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ABSTRACT

Prompt engineering has emerged as a powerful technique for optimizing large
language models (LLMs) for specific applications, enabling faster prototyping
and improved performance, and giving rise to the interest of the community in
protecting proprietary system prompts. In this work, we explore a novel perspective
on prompt privacy through the lens of membership inference. We develop Prompt
Detective, a statistical method to reliably determine whether a given system prompt
was used by a third-party language model. Our approach relies on a statistical test
comparing the distributions of two groups of generations corresponding to differ-
ent system prompts. Through extensive experiments with a variety of language
models, we demonstrate the effectiveness of Prompt Detective in both standard
and challenging scenarios, including black-box settings. Our work reveals that
even minor changes in system prompts manifest in distinct response distributions,
enabling us to verify prompt usage with statistical significance.

1 INTRODUCTION

Prompt engineering offers a powerful, flexible, and fast way to optimize large language models
(LLMs) for specific applications significantly reducing the time for prototype development. Carefully
crafted prompts can have significant business impact allowing to reduce deployment costs, and
ensure optimal customer-facing experiences. Large language model providers, such as Anthropic and
OpenAI, release detailed prompt engineering guides on prompting strategies allowing their customers
to reduce hallucination rates and optimize business performance (OpenAI, 2023; Anthropic, 2024b).

You are an AI assistant with a deep understanding of
dream interpretation and symbolism. Your task is to
provide users with insightful and meaningful analyses
of the symbols, emotions, and narratives present in
their dreams. Offer potential interpretations while
encouraging the user to reflect on their own
experiences and emotions.

Proprietary System Prompt:

System prompt: ??? (potentially reused)

Third-Party Chat Bot

I had a dream that I was walking through a dense forest. It was dark, and I could
hear strange whispers coming from the shadows... Then I woke up. What could
this dream mean?

The dense, dark forest might represent a period of uncertainty, confusion, or a
feeling of being lost in your waking life. The whispers coming from the shadows
could symbolize your subconscious fears or doubts that you may be struggling with.

I had a dream about being chased by a large animal, like a bear or lion. What could
that mean?

One interpretation is that the animal represents an aspect of yourself or a situation
in your life that feels threatening, overwhelming, or out of control. The chase could
signify you are avoiding or running from an issue that needs to be confronted.

Prompt Detective

Proprietary Prompt
has been reused

Proprietary Prompt
 has not been reused

New Conversation:

New Conversation:

Figure 1: Prompt Detective verifies if a third-party chat bot uses a given proprietary system prompt
by querying the system and comparing distribution of outputs with outputs obtained using proprietary
system prompt.
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Developers put significant effort into creating prompt templates, and consider them to be IP worth
protecting (Schulhoff et al., 2024). The use of system prompts also provides specialized capabilities
such as taking on a character which is often leveraged by startups 1.

The importance and promise of prompt engineering gave rise to the interest of the community in
protecting proprietary prompts and a growing body of academic literature explores prompt reconstruc-
tion attacks (Hui et al., 2024; Zhang et al.; Morris et al., 2023; Geiping et al., 2024) which attempt to
recover a prompt used in a language model to produce particular generations. These methods achieve
impressive results in approximate prompt reconstruction, however their reconstruction success rate is
not high enough to be able to confidently verify the prompt reuse, they are computationally expensive
usually relying on GCG-style optimization (Zou et al., 2023), and some of these methods require
access to model gradients (Geiping et al., 2024). Additionally, while some reconstruction methods
provide confidence scores (Zhang et al.), they do not offer statistical guarantees for prompt usage
verification.

In this work, we specifically focus on the problem of verifying if a particular system prompt was used
in a large language model. This problem can be viewed through the lens of an adversarial setup: an
attacker may have reused someone else’s proprietary system prompt and deployed an LLM-based
chat bot with it. Assuming access to querying this chat bot, can we verify with statistical significance
if the proprietary system prompt has not been used? In other words, we develop a method for system
prompt membership inference. Our contributions are as follows:

• We develop Prompt Detective, a training-free statistical method to reliably verify whether a
given system prompt was used by a third-party language model, assuming query access to it.

• We extensively evaluate the effectiveness of Prompt Detective across a variety of language
models, including Llama, Mistral, Claude, and GPT families in both standard and challeng-
ing scenarios such as hard examples of similar system prompts and black-box settings.

• Our work reveals that even minor changes in system prompts manifest in distinct response
distributions of LLMs, enabling Prompt Detective to verify prompt usage with statistical
significance. This highlights that LLMs take specific trajectories when generating responses
based on the provided system prompt.

2 RELATED WORK

2.1 PROMPT ENGINEERING

Prompt engineering has emerged as an accessible approach to adapt LLMs for specific user needs (Liu
et al., 2023). In-context learning (Brown et al., 2020; Radford et al., 2019) allows LLMs to acquire
new skills by providing exemplars within the prompt, without retraining. A prominent technique
is few-shot prompting (Brown et al., 2020), where the design of exemplars, such as their selection,
ordering, and formatting, significantly impacts output quality (Zhao et al., 2021; Lu et al., 2021; Ye
& Durrett, 2023), and many-shot prompting can even match the power of fine-tuning (Scao & Rush,
2021; Agarwal et al., 2024). Another line of work focuses on chain-of-thought prompting (Wei et al.,
2022; Chu et al., 2023) which encourages LLMs to express their thought process before delivering
the final answer, often leading to improved performance on reasoning tasks (Kojima et al., 2022;
Zhang et al., 2022; Team et al., 2023; Zheng et al., 2023a; Yasunaga et al., 2023; Zhou et al., 2023).
Similarly, self-criticism techniques improve language models by encouraging them to criticize and
refine their own outputs (Kadavath et al., 2022; Madaan et al., 2024; Xue et al., 2023; Weng et al.,
2022; Dhuliawala et al., 2023).

