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Abstract

This work addresses the problem of automated covariate selection under limited
prior knowledge. Given an exposure-outcome pair {X,Y } and a variable set Z
of unknown causal structure, the Local Discovery by Partitioning (LDP) algo-
rithm partitions Z into subsets defined by their relation to {X,Y }. We enumerate
eight exhaustive and mutually exclusive partitions of any arbitrary Z and lever-
age this taxonomy to differentiate confounders from other variable types. LDP
is motivated by valid adjustment set identification, but avoids the pretreatment
assumption commonly made by automated covariate selection methods. We pro-
vide theoretical guarantees that LDP returns a valid adjustment set for any Z that
meets sufficient graphical conditions. Under stronger conditions, we prove that
partition labels are asymptotically correct. Total independence tests is worst-case
quadratic in |Z|, with sub-quadratic runtimes observed empirically. We numeri-
cally validate our theoretical guarantees on synthetic and semi-synthetic graphs.
Adjustment sets from LDP yield less biased and more precise average treatment
effect estimates than baselines, with LDP outperforming on confounder recall, test
count, and runtime for valid adjustment set discovery.

1 INTRODUCTION

Covariate selection is a central task in the design of observational studies (Guo et al., 2022). The ob-
jectives of covariate selection include eliminating bias and reducing variance in causal estimates, im-
proving model fitting and interpretability through dimensionality reduction (Schnitzer et al., 2016),
and increasing robustness to model misspecification (Guo et al., 2022). The primary goal of co-
variate selection is to obtain a valid adjustment set for an exposure-outcome pair that eliminates
confounding bias by adjusting for confounders (Witte & Didelez, 2019). Confounding bias distorts
the observed relationship between the exposure and outcome, leading to incorrect effect measures
even under infinite data (Hernán & Robins, 2020).

Identifying valid adjustment sets is a challenging task in many real-world settings, even with the
guidance of domain experts. A naive approach is to adjust for all measured variables. However, it
is established that multiple variable types can induce bias when retained for adjustment (Lu et al.,
2021; Schisterman et al., 2009). These include colliders, which induce selection bias (Hernán et al.,
2004; Elwert & Winship, 2014; Holmberg & Andersen, 2022); mediators, which bias total effects by
controlling for indirect effects (Pearl, 2001); and instrumental variables, which can amplify existing
bias or introduce new bias in some settings (Pearl, 2012). Unnecessary adjustment (Schisterman
et al., 2009) may increase the variance of causal effect estimates or undermine model fitting due to
the curse of dimensionality (Schnitzer et al., 2016).
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Data-driven approaches can automate the principled selection of covariates when manual identifi-
cation is not feasible. Causal discovery can enable automated covariate selection by inferring the
causal graphical structure surrounding the exposure-outcome pair (Häggström, 2018). While local
discovery can avoid the computational inefficiencies of global structure inference, most local meth-
ods impose strong graphical assumptions that require prior knowledge to ensure the identifiability
of valid adjustment sets. In this paper, we address the following question: in the absence of prior
knowledge, does there exist a polynomial-time algorithm that can select covariates in a principled,
automated, and causality-based manner with theoretical guarantees on correctness?

Related Works Various parametric and nonparametric approaches have been proposed for auto-
mated covariate selection (Witte & Didelez, 2019) and adjacent tasks, such as causal parent identi-
fication (Yu et al., 2021a,b). Most assume that input variables are non-descendants of the exposure
(e.g., by taking the pretreatment assumption, which excludes the existence of colliders, mediators,
and other descendants of the exposure) (Häggström et al., 2015; Entner et al., 2013; Gultchin et al.,
2020; Soleymani et al., 2022; Shah et al., 2022). This requires prior knowledge of the causal graph,
and overly simplifies the identification of confounders and other non-descendants. Regression-based
covariate selection detects associations rather than causal relationships, and generally requires para-
metric and/or non-descendants assumptions (Shortreed & Ertefaie, 2017; Tian et al., 2018). Global
causal discovery can bypass the non-descendants assumption, but is computationally expensive.
Global structure inference over arbitrary causal directed acyclic graphs (DAGs) is NP-hard, with
the search space growing superexponentially with node count (Chickering et al., 2004). Heuristic
search methods are often exponential complexity (Spirtes et al., 2000), though sparsity constraints
can enable polynomial runtimes (Claassen et al., 2013). With the pretreatment assumption and lo-
cal causal discovery, runtimes for covariate selection can still scale exponentially with total nodes
adjacent to exposure or outcome (Cheng et al., 2022). Thus, automated covariate selection methods
tend to present tradeoffs between time complexity and prior knowledge requirements.

Contributions We introduce Local Discovery by Partitioning (LDP), a polynomial-time,
constraint-based algorithm that infers the causal relations between an exposure-outcome pair
{X,Y } and a variable set Z of unknown causal structure. By forgoing common parametric and
pretreatment assumptions, LDP addresses settings that are often overlooked by methods that iden-
tify causal ancestors. The exposure-outcome pair serves as a nucleus around which LDP assembles
a partial causal graph, partitioning Z into subsets defined solely by their relation to {X,Y }. LDP
addresses the setting of limited prior knowledge and compute by meeting the following desiderata:
LDP 1) remains agnostic to the strength of the effect of X on Y , which may be null; 2) imposes
minimal assumptions on the relations entailed by the joint distribution p(X,Y,Z); 3) avoids para-
metric assumptions over causal functions and variable distributions; and 4) scales quadratically with
the cardinality of Z (|Z|).
To provide theoretical guarantees for LDP, we first enumerate an exhaustive taxonomy of eight
mutually exclusive partitions defining any arbitrary dataset with respect to an exposure-outcome
pair. We then prove that 1) LDP returns asymptotically correct partition labels under the sufficient
condition that inter-partition active paths are fully mediated by the exposure-outcome pair, and 2)
LDP returns valid adjustment sets even when the latter condition is violated. We provide an open-
source Python implementation of LDP on GitHub.1

2 PARTITIONS OF Z

Preliminaries are presented in Appendix B. Here, we present the first theoretical results of this work.

Theorem 2.1. Any Z can be partitioned into eight mutually exclusive subsets (of cardinality greater
than or equal to zero) defined solely by their relation to exposure X and outcome Y . Thus, each
Z ∈ Z uniquely belongs to a single partition defined in Table 1.

When we assume that all paths among {X,Y,Z} are of length at most 1, these partitions reduce
to the eight triple subgraphs in Table A.1. These triples arise from simple enumeration of the three
possible relations that one variable can take with respect to another: cause, effect, or neither. This
work generalizes Table A.1 to the setting of arbitrary cardinality and indirect active paths. Then, the

1https://anonymous.4open.science/r/ldp-0171/
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Mutually Exclusive Partitions of Arbitrary Z

Z1 Confounders: Non-descendants of X that lie on an active
backdoor path between X and Y (Definition B.5).

Z2 Colliders: Non-ancestors of {X,Y } with at least one active
path to X not mediated by Y and at least one active path to
Y not mediated by X .

Z3 Mediators: Descendants of X that are ancestors of Y .
Z4 Non-descendants of Y that are marginally dependent on Y

but marginally independent of X (Definition C.3).
Z5 Instruments: Non-descendants of X whose causal effect on

Y is fully mediated by X , and that share no confounders with
Y (Definition C.1).

Z6 Descendants of Y where all active paths shared with X are
mediated by Y .

Z7 Descendants of X where all active paths shared with Y are
mediated by X .

Z8 All nodes that share no active paths with X nor Y .

Table 1: Partition categories of any arbitrary Z.

primitive relations of cause, effect, and neither map to the more complex relational combinations
enumerated in Tables E.1 and E.2 (e.g., ancestor, non-ancestor, descendant, and non-descendant).

Proof of mutual exclusivity in our taxonomy follows from the fact that each cell of Table E.2 contains
a single partition, implying that the pattern of allowable active path types from Z to {X,Y } is
unique for each partition. Proof of exhaustiveness follows from the fact that every cell that does not
violate acyclicity contains a partition, as Table E.2 expresses all possible active path types relative
to {X,Y }. Under mutual exclusivity, one ground truth label exists per variable.

Some partitions coincide with existing terminology while others do not. Z1 maps to confounder
(VanderWeele & Shpitser, 2013), Z2 maps to collider, Z3 maps to mediator, Z4 maps to pure prog-
nostic variable (Hahn & Herren, 2022), and Z5 maps to instrumental variable (Lousdal, 2018). To
our knowledge, {Z6,Z7,Z8} do not coincide with existing terms in the causal inference literature.
We dedicate further attention to defining Z4 and Z5 in Appendix C, given their role in the sufficient
conditions for identifiability. When referring to multiple partitions collectively, e.g., Z5 and Z7, we
use notation of the form Z5,7.

Within a single partition, there can be arbitrarily many active paths among its members (e.g., Z1 →
· · · → Z1). Some partitions can share active paths with other partitions without violating acyclicity
or Table 1 (e.g., Z4 → · · · → Z2), while other paths are not permissible (e.g., Z8 → · · · → Z5).
When we assemble all partitions into a single DAG, reduce active paths with {X,Y } to length-1
arrows, and abstract away inter-partition active paths, we obtain Figure 1.
Definition 2.2 (Inter-partition active path). Any active path that is shared by members of at least
two partitions, is not fully mediated by {X,Y }, and complies with acyclicity and Table 1.

3 LOCAL DISCOVERY BY PARTITIONING

The pseudocode for LDP is expressed in Algorithm 1. Given an exposure-outcome pair and back-
ground set Z, LDP partitions Z into mutually exclusive subsets as defined in Theorem 2.1. LDP uses
a series of constraint-based rules to differentiate and return 1) five partitions individually (Z1, Z4,
Z5, Z7, and Z8), and 2) a superset ZPOST, which aggregates the remaining three post-treatment par-
titions (Z2, Z3, and Z6). In the process of differentiating partitions, an intermediate superset (ZMIX)
is temporarily aggregated. We provide a more extensive, high-level description of the algorithm in
Appendix D.1. A visual schematic of Algorithm 1 is provided in Table D.1.

Independence Testing Algorithm 1 is compatible with any independence test, which should be
selected in accordance with the kind of data in Z. Here, we use the nonparametric chi-square
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Figure 1: The partitions of Z (Table 1) reduce to a 10-node DAG surrounding {X,Y } where nodes
represent partition sets, arrows signify both direct adjacencies and indirect active paths (one or
more), and inter-covariate paths are abstracted away. The dashed edge between X and Y indicates
that the strength of this relation is unknown, and may be null. Conditioning on Z1 in red blocks all
backdoor paths for {X,Y }.

Figure 2: Total tests performed per Z under an independence oracle (top) and mean runtime over
100 replicates (bottom) as the cardinality of Z increases, with 95% confidence intervals in shaded
regions. Each DAG resembles Figure 1 with equal cardinality per partition ([1, 10]). Results are
reported for LDP and PC. LDECC and MB-by-MB curves overlapped with PC, with PC outper-
forming. Exponential, quadratic, x log2(x), and linear curves (in tests and milliseconds) serve as
comparison. Table G.1 reports raw data.

test for discrete data. We use the Fisher-z test for linear-continuous DAGs, as it is optimal for
linear-Gaussian data. The maximum conditioning set size is in O(|Z1,2,3,5|) (Step 5). All other
conditioning sets are cardinality one or two.

Time Complexity We report Big O complexity in terms of total independence tests performed, as
is conventional for constraint-based causal discovery (Spirtes et al., 2000; Tsamardinos et al., 2006).
The first for-loop (Steps 1–3) requires a linear number of tests in O(|Z|), where Step 1 caches all
marginal test results for every candidate relative to {X,Y }. Step 4 requires O(|Z|2) tests. Step 5
requires O(|Z|) and Step 6 requires O(|Z|2). Step 7 requires no tests, as it uses cached test results.
Thus, total tests performed is in O(|Z|2). Figure 2 indicates sub-quadratic runtimes, outperforming
existing algorithms by large margins.

3.1 LDP For Covariate Selection

We define popular theoretical criteria for covariate selection in Section B.4, which are consistent
with the backdoor criterion (Definition B.4). As LDP returns Z1, Z4, and Z5, LDP can be used as
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an automated preprocessing step for covariate selection under the common cause criterion (which
retains only Z1), the disjunctive cause criterion (which retains {Z1,Z4,Z5}) (VanderWeele & Sh-
pitser, 2011), and the outcome criterion (which retains {Z1,Z4}) (Brookhart et al., 2006), all of
which yield valid adjustment sets under the backdoor criterion and the generalized adjustment cri-
terion (Perkovic et al., 2015).

3.2 Sufficient Conditions for Identifiability

This work presents three main theoretical results: 1) the existence of eight exhaustive and mutually
exclusive partitions that define any arbitrary Z (Theorem 2.1); 2) LDP yields asymptotically correct
partitions of Z under sufficient conditions (Theorem D.1); and 3) LDP returns valid adjustment sets
under weakened sufficient conditions (Theorem D.2). In Appendix D.2, we describe the sufficient
conditions for these results.

