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Abstract

Temporal reasoning is a critical component of001
natural language understanding, yet it remains002
a challenging task due to the inherent ambigu-003
ity and implicit nature of temporal information004
in language. The rise of large language models005
(LLMs) has sparked interest in assessing their006
ability to reason about time. However, existing007
research adopts diverse methodologies, propos-008
ing different tasks, benchmarks, and evaluation009
strategies, making it difficult to form a cohe-010
sive view of the field. In this survey, we pro-011
vide a comprehensive overview of recent work012
on temporal reasoning in the context of LLMs.013
We examine the range of tasks, benchmarks,014
and fine-tuning approaches, and compare these015
with pre-LLM temporal reasoning tasks. Our016
analysis reveals that current works, instead of017
building on previous findings in terms of tempo-018
ral tasks and datasets, define their own tasks of019
temporal reasoning and create new datasets to020
solve them. Finally, we discuss how temporal021
reasoning evaluation can be advanced to better022
understand the temporal reasoning capabilities023
of language models.024

1 Introduction025

One of the essential aspects of natural language026

understanding (NLU) is being able to reason about027

time: to draw correct temporal conclusions from028

information expressed in language, and to success-029

fully solve other language tasks related to time030

(Vashishtha et al., 2020). In particular, it refers to031

the ability of a natural language processing (NLP)032

system to understand, interpret, and reason about033

time-related information within a text in order to034

answer questions or make inferences about events.035

Temporal reasoning capabilities are essential for036

understanding narratives, answering time-sensitive037

questions, and performing commonsense inference.038

Many real-world applications require temporal un-039

derstanding, for example, summarization, story-040

telling, timeline construction, such as in the med-041

ical field, where constructing a timeline from a 042

patient’s medical records can assist in AI models 043

for healthcare (Sun et al., 2013). 044

When provided with a text, a model should be 045

able to detect temporal cues and reason about as- 046

pects such as temporal relations between events, 047

their duration and frequency, in order to perform 048

a time-related task (which could be formulated as 049

classification or question answering (QA)). How- 050

ever, temporal information is often expressed in 051

text implicitly or in an ambiguous form. Moreover, 052

temporal narratives can be described with complex 053

structures, where the events are not mentioned in 054

chronological order. These issues make the rea- 055

soning challenging as it requires extra context or 056

knowledge in order to be able to correctly inter- 057

pret the temporal information (Leeuwenberg and 058

Moens, 2019). In early works on temporal NLU, 059

this has led to datasets with low inter-annotator 060

agreement, a large amount of “vague” relations, 061

and different annotation schemes proposed, which 062

causes inconsistencies in existing works (Table 1). 063

While LLMs are state-of-the-art in many tasks 064

(Bubeck et al., 2023), prior work has shown that 065

they struggle with complex and abstract reasoning 066

(Tan et al., 2023; Jain et al., 2023). Moreover, the 067

inconsistencies in temporal reasoning that existed 068

in previous works still hold in the LLM era, with 069

the lack of a unified benchmark to evaluate the tem- 070

poral reasoning capabilities of LLMs and without 071

a consistent definition of temporal reasoning and 072

its tasks. Current evaluation is largely still limited 073

on accuracy metrics on a few simplified tasks, and 074

the full reasoning capabilities of LLMs remain un- 075

derexplored (Huang and Chang, 2023). For LLMs, 076

some works have explored their abilities in dif- 077

ferent settings, such as zero-shot, few-shot, and 078

fine-tuning (Yuan et al., 2023; Kougia et al., 2024; 079

Chan et al., 2024; Zhou et al., 2020; Xiong et al., 080

2024). The results show that this type of tasks and 081

specifically temporal relation prediction still pose 082
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a challenge to LLMs.083