Zero-shot prompting techniques, closely related to system prompts, include role prompting (Wang
et al., 2023; Zheng et al., 2023b), emotion prompting (Li et al., 2023), rephrase and respond (Deng
et al., 2023), and self-ask (Press et al., 2022). System prompts play a crucial role in shaping LLM
outputs and driving performance in application domains (Ng & Fulford, 2023), with tuned system
prompts often being valuable enough to even be sold at online marketplaces.2

1https://character.ai/
2See https://prompti.ai/chatgpt-prompt/, https://promptbase.com/.
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2.2 PROMPTS CAN BE EXTRACTED

Prior work has proposed several prompt extraction attacks, which deduce the content of a proprietary
prompt by interacting with a model, both for language models (Morris et al., 2023; Zhang et al.;
Sha & Zhang, 2024; Yang et al., 2024) and for image generation models (Wen et al., 2024). Morris
et al. (2023) frame the problem as model inversion, where they deduce the prompt given next token
probabilities. Similarly, Sha & Zhang (2024) propose a method to extract prompts from sampled
generative model outputs. Furthermore, Yang et al. (2024) describe a way to uncover system prompts
using context and response pairs. Additionally, Zhang et al. present an evaluation of prompt extraction
attacks for a variety of modern LLMs. In contrast to the works on inversion style methods, one
can also find adversarial inputs that jailbreak LLMs (Zou et al., 2023; Cherepanova & Zou, 2024;
Geiping et al., 2024) and even lead them to eliciting the system prompt in the response. Both Hui
et al. (2024) and Geiping et al. (2024) use optimization over prompt tokens to provoke LLMs to
respond by quoting their own system prompts. Prompt reconstruction methods can also be adapted to
solve the problem of prompt verification through comparing the reconstructed prompt to the reference
prompt, however, their high computational cost (Hui et al., 2024; Geiping et al., 2024), the need to
access model gradients (Geiping et al., 2024), and imperfect reconstruction success rate (Hui et al.,
2024; Zhang et al.; Geiping et al., 2024) motivate the development of methods specifically tailored to
the problem of prompt reuse verification.

2.3 MEMBERSHIP INFERENCE AND DATA EXTRACTION ATTACKS ON LLMS

In the evolving discussion on data privacy, a significant topic is membership inference, which involves
determining whether a particular data point is part of a model’s training set (e.g. Yeom et al., 2018;
Sablayrolles et al., 2019; Salem et al., 2018; Song & Mittal, 2021; Hu et al., 2022). Shokri et al.
(2017) and Carlini et al. (2022) both propose methods to determine membership in the training data
based on the idea that models tend to behave differently on their training data than on other data.
Bertran et al. (2024) further propose a more effective method and alleviate the need to know the
target model’s architecture, while Wen et al. (2022) propose perturbing the query data to improve
accuracy of their attack. Jagielski et al. (2023) examine a variation of the threat setting, where the
attacker is interfacing with a system comprised of a set of models that may be updated over time.
Other works explore training data membership inference in image generation models (Duan et al.,
2023; Matsumoto et al., 2023). Additionally, dataset inference techniques explore settings where the
whole training set is considered rather than single data points (Maini et al., 2021; 2024). Compared
to the standard membership inference setting, our work addresses a related but distinct question:
whether a given text is part of the LLM input context, thus exploring prompt membership inference.
Finally, while we focus on system prompt verification, statistical methods have been widely applied
to verify LLM behaviors across various contexts (Chaudhary et al., 2024; Kumar et al., 2024; Kang
et al., 2024).

3 PROMPT DETECTIVE

3.1 SETUP

Prompt Detective aims to verify whether a particular known system prompt is used by a third-party
chat bot as shown in Figure 1. In our setup, we assume an API or online chat access to the model,
that is, we can query the chat bot with different task prompts and we have control over choosing these
task prompts. We also assume the knowledge about which model is employed by the service in most
of our experiments, and we explore the black-box scenario in section 6.

This setup can be applied when a user, who may have spent significant effort developing the system
prompt for their product such as an LLM character or a domain-specific application, suspects that
their proprietary system prompt has been utilized by a third-party chat service effectively replicating
the behavior of their product, and wants to verify if that was in fact the case while only having online
chat window access to that service. We note that prompt engineering is a much less resource-intensive
task than developing or fine-tuning a custom language model, therefore, it is reasonable to assume
that such chat bots which reuse system prompts are based on one of the publicly available language
models such as API-based GPT models (Achiam et al., 2023), Claude models (Anthropic, 2024a), or
open source models like Llama or Mistral (Touvron et al., 2023; Jiang et al., 2023).
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Algorithm 1 Prompt Detective

Require: Third-party language model fp,
Known (proprietary) system prompt p̄,
Model f̄p̄,
Task prompts q1, . . . , qn,
Number of responses per task prompt k,
Significance level α

G1 ← {{fp(q1)1...fp(q1)k}, . . . , {fp(qn)1...fp(qn)k}} ▷ Generations from third-party model
G2 ← {{f̄p̄(q1)1...f̄p̄(q1)k}, . . . , {f̄p̄(qn)1...f̄p̄(qn)k}} ▷ Generations from known prompt
V1 ← BERT(G1) ▷ BERT embeddings of G1

V2 ← BERT(G2) ▷ BERT embeddings of G2

µ1 ← Mean(V1), µ2 ← Mean(V2) ▷ Mean vectors
sobs ← CosineSimilarity(µ1, µ2) ▷ Observed cosine similarity
c← 0 ▷ Counter for extreme cosine similarities
for i = 1 to Npermutations do ▷ Permutation test loop

V ∗
1 ← V1, V ∗

2 ← V2 ▷ Initialize permuted groups
for j = 1 to n do ▷ Shuffle preserving the task prompt structure

Vcombined ← V ∗
1 [(j − 1)k : jk] ∪ V ∗

2 [(j − 1)k : jk] ▷ Concatenate responses
Vcombined ← Shuffle(Vcombined) ▷ Permute combined responses
V ∗
1 [(j − 1)k : jk]← Vcombined[: k] ▷ Assign first part to V ∗

1
V ∗
2 [(j − 1)k : jk]← Vcombined[k :] ▷ Assign second part to V ∗

2
µ∗
1 ← Mean(V ∗

1 ), µ
∗
2 ← Mean(V ∗

2 )
s∗ ← CosineSimilarity(µ∗

1, µ
∗
2)

if s∗ ≤ sobs then ▷ Check if new similarity is as extreme
c← c+ 1 ▷ Increment counter for extreme similarities

p← c/Npermutations
if p < α then

return "Prompts are distinct"
else

return "Insufficient evidence to claim prompts are distinct"

Moreover, this adversarial setup can be seen through the lens of membership inference attacks, where
instead of verifying membership of a given data sample in the training data of a language model, we
verify membership of a particular system prompt in the context window of a language model. We
therefore refer to our adversarial setting as prompt membership inference.

