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Abstract

We present an approach for training language models to interactively prove the-
orems using the Lean proof assistant. Our approach enables models to propose
partial proofs, receive verification feedback, and iteratively refine their proofs. We
develop a synthetic data generation pipeline that converts static proof datasets into
multi-turn interactive sequences, complete with incremental verification feedback.
Our pipeline also incorporates error fixing examples that teach models to iden-
tify and correct mistakes based on verification results. Models fine-tuned on this
synthetic data demonstrate improvements over base models, showing increased
success rates in proof completion and improved ability to leverage verification
feedback.

1 Introduction

Proof assistants like Lean 4 [6] offer verifiable correctness for mathematical reasoning, addressing
a key weakness of large language models (LLMs). However, a common paradigm for LLM-based
formal theorem proving is to generate proofs in a single shot, neglecting the proof assistant’s rich
feedback and diverging from the workflow of human experts. Humans generally do not write complex
Lean proofs in one go; they strategically break down problems into intermediate lemmas, building an
outline of the argument before formalizing their intuitions and proving all the lemmas. Our initial
evaluations (Appendix B) show that specialized prover models like DeepSeekProver-v2-7B [20] excel
at single-shot proof generation, but overwhelmingly fail to incorporate feedback. Meanwhile, large
generalist models like Claude 3.7 Sonnet show some ability to use verifier feedback but have limited
Lean capabilities. This highlights the need for specialized models explicitly trained for interactive,
feedback-driven proving.

This work investigates training language models to prove theorems through an incremental, verifier-
guided process. We introduce a data pipeline that transforms static proofs into training data for
LLM-verifier interactions, including synthetic error-recovery scenarios. To measure our contribution,
we evaluate models on miniF2F [27], a benchmark of competition math problems formalized in Lean.
The evaluation is done in a multi-turn setting where the models get up to 8 attempts to complete
a proof, while receiving verifier feedback for each attempt. Our fine-tuning process shows a clear
progression: while a baseline trained on static proofs improves accuracy from the base model’s 6%
to 38.9%, it fails to utilize the interactive steps effectively. After training on data from our pipeline,
the model’s accuracy increases to 58.6% due to its improved ability to generate proofs incrementally
and to successfully correct errors across multiple turns. Accuracy increases to 68.9% when using a
hybrid strategy that runs four independent 8-turn interactive sessions in parallel for each problem,
succeeding if any of the four runs finds a proof.

Recent state of the art theorem proving models like Goedel-Prover-v2 [16] and Kimina-Prover [22]
achieve over 80% pass@32 accuracy on miniF2F [27] through careful curriculum curation and
reinforcement learning. They, too, incorporate some proof refinement, but their approach is limited to
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correcting whole proofs. Our work provides evidence that building a proof over multiple turns and
verifying incomplete states is a powerful training signal. We believe that combining this interactive
paradigm with state-of-the-art curriculum learning and reinforcement learning is likely to further
advance automated theorem proving. We provide an overview of related work in Appendix A.

2 Data Generation Pipeline

Figure 1: Multi-turn training data pipeline.

A key challenge for LLM-based theorem prov-
ing is the lack of suitable training data. Our
core contribution is a pipeline that transforms
static Lean proofs into multi-turn interactive di-
alogues. This process, summarized in Figure 1,
involves three main stages: decomposing cor-
rect proofs, generating retrospective reasoning,
and synthesizing error-recovery scenarios.

Proof Decomposition. We generated a dataset
of about 120k correct proofs for problems from
FineLeanCorpus [19], a dataset of mathemati-
cal problems formalized in Lean, using Goedel-
Prover-v2-32B [16]. Of these proofs, 40k (35%)
contain only 0 or 1 intermediate lemmas (have
tactics). We used these as single-turn examples
to maintain the model’s ability to generate com-
plete proofs directly.

The other 75k proofs, containing multiple have
statements each, were used to create multi-turn
data, yielding approximately 49k 2-step, 21k 3-
step, and 5k 4+-step proofs. We decomposed
these proofs into progression sequences. Each
such sequence begins with a proof skeleton con-
taining only the top-level lemmas (have state-
ments), with their proofs replaced by sorry.
Each subsequent step in the sequence then
proves a few of these lemmas at a time, teaching the model to separate strategic planning (de-
signing a valid skeleton) from tactical execution (proving each individual subgoal). By design, each
partial proof in this sequence successfully passes the Lean verifier, confirming that there are no errors,
but only the final, sorry-free proof is considered complete.