4 EXPERIMENTAL DESIGN

Experimental objectives were to demonstrate that 1) LDP correctly partitions Z under sufficient
conditions, 2) LDP returns valid adjustment sets under weakened sufficient conditions, and 3) ad-
justment sets selected by LDP yield precise and unbiased average treatment effect (ATE) estimates
relative to baselines. All baselines are constraint-based and do not take the pretreatment assump-
tion. Data are custom synthetic DAGs and one benchmark from the bnlearn Bayesian Network
Repository (Scutari, 2010).2

Baseline Methods We compare the performance of LDP against three baselines: 1) the PC Al-
gorithm (PC), a classic global structure inference algorithm that provides asymptotic theoretical
guarantees (Spirtes et al., 2000); 2) MB-by-MB, a local Markov blanket learner that infers the lo-
cal structure around a target node to distinguish parents from children (Wang et al., 2014); and 3)
Local Discovery using Eager Collider Checks (LDECC), a local discovery algorithm that leverages
unshielded colliders to orient the edges around a target to differentiate parents from children (Gupta
et al., 2023). Additional details of these methods and their performance evaluation are provided in
Appendix F.

Synthetic Data Theoretical guarantees were validated for 18 data generating processes and four
DAG structures. Discrete data simulations used 12 data generating processes for the 10-node DAG
(Figure 1), four processes for both 13-node DAGs (Figure A.3), and two processes for the 17-
node DAG (Figure A.4). Causal mechanisms were linear and nonlinear. Six linear-continuous data
generating processes were simulated for the 10-node DAG (Figure 1). Structural equations are
reported in Tables G.2 and G.3.

MILDEW Benchmark Data The MILDEW network models fungicide use against powdery
mildew in winter wheat (Jensen & Jensen, 1996). We selected one exposure-outcome pair
(MIKRO_1 → MELDUG_2) that meets sufficient conditions for LDP. All variables are categorical.
Z contains 31 nodes in {Z1,Z2,Z4,Z5,Z8}, with a low proportion of confounders (|Z1| = 2) and
high proportion of colliders (|Z2| = 14). Data were sampled using the bnlearn R package (Scutari,
2010). Figure A.5 further describes the DAG used for inference and evaluation.

5 EMPIRICAL RESULTS

Partition Label Correctness We measure partition accuracy as the percent of partition labels
that are consistent with ground truth. Results on the 10-node DAG with one variable per partition
(Figure 1) indicate that LDP correctly partitions Z under continuous, discrete, linear, and nonlinear
data generating processes (Figure 3, Tables G.4, G.5). Figure 3 also supports the claim that LDP
is agnostic to the strength of the direct effect of X on Y , as results are unharmed when X is not
adjacent to Y . High partition accuracy on 13-node and 17-node DAGs containing M-structures with
paths between Z4, Z5, and Z2 (Figures A.3, A.4) empirically demonstrate robustness to certain kinds
of inter-partition active paths (Tables G.6, G.7). High partition accuracies on MILDEW (≥ 90%;

2https://www.bnlearn.com/bnrepository/
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Figure 3: Partition label accuracy of LDP on a 10-node DAG with one node per partition (Figure 1).
Accuracy is averaged over 100 DAGs (i.e., 800 variables total, excluding exposure-outcome pairs),
with 95% confidence intervals in shaded regions. Independence was determined by chi-square tests
for discrete data and Fisher-z for continuous data (α = 0.001). Tables G.4 and G.5 report raw data.

Figure G.1) further corroborate the ability of LDP to handle certain forms of inter-partition active
paths.

Valid Adjustment Sets First, we explore adjustment set quality for two graphs with small Z1: the
MILDEW benchmark (|Z1| = 2) and a synthetic linear-Gaussian DAG (|Z1| = 1) (Figure 4). For
MILDEW, LDP outperformed all baselines on confounder recall in AXY , test count, and runtime.
Though PC sometimes obtained a greater percentage of valid AXY for MILDEW, LDP achieved
higher confounder precision and recall. High confounder recall for LDP is reflective of its ability
to detect confounders that are not directly adjacent to either X nor Y , unlike local baselines. As
expected, LDP displayed superior confounder precision under the CCC for both graphs but was
comparable to other methods when Z4 and Z5 were intentionally retained under the DCC. Though
global and local baselines should theoretically detect confounders that are directly adjacent to both
X and Y , only LDP consistently returned valid AXY for the linear-Gaussian DAG under both
adjustment criteria.

A synthetic DAG with a complex backdoor path was constructed to illustrate a known failure mode
of LDP partition labeling that still results in valid adjustment sets (Figure A.6). In this DAG, the
confounder adjacent to Y is marginally dependent on Z4 and will be mislabeled as ZPOST. Further,
a collider that is 1) a non-descendent of X and 2) conditionally independent of {X,Y } given Z1 is
guaranteed to be placed in Z1. Despite these mislabelings, LDP returned a valid adjustment set for
99% (99/100) of replicates (sample size n = 5k). Figure A.6 describes further details.

Conditioning Set Size Local baselines faced challenges with chi-square independence tests on
MILDEW for n ≥ 75k. LDECC errored out on 2/10 and 10/10 replicates at n = 75k and n = 100k,
respectively, while MB-by-MB could not return results for 3/10 and 9/10. Independence test failures
persisted even with resampling from the ground truth DAG, and are likely due to large conditioning
sets resulting in low or no samples for some groups during binning. While the maximum condition-
ing set size for LDP on MILDEW was 4, this was 17 for LDECC and 19 for MB-by-MB.

Statistical Efficiency ATE estimate variance served as a measure of statistical efficiency across
baselines (Figure 4, bottom). The ATE was estimated using linear regression3 for linear-Gaussian

3https://scikit-learn.org/
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MILDEW (FIGURE A.5; |Z| = 31)

LINEAR-GAUSSIAN 10-NODE DAG (FIGURE 1; |Z| = 8)

Figure 4: Baselines on MILDEW and 10-node DAGs with chi-square (α = 0.001) and Fisher-z
tests (α = 0.01), respectively. Results are for 10 replicates of MILDEW and 100 replicates of the
10-node DAG per sample size (95% confidence intervals in shaded regions). Confounder precision
and recall are computed per adjustment set, demonstrating the proportion of true confounders and
non-confounders. Raw data are in Tables G.8 and G.9.

DAGs with a ground truth total effect of 3.75. LDP returned the highest quality adjustment sets
in terms of ATE mean squared error (MSE), confounder recall, and percent valid, with baselines
lagging even as sample size increased. LDP generally produced the least biased ATE estimates and
lowest ATE variance, and was the only method to achieve unbiased estimates under the DCC. Rising
ATE MSE for PC may be explained by the cardinality of AXY increasing with sample size. Ground
truth |AXY | = 1 under the CCC and 3 under the DCC, which LDP adhered to more closely than
baselines.

Robustness to Latent Confounding We probed the robustness of LDP to specific forms of latent
confounding in GXY Z that contain M-structures or butterfly structures (Ding & Miratrix, 2014).
Each experiment tested 100 replicate 13-node, linear-Bernoulli DAGs (Figure A.3) using chi-square
tests (α = 0.001). In DAGs with M-structures where node M1 ∈ Z5 is latent, partition accuracy
was 99.8% (95% CI [99.4, 100]), Z1 precision and recall were 99.0% (95% CI [97.0, 100]), and
M-colliders were correctly labeled. With M2 ∈ Z4 latent, partition accuracy was 80.0% (95% CI
[80.0, 80.0]), Z1 precision was 33.3% (95% CI [33.3, 33.3]), and Z1 recall was 100.0%, as the M-
collider was placed in Z1. In such a case, AXY could induce M-bias (Ding & Miratrix, 2014).
Treating butterfly nodes {B1, B2} ∈ Z1 as latent had no effect on performance. With B3 ∈ Z1

unobserved, partition accuracy was 80.0% (95% CI [80.0, 80.0]) and Z1 precision and recall were
66.7% (95% CI [66.7, 66.7]), leaving an unblocked backdoor path X − B3 − Y . These results
indicate that causal sufficiency in GXY Z is not a necessary condition, but certain forms of latent
confounding are detrimental to both partition accuracy and valid adjustment set identification.

Limitations Performance of LDP will be constrained by the accuracy and runtime of the indepen-
dence test that it employs. Theoretical guarantees in this work are based on asymptotic analyses,
while our empirical results offer insights into performance under finite sample conditions. We leave
the derivation of necessary conditions for identifiability to future inquiry, including more rigorous
conclusions on the impacts of latent confounding.
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A APPENDIX: SUPPLEMENTAL FIGURES
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Figure A.1: Valid adjustment sets. Here, the effect of exposure X on outcome Y is mediated by
Z3. Let Z1 = {Z1

1 , Z
2
1 , Z

3
1 , Z

4
1}. (A) The conditional distribution p(Y |x) fails to isolate the causal

association between X and Y due to the open backdoor paths through Z1, pictured as red arrows.
(B) We can isolate the causal association between X and Y by intervening on X such that edges
Z2
1 → X and Z1

1 → X are removed. This blocks the non-causal association flowing through these
backdoor paths. (C) We can identify the interventional distribution p(Y |do(x)) via a statistical
quantity by conditioning on valid adjustment set {Z1

1 , Z
2
1} (highlighted in red), which also blocks

the flow of non-causal association. (D) Valid adjustment sets are often non-unique. An alternative
valid adjustment set for this structure would be {Z1

1 , Z
3
1}, and still others exist. Figure adapted from

Neal (2020).

Z1

X Y

Case 1: Z is a confounder.

Z2

X Y

Case 2: Z is a collider.

Z3

X Y

Case 3: Z is a mediator.

Z4

X Y

Case 4: Z causes outcome.

Z5

X Y

Case 5: Z causes exposure.

Z6

X Y

Case 6: Outcome causes Z.

Z7

X Y

Case 7: Exposure causes Z.

Z8

X Y

Case 8: Z is isolated.

Table A.1: All potential acyclic triple subgraphs that can be induced by X , Y , and a single Z when
paths are restricted to a length of 1. The dashed arrow from exposure X to outcome Y indicates
that the strength of this relation is unknown. While the effect of X on Y might be null, it is known
that X ⊥̸⊥ Y and that Y does not cause X . The partition taxonomy proposed in this work (Table 1)
generalizes these cases to more complex structures. In the more complex setting, edges represent
both direct adjacencies and indirect active paths. Absence of a directed edge therefore indicates
either an inactive path or no path at all.
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Z4Z5
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Figure A.2: Pretreatment variables (red) versus post-treatment variables (green). Z1 (confounders),
Z4, and Z5 (instruments) are pretreatment variables, which causally precede exposure X . Z2 (col-
liders), Z3 (mediators), Z6, and Z7 are post-treatment variables, with X as their causal ancestor. Z8

is neither pre- nor post-treatment, as it is causally unrelated to X .
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B1 B2

Figure A.3: M-structures and butterfly structures. Ten-node DAG plus M-structure (right) and
ten-node DAG plus butterfly structure (left). Note that M1 ∈ Z5, M2 ∈ Z4, M3 ∈ Z2, and
{B1,B2,B3} ∈ Z1. Performance of LDP on these structures is reported in Table G.6.
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B1 B2
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Figure A.4: Seventeen-node DAG with M-structure, butterfly structure, and mediator chain. Note
that M1 ∈ Z5, M2 ∈ Z4, M3 ∈ Z2, and {B1,B2,B3} ∈ Z1. Nodes highlighted in red
({Z1, B1, B2, B3}) represent all confounders for {X,Y }. Performance of LDP on this structure
is reported in Table G.7.

12



Figure A.5: The complete ground truth MILDEW DAG (Jensen & Jensen, 1996) obtained from
bnlearn (Scutari, 2010). The ground truth DAG contains 35 nodes, 46 edges, and 540150 parame-
ters. The average Markov blanket size, average degree, and maximum in-degree are 4.57, 2.63, and
3, respectively. Inference and evaluation omit variables DM_1 and FOTO_1 due to independence test
challenges with LDP, MB-by-MB, and LDECC, including those described in Section 5 for MB-by-
MB and LDECC (which were made more severe by inclusion of these nodes). Performance of LDP
on this structure is reported in Table G.8 and Figure 4.
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Figure A.6: A complex backdoor path illustrates a known failure mode of LDP partition labeling
that is still successful for valid adjustment set identification. In theory, all nodes highlighted in red
will be placed in Z1 by LDP. Even though Z2

1 is adjacent to the only instrument in this DAG, this
confounder will be discoverable due to its marginal independence with Z1

1 . Due to its marginal
dependence on Z4, confounder Z3

1 will be mislabeled and placed in ZPOST by LDP. This mislabeling
persists even under infinite data. Due to its marginal independence with Z4, collider Z2

2 will be
mislabeled and placed in Z1. Despite these mislabelings, the red node set constitutes a valid adjust-
ment set per the proofs in Section E.3. LDP returned a valid adjustment set for this structure for
99% (99/100) of replicates at n = 5k samples and 98% (98/100) of replicates at n = 10k samples.
Noise was hypergeometric, causal mechanisms were quadratic, and α = 0.001 with the chi-square
independence test.
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B APPENDIX: PRELIMINARIES

B.1 Notation

Univariate random variables are denoted by uppercase letters (e.g., X). Sets or multivariate random
variables are denoted by bold uppercase (e.g., Z), and graphs by calligraphic letters (e.g., G). Let
{X,Y } be continuous or discrete random variables representing an exposure and outcome, respec-
tively. Let Z be a set of discrete or continuous random variables of unknown relation to {X,Y } and
GXY Z be the graph induced by {X,Y,Z}.