3.2 HOW DOES IT WORK?

We assume that a third-party generative language model fp is prompted with an unknown system
prompt p, and that we can query the service with task prompts q to get generations fp(q). We also
assume access to a similar model prompted with our known proprietary system prompt p̄, that is f̄ p̄.
Our goal is to determine whether p and p̄ are distinct.

Core idea. Prompt Detective is a training-free statistical method designed for this purpose.
The core idea is to compare the distributions of two groups of generations corresponding to
different system prompts and apply a statistical test to assess if the distributions are signifi-
cantly different, which would indicate that the system prompts are distinct. That is, Prompt
Detective compares the distributions of high-dimensional vector representations of generations
fp(q1)

1, ..., fp(q1)
k, . . . , fp(qn)

1, ..., fp(qn)
k obtained from the third-party service fp prompted

with task queries q1, ..., qn (with k responses sampled for each task query) and generations
f̄p̄(q1)

1, ..., f̄p̄(q1)
k, . . . , f̄p̄(qn)

1, ..., f̄p̄(qn)
k from the f̄ p̄ model prompted with the proprietary

prompt p̄ and the same task queries.

Text representations. We simply utilized BERT (Reimers & Gurevych, 2019)
embeddings in our experiments. We compute the BERT embeddings for both
fp(q1)

1, ..., fp(q1)
k, . . . , fp(qn)

1, ..., fp(qn)
k and f̄p̄(q1)

1, ..., f̄p̄(q1)
k, . . . , f̄p̄(qn)

1, ..., f̄p̄(qn)
k

yielding two groups of high-dimensional vector representations of generations corresponding to the

4
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Imagine you are an alien anthropologist studying human culture and customs. Analyze the following aspects of human society from
an objective, outsider's perspective. Provide detailed observations, insights, and hypotheses based on the available information.

Original System Prompt:

Adopt the perspective of an alien anthropologist studying human culture and customs. Analyze the provided aspects of human society
from an objective, outsider's viewpoint. Offer detailed observations, insights, and hypotheses based on the available information.

Same Prompt, Minimal Rephrasing (Similarity Level 1):

Take on the role of an alien anthropologist tasked with studying human culture and customs. From an objective, outsider's perspective,
analyze the given aspects of human society. Provide detailed observations, insights, and hypotheses based on the information
available to you.

Same Prompt, Minor Rephrasing (Similarity Level 2):

Imagine yourself as an alien anthropologist conducting a study on human culture and customs. From an objective, outsider's
perspective, analyze the specified aspects of human society. Offer detailed observations, insights, and hypotheses based on the
information provided to you.

Same Prompt, Significant Rephrasing (Similarity Level 3):

As an intergalactic cultural researcher, your task is to observe and analyze various aspects of human society from an objective, outsider's
perspective, as if you were an alien anthropologist studying an unfamiliar civilization. Provide detailed observations, insights, and
hypotheses based on the information available to you.

Different Prompt, Remote Similarities (Similarity Level 4):

You are an AI anthropologist from an advanced alien civilization, tasked with conducting an in-depth study of human culture and
customs. Approach the provided aspects of human society from an objective, outsider's perspective, free from preconceptions or biases.
Offer detailed observations, insights, and hypotheses based on the available information, as if you were encountering this civilization for
the first time.

Different Prompt, Significant Conceptual Changes (Similarity Level 5):

Figure 2: Hard Examples illustrate varying degrees of similarity between the original prompts and
their rephrased versions. Similarity Level 1 is highly similar, while Level 5 is completely different.

two system prompts under comparison. We include results for ablation study on embedding models
in Appendix B Table 4.

Statistical test of the equality of representation distributions. To compare the distributions of
these two groups, we employ a permutation test (Good, 2013) with the cosine similarity between
the mean vectors of the groups used as the test statistic. The permutation test is a non-parametric
approach that does not make assumptions about the underlying distribution of the data, making it a
suitable choice for Prompt Detective. Intuitively, the permutation test assesses whether the observed
difference between the two groups of generations is significantly larger than what would be expected
by chance if the generations were not influenced by the underlying system prompts. By randomly
permuting the responses within each task prompt across the two groups, the test generates a null
distribution of cosine similarities between their mean vectors under the assumption that the system
prompts are identical, while preserving the task prompt structure. The observed cosine similarity
is then compared against this null distribution to determine its statistical significance. Algorithm 1
outlines all of the steps of Prompt Detective in detail.

3.3 TASK QUERIES

The selection of task prompts q1, . . . , qn is an important component of Prompt Detective, as these
prompts serve as probes to elicit responses that are influenced by the underlying system prompt. Since
we assume control over the task prompts provided to the third-party chat bot, we can strategically
choose them to reveal differences in the response distributions induced by distinct system prompts.

We consider a task prompt a good probe for a given system prompt if it elicits responses that are
directly influenced by and related to the system prompt. For example, if the system prompt is designed
for a particular LLM persona or role, task prompts that encourage the model to express its personality,
opinions, or decision-making processes would be effective probes. A diverse set of task prompts can
be employed to increase the robustness of Prompt Detective. In practice, we generated task queries
for each of the system prompts p̄ in our experiments with the Claude 3 Sonnet (Anthropic, 2024a)
language model unless otherwise noted (see Appendix F).

