. (2024) GPT-4 Few-Shot - 88.3 | 87.1
MATRES Roccabruna et al. (2024) Llama2 13B Fine-Tuning 84.3 ‘ 88.0
WikiHow Jain et al. (2023) Llama 7B, GPT-3.5 Few-Shot 55.0 | 980
TRACIE Chu et al. (2024) Llama2 70B Few-Shot + CoT 67.0 - \ 82.5
TimeDial Chu et al. (2024) GPT-4 Few-Shot 94.6 ‘ 97.8
TempReason Chu et al. (2024) GPT-4 Few-Shot + CoT 92.4 ‘ 97.1
TimeQA Chu et al. (2024) GPT-4 Few-Shot - 73.7 ‘ 93.3

Table 2: For each of the seven most commonly used datasets (i.e., with frequency more than one based on Table 1),
we show the best LLM performance across all the papers it was used in and the human performance.

propose a joint learning framework using TODAY,
a dataset described in Section 3, which is anno-
tated with distributional shifts rather than absolute
temporal labels. The task is framed as textual en-
tailment, where the premise includes the additional
sentence, the context, and the question, and the
hypothesis includes two events and the relation
between them. Two entailment instances are gen-
erated per example: one for “before” and one for
‘after”. The model is trained using cross-entropy
loss on hard labels from datasets such as MATRES
or TRACIE, and marginal ranking loss on the rela-
tive annotations in TODAY, enabling it to perform
well across both absolute and relative reasoning
cases.

To address the long-context challenge in open-
domain QA, Tan et al. (2024) introduce a combined
data augmentation and context refinement strategy.
First, they generate pseudo-instruction tuning data
by shifting the time ranges in original instances and
prompting ChatGPT (OpenAl, 2024) to hallucinate
fictional entities to be added in the questions. Then,
to reduce input length while preserving relevance,
they apply cosine similarity over sentence embed-
dings to select the paragraphs from the context that
are the most relevant to each question.

Following a different fine-tuning direction, Yang
et al. (2024) incorporate contrastive and reinforce-
ment learning techniques. They introduce time-
aware embeddings derived from temporal expres-
sions in the input and use a Granular Contrastive
Reinforcement Learning objective. This approach
evaluates model responses based on semantic and
temporal vector proximity to correct and incorrect
answers, offering a reward signal that encourages
temporally robust predictions beyond string-level
matching. All of the aforementioned methods em-
ployed TS5 (Raffel et al., 2020) as the base model.

General-purpose temporal reasoning LLMs.
Expanding beyond task-specific models, other
works aim to equip large language models with
general temporal reasoning abilities. Xiong et al.
(2024) propose TG-LLM, a fine-tuning framework
that improves temporal understanding through
translation of textual input into latent temporal
graph representations. As part of this effort, they
introduce a synthetic dataset, TGQA, specifically
designed to support training for temporal graph
construction. Similarly, Su et al. (2024) develop
TIMO, a temporal reasoning framework trained
with TRAM (Wang and Zhao, 2024), which cate-
gorizes tasks into mathematical time and pure time
reasoning. TIMO employs a self-critic optimiza-
tion approach in which a reward model based on a
formal mathematical evaluator scores generated re-
sponses, enabling reinforcement learning to guide
the model toward higher-quality, temporally sound
answers.

4.2 Prompting

Prompting plays a central role in temporal QA
tasks, affecting how models interpret questions and
retrieve or reason over temporal information. Here,
we present an overview of existing works and the
various dimensions of prompt design that are ex-
plored, including question formulation, context for-
mat, prompting settings, and specialized strategies
tailored for temporal reasoning.