B.2 Causal Graphical Models

We restrict our attention to the set of causal graphs that are directed and acyclic. Causal DAGs are
probabilistic graphical models that factorize joint distributions and impose a causal interpretation
on directed edges, such that X → Y implies that X causes Y . In this work, we assume that
any GXY Z is a causal DAG satisfying the causal Markov condition and faithfulness as defined by
Spirtes et al. (2000). This implies that the conditional independence relations entailed by the joint
distribution p(X,Y,Z) correspond precisely to those entailed by the Markov condition applied to
GXY Z, i.e., p(X,Y,Z) and GXY Z are faithful to each other. We define active and inactive paths in
GXY Z following from the concept of d-separation.

Definition B.1 (D-separation, Spirtes et al. 2000). Nodes X and Y in arbitrary causal DAG G are
d-separated given node set D (where {X,Y } /∈ D) when there is no undirected path between X
and Y that is active relative to D.

Definition B.2 (Active paths, Spirtes et al. 2000). An undirected path is active relative to node set
D when every node on this path is active relative to D. Node V ∈ G is active on a path relative to
D if

1. V /∈ D is not a collider,
2. V ∈ D is a collider, or
3. V /∈ D is a collider and at least one of its descendants is in D.

By extension, we take an inactive path to be one that does not meet Definition B.2 (e.g., due to
existence of a collider /∈ D on that path). As the definitions of active and inactive are with respect to
D, we assume D = ∅ unless explicitly stated. We classify active paths between two nodes {Z,Z ′}
following from Table E.1: 1) Z → · · · → Z ′, 2) Z ← · · · ← Z ′, or 3) Z ← · · ·Z ′′ · · · → Z ′, where
Z ′′ denotes a third node.

We say that causal association flows from exposure X to outcome Y through directed paths
X → · · · → Y . A non-causal association between X and Y due to a common cause also presents
as statistical dependency, per Reichenbach’s common cause principle (Peters et al., 2017). Such
common causes lie along backdoor paths for {X,Y } (X ← · · ·Z · · · → Y ).

Definition B.3 (Backdoor path, Pearl 2009). Any non-causal path between exposure X and outcome
Y with an edge pointing into X (· · · → X).

B.3 Covariate Selection for Valid Adjustment

The primary focus of this work is the identification of valid adjustment sets under the backdoor
criterion.

Definition B.4 (Valid adjustment under the backdoor criterion, Peters et al. 2017). Let AXY be an
adjustment set for {X,Y } that does not contain {X,Y }. AXY is valid if

1. AXY contains no descendants of X and
2. AXY blocks all backdoor paths from X to Y .

Blocking all backdoor paths is equivalent to {X,Y } achieving d-separation when all edges exit-
ing X (X → · · · ) are removed. Note that valid adjustment sets can be non-unique (Figure A.1)
and that Definition B.4 does not consider minimality nor optimality, as explored elsewhere (e.g.
Runge (2021)). In Section B.4, we define criteria that are consistent with Definition B.4 but provide
additional guidance.
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Confounding Given a valid adjustment set AXY , we eliminate confounding bias and obtain un-
confoundedness (VanderWeele & Shpitser, 2013): the independence of exposure X and the potential
outcomes of Y , factual or counterfactual. This condition is also commonly referred to as ignora-
bility, ignorable treatment assignment, or exchangeability. LDP identifies a valid adjustment set by
returning a set of confounders that blocks all backdoor paths in GXY Z.
Definition B.5 (Confounder, VanderWeele & Shpitser 2013). A confounder is a pretreatment co-
variate Z1 for which there exists a set of other covariates S (which may be the empty set) such that
the effect of exposure X on outcome Y is unconfounded given {Z1, S} but not given any proper
subset of {Z1, S}.

In this work, we refer to all ground truth confounders for {X,Y } as partition Z1 ∈ Z (Table 1).
Following from Definition B.5, conditioning on the set of all confounders Z1 blocks all backdoor
paths and the flow of non-causal association from X to Y . Following from Figure A.1, there can
exist multiple subsets of Z1 that block all backdoor paths (i.e., some members of Z1 might be
redundant in their ability to block a given backdoor path). This redundancy permits LDP to return a
valid adjustment that is a subset of Z1.

B.4 Covariate Selection Criteria

Pearl’s backdoor path criterion dictates that a valid adjustment set contains no descendants of the
exposure and blocks all backdoor paths (Definition B.4; Figure A.1) (Pearl, 1995). Additional
covariate selection criteria have been proposed, which are consistent with the backdoor criterion
but provide additional guidance. The common cause criterion advocates controlling only for con-
founders (Z1), and is popular in practice (Guo et al., 2022). The pretreatment criterion controls for
all measured baseline variables, an approach previously defended by Donald Rubin (Rubin, 2008;
Guo et al., 2022). This approach is at risk of overadjustment (Schisterman et al., 2009; Lu et al.,
2021) as it allows instruments (Z5) and M-structure colliders (M3 ∈ Z2; Figure A.3) to be included
in the adjustment set (Ding & Miratrix, 2014). The disjunctive cause criterion is an intermediate
approach between the common cause and pretreatment criteria (VanderWeele & Shpitser, 2011).
This criterion retains covariates that are causal for exposure, outcome, or both (i.e., Z1, Z4, and Z5).
Adjusting only for Z1 and Z4 has also been advocated (Brookhart et al., 2006), as 1) unnecessarily
adjusting for Z5 raises risks of variance inflation and bias amplification while 2) adjusting for Z4

can improve causal estimate precision without impacting bias. We refer to this approach as the out-
come criterion. The generalized adjustment criterion (Perkovic et al., 2015) extends the sufficient
but not necessary generalized backdoor criterion (Maathuis & Colombo, 2015) to provide a uni-
fied criterion for necessary and sufficient adjustment sets that applies to DAGs, maximum ancestral
graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs
(PAGs).

C APPENDIX: EXTENDED PARTITION DEFINITIONS

C.1 Partition Z5 (Instrumental Variables)

Instrumental variable methods have been used heavily in econometrics (Imbens, 2014) and epidemi-
ology (Hernán & Robins, 2006; Labrecque & Swanson, 2018) for causal effect estimation in the
presence of latent confounding. The present work explores an additional way to relate instrumental
variables to the problem of confounding, where the marginal independence between instruments and
confounders is exploited to detect confounders in unknown causal structures. We define an instru-
ment as any variable that meets the criteria enumerated in Definition C.1. We then claim Proposition
C.2 about the relations among Z1 and Z5, as a theoretical basis for sufficient condition C3. Proof of
Proposition C.2 follows from Propositions E.17 and E.19.
Definition C.1 (Instrumental variable, Lousdal (2018)). Any instrument Z5 meets the following
criteria:

1. Relevance assumption: Z5 is causal for exposure X .
2. Exclusion restriction: The effect of instrument Z5 on outcome Y is fully mediated by X .
3. Exchangeability assumption: Z5 and Y do not share a common cause.

Proposition C.2. Any instrument Z5 in Z will meet the following criteria with respect to at least
one confounder Z1 on every backdoor path in GXY Z.
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1. Z5 and Z1 are marginally independent.
2. Z5 and Z1 are conditionally dependent given X .

C.2 Partition Z4

To our knowledge, partition Z4 has been significantly less characterized and less utilized in the
causal inference literature than confounders (Z1), colliders (Z2), mediators (Z3), and instrumental
variables (Z5). Limited reference has been made to this partition under the term pure prognostic
variables (Hahn & Herren, 2022). We elaborate on our definition of Z4 below.

Definition C.3 (Partition Z4). Partition Z4 encompasses all non-descendants of Y that are
marginally dependent on Y but marginally independent of X (Table 1). Given this definition, we
observe that any Z4 participates in a v-structure X · · · → Y ← · · ·Z4. This implies the following:

1. X cannot share active paths with any Z4. Thus, X can share no common causes with any
Z4.

2. Z4 is conditionally dependent on X given Y . This implicitly requires that X and Y are
marginally dependent, though they may not be directly adjacent in GXY Z.

D APPENDIX: METHOD

D.1 High-level overview of Algorithm 1

Here, we present the pseudocode for Algorithm 1 and a high-level explanation of each step.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 0: Input {X,Y,Z}.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 1: Identify Z8.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 2: Identify Z4.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 3: Identify Z7, some Z5.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 4: Identify some ZPOST.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 5: Identify ZMIX.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 6: Resolve ZMIX, ZPOST.

X Y

Z1

Z2

Z3

Z4Z5

Z6Z7

Z8

Step 7: Resolve Z1, Z5.

Table D.1: Schematic of Algorithm 1. The exposure-outcome pair {X,Y } serves as a nucleus
around which LDP assembles a partial causal graph. Each step reveals additional information about
the partitions of Z. Nodes that are fully colored are fully discovered by Algorithm 1. Partial coloring
denotes partial knowledge, and no coloring denotes no knowledge.

Table D.1 provides a visual walk-through of Algorithm 1 as knowledge is progressively obtained at
each step. In plain English, the steps of Algorithm 1 are as follows.

Step 1 Z8 is discovered using prior knowledge of {X,Y } only.
Step 2 Z4 is discovered using prior knowledge of {X,Y } only.
Step 3 Z7 is discovered using prior knowledge of {X,Y } only. Some or all of Z5 can also be

discovered at this step for some graphical structures. In theory, this occurs when |Z1| = 0.
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In practice, we have occasionally observed this happening under small finite samples even
when |Z1| > 0.

Step 4 A fraction of ZPOST is discovered, providing complete knowledge of Z6 and partial knowl-
edge of Z2 and Z3. This step leverages prior knowledge of Z4 that was obtained program-
matically at Step 2.

Step 5 ZMIX is temporarily aggregated, providing partial knowledge of Z1, Z2, Z3, and Z5. ZMIX

is a transient superset that is used to differentiate Z1 and Z5 from ZPOST in Step 6. The
partitions that can be represented in ZMIX will depend on whether sufficient condition C1
is violated or not.

Step 6 Knowledge of ZPOST is complete. ZMIX is fully disaggregated, providing final partition
labels for a fraction of members and moving others to superset Z1,5. In the process, a
fraction of Z1 is placed in Z1. At this step, we union the ZMIX discovered in Step 5 with
the Z5,7 discovered at Step 3. This is under the assumption that some Z5 might have been
discovered at Step 3, and will need to be distinguished from Z7. Thus, this step serves as a
final check on the set-purity of Z7, and knowledge of Z7 is complete.

Step 7 Z1 and Z5 are fully differentiated from each other. This step tests whether a member of
the superset Z1,5 is marginally dependent on any known Z1. All previously known Z1

are those that are directly adjacent to Y . Z1 that are left to be discovered are those with
indirect active paths to Y . Even when sufficient condition C1 is violated, no Z5 will ever
be dependent on a Z1 that is directly adjacent to Y . However, all Z1 will be marginally
dependent on at least one Z1 that is adjacent to Y .

Graphical and Parametric Assumptions We assume the causal Markov condition, faithfulness,
and acyclicity. Importantly, variables in Z are not assumed to be exclusively pretreatment (Fig-
ure A.2), and we do not place sparsity constraints on GXY Z. We do not make assumptions about
the distributional forms of variables nor the functional forms of their causal relations. No specific
functional causal model is imposed, freeing LDP from the identifiability assumptions of the post-
nonlinear additive noise model (PNL) (Zhang & Hyvarinen, 2009). Unlike the PNL and its special
cases (e.g., Hoyer et al. 2008; Shimizu et al. 2006), LDP is identifiable in the linear-Gaussian case.

The Exposure-Outcome Pair The only prior knowledge of GXY Z that is required by LDP con-
cerns the exposure-outcome relationship. While the causal effect of X on Y can be of arbitrary
strength or null, we assume that 1) X and Y are marginally dependent and 2) Y cannot be a di-
rect nor indirect cause of X due to the acyclicity assumption. All proofs and experiments assume
univariate X and Y .