Based on the aforementioned challenges, we sur-084

vey previous attempts to answering the following085

research question: how good are LLMs in reason-086

ing over time-related concepts in order to solve087

temporal tasks? We examine two important aspects088

in order to also give valuable insights for future089

research on this task. First, the current datasets and090

benchmarks are presented. Second, the existing091

approaches for temporal reasoning are discussed.092

To this end, we categorize temporal reasoning093

tasks, and analyze fundamental works in this field.094

We study the performance of LLMs on temporal095

reasoning and discuss current evaluation practices.096

We compare previous deep learning approaches097

with recent LLM benchmarks and discuss the chal-098

lenges and future directions towards achieving and099

evaluating temporal reasoning. To the best of our100

knowledge, this is the first survey covering all101

temporal reasoning datasets and benchmarks be-102

fore and after the emergence of LLMs, giving an103

overview of their internal relations and addressed104

tasks.105

2 Background106

Temporal reasoning preliminaries. Temporal107

reasoning requires understanding the temporal re-108

lations between time elements, such as order, du-109

ration, simultaneity, or frequency, and reasoning110

over them in order to make inferences, predictions,111

or conclusions based on temporal constraints. For112

example, “Event A happened at 2 PM. Event B113

happened at 3 PM. Which came first?” requires114

reasoning over event order, and “If the train left115

at 2 PM and the trip takes 3 hours, when does it116

arrive?” requires reasoning over duration.117

However, not all time-related questions require118

reasoning—some queries can be answered with119

simple fact retrieval (“What day is New Year’s120

Eve?”) or pattern recognition (“The baby slept121

for 8 hours. How long did she sleep?”).122

Types of temporal reasoning. Based on the task123

(e.g., temporal question), different reasoning strate-124

gies can be required: 1. Temporal commonsense125

reasoning, 2. Logic-based temporal reasoning, 3.126

Discourse temporal reasoning, and 4. Arithmetic127

temporal reasoning.128

An important aspect that is often needed for tem-129

poral tasks is temporal commonsense reasoning.130

As in general reasoning,1 this refers to the abil-131

1For a detailed explanation of the different types of general

ity of leveraging everyday knowledge and assump- 132

tions humans use to understand and navigate the 133

world such as daily routines and time norms. For 134

example, “The event is at 5 PM. Is this in the after- 135

noon?” involves temporal commonsense reasoning 136

as it depends on conventions about time notation 137

(AM vs. PM) and knowledge of how we divide the 138

day. Time is often expressed in natural language 139

in implicit and vague ways, so world knowledge 140

and commonsense reasoning are often required to 141

solve real-world temporal tasks, sometimes com- 142

bined with other types of temporal reasoning (Zhou 143

et al., 2019). Logic-based temporal reasoning ap- 144

plies temporal logic to solve time-related tasks. For 145

example, the transitivity property can be used to 146

answer questions like “If event A happened before 147

event B, and event B happened before event C, 148

when did event A occur in relation to event C?”. 149

This question corresponds to the transitivity rule: 150

A before B and B before C ⇒ A before C, and is 151

used to infer the relation of pair (A, C). Another 152

property of temporal logic is symmetry, e.g., A be- 153

fore B ⇒ B after A. The rules that result from these 154

properties can be used to enforce and evaluate the 155

temporal consistency of systems, where a system 156

that follows these rules is considered consistent. 157

Temporal logic is a formal system for representing 158

and reasoning about time using logical operators 159

and strict syntax. Hence, temporal rules are ex- 160

plicit in logic; however, in natural language, they 161

are only implicitly followed, and time in general is 162

expressed in a non-formal way. In these cases, dis- 163

course temporal reasoning can be applied, which 164

involves understanding narrative flow and refer- 165

ence resolution by interpreting temporal cues and 166

grammatical patterns among others.2 Finally, arith- 167

metic temporal reasoning involves arithmetic es- 168

timations of time or calculations between temporal 169

elements. 170

Datasets for benchmarking temporal reasoning 171

capabilities test those strategies to different degrees, 172

depending on the dataset composition and problem 173

formulation. The term temporal reasoning is de- 174

fined inconsistently among different works, and can 175

mean different types of temporal tasks. For exam- 176

ple, temporal reasoning refers to temporal relation 177

extraction in Feng et al. (2023), time-sensitive QA 178

reasoning we refer the reader to the survey of Huang and
Chang (2023).

2A study of temporal cues and how they are expressed
in language can be found in the survey by Leeuwenberg and
Moens (2019).
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in Tan et al. (2023) and 38 different temporal sub-179