Retrospective Chain-of-Thought. We then generated chain-of-thought (CoT) sections simulating
the model’s decision-making. This was done retrospectively by providing Qwen3-235B-A22B with
consecutive proof steps to produce explanatory reasoning connecting them, creating forward-looking
reasoning. We created two versions: long CoT, combining Qwen3’s synthetic reasoning with the
original CoT from Goedel-Prover-v2-32B for the first step with the proof skeleton, and short CoT,
using Qwen3 only. Both versions used exclusively Qwen3’s synthetic CoT (which is much shorter
than Goedel-Prover-v2’s) for proof-filling steps after the first step. In comparative experiments on
independently fine-tuned checkpoints, long CoT demonstrated better performance, so we use that
version of the dataset.

Synthetic Error Fixing Data. To teach the model how to correct proofs based on verifier feedback,
we generated a dataset of about 27k error-correction examples, using three methods.

(i) Whole proof correction: For our initial dataset of proofs, we used Goedel-Prover-v2 to generate
multiple candidate solutions for each problem, then checked them for correctness. From these,
we paired incorrect proof attempts with the corresponding correct proofs of the statements for
about 13k samples from our single-turn data.

(ii) Skeleton correction: We further selected those incorrect proof samples where the extracted proof
skeleton itself was incorrect, and combined them with the corresponding correct multi-turn
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Figure 2: Left: Error-fixing data pipeline. Right: Training flow.

proofs. This yielded about 2k training examples simulating scenarios where the model generates
an incorrect skeleton, receives verifier errors, then generates a correct skeleton, and fills in the
missing subproofs in subsequent turns.

(iii) Tactic correction: Since localized tactical errors were scarce in our dataset, we created 12k
tactical error correction examples by using Qwen3-235B-A22B to corrupt intermediate steps
in multi-turn sequences. We prompted Qwen3 with comprehensive error type guidelines and
instructions to avoid introducing errors in overly simple steps. We provided it consecutive
proof steps from the multi-turn proof progression sequences, instructing it to inject errors only
into the new tactics introduced in the later step to preserve data flow. Each corrupted proof
was verified using Lean to ensure it produced errors and to capture error messages, generating
approximately 12k tactical correction examples.

For each of these scenarios, we also generated CoT using Qwen3-235B-A22B as before. The CoT
analyzes the verifier’s error message and explains the reasoning behind the fix.

3 Experiments and Results

Experimental Setup. We fine-tuned Qwen3-8B, which is an instruction-tuned model, on the dataset
we generated, using phased training to isolate the impact of each type of data. This led to three model
checkpoints:

• Whole-Proof : We first fine-tuned Qwen3-8B directly on the original 120k Goedel-v2 proofs
without modification, establishing baseline whole proof generation capabilities.

• Multi-Turn-Correct: Next, we trained the checkpoint from the previous step on our multi-
turn dataset with only correct proofs (75k multi-turn progression sequences + 40k single-
turn examples with long CoT), teaching incremental proof construction through skeleton
generation followed by systematic filling.

• Multi-Turn-Error-Fixing: Finally, we added 27k error-correction examples while retraining
on the complete multi-turn dataset. In this phase, we had 18% error-correction samples and
82% purely correct proofs.

Since much of the multi-turn data teaches skeleton generation first, there is a risk of the fine-
tuned model producing excessive sorry statements without the ability to complete them correctly.
Similarly, error-correction examples could condition the model to always generate incorrect proofs
before corrections. This phased training approach allows us to evaluate whether specific data types
help or hurt the model’s performance. Appendix C contains the training and evaluation parameters.

We evaluated the fine-tuned checkpoints, alongside Qwen3-8B, on miniF2F in a multi-turn interactive
setting with up to 8 turns. The models generate a solution, receive any error messages from Lean, and
continue until they exhaust all 8 turns or solve the problem, while maintaining the full conversation
history in their context. To investigate the impact of the resulting long context, we also evaluated the
Multi-Turn-Error-Fixing checkpoint in a different setting, labeled MT-EF-Limited-Context: Instead
of the full conversation history, the model sees only the problem statement, its most recent output,
and the verifier response.
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(a) Results from an 8-turn evaluation, with bars
stacked by the turn of success (1 at bottom).

(b) Evaluating single-shot proof generation across
k parallel attempts, without verifier feedback.

(c) Analysis of solution types for problems solved
after the first turn.

(d) Different methods for spending a fixed 32-
attempt budget with our best-performing model.