D.2 Suffcient Conditions for Identifiability

Sufficient Conditions for Partition Accuracy Given an independence oracle, we claim the fol-
lowing sufficient (but not necessary) conditions for asymptotically correct partitioning:

C1 The absence of inter-partition active paths that are not fully mediated by {X,Y } (Definition
2.2).

C2 The existence of at least one Z4. Given Condition C1, all Z2 (if any exist) will be
marginally dependent on such a Z4 and will be identifiable by LDP. This in turn guarantees
that all backdoor paths will be blocked by the conditioning set in Step 5 of Algorithm 1,
which is used to discover Z5. This condition is testable at line 9 of Algorithm 1.

C3 Every true Z1 forms a v-structure at X with at least one other variable Z ∈ Z (Z · · · →
X ← · · ·Z1) such that Z ⊥⊥ Z1 ∧ Z ⊥̸⊥ Z1|X . By definition, variable Z can be either in
Z5 or Z1. Given C1, Z5 shares no active paths with Z1 and thus all of Z1 is marginally
independent of Z5. If |Z5| = 0, the existence of at least two non-overlapping backdoor
paths in GXY Z can satisfy this condition.

C4 Causal sufficiency in GXY Z.

These sufficient conditions can be weakened in some settings. For example, existence of Z4 is
unnecessary when Z is pretreatment. We provide theoretical and empirical results demonstrating
robustness to certain violations of Condition C1, e.g., partition correctness on M-structures (Table
G.6). Causal sufficiency may not be a necessary condition, as LDP is robust to some forms of latent
confounding in GXY Z (Section 5).

17



Algorithm 1 Local Discovery by Partitioning (LDP)
input {X,Y },Z, independence test of choice.
output Partitions of Z:

• Z1: Confounders for {X,Y }.
• Z4: Non-descendants of Y s.t. Y ⊥̸⊥ Z4 ∧X ⊥⊥ Z4.
• Z5: Instrumental variables.
• Z7: Descendants of X where Y ⊥⊥ Z7 |X .
• Z8: Variables with no active paths to {X,Y }.
• ZPOST: Post-treatment subset {Z2,Z3,Z6}.

1: Copy Z′ ← Z
2: for all Z ∈ Z′ do

▷ STEP 1: TEST FOR Z8

3: if X ⊥⊥ Z and Y ⊥⊥ Z then
4: Z ∈ Z8, Z′ ← Z′ \ Z

▷ STEP 2: TEST FOR Z4

5: if X ⊥⊥ Z and X ⊥̸⊥ Z|Y then
6: Z ∈ Z4, Z′ ← Z′ \ Z

▷ STEP 3: TEST FOR Z5,7

7: if Y ⊥̸⊥ Z and Y ⊥⊥ Z|X then
8: Z ∈ Z5A,7, Z′ ← Z′ \ Z

▷ STEP 4: TEST FOR ZPOST

9: if |Z4| > 0 then
10: for all Z ∈ Z′ do
11: if ∃ Z4: Z ⊥̸⊥ Z4 or Z ⊥⊥ Z4|X ∪ Y then
12: Z ∈ Z2,3,6 ∈ ZPOST

13: Z′ ← Z′ \ ZPOST

▷ STEP 5: TEST FOR ZMIX

14: for all Z ∈ Z′ do
15: if Y ⊥̸⊥ Z and Y ⊥⊥ Z|X ∪ Z′ \ Z then
16: Z ∈ Z1,2,3,5 ∈ ZMIX

17: Z′ ← Z′ \ ZMIX

▷ STEP 6: SPLIT ZMIX BETWEEN Z1,5 , Z7 , ZPOST

18: ZMIX ← ZMIX ∪ Z5,7

19: if |ZMIX| > 0 then
20: for all Z ∈ Z′ do
21: if ∃ ZMIX: ZMIX ⊥⊥ Z and ZMIX ⊥̸⊥ Z|X then
22: Z ∈ Z1, ZMIX ∈ Z1,5 /∈ ZMIX

23: else
24: Z ∈ Z3 ∈ ZPOST

25: for all ZMIX ∈ ZMIX do
26: if ∃ Z1,5: Z1,5 ⊥⊥ ZMIX then
27: ZMIX ∈ Z1

28: else
29: ZMIX ∈ Z2,3 ∈ ZPOST

▷ STEP 7: FINALIZE Z1 AND Z5

30: if |Z1,5| > 0 and |Z1| > 0 then
31: for all Z1,5 ∈ Z1,5 do
32: if ∃ Z1 ∈ Z1: Z1,5 ⊥̸⊥ Z1 then
33: Z1,5 ∈ Z1

34: else
35: Z1,5 ∈ Z5

36: {not identifiable}← Z′

37: return Partitions of Z and {not identifiable}.

Given these sufficient conditions, we obtain Theorem D.1. Proof is provided in Appendix E.2.

Theorem D.1 (Correctness of Algorithm 1). Given {X,Y,Z}, an independence oracle, and Condi-
tions C1-C4, Algorithm 1 is guaranteed to output a correct partition of Z that represents the local
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subgraph of GXY Z surrounding {X,Y }, where each Z ∈ Z is defined solely by its relation to
{X,Y }.

Sufficient Conditions for Valid Adjustment Set Identification In Theorem D.2, we establish
that Conditions C2-C4 are sufficient for valid adjustment set identification, eliminating the need for
Condition C1. Proof is provided in Appendix E.3.

Theorem D.2 (LDP returns valid adjustment sets). Given {X,Y,Z}, an independence oracle, and
Conditions C2-C4, Algorithm 1 is guaranteed to return a valid adjustment set under the backdoor
criterion.

E APPENDIX: PROOFS

In this section, we prove the three main theorems presented in this work: Theorem 2.1 (Section E.1),
Theorem D.1 (Section E.2), and Theorem D.2 (Section E.3). In Section D.1, we present a high-level
discussion of how Algorithm 1 works. We assume access to an independence oracle for all proofs.
We assume that sufficient conditions C1–C4 are met, unless it is explicitly stated that they can be
weakened.

E.1 Partitions of Z

We prove Theorem 2.1, which states that any Z can be partitioned into eight mutually exclusive
subsets (of cardinality greater than or equal to zero) defined solely by their relation to exposure X
and outcome Y .

Proof. To prove Theorem 2.1, we first define every type of active path from a candidate Z ∈ Z to
X or Y that can possibly arise in GXY Z (Table E.1). These paths can be direct adjacencies (i.e.,
length-1 paths) or indirect active paths of arbitrary length. In Table E.2, we express every possible
combination of path types that can coincide for a single Z.

Definition E.1 (Active path types in GXY Z). We exhaustively enumerate the types of active paths
that can lie between Z and {X,Y } in Table E.1.

TYPE ACTIVE PATH RELATIVE TO X ACTIVE PATH RELATIVE TO Y
1 None (or none that do not pass through Y ). None (or none that do not pass through X).
2 Z → · · · → X path(s) and no other types. Z → · · · → Y path(s) not passing through X and no other types.
3 X → · · · → Z path(s) not passing through Y and no other types. Y → · · · → Z path(s) and no other types.
4 Z ← . . . Z ′ · · · → X path(s) and no other types. Z ← . . . Z ′ · · · → Y path(s) and no other types.
5 Type 2 path(s) and Type 4 path(s). Type 2 path(s) and Type 4 path(s).
6 Type 3 path(s) and Type 4 path(s). Type 3 path(s) and Type 4 path(s).

Table E.1: Exhaustive enumeration of the types of active paths that can lie between any given Z and
{X,Y }. In confounded paths, Z ′ denotes an additional variable in Z that may or may not belong to
the same partition as Z. Note that Type 1 and Type 2 paths cannot coincide for a single Z, as this
would induce a cycle.

Next, we prove the exhaustivity of the partition taxonomy proposed in Theorem 2.1 (Table 1). Ev-
ery cell in Table E.2 that does not violate acyclicity contains a partition. As this table represents all
possible path type combinations for a single Z in GXY Z, the lack of empty cells indicates exhaus-
tivity in our taxonomy. Finally, we prove the mutual exclusivity of partitions in our taxonomy. The
mutual exclusivity of each partition is supported by the fact that each cell of Table E.2 contains a
single partition, such that the pattern of allowable active path types from Z to X and Y is unique
for each partition. Thus, we conclude that Table 1 presents an exhaustive and mutually exclusive
taxonomy of partitions for any arbitrary Z.

E.2 Correctness of Algorithm 1

Here, we prove Theorem D.1. We provide theoretical guarantees that partitions returned by LDP
are asymptotically correct for any arbitrary Z under sufficient conditions C1–C4. Proof of Theorem
D.1 follows from proofs of Lemmas E.2–E.9, which prove correctness for each step of Algorithm 1
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RELATIVE TO X

TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 TYPE 6

R
E

L
A

T
IV

E
T

O
Y TYPE 1 Z8 Z5 Z7 Z5 Z5 Z7

TYPE 2 Z4 Z1 Z3 Z1 Z1 Z3

TYPE 3 Z6 ∅ Z2 Z2 ∅ Z2

TYPE 4 Z4 Z1 Z2 Z2∈M3 Z1 Z2

TYPE 5 Z4 Z1 Z3 Z1 Z1∈B3
Z3

TYPE 6 Z6 ∅ Z2 Z2 ∅ Z2

Table E.2: Combinations of active path types relative to X and Y . Cells contain partitions that
can participate in the given combination of active path types. The empty set (∅) indicates that
this combination of active path types is forbidden under the acyclicity constraint. A subscript of
M3 indicates that this variable is an M-collider, while a subscript of B3 denotes a butterfly-type
confounder (Figure A.3).

sequentially. In footnotes, we acknowledge certain partitioning behaviors that occur when condition
C1 is violated. However, these acknowledgements are non-exhaustive.

Lemma E.2 (Step 1 of Algorithm 1). X ⊥⊥ Z ∧ Y ⊥⊥ Z ⇐⇒ Z ∈ Z8.

Proof. Step 1 of Algorithm 1 correctly identifies Z8. This subset of Z is the most trivial to identify,
as it is does not share an active path with either exposure nor outcome in GXY Z. By definition,
any Z8 ∈ Z8 is marginally independent of X and marginally independent of Y . Additionally, no
candidate Z ∈ Z \ Z8 is marginally independent of both X and Y . Thus, any Z ∈ Z satisfying
X ⊥⊥ Z ∧ Y ⊥⊥ Z belongs to Z8 and can be removed from further consideration.

Lemma E.3 (Step 2 of Algorithm 1). X ⊥⊥ Z ∧X ⊥̸⊥ Z|Y ⇐⇒ Z ∈ Z4.

Proof. Step 2 of Algorithm 1 correctly identifies Z4. Variables in Z4 share an active path with
outcome Y in GXY Z but not exposure X . For any Z4 ∈ Z4, this results in a v-structure X · · · →
Y ← · · ·Z4.4 By definition, all such v-structures entail X ⊥⊥ Z4 ∧X ⊥̸⊥ Z4|Y . Besides Z4, only
Z8 is marginally independent of X . However, Z8 is not conditionally dependent on X given Y .
Thus, no subset of Z entails X ⊥⊥ Z ∧X ⊥̸⊥ Z|Y except Z4. Any variable passing the test in Step
2 is unambiguously a member of Z4. Further, Z4 is correctly identified for downstream use in Step
4 to identify ZPOST.

Lemma E.4 (Step 3 of Algorithm 1). Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X ⇐⇒ Z ∈ Z5,7 and X blocks all
backdoor paths between Z and Y in GXY Z.

Proof. Step 3 of Algorithm 1 correctly identifies Z5,7 when all backdoor paths between Z5,7 and Y
are blocked by X . We prove both directions of the bidirectional statement by direct proof. There
are two conditions under which exposure X will block all backdoor paths between Z ∈ Z5,7 and
outcome Y : 1) Z ∈ Z7 for any GXY Z and 2) Z ∈ Z5 when GXY Z does not contain paths in Z on
which X is a collider for Z5 (i.e., GXY Z contains no Z1). Thus, this test will capture Z7 under any
circumstances but will capture Z5 only when GXY Z is structured such that exposure X blocks all
backdoor paths from Z5 to outcome Y . Further, no subset of Z will pass the test in Step 3 but Z5,7.
Z1, Z2, Z3, Z4, and Z6 are parents or effects of Y and thus X cannot block the flow of association
between them. Z8 will not pass this test either, as it is not marginally dependent on Y . Therefore,
Y ⊥̸⊥ Z ∧ Y ⊥⊥ Z|X if and only if Z is in Z5,7.

Lemma E.5 (Step 4 of Algorithm 1). Given execution of prior steps in Algorithm 1, ∃ Z4: Z ⊥̸⊥ Z4

or Z ⊥⊥ Z4|X ∪ Y ⇐⇒ Z ∈ Z2,3,6 ∈ ZPOST.