tasks including duration, arithmetic etc. in Wang180

and Zhao (2024).181

Early approaches to temporal reasoning. One182

of the first and most influential works on creating183

a temporal reasoning framework is that by Allen184

(1983), known as Allen’s interval algebra. First, he185

considered events as time intervals and defined all186

the possible ordering combinations between two187

events. A relation was assigned to each combi-188

nation (13 in total), and then, based on temporal189

logic, transitivity rules were formed for this rela-190

tion set. Building on Allen’s interval algebra, Puste-191

jovsky et al. (2003a) created TimeML, an annota-192

tion scheme designed to annotate events, tempo-193

ral expressions, and the temporal relations (called194

TLINKs) between them. TimeML was used to an-195

notate the TimeBank corpus (Pustejovsky et al.,196

2003b) and the following datasets (Pustejovsky197

et al., 2010; Cassidy et al., 2014; Styler IV et al.,198

2014; Ning et al., 2018b; Naik et al., 2019).3199

Building on these foundations, subsequent works200

focused on Temporal Information Extraction (TIE),201

which included the extraction of temporal events202

and expressions, and the creation of timelines by203

assigning temporal relations. A lot of these works204

applied temporal reasoning to different stages of205

their proposed approach in order to achieve correct206

and consistent relations. For example, temporal207

logic was employed for creating the temporal graph208

closure during the data annotation stage to obtain209

more relations with less annotation effort (Puste-210

jovsky et al., 2003b; Styler IV et al., 2014; Sun211

et al., 2013; Naik et al., 2019). Other works have212

employed temporal logic on classifier predictions,213

either during training or at inference time, to en-214

hance performance (Tang et al., 2013; Chambers215

et al., 2014; Ning et al., 2017, 2018a; Wang et al.,216

2022). Moreover, other approaches have incorpo-217

rated linguistic or causality-based rules based on218

how temporal cues are expressed in language and219

on the fact that temporal and causal relations are220

known to interact with each other (Chambers et al.,221

2014; Ning et al., 2018a).222

Current approaches to temporal reasoning.223

Since 2019, there has been significant interest in224

the field with new annotation efforts (Ning et al.,225

2020; Zhou et al., 2021; Alsayyahi and Batista-226

Navarro, 2023; Qin et al., 2021; Tan et al., 2024;227

3Section 3 presents a detailed overview of temporal rela-
tion datasets.

Lal et al., 2024) and methods (Feng et al., 2023; 228

Fang et al., 2024; Wei et al., 2023; Su et al., 2024). 229

With the emergence of LLMs, the research interest 230

has shifted to QA benchmarks covering a broader 231

spectrum of temporal phenomena (e.g., event or- 232

dering, duration, frequency, etc.) and to evaluating 233

their temporal reasoning capabilities. In the fol- 234

lowing sections, we provide a detailed overview of 235

these works and describe the findings of our study. 236

3 Datasets and Benchmarks 237

Figure 1 depicts a structured overview of the tem- 238

poral datasets, organized by reasoning focus and 239

task, in line with the structure of this section. In 240

Table 1, we summarize key statistics and details for 241

each dataset. 242

3.1 Pre-LLM Temporal Datasets 243

First temporal relation annotation approaches. 244

TimeBank (Pustejovsky et al., 2003b), which re- 245

sulted from the TimeML guidelines (see Section 246

2), is the first dataset systematically annotated with 247

temporal relation annotations in natural language 248

text (i.e., news articles). However, TimeBank con- 249

tains 13 fine-grained relations, which are difficult to 250

annotate (Cassidy et al., 2014; Ning et al., 2018a) 251

and have sparse annotations because the annota- 252

tors were instructed to label only relations critical 253

to the document’s understanding, leaving much 254

of the document unlabeled (Cassidy et al., 2014). 255

This motivated subsequent datasets to create more 256

coarse-grained relation sets by merging some of 257

the original relations (Table 1) (Sun et al., 2013; 258

Cassidy et al., 2014; Ning et al., 2018b; Naik et al., 259

2019). The TempEval shared tasks (2007–2013) 260

(Verhagen et al., 2007, 2010; UzZaman et al., 2013) 261

focused on identifying temporal relations between 262

events and time expressions using datasets based 263

on TimeBank. Also, the 2012 i2b2 challenge (Sun 264

et al., 2013) addressed temporal relation extraction 265

in Electronic Health Records (EHRs) to support 266

patient timeline construction. 267

Temporal relation datasets based on TimeBank. 268

In order to address the annotation sparsity, TB- 269

Dense dataset (Cassidy et al., 2014) re-annotates 270

36 documents from TimeBank, adding denser tem- 271

poral links between event pairs within one or neigh- 272

bouring sentences. Building on the same docu- 273

ments, MATRES (Ning et al., 2018b) introduces a 274

new annotation scheme that focuses only on event 275

start points and applies multi-axis modeling to im- 276
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Temporal QA

Temporal Relation Extraction

Benchmarks

TimeDial

WikiHow
CAT-BENCH

TODAY
TCELongBench

TRACIE

TCELongBench

Time-sensitive QA

TempReason
TimeQA
MenatQA

TCELongBench

Reasoning over 
long text

Reasoning on 
event sequence MC-TACO

TimeDial
TNLI 

WikiHow
TimeQA

BIG-bench*

Jain et al., 
(2023) 

MC-TACO
TempEval-3
Wikipedia*
SQuAD*
 MNLI*
COPA*
ROC*
SCT*

TRAM

Data Arithmetic
TimeX NLI 
MC-TACO

Duration QA
TimeDial

SituatedGen
TimeQA
MenatQA

TempReason
TRACIE

TimeBench

Reasoning on 
DialogsCommonsense 

Reasoning

Pre-LLM Datasets LLM Era Datasets

TimeBank
i2b2

TempEval 1, 2 and 3
TB-Dense
MATRES

TDDiscourse
TIMELINE 

Tasks:  ED, TED, TempRel
Tasks: D, EO, F, S, TT

MC-TACO

TORQUE

Tasks: TempRel

Reading Comprehension

Multi-hop/-answer:
Complex-TR

Co-temporal
 CoTemp-QA: TSQA

Figure 1: Overview of temporal reasoning datasets. The ones with “*” are not initially designed for temporal
reasoning tasks. Temporal tasks: event detection (ED), temporal expression detection (TED), and temporal relation
extraction (TempRE), ED: Event Duration, EO: Event Ordering, F: Frequency, S: Stationarity, TT: Typical Time.