Figure 3: Main evaluation results on miniF2F test set. Our multi-turn and error-fixing training
data significantly improves interactive theorem proving capabilities of the model (a). Our final
checkpoint substantially outperforms baselines in an 8-turn interactive evaluation (b). This interactive
performance even surpasses the strong pass@32 parallel sampling baseline (c). The gain is driven
by a learned ability to fix genuine errors, not just to complete partial proofs (d). Combining 8-turn
interaction with pass@4 further increases the accuracy. Note that MT-EF-Limited-Context is the same
checkpoint as Multi-Turn-Error-Fixing with a different evaluation setting. While the full-context
model has all of its previous attempts and verification feedback in its context for a problem, the
limited-context model only retains its most recent attempt and verification feedback in addition to the
original problem statement.

Main Results. Our results for multi-turn evaluation show a clear progression in capability through
our phased training, as illustrated in Figure 3a. The Whole-Proof baseline derives little benefit from
interacting with the verifier, not solving many problems beyond the first turn. The Multi-Turn-Correct
checkpoint solves fewer problems in the first turn compared to Whole-Proof, since 65% of the
multi-turn data trains it to first generate an incomplete proof skeleton before completing the proof
in later turns. Consequently, it shows an improvement in solving problems in later turns. The key
improvement comes from the Multi-Turn-Error-Fixing checkpoint, which learns to effectively use
verifier feedback to solve substantially more problems from the third turn onward, increasing the
accuracy to 50.4%. Surprisingly, limiting this model’s context to only the most recent turn’s feedback
substantially boosts its ability to recover from errors, allowing it to solve even more problems after
the third turn and increasing the accuracy to 58.6%. MT-EF-Limited-Context likely performs better
because the most recent attempt provides all the necessary information for a fix, while the shorter
context is more efficient and avoids potential long-context degradation.

To understand whether any improvements in the multi-turn setting result from genuine error feedback
benefits or simply generating more samples, we also evaluate all checkpoints using pass@k in Fig-
ure 3b, with k independent, parallel single-shot proof attempts without verifier feedback. We observe
that Whole-Proof performs better with 8 independent attempts (pass@8) than with 8 sequential turns.
As expected, the pass@1 and pass@8 accuracy of the Multi-Turn checkpoints drop, compared to
Whole-Proof, because of the training to generate proof skeletons for the first turn. Yet pass@32
performance remains surprisingly strong because a substantial minority (35%) of the training data
consisted of single-turn examples, preserving the model’s ability to sometimes generate complete
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proofs in one shot. Remarkably, our final checkpoint in the limited-context setting with just 8
interactive turns surpasses the pass@32 performance of the other checkpoints, proving that learning
to effectively use verifier feedback is more powerful than a four-fold increase in parallel attempts.

We also analyze how problems are solved after the first turn. Figure 3c breaks down these solutions
into two types: completing a partial proof (filling a sorry) versus fixing a genuine compilation
error. The results show a clear trend: While all multi-turn models are adept at completing proofs, the
checkpoint trained on our error-recovery data shows a substantial increase in its ability to fix actual
errors. We provide some examples of our model’s multi-turn proof generations in Appendix D.

Another natural question is whether we can achieve additional advantages by combining parallel
sampling with sequential feedback-driven attempts. We investigated hybrid strategies that use both
the breadth of parallel sampling and the depth of sequential interaction, maintaining a fixed total
sample budget of 32 generations per problem. We compared standard single-turn pass@32 against
hybrid strategies including “8 turns×pass@4” (4 independent parallel runs, each with 8 sequential
turns) and “4 turns×pass@8” (only in the limited-context setting, which consistently outperforms the
full-context setting in other experiments). We also evaluated “4 turns×pass@4” as a sanity check to
quantify what additional value is added by the last 4 turns, though this strategy uses only 16 total
samples rather than the full 32-sample budget. The results are presented in Figure 3d.

We reach 68.9% accuracy with 8 turns×pass@4 in the limited-context setting, significantly out-
performing single-turn pass@32, with 4 turns×pass@8 performing only slightly worse. Note that
despite both strategies using 32 generations, the computational costs may differ substantially. Our
training structure creates cost asymmetry: The model generates extensive CoT for planning the proof
in the first turn, but shorter, targeted reasoning for subsequent turns. While input tokens increase
with each turn, the generation cost is dominated by the number of output tokens, which is highest
for the first turn. Highly parallel strategies (like pass@32 or 4 turns×pass@8) repeatedly incur this
high initial cost, while more sequential approaches (like 8 turns×pass@4) require fewer expensive
planning steps.