4Note that this requires X and Y to be marginally dependent, an assumption made in Section 3.2. X ⊥̸⊥ Y
is true when at least one of the following conditions is true: 1) X is a direct cause of Y , 2) X is an indirect
cause of Y through mediators Z3, and/or 3) X and Y share confounders Z1.
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Proof. Step 4 of Algorithm 1 correctly identifies Z2,3,6 ∈ ZPOST. This test exploits prior knowledge
of Z4 to identify all of Z2 and Z6 in any arbitrary GXY Z meeting sufficient conditions C1–C4. Under
condition C1, no Z3 will pass this test by the same logic that {Z1,Z5} will not (as proven below).5
Note that Z4, Z7, and Z8 have already been identified and removed from further consideration, as
has a subset of Z5 of cardinality greater than or equal to zero. Thus, this test must correctly identify
Z2 and Z6 and must not incorrectly label these partitions as Z1 or Z5. We demonstrate correctness
by direct proof of both directions of the bidirectional statement.

Under the assumption that X and Y are marginally dependent (Section 3.2), any member Z of
{Z1,Z5} will form a v-structure Z4 · · · → Y ← · · ·Z, but members of {Z2,Z6} will not (Figure
1). Such a v-structure implies that Z ⊥⊥ Z4 and Z ⊥̸⊥ Z4|X ∪ Y . As we seek to identify candidates
Z that do not induce such a v-structure, we logically negate these independence statements to test
for Z2 and Z6. According to De Morgan’s Laws, the negation of a conjunction is the disjunction of
the negations. This yields the logical equivalence

¬ [(Z ⊥⊥ Z4) ∧ (Z ⊥̸⊥ Z4|X ∪ Y )] ≡ (Z ⊥̸⊥ Z4) ∨ (Z ⊥⊥ Z4|X ∪ Y ). Per De Morgan’s Laws.
(1)

Thus, when Z ⊥̸⊥ Z4 or Z ⊥⊥ Z4|X ∪ Y is true, we will identify {Z2,Z6} but not {Z1,Z5}.
Likewise, when Z ∈ Z2,6, a v-structure Z4 → Y ← Z will never arise and thus Z ⊥̸⊥ Z4 or
Z ⊥⊥ Z4|X ∪ Y .

To support Lemmas E.7-E.9, we introduce Proposition E.6.
Proposition E.6. For any Z1 that has an indirect active path to outcome Y , there must exist another
Z1 that is directly adjacent to Y . This extends analogously to indirect active paths between Z1 and
X .
Lemma E.7 (Step 5 of Algorithm 1). Given execution of prior steps in Algorithm 1, if Y ⊥̸⊥ Z ∧
Y ⊥⊥ Z|X ∪ Z′ \ Z then Z ∈ Z1,2,3,5 ∈ ZMIX, and all backdoor paths between ZMIX and Y are
blocked by X and the members of Z that have not yet been labeled.

Proof. Step 5 of Algorithm 1 correctly identifies ZMIX. Here, will assume that Z5 was not yet
discovered at Step 3. We will prove that the conditioning set used in Step 5 correctly blocks all
backdoor paths between ZMIX and Y . Given sufficient conditions C1–C4, Z2, Z4, Z6, and Z8 have
been previously identified and removed from further consideration.6 Thus, we assume that only Z1,
Z3, and Z5 are remaining in Z′. By conditioning on Z′ \Z, confounding for {X,Y } is blocked due
to the inclusion of all Z1 ∈ Z′. Thus, conditioning on X ∪ Z′ \ Z blocks all causal and non-causal
association between Z and Y . For all Z ∈ Z5, Y ⊥⊥ Z|X ∪Z′ \Z. For any Z ∈ Z1 or Z ∈ Z3 that
is not directly adjacent to Y , Y ⊥⊥ Z|X ∪Z′ \Z. All members of Z1 and Z3 that are adjacent to Y
will proceed to be identified at Step 6. Thus, ZMIX will consist of Z5, a fraction of Z1 (which may
be the empty set), and a fraction of Z3 (which may be the empty set).

Lemma E.8 (Step 6 of Algorithm 1). Let ZMIX = ZMIX ∪ Z5,7. Given execution of prior steps
in Algorithm 1, if ∃ ZMIX ∈ ZMIX such that ZMIX ⊥⊥ Z and ZMIX ⊥̸⊥ Z|X then Z ∈ Z1 and
ZMIX ∈ Z1,5. Else, Z ∈ Z3 ∈ ZPOST. After execution of these tests, we loop through the remaining
ZMIX again. If ∃ Z1,5 ∈ Z1,5 such that Z1,5 ⊥⊥ ZMIX and Z1,5 ⊥̸⊥ ZMIX|X , then ZMIX ∈ Z1. Else,
ZMIX ∈ Z2,3 ∈ ZPOST.

Proof. Step 6 of Algorithm 1 correctly differentiates Z1, Z1,5, Z7, and ZPOST. This step relies on
prior knowledge of ZMIX, which is gained programmatically through Steps 3 and 5. Under sufficient
conditions C1–C4, ZMIX initially contains Z5 and the members of Z1 and Z3 that are not adjacent
to Y . At Step 6, we begin by unioning ZMIX with Z5,7 as a safeguard in case any member of Z5 was
lumped with Z7 at Step 3.

Step 6 exploits the presence of v-structures Z · · · → X ← · · ·Z1 in GXY Z. For any GXY Z (even
when sufficient conditions are not met), the variables that can form such a v-structure with a Z1 are

5If sufficient condition C1 is violated, a Z3 may be captured at this step if it is marginally dependent on any
Z4. Further, this violation can cause Step 4 to miss members of Z2 that are not descendants of Y (as discussed
throughout Section E.3).

6If sufficient condition C1 is violated, members of Z2 that were not marginally dependent on any Z4 (and
thus not identified at Step 4) could be placed in ZMIX at Step 5 instead. We prove in Section E.3 that the
presence of Z2 in ZMIX does not undermine the validity of the adjustment set returned by Algorithm 1.
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1) a Z5 or 2) another Z1 that does not share an active path with the first. The only other variables
that are marginally independent of Z1 are Z4 and Z8, both of which were previously identified.

First, we prove the first phase of Step 6. Under sufficient condition C1, Z5 · · · → X ← · · ·Z1

for all {Z1,Z5}. This means that all of Z5 is marginally independent of Z1, but is conditionally
dependent on Z1 given X . As described in sufficient condition C3, the existence of at least two
non-overlapping backdoor paths in GXY Z can also enable some Z1 to form a v-structure at X with
another Z1. Thus, when a v-structure ZMIX · · · → X ← · · ·Z is detected, then Z must be in Z1

and ZMIX must be in Z1,5. By extension, ZMIX is not in ZPOST nor Z7, and can be removed from the
latter if it had been placed there at Step 3. Else, Z must be in ZPOST.

Finally, we prove the second phase of Step 6. Variables still in ZMIX must be tested to distinguish
the remaining members in Z1 from those in ZPOST. Any ground truth member of Z1 that remains in
ZMIX at this point must be marginally dependent on all previously discovered Z1, otherwise these
would have already been placed in Z1,5. By this point, all of Z5 is now contained in Z1,5. Under
sufficient condition C1, Z1 ⊥⊥ Z5 but ZPOST ⊥̸⊥ Z5. Thus, testing ZMIX against Z1,5 for marginal
independence will differentiate the remaining Z1 ∈ ZMIX from the remaining ZPOST ∈ ZMIX.7

Lemma E.9 (Step 7 of Algorithm 1). Given execution of prior steps in Algorithm 1, if ∃ Z1 ∈ Z1

and Z1,5 ∈ Z1,5 such that Z1,5 ⊥̸⊥ Z1, then Z1,5 ∈ Z1. Else, Z1,5 ∈ Z5.

Proof. Step 7 of Algorithm 1 correctly differentiates Z1 from Z5. This step handles cases exempli-
fied by node B1 in the butterfly structure of Figure A.3, which can have arbitrarily long, indirect,
yet active paths to Y . During Step 5, the conditioning set {Z′ \ Z} contains all Z1, among other
variables. For a B1-type confounder, this conditioning set blocks all backdoor paths to Y , trigger-
ing the test to label the node as a member of ZMIX. To detect such a case, observe that B1-type
confounders have marginal dependence on the subset of Z1 that was discovered at Step 6. All Z1

previously discovered at Step 6 are directly adjacent to Y . Under sufficient condition C1, all of Z5

is marginally independent of Z1. Even when sufficient condition C1 is violated, no Z5 will ever be
dependent on a Z1 that is directly adjacent to Y . Therefore, any Z1,5 that is marginally dependent
on at least one member of Z1 discovered at Step 6 must be in Z1. If such marginal dependence
is not detected between a given Z1,5 and any member of Z1 discovered at Step 6, then Z1,5 ∈ Z5

instead.

E.3 Validity of adjustment sets

Here we prove Theorem D.2, which states that LDP returns valid adjustment sets when sufficient
conditions C2–C4 are satisfied. We will show that Theorem D.2 holds even when sufficient condition
C1 is violated, i.e., GXY Z contains inter-partition active paths (Definition 2.2). Recall the definition
of a valid adjustment set under the backdoor criterion (Definition B.4). Let AXY be an adjustment
set for {X,Y } that does not contain {X,Y }. We say that AXY is valid if

Item 1 AXY contains no descendants of X; and
Item 2 AXY blocks all backdoor paths from X to Y (Peters et al., 2017).

The set AXY returned by LDP is synonymous with partition Z1. To prove that Z1 is a valid adjust-
ment set even when sufficient condition C1 is violated, we must prove that both Item 1 and Item 2
always hold for the Z1 returned by Algorithm 1.

We begin by proving that the identification of Z4 and Z5 is guaranteed in this setting (Theorem
E.10), as the existence of these partitions is sufficient for discovering Z1 under conditions C2 and C3.
We prove Item 1 with Theorem E.14 by demonstrating that all Z placed in Z1 are non-descendants
of X , even if their partition label is incorrect. By extension, proving Item 1 guarantees that no causal
path from X to Y will be blocked by the Z1 returned by LDP. We prove Item 2 with Theorem E.15,
which states that LDP blocks all backdoor paths even when condition C1 is violated.

7Per the footnote above, some members of Z2 could eventually be placed in Z1 when sufficient condition
C1 is violated. In Section E.3, we prove that this occurrence does not negate the validity of the adjustment set
returned by LDP.
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E.3.1 Identification of Z4 and Z5 is guaranteed

In order to catch Z5, LPD must first catch all Z2 that, when conditioned on, open an active path
from X to Y . In order to catch such Z2 at Step 4, LDP must first catch Z4 at Step 2. Therefore, we
must prove that each of these steps are unaffected by inter-partition active paths.

Theorem E.10 (Identification of Z4 and Z5 is guaranteed when sufficient condition C1 is violated).

Proof of Theorem E.10 follows from Lemmas E.11 and E.13.

Lemma E.11 (Discovery of Z4 is guaranteed at Step 2).
Proposition E.12. If two variables are marginally or conditionally dependent and the conditioning
set remains unchanged, the addition of a new active path in GXY Z cannot render them independent.

Proof. The test at Step 2 of Algorithm 1 relies only on {X,Y, Z} for a given candidate Z. No valid
inter-partition active paths can cause Z4 to be marginally dependent on X , as this would violate
the definition of Z4 (Definition C.3). Per Proposition E.12, no valid inter-partition active paths
can negate the conditional dependence of Z4 and X as the conditioning set remains unchanged.
Therefore, the discovery of Z4 remains unaffected by inter-partition active paths.

Lemma E.13 (Discovery of Z5 is guaranteed at Step 5).

Proof. To prove Lemma E.13, we will show that each phase to the discovery of Z5 at Steps 5, 6,
and 7 is not affected by violations of sufficient condition C1.

First, we address potential impacts at Step 5. A subset of Z2 is the only subpartition whose inclusion
in the conditioning set at Step 5 can prevent downstream detection of Z5. This problematic subset
of Z2 must be

1. marginally independent of all of Z4, otherwise it would be identified at Step 4; and
2. able to render an inactive path between X and Y active by its inclusion in the conditioning

set at Step 5.

We will show that no Z2 that is undiscovered by Step 4 can meet the second condition. Observe that
any Z2 can either be descended from Y or share only a confounded path with Y . To meet the first
condition above, a Z2 cannot be descended from Y . Any Z2 that is a descendant of Y will always be
discovered at Step 4 regardless of the other paths it lies on, as it will always be marginally dependent
on Z4.

We next consider the subset of Z2 that only shares confounded paths with Y . For a Z2 to meet the
second condition above, any path between X and Y that is opened by conditioning on this Z2 must
not be re-blocked by the rest of the conditioning set used in Step 5. Thus, we must prove that any
Z2 that is not identified at Step 4 must be on a path to Y that is re-blocked by the other members of
the conditioning set at Step 5.