Prompt formulations. The formulation of the QA
task guides the structure and content of the prompt.
Common QA types include open-book and closed-
book QA (Tan et al., 2023), open-domain QA (Tan
et al., 2024), cloze-style QA (Qin et al., 2021),
multiple-choice formats (Qin et al., 2021; Wang
and Zhao, 2024; Fang et al., 2024), yes/no ques-
tions (Lal et al., 2024; Kougia et al., 2024), and
free-form answers (Zhang et al., 2024a; Chu et al.,



2024; Su et al., 2024). Many studies adopt mul-
tiple formulations to evaluate performance across
settings (Tan et al., 2023; Qiu et al., 2023; Yuan
et al., 2023).

Prompt settings. Based on the number of exam-
ples and reasoning style, prompting can be cat-
egorized into zero-shot, few-shot, and Chain-of-
Thought (CoT) prompting. Most studies explore
all three, while some focus only on zero-shot setups
(Kougia et al., 2024; Wei et al., 2023). For few-shot,
approaches vary from one-shot (Tan et al., 2024),
to C-shot (Chan et al., 2024; Roccabruna et al.,
2024),* and 5-shot (Wang and Zhao, 2024). CoT
prompting has also been integrated into several sys-
tems (Wang and Zhao, 2024; Lal et al., 2024; Chu
et al., 2024; Su et al., 2024; Qiu et al., 2023) to
improve temporal reasoning capabilities showing
promising performance.

Prompt context. The context provided in prompts
varies significantly. Most works include some form
of context, such as free-text passages (Jain et al.,
2023; Wang and Zhao, 2024; Yuan et al., 2023;
Wei et al., 2023; Chan et al., 2024; Qiu et al.,
2023; Chu et al., 2024; Su et al., 2024; Fang et al.,
2024), while others use structured formats like code
(Zhang et al., 2024a). Notably, Lal et al. (2024)
avoid providing explicit context altogether. This
variation in context design influences how models
reason temporally across different tasks.

Other prompting strategies for temporal reason-
ing. Beyond the standard prompting approaches,
some studies have introduced additional strategies
designed for temporal reasoning. Jain et al. (2023)
use code prompts that structure input as code-like
syntax to guide LLMs. Yuan et al. (2023) propose
event-ranking prompts that require ordering events
relative to a reference. Zhang et al. (2024a) in-
troduce the Narrative-of-Thought (NoT) method,
which first elicits a temporally grounded narrative
before generating answers using a Temporal Graph
Prompt. This end-to-end CoT-based approach en-
hances the model’s use of temporal structure in
reasoning.

5 Findings

How do LLMs perform on temporal reasoning
tasks? All the works we have studied for this
survey report that LLMs struggle with temporal
reasoning tasks and perform worse than smaller

4C refers to the number of classes in the task, e. g., temporal
relations.

supervised models, e.g., BERT, and humans. As
shown in Table 2, for all the datasets except for MC-
TACO,> The LLM performance can be up to 43%
lower than the human one. Moreover, while LLMs
can handle simpler tasks like assessing event dura-
tion or frequency (Jain et al., 2023), they frequently
fail at more complex tasks such as predicting cor-
rect event sequences, especially when faced with
conflicting knowledge, counterfactuals, or multi-
hop reasoning (Fang et al., 2024; Feng et al., 2023;
Wei et al., 2023). This indicates a gap in deeper
temporal understanding and inference.

Can temporal fine-tuning approaches improve
performance on temporal tasks? Results of the
pre-training and fine-tuning approaches show that
they always yield improvements over the base
model, and sometimes even outperform larger
LLMs like Flan-T5-Large and GPT-3.5 in zero-
shot settings (Tan et al., 2023; Yang et al., 2024)
or GPT-3.5 and GPT-4 in one-shot settings (Tan
et al., 2024). Moreover, fine-tuning allows models
to generalize better across different datasets, show-
ing robustness in complex tasks such as multi-hop
reasoning and co-temporal inference (Feng et al.,
2023; Su et al., 2024; Zhang et al., 2024b; Tan
et al., 2024). Models like TIMO (Su et al., 2024)
and TODAY-trained variants (Feng et al., 2023)
significantly outperform GPT-4 on specific relation
extraction benchmarks, despite having fewer pa-
rameters, illustrating the power of targeted training.
Fine-tuned models also mitigate some common
LLM failures, such as inconsistencies in temporal
symmetry and bias towards contemporary dates
(Yuan et al., 2023; Qiu et al., 2023).