5
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4 EXPERIMENTAL SETUP

4.1 SYSTEM PROMPT SOURCES

Awesome-ChatGPT-Prompts 3 is a curated collection of 153 system prompts that enable users to
tailor LLMs for specific roles. This dataset includes prompts for creative writing, programming,
productivity, etc. Prompts are designed for various functions, such as acting as a Startup Idea
Generator, Python Interpreter, or Personal Chef. The accompanying task prompts were generated
with Claude 3 Sonnet (see Appendix F). For the 153 system prompts in Awesome-ChatGPT, we
generated overall 50 task prompts. In these experiments, while a given task prompt is not necessarily
a good probe for every system prompt, these 50 task prompts include at least one good probe for each
of the system prompts.

Anthropic’s Prompt Library 4 provides detailed prompts that guide models into specific characters
and use cases. For our experiments, we select all of the personal prompts from the library that include
system prompts giving us 20 examples. Personal prompts include roles such as Dream Interpreter or
Emoji Encoder. As the accompanying task prompts, we used 20 of the corresponding user prompts
provided in the library.

Hard Examples: To evaluate the robustness of Prompt Detective in challenging scenarios, we create
a set of hard examples by generating variations of prompts from Anthropic’s Prompt Library. These
variations are designed to have different levels of similarity to the original prompts, ranging from
minimal rephrasing to significant conceptual changes, producing varying levels of difficulty for
distinguishing them from the original prompts.

For each system prompt from Anthropic’s Prompt Library, we generate five variations with the
following similarity levels (see Figure 2 for examples):

1. Same Prompt, Minimal Rephrasing: The same prompt, slightly rephrased with minor
changes in a few words.

2. Same Prompt, Minor Rephrasing: Very similar in spirit, but somewhat rephrased.
3. Same Prompt, Significant Rephrasing: Very similar in spirit, but significantly rephrased.
4. Different Prompt, Remote Similarities: A different prompt for the same role with some

remote similarities to the original prompt.
5. Different Prompt, Significant Conceptual Changes: A completely different prompt for

the same role with significant conceptual changes.

This process results in a total of 120 system prompts for hard examples. The system prompt
variations and the accompanying task prompts were generated with the Claude 3 Sonnet model. For
the hard example experiments, we generated 10 specific probe task queries per each of the original
system prompts (see Appendices A,F).

4.2 MODELS

We conduct our experiments with a variety of open-source and API-based models, including Llama2
13B (Touvron et al., 2023), Llama3 70B 5, Mistral 7B (Jiang et al., 2023), Mixtral 8x7B (Jiang et al.,
2024), Claude 3 Haiku (Anthropic, 2024a), and GPT-3.5 (Achiam et al., 2023).

4.3 EVALUATION: STANDARD AND HARD EXAMPLES

In the standard setup, to evaluate Prompt Detective, we construct pairs of system prompts representing
two scenarios: (1) where the known system prompt p̄ is indeed used by the language model (positive
case), and (2) where the known system prompt p̄ differs from the system prompt p used by the model
(negative case). The positive case simulates a situation where the proprietary prompt has been reused,
while the negative case represents no prompt reuse.

3https://github.com/f/awesome-chatgpt-prompts
4https://docs.anthropic.com/en/prompt-library/library
5https://ai.meta.com/blog/meta-llama-3/
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Table 1: Prompt Detective can reliably detect when system prompt used to produce generations is
different from the given proprietary system prompt. We report false positive and false negative rates
at a standard 0.05 p-value threshold. Additionaly, we report average p-value for positive and negative
system prompt pairs.

Awesome-ChatGPT-Prompts Anthropic Library

FPR FNR ppavg pnavg FPR FNR ppavg pnavg

Llama2 13B 0.00 0.05 0.491±.28 0.000±.00 0.00 0.10 0.483±.30 0.000±.00

Llama3 70B 0.00 0.07 0.484±.29 0.000±.00 0.00 0.00 0.508±.29 0.000±.00

Mistral 7B 0.00 0.04 0.503±.29 0.000±.00 0.00 0.05 0.581±.33 0.000±.00

Mixtral 8x7B 0.00 0.03 0.475±.30 0.000±.00 0.00 0.00 0.466±.30 0.000±.00

Claude Haiku 0.05 0.03 0.543±.29 0.021±.11 0.00 0.05 0.440±.28 0.000±.00

GPT-3.5 0.00 0.06 0.501±.28 0.000±.00 0.00 0.00 0.396±.26 0.000±.00

We construct a positive pair (p̄, p̄) for each of the system prompts and randomly sample the same
number of negative pairs (p̄, p), p̄ ̸= p. The negative pairs may not represent similar system prompts,
and we refer to this setting as the standard setup.

For the hard example setup, we construct prompt pairs using the variations of the Anthropic Prompt
Library prompts with different levels of similarity, as described in section 4.1. The first prompt in
each pair is the original prompt from the library, while the second prompt is one of the five variations,
ranging from minimal rephrasing to significant conceptual changes. That is, while in this setup there
are no positive pairs using identical prompts, some of the pairs represent extremely similar prompts
differing by only very few words replaced with synonyms.

5 RESULTS

5.1 PROMPT DETECTIVE CAN DISTINGUISH SYSTEM PROMPTS

Table 1 shows the effectiveness of Prompt Detective in distinguishing between system prompts
in the standard setup across different models and prompt sources. We report the false positive
rate (FPR) and false negative rate (FNR) at a standard p-value threshold of 0.05, along with the
average p-value for both positive and negative prompt pairs. In all models except for Claude on
AwesomeChatGPT dataset, Prompt Detective consistently achieves a zero false positive rate, and the
false negative rate remains approximately 0.05. This rate corresponds to the selected significance
level, indicating the probability of Type I error – rejecting the null hypothesis that system prompts are
identical when they are indeed the same. Figure 3 shows how the average p-value changes in negative
cases (where the prompts differ) as the number of task queries increases. As expected, the p-value
decreases with more queries, providing stronger evidence for rejecting the null hypothesis of equal
distributions. Consequently, increasing the number of queries further improves the statistical test’s
power, allowing for the use of lower significance levels and thus ensuring a reduced false negative
rate, while maintaining a low false positive rate.