Dataset # Documents # Relations Frequency

TimeBank (Pustejovsky et al., 2003b) 300 13 -
i2b2 (Sun et al., 2013) 310 3 -
TempEval (UzZaman et al., 2013) 20 13 1
TB-Dense (Cassidy et al., 2014) 36 5 2
TempEvalQA (Llorens et al., 2015) 28 11 1
CaTeRs (Mostafazadeh et al., 2016) 320 4 1
MATRES (Ning et al., 2018b) 36 4 5
TDDiscourse (Naik et al., 2019) 36 5 1
WikiHow (Zhang et al., 2020) 112,505 0 2
TIMELINE (Alsayyahi and Batista-Navarro, 2023) 48 4 1
MC-TACO (Zhou et al., 2019) 13,225 0 5
TORQUE (Ning et al., 2020) 3,200 2 1
TRACIE (Zhou et al., 2021) 5,400 2 2
TIME-DIAL (Qin et al., 2021) 1,100 0 2
TimeQA (Chen et al., 2021) 41,200 4 4
SituatedQA (Zhang and Choi, 2021) 12,200 0 1
TempLAMA (Dhingra et al., 2022) 50,000 0 1
TempReason (Tan et al., 2023) 52,800 2 2
TODAY (Feng et al., 2023) 2,241 2 1
MenatQA (Wei et al., 2023) 2,853 0 1
Complex-TR (Tan et al., 2024) 10,800 0 1
CAT-BENCH (Lal et al., 2024) 4,260 2 1
TCELongBench (Zhang et al., 2024b) 88,821 0 1
CoTemp-QA (Su et al., 2024) 4,748 4 1

Table 1: Datasets with temporal tasks. We show the dataset sizes (# Documents), annotated relations, tasks
included—event detection (ED), temporal expression detection (TED), and temporal relation extraction (TempRE)—
and average number of words per document.

prove inter-annotator agreement by excluding tem-277

porally incomparable events. Extending TB-Dense278

further, TDDiscourse (Naik et al., 2019) adds anno-279

tations for long-distance temporal relations across280

sentences.281

Temporal datasets beyond the TimeBank corpus.282

In 2019, Zhou et al. (2019) introduced MC-TACO,283

a multiple choice QA dataset targeting five com-284

monsense temporal aspects (i.e., duration, temporal285

ordering, typical time, frequency, and stationar-286

ity), using single-sentence contexts from the Mul-287

tiRC dataset (Khashabi et al., 2018). TORQUE288

(Ning et al., 2020) features human-written ques-289

tions about temporal relations between events that290

are mostly implicitly mentioned in short news con-291

texts, enabling deeper temporal reasoning evalua-292

tion. In a recent temporal relation annotation effort, 293

Alsayyahi and Batista-Navarro (2023) published 294

TIMELINE, which introduces a multi-axis anno- 295

tation scheme where annotators answer questions 296

about event pairs, and an algorithm infers temporal 297

relations automatically. 298

3.2 Temporal Datasets in the LLM Era 299

Temporal QA datasets. Unlike the pre-LLM 300

temporal annotation efforts that mainly focused on 301

relation prediction, recent LLM-era datasets cover 302

a broader range of temporal aspects and tasks, in- 303

cluding event frequency and duration prediction, 304

temporal NLI, time-sensitive QA, dialogue-based 305

temporal reasoning, and multi-hop inference. The 306

TRACIE dataset (Zhou et al., 2021) focuses on im- 307
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plicit events, hence testing models’ abilities to in-308