Consider the types of confounded paths that Z2 can share with Y . Any confounder for {Z2, Y } can
only belong to Z1, Z3, Z4, or Z6. This follows from Table E.2, which states that the only partitions
that can have an edge entering Y are:

1. Type 2 paths to Y : Z1, Z3, Z4.
2. Type 4 paths to Y : Z1, Z2, Z4.
3. Type 5 paths to Y : Z1, Z3, Z4.
4. Type 6 paths to Y : Z2, Z6.

If the confounder for {Z2, Y } is in Z4 (e.g., in the M-structure featured in Figure A.3), then this Z2

is guaranteed to be discovered at Step 4. Likewise, as Z6 is descended from Z4 through Y , any Z2

sharing an active path with Z6 will be discovered at Step 4. If the only confounders for {Z2, Y } are
in Z1 or Z3, Z2 will not be discovered at Step 4 and will be conditioned on during Step 5. However,
all members of Z1 and Z3 that are adjacent to Y will also be included in the conditioning set at Step
5. Together with X , these variables will block all paths from Z5 to Y . Therefore, such a Z2 will be
on a path to Y that is re-blocked by the conditioning set at Step 5.

Finally, we address the resolution of Z5 at Steps 6 and 7 when sufficient condition C1 does not hold.
Even when C1 is violated, no Z5 will ever be dependent on a Z1 that is directly adjacent to Y (as
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described in Definition C.1 and Proposition E.17). Therefore, any Z5 will be placed in Z1,5 at Step
6 and in Z5 at Step 7.

E.3.2 LDP does not place descendants of X in Z1

Theorem E.14 (Algorithm 1 does not place direct nor indirect descendants of X in Z1 when suffi-
cient condition C1 is violated).

Proof. All descendants of X will be marginally dependent on all of Z1 and all of Z5 by definition,
regardless of any inter-partition active paths that they participate in. Thus, any descendant of X will
be placed in ZPOST at Step 6 if it was not previously eliminated. As any causal path from X to Y
features an edge out of X (X → · · · ), this also guarantees that no causal path from X to Y will be
blocked by the Z1 returned by LDP.

E.3.3 Adjustment sets returned by LDP block all backdoor paths for {X,Y }

Theorem E.15 (Adjustment sets returned by LDP block all backdoor paths for {X,Y } when suffi-
cient condition C1 is violated).

Proof of Theorem E.15 proceeds from the following argument, as supported by Lemmas E.20 and
E.21.

As illustrated in Figure A.1, not every Z1 must be included in the adjustment set in order to block
all backdoor paths. We will show that the adjustment set returned by LDP still blocks all backdoor
paths even when 1) some ground truth Z1 are not placed in Z1 and 2) some non-Z1 are placed in
Z1.

First, we address the latter claim that LDP returns valid adjustment sets even when some non-Z1

are placed in Z1. Consider the partitions that could be incorrectly labeled as Z1 when sufficient
condition C1 is violated. We have already proven that no descendant of X will ever be placed in
Z1 (Theorem E.14). This implies that members of Z3, Z6, and Z7 can never be mislabeled as Z1.
Z8 can also never be placed in Z1, as inter-partition active paths have no effect on its discovery at
Step 1. This leaves Z2, Z4, and Z5. Per Theorem E.10, violating sufficient condition C1 does not
impact discovery of Z4 and Z5. Further, these variables are permissible in valid adjustment sets
and are intentionally retained under some criteria (e.g., the disjunctive cause criterion (VanderWeele
& Shpitser, 2011)). Per Lemma E.13, Z2 can only share a confounded path with Y when the
confounder is in Z1, Z3, Z4, or Z6. Further, any Z2 that is marginally dependent on a Z4 or Z6 will
be placed in ZPOST at Step 4. Per Theorem E.14, any member of Z2 that is descended from X will
never be placed in Z1. Thus, when a Z3 acts as a confounder for a Z2 and Y , this Z2 will never be
placed in Z1. Therefore, the only members of Z2 that could be placed in Z1 are non-descendants
of X whose only path to Y is confounded by members of Z1. This does not violate the validity of
the returned adjustment set, as such Z2 lie on paths that will already by blocked by the rest of Z1,
preventing collider bias. This case is illustrated by node Z2

2 in Figure E.1 (right-hand DAG).

Next, we address the former claim that the adjustment set returned by LDP still blocks all backdoor
paths even when some ground truth Z1 are mislabeled. We begin by introducing the concepts of
root-Z1 and collider-Z1. We observe that every backdoor path features a Z1 that acts as a root
node for that path: i.e., it is a common cause for {X,Y } and all Z1 that are its descendants on the
paths to X and Y . In Figure E.1, {Z1

1 , Z
3
1 , Z

6
1} are roots for backdoor paths in the left-hand DAG

while {Z2
1 , Z

4
1 , Z

5
1} are roots for backdoor paths in the right-hand DAG. When multiple backdoor

paths in GXY Z overlap (i.e., share subpaths), some Z1 can behave as colliders for two parent Z1.
In Figure E.1, {Z2

1 , Z
4
1} are collider-Z1 on overlapping backdoor paths in the left-hand DAG while

{Z1
1 , Z

2
1 , Z

3
1} are collider-Z1 for backdoor paths in the right-hand DAG. Note that node Z2

1 in the
right-hand DAG simultaneously behaves as a root-Z1 and a collider-Z1 for different backdoor paths.

Let AXY be an adjustment set for {X,Y } that is returned by LDP. We claim that any AXY that
blocks a backdoor path P meets at least one of the following conditions with respect to P:

Item 1 At least one non-collider-Z1 on P is in AXY ; or
Item 2 No collider-Z1 on P nor any of its descendants is in AXY .
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Note that if Item 1 is met but Item 2 is not (e.g., a collider-Z1 is in AXY but so is a non-collider-Z1),
P is still blocked by adjusting for AXY . To prove that AXY satisfies either Item 1 or Item 2, we
introduce the following propositions.
Proposition E.16. If a Z4 shares an active path with any Z1 on P such that Z4 ⊥̸⊥ Z1, that Z4

must form a v-structure Z4 · · · → Z1 ← · · ·Z ′
1, where Z ′

1 lies between Z1 and X on P . If not, Z4

would share an active path with X , which violates the definition of Z4 (Definition C.3). In Figure
E.1 (right-hand DAG), examples include Z4 → Z3

1 ← Z2
1 and Z4 → Z3

1 ← Z5
1 . Together with

Definition C.3, this proposition implies that no Z4 will ever be marginally dependent on a Z1 that is
directly adjacent to X .
Proposition E.17. If a Z5 shares an active path with any Z1 on P such that Z5 ⊥̸⊥ Z1, that Z5

must form a v-structure Z5 · · · → Z1 ← · · ·Z ′
1, where Z ′

1 lies between Z1 and Y on P . If not, Z5

would share an active path with Y , which violates the definition of Z5 (Definition C.1). In Figure
E.1 (right-hand DAG), examples include Z5 → Z1

1 ← Z2
1 and Z5 → Z1

1 ← Z4
1 . Together with

Definition C.1, this proposition implies that no Z5 will ever be marginally dependent on a Z1 that is
directly adjacent to Y .
Proposition E.18 (A single Z1 cannot be a collider for a Z4 and a Z5). If a single Z1 was a collider
for Z4 and Z5, then Z4 would share an active path with X and Z5 would share an active path with
Y , violating the definitions of these partitions. This proposition justifies the forbidden causal path
between Z5

1 and Z7
1 in Figure E.1 (left-hand DAG).

Proposition E.19 (The root-Z1 of a backdoor path will never be marginally dependent on a Z4 nor
a Z5). As all root-Z1 are causal for both X and Y , marginal dependence on either a Z4 or a Z5

would violate Propositions E.16, E.17, and E.18.
Lemma E.20 (LDP is guaranteed to correctly label at least one Z1 per backdoor path, i.e., the
root-Z1).

Proof. Any Z1 that is not marginally dependent on any Z4 nor Z5 will not be incorrectly placed in
ZPOST at Step 4 and will be placed in Z1 at Step 6 or Step 7. Per Proposition E.19, the root-Z1 of
a backdoor path will never be marginally dependent on a Z4 nor a Z5. As all backdoor paths must
have a root-Z1, then LDP is guaranteed to correctly label at least one Z1 per backdoor path.

Proof of Lemma E.20 shows that LDP is guaranteed to block any backdoor path with only a single
Z1 that is adjacent to both X and Y (e.g., Z1

1 in the left-hand DAG of Figure E.1). Proof of Lemma
E.20 is almost proof of Item 1 and Item 2 for more complex backdoor paths, but with one missing
link: a single Z1 can act simultaneously as a root-Z1 for one backdoor path and as a collider-Z1 for
an overlapping backdoor path. This case is exemplified by node Z2

1 in Figure E.1 (right-hand DAG).
To fully prove Item 1 and Item 2, we conclude with Lemma E.21.
Lemma E.21 (Adjustment sets returned by LDP satisfy Item 1 and Item 2).

Proof. Let P be a single backdoor path in GXY Z. To prove Lemma E.21, we will prove that if any
collider-Z1 on P is contained in AXY , then AXY will also contain a non-collider-Z1 on P . To do
so, it suffices to prove that LDP correctly labels at least one root-Z1 on P that is not also a collider-
Z1 for an overlapping backdoor path. Observe that any collider-Z1 Z

∗
1 must be a descendant of two

root-Z1 that are not collider-Z1 for any other path, however long the indirect paths to these roots
are. Even if Z∗

1 is retained in AXY , so will its ancestors that are root-Z1 (per Lemma E.20). Thus,
even when Item 2 goes unsatisfied, AXY is guaranteed to satisfy Item 1.

Figure E.1 provides an illustrative example in the right-hand DAG. There, Z2
1 is a root-Z1 for back-

door path X −Z1
1 −Z2

1 −Z3
1 − Y but is a collider-Z1 for root Z4

1 and root Z5
1 . Even though Z2

1 is
in AXY (per Lemma E.20), so are Z4

1 and Z5
1 (also per Lemma E.20). Thus, Item 1 and Item 2 are

satisfied by AXY .

F APPENDIX: EXTENDED EXPERIMENTAL DESIGN

F.1 Baseline Methods

PC Algorithm PC is a classic global structure inference algorithm that provides asymptotic the-
oretical guarantees (Spirtes et al., 2000). It assumes Causal Markov, faithfulness, and causal suf-
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Figure E.1: Two DAGs that exemplify the behavior of LDP for valid adjustment set detection in the
presence of inter-partition active paths. All red nodes will be placed in Z1 by LDP. All confounders
for {X,Y } that are colored green will be mislabeled due to their marginal dependence on Z4 or Z5.
Left: Per Lemma E.20, Z1

1 , Z3
1 and Z6

1 will be placed in Z1. Despite their marginal dependence on
the only Z5 in this structure, Z2

1 and Z5
1 will never be placed in ZPOST due to the presence of Z1

1 ,
as Z2

1 ⊥⊥ Z1
1 and Z5

1 ⊥⊥ Z1
1 . Together, the confounders highlighted in red ({Z1

1 , Z
2
1 , Z

3
1 , Z

5
1 , Z

6
1})

constitute a valid adjustment set that blocks all backdoor paths and contains no descendents of X .
No causal path of either directionality is permissible between Z5

1 and Z7
1 per Proposition E.18. If

this path were to contain a confounder analogous to Z3
1 , this would be permissible and this node

would be placed in Z1 by LDP.
Right: This DAG contains a modified butterfly structure, which will be partially retained in Z1

({Z2
1 , Z

4
1 , Z

5
1}) while still blocking all backdoor paths. As there is only one Z5 in this structure

and no backdoor path whose members are marginally independent of Z1
1 , this confounder will be

mislabeled as ZPOST at Step 6. This DAG also illustrates a case where a member of Z2 (Z2
2 ) is placed

in Z1. Inclusion of Z2
2 does not violate the validity of the adjustment set returned by LDP, as this

node is not a descendent of X and adjusting for {Z2
1 , Z

4
1 , Z

5
1} prevents collider bias.

ficiency and returns a Markov equivalence class (MEC). Time complexity for PC is worst-case
exponential in node count (Kalisch & Buhlmann, 2007). Experiments use the implementation by
Kalisch & Buhlmann (2007).8

MB-by-MB MB-by-MB (Wang et al., 2014) infers the local structure around a target node to dis-
tinguish parents from children. It sequentially learns Markov blankets (MBs) and the local structures
within these, starting from the target node, moving to its neighbors, and so on. It terminates when the
parents and children of the target are discovered or if it is not possible to distinguish them, returning
the induced completed partially directed acyclic graph (CPDAG) over the target and its neighbors.
Experiments use an implementation that combines IAMB (Tsamardinos et al., 2003, Fig. 2) and PC
for every sequential step. Like PC, time complexity is worst-case exponential in node count.