5.2 HARD EXAMPLES: SIMILAR SYSTEM PROMPTS

Table 2 presents the results for the challenging hard example setup, where we evaluate Prompt
Detective’s performance on system prompts with varying degrees of similarity to the proprietary
prompt. We conduct this experiment with Claude 3 Haiku and GPT-3.5 models, testing Prompt
Detective in two scenarios. First, we use 2 generations per task prompt, resulting in 20 generations
for each system prompt, as in the standard setup Anthropic Library experiments. Second, we use 50
generations for each task query, resulting in 500 generations per system prompt in total. We observe
that when only 2 generations are used, the false positive rate is high reaching 65% for GPT 3.5 and
Claude models in Similarity Level 1 setup, indicating the challenge of distinguishing the response
distributions for two very similar system prompts. However, increasing the number of generations for
each probe to 50 leads to Prompt Detective being able to almost perfectly separate between system
prompts even in the highest similarity category.

7
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Table 2: Results for Hard Examples. Increasing similarity between the proprietary system prompt
and prompt used in third-party system (lower similarity level) leads to worse separation of generation
distributions. Subscript in model name corresponds to the number of generations per task prompt
used in Prompt Detective.

Model Similarity 1 Similarity 2 Similarity 3 Similarity 4 Similarity 5

pavg FPR pavg FPR pavg FPR pavg FPR pavg FPR

Claude2 0.194±.22 0.65 0.108±.19 0.35 0.093±.25 0.15 0.052±.18 0.10 0.052±.13 0.20
Claude50 0.007±.03 0.05 0.000±.00 0.00 0.000±.00 0.00 0.000±.00 0.00 0.000±.00 0.00

GPT-3.52 0.213±.25 0.65 0.306±.34 0.60 0.225±.26 0.60 0.050±.10 0.20 0.020±.04 0.10
GPT-3.550 0.000±.00 0.00 0.011±.05 0.05 0.000±.00 0.00 0.000±.00 0.00 0.000±.00 0.00

We further explore the effect of including more generations and more task prompts on Prompt
Detective’s performance. In Figure 4, we display the average p-value for Prompt Detective on
Similarity Level 1 pairs versus the number of generations, the number of task prompts, and the
number of tokens in the generations. We ask the following question: for a fixed budget in terms of
the total number of tokens generated, is it more beneficial to include more different task prompts,
more generations per task prompt, or longer responses from the model? Our observations suggest
that while having more task prompts is comparable to having more generations per task prompt, it
is important to have at least a few different task prompts for improved robustness of the method.
However, having particularly long generations exceeding 64 tokens is not as useful, indicating that
the optimal setup includes generating shorter responses to more task prompts and including more
generations per task prompt.

We additionally find that Prompt Detective successfully distinguishes prompts in two case studies of
special interest: (1) variations of the generic “You are a helpful and harmless AI assistant” common
in chat applications, and (2) system prompts that differ only by a typo as an example of extreme
similarity (see Appendix C for details).

Figure 3: Average p-value computed for different number of task queries. Left: Awesome-
ChatGPT-Prompts. Right: Anthropic Library. Increasing the number of generations leads to
decreasing p-value in negative cases, but the average p-value for positive cases remains close to 0.5.
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Table 3: Prompt Detective in Black Box Setup. Assuming the third-party model fp is one of the six
models from previous experiments, we use Prompt Detective to compare it against each of the six
reference models {f̄ i

p̄}6i=1.

Model Awesome-ChatGPT-Prompts Anthropic Library

FPR FNR ppavg pnavg FPR FNR ppavg pnavg

Llama2 13B 0.00 0.01 0.493±.28 0.000±.00 0.00 0.05 0.484±.30 0.000±.00

Llama3 70B 0.01 0.02 0.485±.29 0.001±.02 0.00 0.00 0.517±.28 0.000±.00

Mistral 7B 0.00 0.00 0.504±.29 0.000±.00 0.00 0.00 0.582±.34 0.000±.00

Mixtral 8x7B 0.00 0.01 0.476±.30 0.000±.00 0.00 0.00 0.467±.29 0.000±.00

Claude Haiku 0.10 0.00 0.545±.29 0.017±.08 0.00 0.00 0.420±.34 0.000±.00

GPT-3.5 0.02 0.01 0.505±.28 0.001±.01 0.00 0.00 0.396±.26 0.000±.00

6 BLACK BOX SETUP

So far we assumed the knowledge of the third-party model used to produce generations, and in this
section we explore the black-box setup where the exact model is unknown. As mentioned previously,
it is reasonable to assume that chat bots which reuse system prompts likely rely on one of the widely
used language model families. To simulate such scenario, we now say that all the information
Prompt Detective has is that the third party model fp is one of the six models used in our previous
experiments. We then compare the generations of fp against each model {f̄ i

p̄}6i=1 used as reference
and take the maximum p-value. Because of the multiple-comparison problem in this setup, we apply
the Bonferroni correction to the p-value threshold to maintain the overall significance level of 0.05.
Table 3 displays the results for Prompt Detective in the black-box setup. We observe that, while
false positive rates are slightly higher compared to the standard setup, Prompt Detective maintains its
effectiveness, which demonstrates its applicability in realistic scenarios where the adversary’s model
is not known.

Figure 4: Effect of the number of task prompts, generations, and tokens on the performance of
Prompt Detective. Average p-value for GPT-3.5 model on system prompts of Similarity Level 1.
The left panel shows the average p-value vs. the number of generations used in Prompt Detective.
The blue line represents results with 10 task prompts and 5–50 generations (512 tokens long) per
prompt. The red line represents results with 1–10 task prompts, each with 50 generations (512 tokens
long). The right panel plots pnavg against the total number of tokens generated, with the green line
showing results using 10 task prompts and 50 shorter generations (16–512 tokens long)
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7 DISCUSSION

We introduce Prompt Detective, a method for verifying with statistical significance whether a given
system prompt was used by a language model and we demonstrate its effectiveness in experiments
across various models and setups.