terpret timelines in narratives, often requiring com-309

monsense reasoning. TIMEDIAL (Qin et al., 2021)310

is a multiple-choice cloze QA dataset that tests311

temporal understanding in multi-turn dialogues by312

asking models to fill in missing time expressions.313

Tan et al. (2023) published a QA dataset called314

TempReason extracted from WikiData in order to315

serve as a benchmark for temporal reasoning. They316

defined three temporal reasoning levels and con-317

structed the questions based on them: 1. time-time318

relations, 2. time-event relations, 3. event-event re-319

lations. Complex-TR (Tan et al., 2024), inspired by320

TempReason, is a multi-hop, multi-answer tempo-321

ral QA dataset designed to probe complex reason-322

ing over co-occurrence and event sequences. CAT-323

BENCH (Lal et al., 2024) is a benchmark focusing324

on step ordering. It evaluates whether a particular325

step in a plan must occur before or after another,326

emphasizing the understanding of causal and tem-327

poral dependencies. TCELongBench (Zhang et al.,328

2024b) focuses on temporal, long context evalu-329

ation of QA pairs, tailored to three distinct tasks:330

1)TLB-detail QA, which tests LLMs’ ability to331

find evidence across numerous articles; 2)TLB-332

order QA, focusing on understanding temporal333

sequences; and 3)TLB-forecast QA, challenging334

LLMs to predict future events based on past in-335

formation. CoTemp-QA (Su et al., 2024) studies336

another aspect, which they call co-temporal reason-337

ing. It assesses LLMs’ capabilities to comprehend338

and reason about events that occur concurrently339

or have overlapping durations. The dataset is con-340

structed from real-world temporal facts, including341

biographical data of notable individuals.342

A different direction of research has employed343

techniques like modifications or contradictions of344

the context in order to evaluate the performance345

of the models when these changes are introduced.346

(Feng et al., 2023) proposed a new task and dataset347

called TODAY in which human annotators are348

asked to write a sentence that, if added at the begin-349

ning of the context, can change the current relation350

between two events. The annotators also write an351

explanation of how that change will occur. Wei352

et al. (2023) introduced MenatQA, which is based353

on TimeQA (Chen et al., 2021), but they added354

changes to the original context or question of each355

instance to make the dataset more complex. The356

changes have three categories: 1. Scope: The time357

range in a question is shifted so that it is not the358

same as the range mentioned in the context, 2. Or-359

der: the events in a context are shuffled so that they 360

are not mentioned chronologically in the context, 361

and 3. Counterfactual: a temporal hypothesis that 362

contradicts the context is added. 363

Temporal reasoning LLM benchmarks.Several 364

recent benchmarks have been introduced to assess 365

the temporal reasoning capabilities of LLMs using 366

existing datasets including a wide range of tem- 367

poral aspects (see Fig. 1). Jain et al. (2023) first 368

evaluated eight LLMs across six datasets, while 369

Wang and Zhao (2024) expanded this effort into 370

a larger multiple-choice QA benchmark with 8 371

datasets covering 38 temporal subtasks. Most re- 372

cently, TIMEBENCH merged 10 datasets into 16 373

fine-grained temporal subtasks to enable a more 374

comprehensive evaluation framework (Chu et al., 375

2024). 376

4 Temporal Reasoning Methods 377

4.1 Temporal training 378

Pretraining with Temporal Span Masking. A 379

widely used approach for improving temporal QA 380

performance is Temporal Span Masking (TSM), 381

which builds upon the Salient Span Masking (SSM) 382

method, which involves reconstructing masked 383

named entities as a language model pretraining 384

objective (Guu et al., 2020). TSM extends this 385

idea by masking temporal expressions—such as 386

specific dates, time durations, or recurring tempo- 387

ral phrases—instead of or alongside named enti- 388

ties (Tan et al., 2023; Qin et al., 2021; Cole et al., 389

2023). This adaptation aims to enhance the model’s 390

understanding of temporal information during pre- 391

training. Qin et al. (2021) and Cole et al. (2023) 392

trained base models using TSM and/or SSM, exper- 393

imenting with different configurations of masked 394

spans and model variants. Going a step further, 395

Tan et al. (2023) introduced a method called Time- 396

Sensitive Reinforcement Learning (TSRL). After 397

initial TSM and SSM pretraining, they construct 398

negative answer sets for each question—answers 399

that are structurally correct in terms of subject and 400

relation but pertain to incorrect time periods—and 401

use a reward function that penalizes selections from 402

these negative sets. Positive rewards are assigned 403

when model predictions match the correct, tempo- 404

rally aligned answers, reinforcing temporal sensi- 405

tivity in the decision-making process. 406

Fine-tuning strategies. Several methods have 407

been proposed to fine-tune pretrained models for 408

improved temporal reasoning. Feng et al. (2023) 409
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Dataset Model Human

Ref. Type Setting Acc F1 Acc F1

MC-TACO Chu et al. (2024) GPT-4 Few-Shot - 88.3 - 87.1

MATRES Roccabruna et al. (2024) Llama2 13B Fine-Tuning 84.3 - 88.0 -

WikiHow Jain et al. (2023) Llama 7B, GPT-3.5 Few-Shot 55.0 - 98.0 -

TRACIE Chu et al. (2024) Llama2 70B Few-Shot + CoT 67.0 - 82.5 -

TimeDial Chu et al. (2024) GPT-4 Few-Shot 94.6 - 97.8 -

TempReason Chu et al. (2024) GPT-4 Few-Shot + CoT 92.4 - 97.1 -

TimeQA Chu et al. (2024) GPT-4 Few-Shot - 73.7 - 93.3

Table 2: For each of the seven most commonly used datasets (i.e., with frequency more than one based on Table 1),
we show the best LLM performance across all the papers it was used in and the human performance.

