
DeepChem-Variant:
A Modular Open Source Framework for Genomic Variant Calling

Ankita Vaishnobi Bisoi 1 2 Shreyas V 1 2 Jose Siguenza 2 Bharath Ramsundar 2

Abstract

Variant calling is a fundamental task in genomic
research for detecting genetic variations such as
single nucleotide polymorphisms (SNPs) and in-
sertions or deletions (indels). This paper presents
an enhancement to DeepChem (Ramsundar et al.,
2019), a widely used open source drug discov-
ery framework, through the integration of Deep-
Variant (Poplin et al., 2018). We introduce
DeepChem-Variant, a variant calling pipeline that
leverages DeepVariant’s convolutional neural net-
work (CNN) architecture to improve variant detec-
tion accuracy and reliability. DeepChem-Variant
has stages for realignment of sequencing reads,
candidate variant detection, and pileup image
generation, followed by variant classification us-
ing either the original modified Inception V3
model or our novel MobileNetV2 implementa-
tion. We performed 3 case studies to validate
our approach. Our work also contributes opti-
mized utility functions for genomic data formats,
including enhanced DataLoaders for BAM, SAM,
and CRAM files, and an optimized FASTALoader.
These implementations collectively provide a
modular and extensible variant calling framework
within DeepChem, enabling tighter integration of
DeepChem’s drug discovery infrastructure with
bioinformatics pipelines for future research.

1. Introduction
Variant calling identifies single nucleotide polymorphisms
(SNPs) and insertions/deletions (indels) from sequencing
data, foundational for population genetics, disease etiology,
and precision medicine applications including risk predic-
tion and therapeutic interventions. Standard approaches
like GATK (McKenna et al., 2010) and SAMtools (Li et al.,
2009) use probabilistic models that struggle with ambigu-
ous or low-quality data. These methods face challenges in
noisy genomic regions, reducing sensitivity and specificity
in low-coverage areas or regions with complex structural
variations.

DeepVariant (Poplin et al., 2018; Poplin, 2017), developed
by Google, uses a Convolutional Neural Network (CNN)
(Krizhevsky et al., 2012) to reframe the variant calling task
as an image classification problem. Pileup images (Sec-
tion 2.2) are generated from sequencing reads and analyzed
by the CNN to distinguish true variants from sequencing er-
rors. This approach outperforms traditional heuristic-based
methods, achieving higher accuracy in variant detection, par-
ticularly across diverse sequencing platforms and in regions
where conventional tools exhibit reduced performance.

However, while the code for DeepVariant is accessible on
platforms such as GitHub, part of the code is written in C++
and is challenging to modify or extend. The architecture
and components are fixed within the provided framework,
making it difficult for researchers to adapt DeepVariant to ex-
plore novel hypotheses or improve specific sub-components
for their experimental needs.

To address the need for modular open-source implemen-
tations of computational genomic tools, we integrate
an implementation of DeepVariant as DeepChem-Variant
into the DeepChem (Ramsundar et al., 2019) framework.
DeepChem, an open-source Python library designed for sci-
entific machine learning and deep learning, has established
itself as a versatile platform for applications in molecular
machine learning ranging from the MoleculeNet benchmark
suite (Wu et al., 2018) to protein-ligand interaction modeling
(Gomes et al., 2017), and generative modeling of molecules
(Frey et al., 2022), among others.

Deepchem’s modular architecture, comprising components
such as data loaders, featurizers, splitters, models, and met-
rics, provides an extensible system that supports the devel-
opment of custom workflows. The DeepChem community
of developers and contributors actively maintains all im-
plementations in this system, which are validated through
continuous integration and delivery (CI/CD) pipelines. The
incorporation of DeepChem-Variant into DeepChem signif-
icantly broadens its functionality, enabling variant calling
workflows to be conducted entirely within an open-source
Python ecosystem. We anticipate this infrastructure will
enable subsequent computational work exploring the inter-
section of drug discovery and bioinformatics.

1

DeepChem-Variant

Figure 1. DeepVariant workflow: Reference genome and aligned
reads generate candidate variants, which are converted to pileup
images, processed by a trained CNN to produce genotype likeli-
hoods, and finally output as variant calls.

2. Implementations

Figure 2. DeepChem-Variant workflow: Reference genome
(FASTA) and aligned reads (BAM) feed into the DeepVariant class
containing candidate variant featurizer, pileup featurizer, trained
CNN (MobileNetV2 or InceptionV3), and VCF converter to pro-
duce output Variant Call Format (VCF) files.