4 Conclusion

We present a systematic approach for training language models to effectively utilize verifier feedback,
using a novel data pipeline that transforms static proofs into multi-turn, interactive dialogues. By fine-
tuning an 8B model on our dataset of correct decomposition sequences and synthetic error-recovery
scenarios, we demonstrate a significant boost in theorem-proving capabilities over the baseline. Our
analysis confirms that these gains stem from the model learning to fix substantive errors through
interaction, a strategy that proves more effective and computationally efficient than standard parallel
sampling. Our work provides a strong foundation for future research. A natural next step is to explore
reinforcement learning using the verifier to provide dense, intermediate rewards for proof-building.
Systematic ablation studies will be useful to determine the optimal composition of our training data,
particularly the proportion and types of error-correction examples.
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A Related Work

There is a rapidly growing body of research focused on applying Large Language Models (LLMs)
to formal theorem proving. We situate our contribution in the context of several key paradigms:
single-shot proof generation with refinement, tactic-level sequential generation, and data synthesis
strategies.

Whole-proof generation. A prominent line of work treats formal proving as end-to-end sequence
generation: The model emits a complete proof script in the language of, e.g., Lean or Isabelle, and
the verifier checks the script once. This enables very easy scaling with parallel generation, but
suffers from a less targeted search. Earlier attempts involved more direct completion of a proof,
potentially with interleaved comments [24, 7, 15]. More recently, utilizing long chain of thought
(CoT) and reinforcement learning with verifiable rewards (RLVR) [10, 12], foundation-style provers
demonstrate that single-pass generation can already produce a large number of formally verified
proofs [20, 16, 22]. Within this paradigm, authors often add inline structure to stabilize generation
while keeping inference single-turn: producing a high-level sketch with sorry placeholders and
then filling in a whole proof, roughly following the Draf-Sketch-Proof paradigm [11]. Although
Lean-STaR is evaluated in stepwise regimes, its use of short thought snippets illustrates the same idea:
lightweight, human-readable guidance that can be embedded in generated text without fine-grained
state supervision [14]. The strength of whole-proof methods is simplicity and global consistency;
their limitation is that the verifier provides no intermediate signal unless the system explicitly inserts
pauses (e.g., sorry) or a separate repair stage.

Iterative refinement. A second line of work exploits verifier-in-the-loop training or prompting
so that models improve a partially built proof across turns. At the tactic granularity, Lean-STaR
interleaves a short natural-language ‘thought’ with a predicted tactic, then runs expert iteration to
retain only successful trajectories [14]. Coarser-grained interactive systems use Lean feedback to
refine lemmas or proof skeletons within the same session: StepFun-Prover performs a stepwise
‘think-and-verify’ cycle with real-time environment signals; Prover Agent coordinates an informal
planner with a Lean-grounded executor that synthesizes on-the-fly lemmas from error messages;
and Seed-Prover iteratively expands and repairs lemma-style sketches while retaining the ability
to escalate search on hard instances [21, 1, 4]. Large-scale systems bring these ideas into SFT/RL
pipelines: Goedel-Prover-v2 explicitly trains self-correction on scaffolded data so that the model
proposes, verifies, and revises; Kimina-Prover aligns informal ‘reasoning blocks’ with formal code
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and incorporates test-time search to discover and reuse lemmas while mitigating format collapse [16,
22]. A parallel thread augments single-pass generation with a post-hoc corrector that reads error
messages and rewrites the entire proof: Baldur for Isabelle/HOL pioneered a generator+repairer
architecture [8]; in Lean, multi-agent or rule-driven scaffolds such as MA-LoT (prover/critic with
long CoT) and APOLLO (syntax refiner, ‘sorrifier’ to isolate subgoals, local solvers, recursive
repair) follow the same regenerate-the-whole-proof template [23, 18]. Outside the formal math
domain, closely related code systems use iterative refinement loops driven by compiler, runtime or
test feedback, supporting the idea that intermediate verification signals are powerful supervision and
control mechanisms for long-horizon reasoning [17, 2, 5].