propose a joint learning framework using TODAY,410

a dataset described in Section 3, which is anno-411

tated with distributional shifts rather than absolute412

temporal labels. The task is framed as textual en-413

tailment, where the premise includes the additional414

sentence, the context, and the question, and the415

hypothesis includes two events and the relation416

between them. Two entailment instances are gen-417

erated per example: one for “before” and one for418

‘after”. The model is trained using cross-entropy419

loss on hard labels from datasets such as MATRES420

or TRACIE, and marginal ranking loss on the rela-421

tive annotations in TODAY, enabling it to perform422

well across both absolute and relative reasoning423

cases.424

To address the long-context challenge in open-425

domain QA, Tan et al. (2024) introduce a combined426

data augmentation and context refinement strategy.427

First, they generate pseudo-instruction tuning data428

by shifting the time ranges in original instances and429

prompting ChatGPT (OpenAI, 2024) to hallucinate430

fictional entities to be added in the questions. Then,431

to reduce input length while preserving relevance,432

they apply cosine similarity over sentence embed-433

dings to select the paragraphs from the context that434

are the most relevant to each question.435

Following a different fine-tuning direction, Yang436

et al. (2024) incorporate contrastive and reinforce-437

ment learning techniques. They introduce time-438

aware embeddings derived from temporal expres-439

sions in the input and use a Granular Contrastive440

Reinforcement Learning objective. This approach441

evaluates model responses based on semantic and442

temporal vector proximity to correct and incorrect443

answers, offering a reward signal that encourages444

temporally robust predictions beyond string-level445

matching. All of the aforementioned methods em-446

ployed T5 (Raffel et al., 2020) as the base model.447

General-purpose temporal reasoning LLMs. 448

Expanding beyond task-specific models, other 449

works aim to equip large language models with 450

general temporal reasoning abilities. Xiong et al. 451

(2024) propose TG-LLM, a fine-tuning framework 452

that improves temporal understanding through 453

translation of textual input into latent temporal 454

graph representations. As part of this effort, they 455

introduce a synthetic dataset, TGQA, specifically 456

designed to support training for temporal graph 457

construction. Similarly, Su et al. (2024) develop 458

TIMO, a temporal reasoning framework trained 459

with TRAM (Wang and Zhao, 2024), which cate- 460

gorizes tasks into mathematical time and pure time 461

reasoning. TIMO employs a self-critic optimiza- 462

tion approach in which a reward model based on a 463

formal mathematical evaluator scores generated re- 464

sponses, enabling reinforcement learning to guide 465

the model toward higher-quality, temporally sound 466

answers. 467

4.2 Prompting 468

Prompting plays a central role in temporal QA 469

tasks, affecting how models interpret questions and 470

retrieve or reason over temporal information. Here, 471

we present an overview of existing works and the 472

various dimensions of prompt design that are ex- 473

plored, including question formulation, context for- 474

mat, prompting settings, and specialized strategies 475

tailored for temporal reasoning. 476

Prompt formulations. The formulation of the QA 477

task guides the structure and content of the prompt. 478

Common QA types include open-book and closed- 479

book QA (Tan et al., 2023), open-domain QA (Tan 480

et al., 2024), cloze-style QA (Qin et al., 2021), 481

multiple-choice formats (Qin et al., 2021; Wang 482

and Zhao, 2024; Fang et al., 2024), yes/no ques- 483

tions (Lal et al., 2024; Kougia et al., 2024), and 484

free-form answers (Zhang et al., 2024a; Chu et al., 485
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2024; Su et al., 2024). Many studies adopt mul-486

tiple formulations to evaluate performance across487

settings (Tan et al., 2023; Qiu et al., 2023; Yuan488

et al., 2023).489

Prompt settings. Based on the number of exam-490

ples and reasoning style, prompting can be cat-491

egorized into zero-shot, few-shot, and Chain-of-492

Thought (CoT) prompting. Most studies explore493

all three, while some focus only on zero-shot setups494

(Kougia et al., 2024; Wei et al., 2023). For few-shot,495

approaches vary from one-shot (Tan et al., 2024),496

to C-shot (Chan et al., 2024; Roccabruna et al.,497

2024),4 and 5-shot (Wang and Zhao, 2024). CoT498

prompting has also been integrated into several sys-499

tems (Wang and Zhao, 2024; Lal et al., 2024; Chu500

et al., 2024; Su et al., 2024; Qiu et al., 2023) to501

improve temporal reasoning capabilities showing502

promising performance.503

Prompt context. The context provided in prompts504

varies significantly. Most works include some form505

of context, such as free-text passages (Jain et al.,506

2023; Wang and Zhao, 2024; Yuan et al., 2023;507

Wei et al., 2023; Chan et al., 2024; Qiu et al.,508

2023; Chu et al., 2024; Su et al., 2024; Fang et al.,509

2024), while others use structured formats like code510

(Zhang et al., 2024a). Notably, Lal et al. (2024)511

avoid providing explicit context altogether. This512

variation in context design influences how models513

reason temporally across different tasks.514

Other prompting strategies for temporal reason-515

ing. Beyond the standard prompting approaches,516

some studies have introduced additional strategies517

designed for temporal reasoning. Jain et al. (2023)518

use code prompts that structure input as code-like519

syntax to guide LLMs. Yuan et al. (2023) propose520

event-ranking prompts that require ordering events521

relative to a reference. Zhang et al. (2024a) in-522

troduce the Narrative-of-Thought (NoT) method,523

which first elicits a temporally grounded narrative524

before generating answers using a Temporal Graph525

Prompt. This end-to-end CoT-based approach en-526

hances the model’s use of temporal structure in527

reasoning.528

5 Findings529

How do LLMs perform on temporal reasoning530

tasks? All the works we have studied for this531

survey report that LLMs struggle with temporal532

reasoning tasks and perform worse than smaller533

4C refers to the number of classes in the task, e.g., temporal
relations.