The robustness of Prompt Detective is highlighted by its performance on hard examples of highly
similar system prompts and even prompts that differ only by a typo. The number of task queries and
their strategic selection play a crucial role in achieving statistical significance, and in practice we find
that generally 300 responses are enough to separate prompts of the highest similarity. Interestingly,
we find that for a fixed budget of generated tokens having a larger number of shorter responses is
most useful for effective separation.

A key finding of our work is that even minor changes in system prompts manifest in distinct response
distributions, suggesting that large language models take distinct low-dimensional “role trajectories”
even though the content may be similar and indistinguishable by eye when generating responses based
on similar system prompts. This phenomenon is visualized in Appendix Figure 5, where generations
from even quite similar prompts tend to cluster separately in a low-dimensional embedding space.

8 ETHICS STATEMENT

Regarding potential risks, we acknowledge that Prompt Detective may be leveraged as a verification
step in prompt extraction attacks and therefore we encourage the readers of this paper and the users
of Prompt Detective to adhere to responsible AI practices. We emphasize that our method should
only be used for legitimate purposes, such as protecting intellectual property rights and academic
research, and not for malicious intent or violating privacy.

9 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provided detailed descriptions of our experimental
setup, including the sources of system prompts, the language models used, and the procedures for
generating task prompts and hard examples. We also included pseudocode for the Prompt Detective
algorithm (Algorithm 1) and provided the code of complete implementation of Prompt Detective in
supplementary materials.
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Figure 5: UMAP projection of generations of language model across 5 system prompts of varying
similarity for one task prompt. It can be seen that generations from different, although conceptually
similar system prompts, cluster together.
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A ADDITIONAL DETAILS ON SYSTEM PROMPT SOURCES

AwesomeChatGPT Prompts is licensed under the CC0-1.0 license. The dataset contains 153 role
system prompts, for which we constructed 50 universal task prompts used to produce generations.
In the default experiments, we produce a single generation per system prompt - task prompt pair.
Additionally, we conduct ablations by varying the number of task prompts used, as shown in Figure 3.

Anthropic Prompt Library is available on Anthropic’s website and follows Anthropic’s Terms of
Use.6 We experiment with 20 personal system prompts, for which we construct 20 universal task
prompts used to produce generations. In the default experiments, we produce a single generation per
system prompt - task prompt pair. Additionally, we conduct ablations by varying the number of task
prompts used, as shown in Figure 3.

Anthropic Prompt Library – Hard Examples are variations of Anthropic Prompt Library personal
system prompts constructed using strategies described in Section 4.1. We craft 10 unique task
prompts for each of the 20 original system prompts, as detailed in Table 6. In our experiments, we
vary the number of generations per system-task prompt pair from 2 to 50.

B ADDITIONAL RESULTS

Figure 5 provides a visual representation of the generation distributions for one task prompt across
five system prompts of varying similarity levels for Claude. Despite conceptual similarities, the

6https://www.anthropic.com/legal/consumer-terms
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Figure 6: ROC-Curves computed by varying the significance level α for Prompt Detective. The
markers correspond to the significance level of 0.05.

Table 4: Ablation Study on encoding model used in Prompt Detective on Awesome-ChatGPT-
Prompts dataset. We report false positive and false negative rates at a standard 0.05 p-value threshold.
Additionaly, we report average p-value for positive and negative system prompt pairs.

Model Encoder FPR FNR ppavg pnavg

Claude BERT 0.05 0.03 0.544 ± 0.29 0.022 ± 0.12
Claude jina-embeddings-v3 0.03 0.07 0.489 ± 0.30 0.006 ± 0.03
Claude mxbai-embed-large-v1 0.04 0.04 0.504 ± 0.29 0.020 ± 0.11
Claude gte-Qwen2-1.5B-instruct 0.03 0.04 0.514 ± 0.29 0.013 ± 0.08

GPT35 BERT 0.00 0.06 0.502 ± 0.28 0.000 ± 0.00
GPT35 jina-embeddings-v3 0.01 0.08 0.487 ± 0.30 0.003 ± 0.03
GPT35 mxbai-embed-large-v1 0.00 0.05 0.508 ± 0.30 0.000 ± 0.00
GPT35 gte-Qwen2-1.5B-instruct 0.01 0.05 0.502 ± 0.29 0.002 ± 0.02

generations from different prompts form distinct clusters in the low-dimensional UMAP projection,
aligning with our finding that even minor changes in system prompts manifest in distinct response
distributions.

In Figure 6 we illustrate the ROC-curves for Prompt Detective computed by varying the sifnificance
level α in the standard setup for both Awesome ChatGPT Prompts and Anthropic Library datasets
across all models. We observe that Prompt Detective achieves ROC-AUC of 1.0 in all setups except
for the Claude model on AwesomeChatGPT prompts.

In Table 4 we report results for Prompt Detective on Awesome ChatGPT Prompts dataset in a
standard setup with various encoding models used in place of BERT embeddings. In particular, we
experimented with smaller models from the MTEB Leaderboard, such as gte-Qwen2-1.5B-instruct
from Alibaba, jina-embeddings-v3 from Jina AI and mxbai-embed-large-v1 from Mixedbread. We
observe no significant difference in the results compared to the BERT embeddings. Therefore, we opt
for using the cheaper BERT encoding model in Prompt Detective for obtaining multi-dimensional
presentations of the generations.

B.1 COMPARISON TO PROMPT EXTRACTION BASELINES

Prompt reconstruction methods can be adapted to the prompt membership inference setting by
comparing recovered system prompts to the reference system prompts. We compared PLeak (Hui
et al., 2024) – one of the most high performing of the existing prompt reconstruction approaches
to Prompt Detective in the prompt membership setting. We used the optimal recommended setup
for real-world chatbots from section 5.2 of the original PLeak paper (Hui et al., 2024) — we
computed 4 Adversarial Queries with PLeak and Llama2 13B as the shadow model as recommended,
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Table 5: Comparison of Prompt Detective and PLeak with Llama2 13B as the target model and
system prompts from Awesome-ChatGPT-Prompts. We report false positive rate (FPR) and false
negative rate (FNR) for each method.