Local Discovery using Eager Collider Checks (LDECC) LDECC (Gupta et al., 2023) is a local
discovery algorithm that infers the induced CPDAG over a given target node and its neighbors.
Unlike MB-by-MB, LDECC does not proceed sequentially and runs conditional independence tests
in a similar order as PC, leveraging discovered unshielded colliders to immediately orient the edges
around the target node. LDECC is provably polynomial-time for certain categories of DAGs, but
exponential for others.

Baseline Evaluation Let AXY be any adjustment set for {X,Y } returned by a method in this
study. Let ACC := {Z1} and ADC := {Z1,Z4,Z5} be valid adjustment sets for {X,Y } un-
der the common cause criterion (CCC) and disjunctive cause criterion (DCC), respectively (Van-

8https://github.com/keiichishima/pcalg
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derWeele & Shpitser, 2011). For PC, ACC := ancestors(X) ∩ ancestors(Y ) = {Z1}, and
ADC := {ancestors(X) ∪ ancestors(Y ) \ descendants(X)} = {Z1,Z4,Z5}, where ancestors
and descendants hold for all members of the MEC. As MB-by-MB and LDECC only return the
direct parents and children of a single target, we run these baselines with X and Y as sepa-
rate targets and cache intermediate results to prevent redundant independence testing. ADC :=
{parents(X) ∪ parents(Y ) \ children(X)} = Z′

1 ∪ Z4 ∪ Z5, where Z′
1 is directly adjacent to X ,

Y , or both (but not neither). ACC := {parents(X) ∩ parents(Y )}, i.e., all confounders directly
adjacent to both X and Y . Thus, ACC under LDECC and MB-by-MB are not guaranteed to block
all backdoor paths.

G APPENDIX: EXPERIMENTAL RESULTS

Mean Runtime (seconds) Tests Per Run

|Z| |Z−| LDP:|Z|2 LDP LDECC MB-BY-MB PC LDP LDECC MB-BY-MB PC
8 1 0.781 0.0143 (0.0121-0.0165) 0.1144 (0.1098-0.119) 0.1205 (0.1163-0.1247) 0.076 (0.0734-0.0787) 50 641 513.6 (513.2-514.1) 508
16 2 0.500 0.0299 (0.0287-0.0311) 7.011 (6.7783-7.2437) 9.3711 (9.0831-9.6591) 8.7598 (8.5028-9.0169) 128 23344.3 (23331.9-23356.7) 29687.5 (29675.4-29699.5) 29556
24 3 0.406 0.0410 (0.0399-0.0421) - - - 234 - - -
32 4 0.359 0.0587 (0.0574-0.0600) - - - 368 - - -
40 5 0.331 0.0838 (0.0827-0.0849) - - - 530 - - -
48 6 0.313 0.1230 (0.1215-0.1245) - - - 720 - - -
56 7 0.299 0.1492 (0.1476-0.1509) - - - 938 - - -
64 8 0.289 0.2016 (0.1963-0.2070) - - - 1184 - - -
72 9 0.281 0.2495 (0.2458-0.2533) - - - 1458 - - -
80 10 0.275 0.2836 (0.2784-0.2887) - - - 1760 - - -

Table G.1: Mean runtime and total independence tests performed per DAG as cardinality of Z (|Z|)
increases. Values are averaged over 100 replicates for DAGs analogous to Figure 1 (sample size
n = 1k each), with 95% confidence intervals in parentheses. All data generating processes feature
hypergeometric noise distributions with quadratic causal mechanisms, under the same structural
equation as for the 10-node DAG reported in Table G.2. Independence was determined by an oracle.
Cardinality of each partition is reported as |Z−|. The ratio of true total tests for LDP to expected
quadratic count is reported as LDP:|Z|2. Baselines were only evaluated up to |Z| = 16 due to very
high test counts. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core
i7. Growth curves are plotted in Figure 2.

DAG STRUCTURE CAUSAL MECHANISM NOISE DISTRIBUTION X → Y STRUCTURAL EQUATION

10-node (Figure 1) Linear Bernoulli True Vi = ⌊(0.3 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 1) Linear Bernoulli False Vi = ⌊(0.45 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 1) Linear Hypergeometric True Vi = ⌊(0.3 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 1) Linear Hypergeometric False Vi = ⌊(0.45 ∗ sum(Pai))⌋+ ϵi
10-node (Figure 1) Quadratic Bernoulli True Vi = ⌊(−1.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 1) Quadratic Bernoulli False Vi = ⌊(−1.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 1) Quadratic Hypergeometric True Vi = ⌊(0.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 1) Quadratic Hypergeometric False Vi = ⌊(0.4 ∗ sum(Pai)

2)⌋+ ϵi
10-node (Figure 1) Cube root Bernoulli True Vi = ⌊(1.2 ∗ 3

√
(Pai))⌋+ ϵi

10-node (Figure 1) Cube root Bernoulli False Vi = ⌊(1.2 ∗ 3
√
(Pai))⌋+ ϵi

10-node (Figure 1) Cube root Hypergeometric True Vi = ⌊(0.7 ∗ 3
√
(Pai))⌋+ ϵi

10-node (Figure 1) Cube root Hypergeometric False Vi = ⌊(0.7 ∗ 3
√
(Pai))⌋+ ϵi

13-node with M (Figure A.3) Linear Bernoulli True Vi = ⌊(1.5 ∗ sum(Pai))⌋+ ϵi
13-node with M (Figure A.3) Quadratic Hypergeometric True Vi = ⌊(1.5 ∗ sum(Pai)

2)⌋+ ϵi
13-node with butterfly (Figure A.3) Linear Bernoulli True Vi = ⌊(1.9 ∗ sum(Pai))⌋+ ϵi
13-node with butterfly (Figure A.3) Quadratic Hypergeometric True Vi = ⌊(2.8 ∗ sum(Pai)

2)⌋+ ϵi

Table G.2: Structural equations for all discrete synthetic data generating processes. Vi denotes a
random variable, Pai denotes the set of its direct causal parents, and ϵi denotes the random noise
term associated with it. Fixed coefficients range across structural equations ([−1.4, 2.8]) to simulate
varying effect sizes.
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DAG STRUCTURE EXPERIMENT CAUSAL MECHANISM NOISE DISTRIBUTION X → Y STRUCTURAL EQUATION

10-node (Figure 1) Figure 3 Linear Gaussian True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 1) Figure 3 Linear Gaussian False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 1) Figure 3 Linear Uniform True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 1) Figure 3 Linear Uniform False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 1) Figure 3 Linear Exponential True Vi =
∑

(r ∗Pai) + ϵi
10-node (Figure 1) Figure 3 Linear Exponential False Vi =

∑
(r ∗Pai) + ϵi

10-node (Figure 1) Figure 4 Linear Gaussian True Vi =
∑

(c ∗Pai) + ϵi

Table G.3: Structural equations for all continuous synthetic data generating processes. Vi denotes
a random variable, Pai denotes the set of its direct causal parents, and ϵi denotes the random
noise term associated with it. Coefficient r is a float selected uniformly at random from the range
[1.0, 3.0). For the experiments reported in Figure 4, coefficient c is 1.0 for all parents except when
Vi = Y and Pai = X , in which case c = 2.75. For this DAG, the total effect of X on Y is 3.75, as
the direct effect is 2.75 and the indirect effect through Z3 is 1.0.

10-node graph with bernoulli noise

LINEAR QUADRATIC CUBE ROOT

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 21.4 (20.1-22.6) 16.4 (15.2-17.5) 36.4 (34.9-37.8) 34.8 (33.7-35.8) 25.8 (24.1-27.4) 20.2 (18.7-21.8)
500 58.8 (55.2-62.3) 67.0 (62.7-71.3) 92.0 (89.7-94.3) 59.5 (54.5-64.5) 65.2 (62.0-68.5) 74.4 (71.6-77.1)
1k 86.1 (83.6-88.6) 89.2 (86.5-92.0) 99.8 (99.3-100) 99.2 (98.2-100) 97.2 (95.8-98.7) 98.0 (96.7-99.3)
5k 99.9 (99.6-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 99.9 (99.6-100) 99.8 (99.3-100)
10k 100 (100-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 99.6 (99.1-100) 99.9 (99.6-100)

10-node graph with hypergeometric noise

LINEAR QUADRATIC CUBE ROOT

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 20.4 (18.8-22.0) 15.6 (14.3-17.0) 31.2 (29.9-32.6) 31.4 (29.9-32.9) 23.0 (21.7-24.3) 18.4 (16.9-19.8)
500 68.1 (64.7-71.6) 43.1 (39.5-46.7) 85.5 (82.7-88.3) 83.0 (80.7-85.3) 70.6 (67.7-73.5) 56.9 (54.5-59.2)
1k 92.4 (90.1-94.6) 78.5 (74.7-82.3) 97.8 (96.3-99.2) 98.5 (97.2-99.8) 95.5 (94.3-96.7) 87.6 (84.9-90.3)
5k 100 (100-100) 98.9 (97.9-99.8) 99.2 (98.0-100) 100 (100-100) 99.2 (98.5-100) 100 (100-100)
10k 99.9 (99.6-100) 99.8 (99.4-100) 99.8 (99.4-100) 100 (100-100) 99.8 (99.3-100) 100 (100-100)

Table G.4: Partition label accuracy of Algorithm 1 on a 10-node DAG (Figure 1) across discrete
noise distributions, linear and nonlinar causal mechanisms, and sample sizes (n). All DAGs feature
one node per partition (Z1 − Z8). Reported values are partition label accuracy averaged over 100
DAGs (i.e., 800 variables total, excluding all exposure-outcome pairs). The 95% confidence interval
is reported in parentheses. Data generating processes where X is a direct cause of Y are denoted by
X → Y , with X ̸→ Y denoting no direct causal effect of X on Y . Independence was determined
by chi-square tests (α = 0.001). All experiments were run on a 2017 MacBook with 2.9 GHz Quad-
Core Intel Core i7.

10-node graph with continuous noise

GAUSSIAN | LINEAR UNIFORM | LINEAR EXPONENTIAL | LINEAR

n X → Y X ̸→ Y X → Y X ̸→ Y X → Y X ̸→ Y
100 64.8 (60.7-68.8) 66.5 (63.0-70.0) 65.5 (61.4-69.6) 67.9 (64.6-71.1) 61.0 (56.9-65.1) 63.6 (60.2-67.0)
500 96.1 (94.4-97.8) 94.6 (92.8-96.5) 97.8 (96.6-98.9) 94.2 (92.2-96.3) 95.2 (93.5-97.0) 93.6 (91.3-95.9)
1k 99.2 (98.7-99.8) 98.5 (97.5-99.5) 99.0 (98.3-99.7) 98.8 (97.8-99.7) 99.8 (99.4-100) 98.5 (97.4-99.6)
5k 100 (100-100) 99.9 (99.6-100) 99.6 (98.9-100) 99.8 (99.3-100) 99.5 (98.7-100) 99.9 (99.6-100)
10k 99.9 (99.6-100) 99.9 (99.6-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100)

Table G.5: Partition label accuracy of Algorithm 1 on a 10-node DAG (Figure 1) across continuous
noise distributions, linear causal mechanisms, and sample sizes (n). All DAGs feature one node per
partition (Z1−Z8). Reported values are partition label accuracy averaged over 100 DAGs (i.e., 800
variables total, excluding all exposure-outcome pairs). The 95% confidence interval is reported in
parentheses. Data generating processes where X is a direct cause of Y are denoted by X → Y , with
X ̸→ Y denoting no direct causal effect of X on Y . Independence was determined by Fisher-z tests
(α = 0.001). All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.
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M-Structure

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC
500 73.5 (71.0-76.0) 26.2 (17.6-34.9) 27.0 (18.3-35.7) 75.3 (73.8-76.8) 16.0 (8.8-23.2) 16.0 (8.8-23.2)
1k 92.1 (90.4-93.8) 90.0 (84.1-95.9) 90.0 (84.1-95.9) 87.3 (85.8-88.7) 94.0 (89.3-98.7) 94.0 (89.3-98.7)
5k 97.1 (96.0-98.2) 97.0 (93.6-100) 97.0 (93.6-100) 99.8 (99.6-100) 100 (100-100) 100 (100-100)
10k 99.7 (99.4-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100) 100 (100-100)

Butterfly Structure

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC
1k 60.4 (57.5-63.2) 16.8 (9.6-24.0) 12.5 (6.6-18.4) 61.5 (58.9-64.0) 28.9 (20.1-37.7) 16.0 (10.3-21.7)
2.5k 98.8 (97.1-100) 98.0 (95.2-100) 98.0 (95.2-100 99.9 (99.7-100) 100 (100-100) 100 (100-100)
5k 98.9 (97.4-100) 99.0 (97.0-100) 98.2 (95.8-100) 99.9 (99.7-100) 100 (100-100) 100 (100-100)
10k 99.7 (99.4-100) 100 (100-100) 99.2 (98.4-100) 99.8 (99.5-100) 100 (100-100) 99.5 (98.5-100)

Table G.6: Performance of Algorithm 1 on 13-node DAGs containing an M-structure structure or
butterfly structure (Figure A.3) across noise distributions, causal mechanisms, and sample sizes (n).
In all DAGs, exposure X is a direct cause of outcome Y . Metrics reported are accuracy of all labels
(Z ACC), mean precision for partition Z1 (Z1 PRE), and mean recall for partition Z1 (Z1 REC). The
95% confidence interval is reported in parentheses. Independence was determined by chi-square
tests with α = 0.001. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel
Core i7.