Proof search and planning. A third line of work treats proving as state-space search, expanding
a frontier of proof states under the checker’s guidance rather than committing to one trajectory.
HyperTree Proof Search (HTPS) brought AlphaZero-style planning to neural theorem proving [13].
Lean-centric planners integrate the verifier directly: DeepSeek-Prover-v1.5 couples proof assistant
feedback with an MCTS-like planner; BFS-Prover scales best-first expansion with state–tactic policies
trained using compiler-feedback annotations; and Bourbaki frames proving as self-generated, goal-
conditioned MDPs solved by MCTS-style search [25, 26, 29]. Hybrid planner–writer systems ask
a strong general LLM to draft a lemma plan or proof sketch and then rely on formal search to fill
in small steps (e.g., DSP+, Delta-Prover) [28, 3]. Search generally boosts reliability on difficult
theorems but is computationally expensive because many partial branches must be verified.

Like the whole-proof refinement models, we see value in error correction, but we train our model
to perform this correction iteratively over multiple turns rather than as a one-shot repair. Similar
to the tactic-level models, we opt for an interactive, step-by-step process, but our ‘steps’ are at the
level of building proof skeletons and completing multiple lemmas each time, rather than individual
tactics. Moreover, our data synthesis pipeline is specifically designed to generate the multi-turn,
error-recovery dialogues that prove useful for teaching a model to truly interact with a proof assistant.

B Initial Evaluations

We performed initial evaluations on existing models to assess their capabilities and understand how
different interaction patterns affect their accuracy on formal reasoning tasks. We evaluated Claude
3.7 (a large general-purpose LLM), Qwen3-8B (a small general-purpose LLM), and DeepSeekProver-
v2-7B (a small LLM specifically trained to prove theorems in Lean) on miniF2F.

We evaluate these models under two interaction types:

1. Pass@8 (8 independent generations): Percentage of problems the model can solve when
given up to 8 independent attempts at each problem. A proof is considered successful if any
of the generations is correct.

2. Multi-turn interaction, 8 sequential turns: The models are allowed up to 8 attempts for each
problem. They output their solution, receive any error messages from the Lean verifier,
and continue based on the verifier’s feedback until they exhaust all 8 attempts or solve
the problem, while maintaining the full conversation history with all previous reasoning,
attempts, and feedback in the context.

The purpose of this comparison is to see if having the previous attempts and verifier feedback can
help a model any more than just independently retrying the proof without any context of its other tries.
Figure 4 shows the accuracies with pass@8 (gray) and in the multi-turn setting. The colors represent
the problems solved corresponding to different number of attempts (e.g., problems solved in the first
turn are at the bottom in yellow, and problems solved after 8 attempts are at the top in blue).

From the results, we can observe that

• Claude 3.7 has a low accuracy on the benchmark overall, but the accuracy with 8 sequential
attempts (with previous attempts and error feedback in context) is considerably higher
compared to 8 independent generations. This makes sense since Lean data is likely a very
small proportion of a general-purpose LLM’s training data. However, these models excel at
following instructions and at in-context learning, enabling them to use error information
from Lean to some extent.
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• In contrast, specialized models like DeepSeekProver-v2-7B demonstrate impressive per-
formance on their focused domain. DSPv2-7B solves a substantial proportion of problems
on the first turn. However, for problems it does not solve initially, the model struggles to
utilize error feedback effectively, showing minimal improvement in subsequent attempts.
Our more detailed analysis revealed that when DSPv2 receives error feedback after an initial
attempt, it often fails to produce valid Lean code and instead generates incoherent text. This
is likely because it was trained primarily on single-turn data, making multi-turn interactions
out-of-distribution for the model.

• Qwen3-8B has minimal Lean capabilities. Pass@8 performance is marginally better than 8
sequential attempts.

Figure 4: Comparing the performance of Claude3.7, Qwen3-8B, and DeepSeekProver-v2-7B on
miniF2F test and validation sets, across pass@8 and 8 interactive turns

We also experimented with various prompting strategies for these models, including explicitly
instructing them to first generate a proof skeleton with intermediate lemmas and sending it to the
verifier as its first attempt before filling in the details to complete the proof. However, these different
prompting approaches did not significantly affect performance.

These initial findings suggest that training a model on Lean data with appropriate interaction patterns
could lead to meaningful improvements. Therefore, we focus on generating such data and evalu-
ating its effectiveness for enhancing theorem-proving capabilities. To that end, we fine-tuned the
underperforming Qwen3-8B model using our novel data generation pipeline.