Which LLMs and of what size have shown bet-
ter performance? Among the models surveyed,
newer commercial LLMs such as GPT-4 consis-
tently achieve the strongest overall performance in
temporal reasoning tasks, particularly when eval-
uated under few-shot and CoT prompting settings
(Wang and Zhao, 2024; Zhao and Rios, 2024; Tan
et al., 2024; Chu et al., 2024). However, the ability
to systematically compare commercial models re-
mains limited, as they are often evaluated only on
reduced subsets of datasets due to cost and API con-
straints (Wang and Zhao, 2024; Tan et al., 2023).
Additionally, while increasing model size generally
correlates with better temporal reasoning ability,

5As the authors of MC-TACO mention, human perfor-
mance is low because commonsense can vary between indi-
viduals, so a single person’s answer might not always match
the gold label.



several studies report diminishing returns beyond a
certain scale (Qiu et al., 2023; Xiong et al., 2024;
Zhang et al., 2024a; Feng et al., 2023). This sug-
gests that targeted finetuning and training strate-
gies can be more impactful than simply scaling up
model size.

Which prompting strategy has the best per-
formance? As indicated in Table 2, few-shot
learning—especially when combined with CoT
reasoning—produces significantly better results
than zero-shot prompting, which often yields the
weakest performance (Qiu et al., 2023; Tan et al.,
2024; Chan et al., 2024). This gap underscores the
importance of example-based guidance for com-
plex temporal tasks.

6 Discussion and future directions

Gaps and fragmentation in temporal reasoning
research. Despite growing interest and a surge
of new benchmarks, many studies do not build ef-
fectively on prior findings. Key insights—such
as LLMs’ inconsistent predictions (Kougia et al.,
2024), difficulties with counterfactuals and condi-
tions (Feng et al., 2023; Wei et al., 2023), and in-
ability to produce human-like reasoning (Lal et al.,
2024) remain underexplored. Another major chal-
lenge is the lack of a unified definition of tempo-
ral reasoning, leading to fragmented efforts where
each work emphasizes novelty over continuity. As
seen in Table 1, most recent datasets have been
used only once, highlighting limited integration
and reuse.

There is also a disconnect between newly devel-
oped QA datasets and pre-LLM temporal relation
datasets. Except for MC-TACO datasets with more
complex temporal relations are rarely used in LLM
evaluations, with preference given to simpler order-
ing datasets (only “before” and “after” relations).
Bridging this gap by incorporating richer tempo-
ral relation datasets could significantly deepen our
understanding of LLMs’ reasoning abilities and
encourage more cohesive progress in the field.

Evaluating temporal reasoning capabilities As
discussed in Section 2, the boundary between re-
trieval and reasoning is sometimes unclear, es-
pecially for templated or simple questions. For
instance, "When do people usually eat break-
fast?" could be answered either through memorized
knowledge or temporal commonsense reasoning.
Similarly, "Does 3:00 PM come before 5:00 PM?"
might rely on arithmetic reasoning or pattern match-

ing. In contrast, more complex questions are more
likely to require genuine reasoning. For example,
computing a future date ("What day is 100 days
after March 3, 20257"), or reasoning about contra-
dictions ("He spoke during a meeting that ended at
3 PM but arrived afterward—can that be true?").