Method Target Model FPR FNR

Prompt Detective Llama2 13B 0.00 0.05
PLeak Llama2 13B 0.00 0.46

and we used ChatGPT-Roles as the shadow domain dataset to minimize domain shift for PLeak.
We observed that PLeak sometimes recovers large parts of target prompts even when there is no
exact substring match, and that using the edit distance below the threshold of 0.2 to find matches
maximizes PLeak’s performance in the prompt membership inference setting. To further maximize
the performance of the PLeak method, we also aggregate the reconstructions across the 4 Adversarial
Queries (AQs) by taking the best reconstruction match (this aggregation approach is infeasible in
prompt reconstruction setting where the target prompt is unknown but can be used to obtain best
results in prompt membership inference setting where we know the reference prompt). We then
applied these adversarial prompt extraction queries to Llama2 13B as the target model with system
prompts from Awesome-ChatGPT-Prompts and computed False Positive and False Negative rates for
direct comparison with the results of Prompt Detective reported in Table 1 of our paper. We report
the results in Table 5.

We see that Prompt Detective significantly outperforms PLeak in the prompt membership inference
setting which is expected since Prompt Detective is specifically tailored to work in the verification
setup while PLeak is geared towards solving a different problem of prompt reconstruction.

C CASE STUDIES

We additionally explore two challenging scenarios for distinguishing between system prompts.

C.1 YOU ARE HELPFUL AND HARMLESS AI ASSISTANT

We explore the effect of the common system prompt first introduced in Llama models, which instructs
the model to behave as a helpful, harmless, and honest assistant. Specifically, we consider two
versions of this prompt: the standard prompt, "You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible, while being safe. Your answers should not include any
harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your
responses are socially unbiased and positive in nature. If a question does not make any sense, or is
not factually coherent, explain why instead of answering something not correct. If you don’t know the
answer to a question, please don’t share false information.", and a rephrased version, "Your role is to
provide helpful, respectful, and truthful responses to users. Prioritize being as assistive as possible
while operating within ethical boundaries. Avoid generating any content that could be considered
harmful, unethical, biased, dangerous, or illegal. Maintain an impartial and positive tone in your
outputs. If a query is nonsensical or lacks factual coherence, explain why instead of attempting
an incorrect answer. Admit if you lack the knowledge to properly address a question rather than
speculating or providing misinformation."

We then prompt the GPT-3.5 model with these system prompts and 50 task prompts from Awe-
someChatGPT Prompts experiments. We generate 5 generations for each task prompt. We consider
this a more challenging scenario because neither prompt installs a particular character on the model,
and instead asks it to behave in a generically helpful way. Nevertheless, Prompt Detective can
separate between these two system prompts with a p-value of 0.0001.

C.2 SYSTEM PROMPT WITH A TYPO

Next, we investigate whether introducing a couple of typos in the prompt leads to a changed
"generation trajectory." For this experiment, we take one of the prompts from the Anthropic Library,
namely the Dream Interpreter system prompt, and introduce two typos as follows: You are an AI
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assistant with a deep understanding of dream interpretaion and symbolism. Your task is to provide
users with insightful and meaningful analyses of the symbols, emotions, and narratives present in
their dreams. Offer potential interpretations while encouraging the user to reflect on their own
experiencs and emotions.. We then use the GPT-3.5 model to generate responses to 20 task prompts
used in experiments with Anthropic Library prompts. Prompt Detective can separate the system
prompt with typos from the original system prompt with a p-value of 0.02 when using 50 generations
for each task prompt. This experiment highlights that even minor changes, such as small typos, can
alter the generation trajectory, making it detectable for a prompt membership inference attack.

D PROMPT DETECTIVE: DETAILED EXPLANATION OF THE ALGORITHM

Inputs and Notations

• Third-party language model: fp, prompted with an unknown system prompt p.

• Known proprietary system prompt: p̄, used with a reference model fp̄.

• prompts: q1, q2, . . . , qn, used to query both fp and fp̄.

• Number of generations per task prompt: k, the number of responses sampled for each task
prompt.

• Significance level: α, threshold for hypothesis testing.

• Number of permutations: Npermutations, the number of iterations for the permutation test.

Algorithm Description

Step 1: Generation of Responses.

For each task prompt qi (i ∈ [1, n]), generate k responses:

G1 = {fp(q1)1, . . . , fp(q1)k, . . . , fp(qn)1, . . . , fp(qn)k},

G2 = {fp̄(q1)1, . . . , fp̄(q1)k, . . . , fp̄(qn)1, . . . , fp̄(qn)k}.

Step 2: Encoding Generations

Convert text responses into high-dimensional vectors using a BERT embedding function ϕ(·):

V1 = {ϕ(fp(q1)1), . . . , ϕ(fp(q1)k), . . . , ϕ(fp(qn)1), . . . , ϕ(fp(qn)k)},

V2 = {ϕ(fp̄(q1)1), . . . , ϕ(fp̄(q1)k), . . . , ϕ(fp̄(qn)1), . . . , ϕ(fp̄(qn)k)}.

Step 3: Mean Vector Computation

Compute the mean vectors for V1 and V2:

µ1 =
1

|V1|
∑
v∈V1

v, µ2 =
1

|V2|
∑
v∈V2

v.

Step 4: Observed Cosine Similarity

Calculate the observed cosine similarity between µ1 and µ2:

sobs = cos(µ1, µ2).

Step 5: Permutation Test

The goal of this step is to test whether the observed similarity sobs is significantly different from what
would be expected if V1 and V2 were drawn from the same distribution.
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Procedure:

1. Combine Responses: Merge all embeddings into a single set:

Vcombined = V1 ∪ V2.

2. Shuffle the Combined Embeddings: For each task prompt qi, shuffle the embeddings
associated with that prompt:

Vcombined[i] = {vi,1, . . . , vi,k, ui,1, . . . , ui,k},

where vi,j ∈ V1 and ui,j ∈ V2. After shuffling, the embeddings are randomly reordered,
eliminating any inherent grouping.