C Training and Evaluation Setup

We provide the details of the training and evaluation hyperparameters in this section. For all supervised
fine-tuning, we used the Adam optimizer with cosine learning rate scheduler, weight decay 0.01,
gradient clipping with maximum gradient norm 1, and batch size 512. The Whole-Proof checkpoint
was trained for one epoch with learning rate 5× 10−6, Multi-Turn-Correct was trained for 2 epochs
with learning rate 2× 10−5, and Multi-Turn-Error-Fixing was trained for 2 epochs with learning rate
5× 10−6.

During evaluation, we set the maximum context length to 131,072 to accommodate the longer context
required in the multi-turn setting. We used the recommended sampling parameters for Qwen3-
8B in thinking mode (the underlying base model for all our checkpoints), i.e. Temperature=0.6,
TopP=0.95, TopK=20, and MinP=0. We used the version of miniF2F available at https://github.
com/deepseek-ai/DeepSeek-Prover-V1.5/blob/main/datasets/minif2f.jsonl.

Our data filtering was performed using Lean v4.21.0, whereas the evaluation server we used runs
Lean v4.9.0. Due to some syntax differences between these versions, it is possible that our models’
reported accuracies are slightly lower than their true capabilities. However, since all checkpoints
were evaluated under these identical conditions and our source proofs were generated using Goedel-

9

https://github.com/deepseek-ai/DeepSeek-Prover-V1.5/blob/main/datasets/minif2f.jsonl
https://github.com/deepseek-ai/DeepSeek-Prover-V1.5/blob/main/datasets/minif2f.jsonl


Prover-v2-32B, which also used Lean v4.9.0, we do not expect this to have a substantial impact on
the results.

Figure 5: Evaluation results on the miniF2F validation set. Top Left: Main results from the 8-
turn interactive evaluation, showing significant improvement from our phased training. Top Right:
Baseline pass@k performance for single-turn, parallel generation. Bottom Left: Breakdown of
multi-turn successes, showing an increase in genuine error correction for our final model. Bottom
Right: Comparison of hybrid sampling strategies under a fixed 32-attempt budget, showing that
multi-turn methods outperform the parallel baseline.

We also present the evaluation results on the validation set of the miniF2F benchmark in Figure 5.
The experiment settings are identical to the ones for the test set, described earlier. We do not use the
validation set for any part of the training.

D Multi-Turn Proof Example

We present an example of a multi-turn proof generation by our model, Multi-Turn-Error-Fixing. In
this example, the model first generates a proof skeleton, makes an error when completing the proof,
and then fixes the error with the help of the error information received from the verifier.

User Prompt

Prove the following theorem in Lean4:
/– Find $y$: $\sqrt{19+3y} = 7$. Show that it is 10.-/

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) :↪→

y = 10 := by

Model

<think>**Problem Analysis:** We need to solve for ‘y‘ in the equation ‘(19 + 3y) = 7‘ under
the constraint that ‘19 + 3y 0‘.
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**Key Observations:** 1. The square root function ‘x‘ is defined only when ‘x 0‘, and it
returns the non-negative root. The hypothesis ‘0 19 + 3y‘ ensures that the square root is real.
2. The square of both sides of the equation ‘(19 + 3y) = 7‘ will eliminate the square root,
but we must be careful because squaring can introduce extraneous solutions. However, since
the square root is non-negative and ‘7‘ is positive, the solution we obtain will be valid if it
satisfies the original equation and the constraint. 3. The square of ‘(19 + 3y)‘ is ‘19 + 3y‘, so
squaring both sides gives ‘19 + 3y = 49‘.
**Proof Steps:** 1. Square both sides of the equation ‘(19 + 3y) = 7‘ to eliminate the square
root. This gives ‘19 + 3y = 49‘. 2. Solve the resulting linear equation ‘19 + 3y = 49‘ for ‘y‘: -
Subtract ‘19‘ from both sides: ‘3y = 30‘. - Divide both sides by ‘3‘: ‘y = 10‘. 3. Verify that
‘y = 10‘ satisfies the original constraint ‘19 + 3y 0‘: - ‘19 + 3 * 10 = 49 0‘, which is true. 4.
Check that ‘y = 10‘ also satisfies the original equation ‘(19 + 3y) = 7‘: - ‘(49) = 7‘, which is
correct.
However, in Lean, the hypothesis ‘h1 : Real.sqrt (19 + 3 * y) = 7‘ already implies that ‘19 +
3 * y 0‘ because the square root is only defined for non-negative numbers. The additional
hypothesis ‘h0 : 0 19 + 3 * y‘ is redundant but does not hurt.
But we can directly use the property of square roots in Lean: if ‘Real.sqrt x = y‘, then ‘x =
y2‘ provided that ‘y 0‘ (which it is in this case, since ‘7 0‘).
**Lean-Specific Considerations:** 1. Lean’s ‘Real.sqrt_eq_iff_sq_eq‘ lemma states that for
‘x 0‘ and ‘y 0‘, ‘Real.sqrt x = y‘ if and only if ‘x = y2‘. - Here, ‘x = 19 + 3 * y‘ and ‘y =
7‘, so we can use this lemma to deduce ‘19 + 3 * y = 49‘. - The condition ‘y 0‘ is satisfied
because ‘7 0‘. 2. We can then solve ‘19 + 3 * y = 49‘ to get ‘y = 10‘.
**Formal Proof Sketch:** 1. Use ‘Real.sqrt_eq_iff_sq_eq‘ to deduce ‘19 + 3 * y = 49‘ from
‘h1‘, since ‘7 0‘ and ‘19 + 3 * y 0‘ (by ‘h0‘). 2. Simplify ‘19 + 3 * y = 49‘ to ‘3 * y = 30‘
and then to ‘y = 10‘.
### Step-by-Step Abstract Plan
1. **Square Both Sides**: - Since ‘Real.sqrt (19 + 3 * y) = 7‘ and ‘7 0‘, we have ‘19 + 3 * y
= 72 = 49‘.
2. **Solve for ‘y‘**: - Subtract ‘19‘ from both sides: ‘3 * y = 30‘. - Divide both sides by ‘3‘:
‘y = 10‘.
3. **Verification (Optional in Lean)**: - Check that ‘19 + 3 * 10 = 49 0‘ (already given by
‘h0‘). - Check that ‘Real.sqrt 49 = 7‘ (which is true, but Lean’s lemma already handles this).
### Lean 4 Proof with ‘have‘ Statements