Tan et al. (2023) reported that LLM performance
deteriorates from year to month prediction. Fur-
thermore, many works have reported lower LLM
performance for complex temporal tasks (Tan et al.,
2023; Lal et al., 2024), tasks including long de-
pendencies (Chan et al., 2024) and counterfactuals
(Fang et al., 2024) concluding that our understand-
ing of LLMs’ temporal reasoning capabilities may
be misleading (Feng et al., 2023). As a result, there
is a clear need for more rigorous and challenging
benchmarks to accurately assess LLM performance
on temporal reasoning.

7 Conclusion

With the advanced capabilities of LLMs, interest
in their temporal understanding has increased. Yet,
temporal reasoning is understood in different ways,
and often narrowly evaluated on simplified tasks,
such as question answering with limited context.
Sometimes, current evaluations are even a step
backwards from pre-LLM evaluations (that, e.g.,
considered larger contexts and more complex tem-
poral relations). Our survey discusses core aspects
of temporal reasoning, including a taxonomy of
associated tasks, and a comprehensive overview of
existing approaches to solve these tasks, as well as
datasets for benchmarking their performance. We
find that LL.Ms continue to struggle with tempo-
ral reasoning, especially on tasks involving com-
plex inferences such as co-temporal relations, often
under-performing compared to smaller, fine-tuned
models, and do not reach human-level competency.
We survey previous work on different strategies for
improving the temporal capabilities of LLMs. We
find that prompting strategies alone remain insuf-
ficient compared to fine-tuning and task-specific
pretraining, which in turn consistently improve per-
formance and generalization. Our findings under-
score the need for clearer task definitions, unified
benchmarks, and diagnostic evaluations.

Limitations

Due to the rapid evolution of LLLMs and the fre-
quency of new benchmark releases, some very re-
cent models or datasets may not be fully covered.



Our analysis focuses primarily on published and
publicly available resources up to early 2025, and
does not include proprietary data or unpublished
evaluations.

The diversity in task formulations, evaluation
protocols, and dataset structures across studies
makes direct performance comparisons challeng-
ing. Although we attempt to unify definitions and
identify commonalities, differences in experimen-
tal setups may limit the generalization of some
conclusions.

Finally, while we analyze model performance
and prompting strategies in depth, we do not con-
duct new empirical experiments. Future work could
complement this survey with large-scale empirical
evaluations under standardized conditions to more
precisely assess temporal reasoning capabilities
across models.
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A Appendix
A.1 Paper Selection

In order to select the papers mentioned in this sur-
vey, we first include papers introducing datasets
with temporal relations and papers that discuss
temporal logic/ annotation schemes. Then, we se-
lect papers that perform temporal reasoning from
2019 onward since we focus on LLMs and the
last temporal reasoning survey was published in
2019 (Leeuwenberg and Moens, 2019). Hence, we
searched the existing literature with the keywords:
temporal relation, temporal corpus, temporal an-
notation, temporal logic, temporal reasoning, time
reasoning, temporal understanding, temporal lan-
guage model, time language model, temporal sur-
vey, temporal review, time survey, time review, tem-
poral ordering, temporal information extraction.
The keyword search was performed on the titles of
the papers. The initial search included 304 papers,
from which we filtered out papers containing the
words temporal knowledge graph and video as we
focus on papers that work on textual input. The
resulting 257 papers were then manually checked
regarding their relevance to the scope of this survey
(temporal reasoning and experiments with LLMs).
After this, the relevant papers we found were 28.
We also studied 10 more papers that introduced
datasets used or mentioned in the related work of
the original set of 28, and are relevant to our survey,
but did not come up during the search.

12


https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/D19-1332
https://doi.org/10.18653/v1/2021.naacl-main.107
https://doi.org/10.18653/v1/2021.naacl-main.107
https://doi.org/10.18653/v1/2021.naacl-main.107

	Introduction
	Background
	Datasets and Benchmarks
	Pre-LLM Temporal Datasets
	Temporal Datasets in the LLM Era

	Temporal Reasoning Methods
	Temporal training
	Prompting

	Findings
	Discussion and future directions
	Conclusion
	Appendix
	Paper Selection