3. Split into Two Groups: Divide the shuffled embeddings back into two groups, each contain-
ing k embeddings per task prompt:

V ∗
1 [i] = {v′i,1, . . . , v′i,k}, V ∗

2 [i] = {u′
i,1, . . . , u

′
i,k}.

4. Compute Mean Vectors for Permuted Groups: Calculate the mean vectors for V ∗
1 and V ∗

2 :

µ∗
1 =

1

|V ∗
1 |

∑
v∈V ∗

1

v, µ∗
2 =

1

|V ∗
2 |

∑
v∈V ∗

2

v.

5. Calculate Permuted Cosine Similarity: Compute the cosine similarity for the permuted
groups:

s∗ = cos(µ∗
1, µ

∗
2).

6. Repeat for Null Distribution: Repeat the shuffle-split process Npermutations times to generate
a null distribution of permuted cosine similarities.

7. Compute P-Value: Count the number of permuted similarities as extreme as sobs:

p =

∑Npermutations
i=1 I(s∗ ≤ sobs)

Npermutations
.

Step 6: Hypothesis Testing

If p < α, reject the null hypothesis and conclude that the system prompts p and p̄ produce distinct
distributions of responses. Otherwise, there is insufficient evidence to distinguish the prompts.

E HARDWARE

Our experiments were conducted using NVIDIA A10G 24GB GPUs. Although a single run of Prompt
Detective for a given system prompt takes only minutes, even with a large number of generations,
the total number of GPU hours required to produce the results presented in this paper amounted to
approximately 150 GPU hours. These experiments involved three different system prompt sources,
black-box experiments, and thorough ablation studies to evaluate the test’s performance under varying
numbers of task prompts, generations, and generation lengths. We also utilized the corresponding
APIs for the commercial models.

F PROMPT TEMPLATES AND EXAMPLES

F.1 PROMPTS USED FOR GENERATING TASK QUERIES AND HARD EXAMPLES

Table 6 presents the instructions used with Claude 3 Sonnet for generating task queries and hard
examples.
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Table 6: Prompts used with Claude 3 Sonnet for generating task queries and hard examples.

Prompt Use Case

Hi, I am building an algorithm detecting whether a given system prompt was
used in a language model. My approach assumes that I can query the language
model with task prompts. Below I will show you a system prompt, I would like
your help to curate 10 probe task prompts for that system prompt. A task prompt
is a good probe for a given system prompt if it elicits responses that are related to
the system prompt and are directly influenced by it. Return results as a json.
System prompt: [Insert system prompt here] Task Queries

Hi, I am building an algorithm detecting whether a given system prompt was used
in a language model. My approach assumes that I can query the language model
with task prompts. I want to set up an experiment with difficult-to-distinguish
examples by creating rephrased variations of my system prompt that are similar
in spirit but differ in details and thus cannot be considered stolen.
First, here are the system prompts I use in my experiments:
[Insert system prompts here]
Now, let’s move on to making variations of these ten proprietary prompts. For
each of the ten prompts, suggest five variations – (1) the same prompt, slightly
rephrased with minor changes in a few words (2) very similar in spirit, but
somewhat rephrased, (3) very similar in spirit, but significantly rephrased, (4) a
different prompt for the same role with some remote similarities to the original
one, (5) a completely different prompt for the same role with significant concep-
tual changes.

Hard Examples
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F.2 EXAMPLES OF HARD EXAMPLES

Table 7 presents an example of prompts used in Hard Examples experiments.
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Table 7: Examples of Hard Examples – Dream Interpreter Role

Similarity Level System Prompt

Original You are an AI assistant with a deep understanding of dream interpre-
tation and symbolism. Your task is to provide users with insightful
and meaningful analyses of the symbols, emotions, and narratives
present in their dreams. Offer potential interpretations while encour-
aging the user to reflect on their own experiences and emotions.

Almost the same prompt, minor
changes (Similarity Level 1)

You are an AI assistant skilled in dream analysis and symbolic inter-
pretation. Your role is to provide insightful and meaningful analyses
of the symbols, emotions, and narratives present in users’ dreams.
Offer potential interpretations while encouraging self-reflection on
their experiences and emotions.

Similar in spirit, somewhat
rephrased (Similarity Level 2)

As an AI assistant with expertise in dream interpretation and symbol-
ism, your task is to analyze the symbols, emotions, and narratives in
users’ dreams, providing insightful and meaningful interpretations.
Encourage users to reflect on their own experiences and emotions
while offering potential explanations.

Similar in spirit, significantly
rephrased (Similarity Level 3)

You are an AI dream analyst with a deep understanding of symbol-
ism and the interpretation of dreams. Your role is to provide users
with insightful and meaningful analyses of the symbols, emotions,
and narratives present in their dream experiences. Offer potential in-
terpretations and encourage self-reflection on personal experiences
and emotions.

Different prompt, some remote
similarities (Similarity Level 4)

You are an AI assistant specializing in the analysis of subconscious
thoughts and the interpretation of symbolic imagery. Your task is
to help users understand the hidden meanings and emotions behind
their dreams, offering insightful interpretations and encouraging
self-exploration.

Completely different prompt,
significant conceptual changes
(Similarity Level 5)

You are an AI life coach with expertise in personal growth and
self-discovery. Your role is to guide users through a process of self-
reflection, helping them uncover the deeper meanings and emotions
behind their experiences, including their dreams, and providing
supportive insights to aid their personal development.
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G LLM SELECTION FOR THE EXPERIMENTS

In our general experiments in Table 1, we report Prompt Detective performance across a variety
of language model families and sizes – including both larger and smaller models, multiple models
of the various open source families, and closed-source models. We observed minor variations in
performance across these settings and therefore we decided to focus on the efficient variants of
models powering popular real-world chatbots in our exploration of highly similar system prompts in
Section 5.2, following the similar logic of responsible use of compute resources.
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