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) :↪→

y = 10 := by
have h2 : 19 + 3 * y = 49 := by sorry
have h3 : 3 * y = 30 := by sorry
have h4 : y = 10 := by sorry
sorry

### Explanation of ‘have‘ Statements: 1. ‘h2‘: We deduce ‘19 + 3 * y = 49‘ by squaring
both sides of ‘h1‘ and using the property of square roots. In Lean, this can be done using
‘Real.sqrt_eq_iff_sq_eq‘. 2. ‘h3‘: Subtract ‘19‘ from both sides of ‘h2‘ to get ‘3 * y = 30‘. 3.
‘h4‘: Divide both sides of ‘h3‘ by ‘3‘ to get ‘y = 10‘.
Each step follows directly from the previous one using basic arithmetic operations, and the
final result is ‘y = 10‘.</think>The problem requires proving that y = 10 given the equation
(19 + 3y) = 7 and the domain constraint 0 19 + 3y. My initial strategy is to eliminate the
square root by squaring both sides, then solve the resulting linear equation.
First, I recognize that squaring both sides of the equation will give 19 + 3y = 72 = 49. This
forms the first subgoal h2: 19 + 3y = 49. To establish this, I need to use the property that if x
= y with y 0, then x = y2. This requires verifying that 7 is non-negative (which is trivial) and
that 19 + 3y is non-negative (already given by h0).
Next, solving 19 + 3y = 49 leads to 3y = 30 through simple subtraction. This becomes subgoal
h3: 3y = 30. Finally, dividing both sides by 3 gives y = 10 (subgoal h4).
I structure the proof using ‘have‘ statements to isolate these steps because each transformation
depends on the previous one. The final ‘apply h4‘ completes the proof once all intermediate
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steps are verified. However, I need to fill in the details for each subgoal, particularly proving
h2 using the square root property.

import Mathlib

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) : y = 10 := by↪→

have h2 : 19 + 3 * y = 49 := by sorry
have h3 : 3 * y = 30 := by sorry
have h4 : y = 10 := by sorry
apply h4

Lean Verifier Response

The proof outline with ‘sorry‘ placeholders is correct. The proof is incomplete. 3 goals,
marked with ‘sorry‘ placeholders, remain unproven. Please fix the issues and provide an
updated proof.