supervised models, e.g., BERT, and humans. As 534

shown in Table 2, for all the datasets except for MC- 535

TACO,5 The LLM performance can be up to 43% 536

lower than the human one. Moreover, while LLMs 537

can handle simpler tasks like assessing event dura- 538

tion or frequency (Jain et al., 2023), they frequently 539

fail at more complex tasks such as predicting cor- 540

rect event sequences, especially when faced with 541

conflicting knowledge, counterfactuals, or multi- 542

hop reasoning (Fang et al., 2024; Feng et al., 2023; 543

Wei et al., 2023). This indicates a gap in deeper 544

temporal understanding and inference. 545

Can temporal fine-tuning approaches improve 546

performance on temporal tasks? Results of the 547

pre-training and fine-tuning approaches show that 548

they always yield improvements over the base 549

model, and sometimes even outperform larger 550

LLMs like Flan-T5-Large and GPT-3.5 in zero- 551

shot settings (Tan et al., 2023; Yang et al., 2024) 552

or GPT-3.5 and GPT-4 in one-shot settings (Tan 553

et al., 2024). Moreover, fine-tuning allows models 554

to generalize better across different datasets, show- 555

ing robustness in complex tasks such as multi-hop 556

reasoning and co-temporal inference (Feng et al., 557

2023; Su et al., 2024; Zhang et al., 2024b; Tan 558

et al., 2024). Models like TIMO (Su et al., 2024) 559

and TODAY-trained variants (Feng et al., 2023) 560

significantly outperform GPT-4 on specific relation 561

extraction benchmarks, despite having fewer pa- 562

rameters, illustrating the power of targeted training. 563

Fine-tuned models also mitigate some common 564

LLM failures, such as inconsistencies in temporal 565

symmetry and bias towards contemporary dates 566

(Yuan et al., 2023; Qiu et al., 2023). 567

Which LLMs and of what size have shown bet- 568

ter performance? Among the models surveyed, 569

newer commercial LLMs such as GPT-4 consis- 570

tently achieve the strongest overall performance in 571

temporal reasoning tasks, particularly when eval- 572

uated under few-shot and CoT prompting settings 573

(Wang and Zhao, 2024; Zhao and Rios, 2024; Tan 574

et al., 2024; Chu et al., 2024). However, the ability 575

to systematically compare commercial models re- 576

mains limited, as they are often evaluated only on 577

reduced subsets of datasets due to cost and API con- 578

straints (Wang and Zhao, 2024; Tan et al., 2023). 579

Additionally, while increasing model size generally 580

correlates with better temporal reasoning ability, 581

5As the authors of MC-TACO mention, human perfor-
mance is low because commonsense can vary between indi-
viduals, so a single person’s answer might not always match
the gold label.