Graph with m-structure, butterfly structure, and indirect mediators

BERNOULLI | LINEAR HYPERGEOMETRIC | QUADRATIC

n Z ACC Z1 PREC Z1 REC Z ACC Z1 PREC Z1 REC
5k 60.2 (59.0-61.4) 48.8 (38.9-58.6) 16.8 (12.4-21.1) 72.7 (70.2-75.3) 93.5 (88.7-98.3) 57.8 (51.4-64.1)
10k 85.8 (82.2-89.4) 66.5 (57.4-75.6) 66.2 (57.1-75.4) 97.9 (96.5-99.2) 96.9 (93.8-99.9) 97.0 (94.0-100.0)
15k 97.9 (96.5-99.2) 96.3 (93.3-99.4) 96.8 (93.6-99.9) 98.0 (96.7-99.3) 96.3 (93.3-99.4) 97.2 (94.3-100)
20k 98.7 (97.6-99.9) 97.4 (94.6-100) 98.0 (95.2-100) 98.7 (98.0-99.4) 99.1 (98.1-100.0) 99.5 (98.8-100)

Table G.7: Performance of Algorithm 1 on a 17-node DAG featuring an M-structure, butterfly struc-
ture, and mediator chain (Figure A.4). Data generating processes represent various discrete noise
distributions, linear and nonlinar causal mechanisms, and sample sizes (n). Exposure X is a direct
cause of outcome Y for all DAGs. Reported values are averaged over 100 DAGs. Metrics reported
are mean accuracy of all labels (Z ACC), mean precision for partition Z1 (Z1 PRE), and mean recall
for partition Z1 (Z1 REC). The 95% confidence interval is reported in parentheses. Independence
was determined by chi-square tests with α = 0.005. All experiments were run on a 2017 MacBook
with 2.9 GHz Quad-Core Intel Core i7.

Common Cause Criterion
Valid Adjustment Set (↑) Confounder Precision (↑) Confounder Recall (↑)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 0.8 0.7 0.0 0.0 80.00 (53.87-100) 35.00 (20.03-49.97) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 80.00 (53.87-100) 35.00 (20.03-49.97) 0.0 (0.0-0.0) 0.0 (0.0-0.0)
50k 0.7 1.0 0.0 0.0 76.67 (50.81-100) 50.00 (50.00-50.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 80.00 (53.87-100) 50.00 (50.00-50.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0)
75k 0.9 0.4 0.0 0.0 90.00 (80.02-99.98) 20.00 (4.00-36.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 100 (100-100) 20.00 (4.00-36.00) 0.0 (0.0-0.0) 0.0 (0.0-0.0)

Disjunctive Cause Criterion
Valid Adjustment Set (↑) Confounder Precision (↑) Confounder Recall (↑)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 0.8 0.9 0.3 0.9 38.00 (25.33-50.67) 22.50 (17.60-27.40) 33.33 (8.03-58.64) 34.17 (24.91-43.42) 80.00 (53.87-100) 45.00 (35.20-54.80) 25.00 (8.67-41.33) 45.00 (35.20-54.80)
50k 0.7 1.0 0.2 0.7 36.33 (23.92-48.75) 26.67 (24.49-28.84) 10.00 (0-23.07) 23.33 (11.71-34.96) 80.00 (53.87-100) 60.00 (46.93-73.07) 10.00 (0-23.07) 35.00 (20.03-49.97)
75k 0.9 1.0 0.0 0.4 45.00 (41.73-48.27) 25.83 (24.2-27.47) 8.33 (0-19.03) 29.05 (12.20-45.90) 100 (100-100) 50.00 (50.00-50.00) 12.50 (0-28.54) 35.71 (17.64-53.79)

Both Criteria
Independence Tests (↓) Runtime (seconds) (↓)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
25k 142.9 (141.5-144.3) 3021.9 (2975.2-3068.6) 2784.1 (2118.4-3449.8) 823.7 (610.1-1037.3) 0.065 (0.061-0.069) 92.08 (90.351-93.81) 99.485 (78.085-120.885) 86.292 (51.39-121.193)
50k 146.9 (145.2-148.6) 3841.9 (3761.2-3922.6) 4405 (3734.8-5075.2) 1146.6 (660.5-1632.7) 0.109 (0.101-0.116) 243.973 (237.472-250.474) 310.255 (262.338-358.172) 263.322 (145.116-381.528)
75k 148.6 (147.3-149.9) 4307.9 (4225.9-4389.9) 4615.2 (4049.2-5181.3) 1567.3 (881.9-2252.7) 0.162 (0.145-0.178) 415.874 (398.714-433.035) 473.107 (408.198-538.016) 582.672 (306.342-859.001)

Table G.8: Baseline comparison on the MILDEW benchmark from bnlearn (Scutari, 2010), with
MIKRO_1 as exposure and MELDUG_2 as outcome. Independence was determined by chi-square
independence tests with α = 0.005. Both the common cause criterion and disjunctive cause cri-
terion are considered. Values are reported for 10 replicate DAGs with 95% confidence intervals in
parentheses. Sample size is denoted by n. Adjustment set quality was measured by fraction that are
valid under the backdoor criterion, confounder precision per adjustment set, and confounder recall
per adjustment set. The method proposed in this work is highlighted in yellow. The most perfor-
mant values per metric are bolded. All experiments were run on a 2017 MacBook with 2.9 GHz
Quad-Core Intel Core i7. Results are visualized in Figure 4.
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Common Cause Criterion
Valid Adjustment Set (↑) Average Treatment Effect (ATE) ATE Mean Squared Error (↓)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 0.93 0.00 0.03 0.10 3.77 (3.75-3.79) 3.58 (3.38-3.77) 3.88 (3.71-4.05) 3.97 (3.86-4.08) 0.0096 1.0509 0.7817 0.3703
2.5k 0.96 0.00 0.02 0.30 3.76 (3.75-3.78) 2.5 (2.14-2.87) 4.08 (4.07-4.09) 3.97 (3.93-4.01) 0.0053 4.9982 0.1088 0.0817
5k 0.96 0.03 0.04 0.60 3.76 (3.75-3.77) 1.09 (0.78-1.4) 4.07 (4.05-4.08) 3.87 (3.83-3.9) 0.0046 9.5287 0.1054 0.0473
7.5k 0.97 0.11 0.14 0.73 3.76 (3.75-3.77) 1 (0.72-1.27) 4.04 (4.01-4.06) 3.83 (3.8-3.86) 0.0037 9.5009 0.0950 0.0325

Confounder Precision (↑) Confounder Recall (↑) Adjustment Set Cardinality

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 93 (87.97-98.03) 13.17 (8.88-17.45) 3 (0-6.36) 10 (4.09-15.91) 93 (87.97-98.03) 27 (18.25-35.75) 3 (0-6.36) 10 (4.09-15.91) 0.9 (0.9-1) 0.6 (0.4-0.7) 0.1 (0-0.1) 0.1 (0.1-0.2)
2.5k 96 (92.14-99.86) 16.83 (12.34-21.32) 2 (0-4.76) 30 (20.97-39.03) 96 (92.14-99.86) 36 (26.54-45.46) 2 (0-4.76) 30 (20.97-39.03) 1 (0.9-1) 1 (0.8-1.2) 0 (0-0) 0.3 (0.2-0.4)
5k 96 (92.14-99.86) 27.33 (23.19-31.48) 4 (0.14-7.86) 60 (50.35-69.65) 96 (92.14-99.86) 70 (60.97-79.03) 4 (0.14-7.86) 60 (50.35-69.65) 1 (0.9-1) 2.2 (2-2.4) 0 (0-0.1) 0.6 (0.5-0.7)
7.5k 97 (93.64-100) 34.08 (30.81-37.36) 14 (7.16-20.84) 73 (64.25-81.75) 97 (93.64-100) 90 (84.09-95.91) 14 (7.16-20.84) 73 (64.25-81.75) 1 (0.9-1) 2.7 (2.5-2.9) 0.1 (0.1-0.2) 0.7 (0.7-0.8)

Disjunctive Cause Criterion
Valid Adjustment Set (↑) Average Treatment Effect (ATE) ATE Mean Squared Error (↓)

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 0.93 0.0 0.09 0.02 3.77 (3.76-3.79) 0.87 (0.6-1.14) 1.41 (1.15-1.67) 1.05 (0.77-1.34) 0.0091 10.2090 7.1930 9.3487
2.5k 0.96 0.0 0.11 0.08 3.76 (3.75-3.78) 0.28 (0.23-0.33) 1.31 (1.11-1.51) 1.34 (1.07-1.61) 0.0055 12.0875 6.9627 7.6885
5k 0.96 0.0 0.14 0.32 3.76 (3.75-3.78) 0.4 (0.29-0.52) 2.09 (1.79-2.38) 2.34 (2.07-2.62) 0.0050 11.5372 5.0590 3.9600
7.5k 0.97 0.03 0.31 0.48 3.76 (3.75-3.77) 0.6 (0.43-0.77) 2.52 (2.22-2.81) 2.75 (2.49-3.01) 0.0037 10.6568 3.8045 2.7495

Confounder Precision (↑) Confounder Recall (↑) Adjustment Set Cardinality

n LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB LDP PC LDECC MB-BY-MB
1k 31.83 (29.97-33.7) 27.08 (24.77-29.4) 23.4 (19.08-27.72) 30.83 (27.95-33.72) 93 (87.97-98.03) 85 (77.97-92.03) 61 (51.39-70.61) 87 (80.38-93.62) 2.8 (2.7-2.9) 2.7 (2.5-2.9) 2.4 (2.2-2.6) 2.6 (2.3-2.8)
2.5k 32.33 (30.95-33.71) 30.43 (29.51-31.36) 17.83 (11.86-23.8) 40.33 (37.88-42.79) 96 (92.14-99.86) 100 (100-100) 31 (21.89-40.11) 99 (97.04-100) 2.9 (2.8-3) 3.4 (3.3-3.5) 1.5 (1.4-1.7) 2.6 (2.5-2.7)
5k 32.17 (30.83-33.5) 27.5 (26.46-28.54) 12.5 (7.41-17.59) 40.92 (38.57-43.26) 96 (92.14-99.86) 99 (97.04-100) 23 (14.71-31.29) 98 (95.24-100) 2.9 (2.8-3) 3.7 (3.5-3.8) 1.2 (1-1.3) 2.5 (2.4-2.6)
7.5k 32.5 (31.33-33.67) 27.63 (26.49-28.77) 19.5 (15.05-23.95) 40.5 (38.56-42.44) 97 (93.64-100) 100 (100-100) 46 (36.18-55.82) 99 (97.04-100) 2.9 (2.9-3) 3.8 (3.6-3.9) 1.5 (1.3-1.7) 2.6 (2.4-2.7)

Table G.9: Average treatment effect (ATE) estimation with adjustment sets identified by LDP, PC,
LDECC, and MB-by-MB for a 10-node linear-Gaussian DAG (Figure 1). Both the common cause
criterion (CCC) and disjunctive cause criterion (DCC) are considered. Values are reported for 100
replicate DAGs with 95% confidence intervals in parentheses. Independence was determined by
Fisher-z tests with α = 0.01. Adjustment set quality was measured by fraction that are valid under
the backdoor criterion, ATE (ground truth = 3.75), ATE mean squared error, confounder preci-
sion per adjustment set, confounder recall per adjustment set, and cardinality of the adjustment set
(ground truth is 1 under the CCC and 3 under the DCC). The method proposed in this work is high-
lighted in yellow. The most performant values per metric are bolded. All experiments were run on a
2017 MacBook with 2.9 GHz Quad-Core Intel Core i7. Results are visualized in Figure 4.

Figure G.1: LDP partition accuracy on the MILDEW benchmark. Mean accuracy was computed for
10 replicate samples from the ground truth DAG using bnlearn (Scutari, 2010). We measure parti-
tion accuracy as the percent of partition labels that are consistent with ground truth. Independence
was determined by chi-square tests (α = 0.005). Shaded regions represent the 95% confidence
interval. All experiments were run on a 2017 MacBook with 2.9 GHz Quad-Core Intel Core i7.
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