Model

<think>The verification feedback shows three remaining goals. I’ll address them in order of
dependency:
1. For h2: 19 + 3y = 49 - Use Real.sqrt_sq_eq_iff to show (19+3y)2 = 19+3y - Apply h1
(which states (19+3y) = 7) to get 72 = 49 - Use linarith to connect these equalities
2. For h3: 3y = 30 - This follows directly from h2 (19 + 3y = 49) by subtracting 19 - linarith
can handle this simple arithmetic transformation
3. For h4: y = 10 - From 3y = 30, divide both sides by 3 - Again, linarith can solve this
I notice that the square root property requires proving 0 19 + 3y (already given by h0)
and 0 7 (trivial). The ‘rw [h1]‘ tactic will substitute the square root expression with 7,
and ‘norm_num‘ will simplify 72 to 49. The final ‘linarith‘ calls will handle the arithmetic
transformations. This approach should work since all operations are reversible and preserve
equality.</think>

import Mathlib

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) : y = 10 :=↪→

by
have h2 : 19 + 3 * y = 49 := by

have h21 : Real.sqrt (19 + 3 * y) ^ 2 = (7 : ) ^ 2 := by rw [h1]
have h22 : (Real.sqrt (19 + 3 * y)) ^ 2 = 19 + 3 * y := by rw

[Real.sqrt_sq_eq_iff] <;> norm_num <;> linarith↪→

have h23 : (7 : ) ^ 2 = 49 := by norm_num
linarith

have h3 : 3 * y = 30 := by linarith
have h4 : y = 10 := by linarith
apply h4

Lean Verifier Response

The proof is not correct.
Error 1: Location: Line 13, Column 68
Corresponding Code:

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) :↪→

12



y = 10 := by
have h2 : 19 + 3 * y = 49 := by

have h21 : Real.sqrt (19 + 3 * y) ^ 2 = (7 : ) ^ 2 := by rw [h1]
have h22 : (Real.sqrt (19 + 3 * y)) ^ 2 = 19 + 3 * y := by rw

[<error>Real.sqrt_sq_eq_iff</error>] <;> norm_num <;>
linarith

↪→

↪→

have h23 : (7 : ) ^ 2 = 49 := by norm_num

Error Message: unknown constant ’Real.sqrt_sq_eq_iff’
Error 2: Location: Line 13, Column 68
Corresponding Code:

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) :↪→

y = 10 := by
have h2 : 19 + 3 * y = 49 := by

have h21 : Real.sqrt (19 + 3 * y) ^ 2 = (7 : ) ^ 2 := by rw [h1]
have h22 : (Real.sqrt (19 + 3 * y)) ^ 2 = 19 + 3 * y := by rw

[<error>Real.sqrt_sq_eq_iff</error>] <;> norm_num <;>
linarith

↪→

↪→

have h23 : (7 : ) ^ 2 = 49 := by norm_num

Error Message: tactic ’rewrite’ failed, equality or iff proof expected ?m.1339 y : h0 : 0 19 +
3 * y h1 : (19 + 3 * y) = 7 h21 : (19 + 3 * y) ^2 = 7 ^2 (19 + 3 * y) ^2 = 19 + 3 * y
Please fix the issues and provide an updated proof.

Model

<think>The error messages indicate that Real.sqrt_sq_eq_iff doesn’t exist. I need to find the
correct theorem for this identity.
Looking at Mathlib’s documentation, I recall that Real.sq_sqrt (h0 : 0 x) : x ^2 = (x) ^2 is
the proper theorem. This requires the non-negativity hypothesis h0, which we have.
I’ll modify the proof: 1. Use Real.sq_sqrt h0 to get (19+3y)2 = ((19+3y))2 2. Apply h1 to
substitute (19+3y) with 7 3. Use norm_num to simplify 72 to 49 4. Combine these with
linarith to derive 19+3y = 49
This approach should work because: - Real.sq_sqrt directly gives the identity we need - h1
provides the substitution for the square root - norm_num handles numerical simplifications -
linarith can then solve the resulting equations
I’ll replace the invalid rewrite with Real.sq_sqrt and adjust the proof accordingly.</think>

import Mathlib

theorem mathd_algebra_263 (y : ) (h0 : 0 19 + 3 * y) (h1 : Real.sqrt
(19 + 3 * y) = 7) : y = 10 :=↪→

by
have h2 : 19 + 3 * y = 49 := by

have h21 : Real.sqrt (19 + 3 * y) ^ 2 = (7 : ) ^ 2 := by rw [h1]
have h22 : Real.sqrt (19 + 3 * y) ^ 2 = 19 + 3 * y := by rw

[Real.sq_sqrt] <;> norm_num <;> linarith↪→

have h23 : (7 : ) ^ 2 = 49 := by norm_num
linarith

have h3 : 3 * y = 30 := by linarith
have h4 : y = 10 := by linarith
apply h4
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