7



several studies report diminishing returns beyond a582

certain scale (Qiu et al., 2023; Xiong et al., 2024;583

Zhang et al., 2024a; Feng et al., 2023). This sug-584

gests that targeted finetuning and training strate-585

gies can be more impactful than simply scaling up586

model size.587

Which prompting strategy has the best per-588

formance? As indicated in Table 2, few-shot589

learning—especially when combined with CoT590

reasoning—produces significantly better results591

than zero-shot prompting, which often yields the592

weakest performance (Qiu et al., 2023; Tan et al.,593

2024; Chan et al., 2024). This gap underscores the594

importance of example-based guidance for com-595

plex temporal tasks.596

6 Discussion and future directions597

Gaps and fragmentation in temporal reasoning598

research. Despite growing interest and a surge599

of new benchmarks, many studies do not build ef-600

fectively on prior findings. Key insights—such601

as LLMs’ inconsistent predictions (Kougia et al.,602

2024), difficulties with counterfactuals and condi-603

tions (Feng et al., 2023; Wei et al., 2023), and in-604

ability to produce human-like reasoning (Lal et al.,605

2024) remain underexplored. Another major chal-606

lenge is the lack of a unified definition of tempo-607

ral reasoning, leading to fragmented efforts where608

each work emphasizes novelty over continuity. As609

seen in Table 1, most recent datasets have been610

used only once, highlighting limited integration611

and reuse.612

There is also a disconnect between newly devel-613

oped QA datasets and pre-LLM temporal relation614

datasets. Except for MC-TACO datasets with more615

complex temporal relations are rarely used in LLM616

evaluations, with preference given to simpler order-617

ing datasets (only “before” and “after” relations).618

Bridging this gap by incorporating richer tempo-619

ral relation datasets could significantly deepen our620

understanding of LLMs’ reasoning abilities and621

encourage more cohesive progress in the field.622

Evaluating temporal reasoning capabilities As623

discussed in Section 2, the boundary between re-624

trieval and reasoning is sometimes unclear, es-625

pecially for templated or simple questions. For626

instance, "When do people usually eat break-627

fast?" could be answered either through memorized628

knowledge or temporal commonsense reasoning.629

Similarly, "Does 3:00 PM come before 5:00 PM?"630

might rely on arithmetic reasoning or pattern match-631

ing. In contrast, more complex questions are more 632

likely to require genuine reasoning. For example, 633

computing a future date ("What day is 100 days 634

after March 3, 2025?"), or reasoning about contra- 635

dictions ("He spoke during a meeting that ended at 636

3 PM but arrived afterward—can that be true?"). 637

Tan et al. (2023) reported that LLM performance 638

deteriorates from year to month prediction. Fur- 639

thermore, many works have reported lower LLM 640

performance for complex temporal tasks (Tan et al., 641

2023; Lal et al., 2024), tasks including long de- 642

pendencies (Chan et al., 2024) and counterfactuals 643

(Fang et al., 2024) concluding that our understand- 644

ing of LLMs’ temporal reasoning capabilities may 645

be misleading (Feng et al., 2023). As a result, there 646

is a clear need for more rigorous and challenging 647

benchmarks to accurately assess LLM performance 648

on temporal reasoning. 649

7 Conclusion 650

With the advanced capabilities of LLMs, interest 651

in their temporal understanding has increased. Yet, 652

temporal reasoning is understood in different ways, 653

and often narrowly evaluated on simplified tasks, 654

such as question answering with limited context. 655

Sometimes, current evaluations are even a step 656

backwards from pre-LLM evaluations (that, e.g., 657

considered larger contexts and more complex tem- 658

poral relations). Our survey discusses core aspects 659

of temporal reasoning, including a taxonomy of 660

associated tasks, and a comprehensive overview of 661

existing approaches to solve these tasks, as well as 662

datasets for benchmarking their performance. We 663

find that LLMs continue to struggle with tempo- 664

ral reasoning, especially on tasks involving com- 665

plex inferences such as co-temporal relations, often 666

under-performing compared to smaller, fine-tuned 667

models, and do not reach human-level competency. 668

We survey previous work on different strategies for 669

improving the temporal capabilities of LLMs. We 670

find that prompting strategies alone remain insuf- 671

ficient compared to fine-tuning and task-specific 672

pretraining, which in turn consistently improve per- 673

formance and generalization. Our findings under- 674

score the need for clearer task definitions, unified 675

benchmarks, and diagnostic evaluations. 676

Limitations 677

Due to the rapid evolution of LLMs and the fre- 678

quency of new benchmark releases, some very re- 679

cent models or datasets may not be fully covered. 680
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Our analysis focuses primarily on published and681

publicly available resources up to early 2025, and682

does not include proprietary data or unpublished683

evaluations.684

The diversity in task formulations, evaluation685

protocols, and dataset structures across studies686

makes direct performance comparisons challeng-687

ing. Although we attempt to unify definitions and688

identify commonalities, differences in experimen-689

tal setups may limit the generalization of some690

conclusions.691

Finally, while we analyze model performance692

and prompting strategies in depth, we do not con-693

duct new empirical experiments. Future work could694

complement this survey with large-scale empirical695

evaluations under standardized conditions to more696

precisely assess temporal reasoning capabilities697

across models.698
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A Appendix1031

A.1 Paper Selection1032

In order to select the papers mentioned in this sur-1033

vey, we first include papers introducing datasets1034

with temporal relations and papers that discuss1035

temporal logic/ annotation schemes. Then, we se-1036

lect papers that perform temporal reasoning from1037

2019 onward since we focus on LLMs and the1038

last temporal reasoning survey was published in1039

2019 (Leeuwenberg and Moens, 2019). Hence, we1040

searched the existing literature with the keywords:1041

temporal relation, temporal corpus, temporal an-1042

notation, temporal logic, temporal reasoning, time1043

reasoning, temporal understanding, temporal lan-1044

guage model, time language model, temporal sur-1045

vey, temporal review, time survey, time review, tem-1046

poral ordering, temporal information extraction.1047

The keyword search was performed on the titles of1048

the papers. The initial search included 304 papers,1049

from which we filtered out papers containing the1050

words temporal knowledge graph and video as we1051

focus on papers that work on textual input. The1052

resulting 257 papers were then manually checked1053

regarding their relevance to the scope of this survey1054

(temporal reasoning and experiments with LLMs).1055

After this, the relevant papers we found were 28.1056

We also studied 10 more papers that introduced1057

datasets used or mentioned in the related work of1058

the original set of 28, and are relevant to our survey,1059

but did not come up during the search.1060
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