DeepChem-Variant has three primary components: can-
didate variant detection, pileup image generation, and a
deep learning model designed for variant calling. These
components are implemented through modular featurizers
and a custom convolutional neural network (CNN). To effi-
ciently handle various sequence alignment formats, we de-
veloped specialized utility classes including BAMLoader,
SAMLoader, and CRAMLoader, enabling seamless inte-
gration with diverse genomic datasets. We also enhanced
the FASTALoader for efficient reference genome access
and significantly optimized the FASTAFeaturizer to
process raw nucleotide sequences directly, rather than con-
verting to one-hot encoded representations, resulting in a
210-fold acceleration in processing speed.

2.1. Candidate Variant Detection

The first stage involves realigning input sequencing
reads and identifying candidate variants through the
CandidateFeaturizer class. Reads are provided in
BAM(Li et al., 2009) format, storing compressed align-
ments of sequencing reads to a reference genome. The
featurizer supports optional realignment for improved vari-
ant detection accuracy, optional multiprocessing (achieving
8× speedup), and optional labeling for training purposes
when VCF ground truth is provided.

The realignment process introduces haplotype awareness
through realignment using the realign readmethod, us-
ing Striped Smith Waterman algorithm (Zhao et al., 2013) to
improve read positioning. The count alleles method
then tallies base occurrences at each position from aligned
reads, accounting for CIGAR operations (which encode
how sequencing reads align to the reference genome, indi-
cating matches, insertions, deletions, and other alignment
operations) to handle insertions, deletions, and matches.
The detect candidates method identifies potential
variants by comparing observed bases against the refer-
ence, flagging positions where alternative alleles exceed
the minimum count and frequency thresholds. Finally, the
left align indel method standardizes indel represen-
tations by shifting them to their leftmost valid positions,
ensuring consistent variant notation across samples.

An optimized Smith-Waterman alignment algorithm per-
forms realignment using PyTorch’s GPU-accelerated tensor
operations. Unlike traditional optimized implementations
in C/C++, this approach exploits Python’s high-level inter-
face while maintaining competitive performance through
PyTorch’s CUDA backend. Alignment scores are computed
using vectorized operations with substitution scores derived
from binary match/mismatch masks.

Left-alignment of indels proves critical for variant standard-
ization. Without left-alignment, candidate detection yielded
inconsistent results across samples (average: 342,536 vari-
ants), while left-alignment produced 1,727,087 average stan-
dardized candidates, demonstrating the importance of vari-
ant normalization.

The min count parameter, which is the minimum number
of reads that must support an alternate allele for it to be con-
sidered a candidate variant, significantly impacts candidate
sensitivity and computational efficiency. It helps filter out
sequencing errors and reduces false positives by requiring
multiple independent observations of the same change.

The default min count=2 provides optimal balance, as
reducing to 1 substantially increases downstream process-
ing without meaningful recall improvement. This stage is
implemented using the pysam (Gilman et al., 2019) library
for efficient BAM and FASTA file manipulation.

2

DeepChem-Variant

Table 1. Impact of min count parameter on candidate detection
using HG004 (GIAB consortium data, using Novaseq whole exome
sequencing with IDT capture at 100x coverage)

min count Total Candidates Computational Impact

1 8,420,830 High downstream execution
time

2 (default) 1,770,108 Optimal balance

Figure 3. CandidateFeaturizer workflow: Input data flows
through realignment of reads, allele counting at genomic positions,
variant detection based on frequency thresholds, and left-alignment
of indels to produce standardized candidate variants as output.

2.2. Pileup Image Generation

Once candidate variants have been identified, the next stage
involves generating pileup images, a core feature of Deep-
Variant. A pileup image represents aligned sequencing reads
at a genomic region centered on a candidate variant position.
Each row corresponds to a read, and each column represents
a genomic coordinate within the pileup window.

The PileupFeaturizer is responsible for creating
these images, with six channels encoding different features
of the sequencing data. Channel 0 encodes base intensities,
while Channel 1 captures base quality information. Channel
2 encodes mapping quality, and Channel 3 represents the
strand orientation (i.e., whether the read is from the for-
ward or reverse strand). Channel 4 indicates whether the
read supports a variant, and Channel 5 encodes the differ-
ence between the read and the reference sequence. These
multi-channel images provide a rich representation of the
underlying sequencing data, enhancing the ability of the
deep learning model to distinguish between true variants
and sequencing artifacts.

2.3. Modified CNN for Variant Calling

The deep learning model employed in this workflow is a
custom CNN, derived from either the (Szegedy et al., 2015)
architecture or MobileNetV2 (Sandler et al., 2018), which is
specifically tailored for genomic variant calling from pileup
images. We integrated both Inception V3 and MobileNetV2
architectures into DeepChem’s core model library. The
Inception V3 model’s convolutional layers are modified to
handle the six-channel input format, while our MobileNetV2

implementation leverages its efficient inverted residual struc-
ture and linear bottlenecks for improved computational ef-
ficiency without sacrificing accuracy. Both models output
a probability score for each candidate variant, indicating
whether it is a true variant or a sequencing error. The mod-
els integrate into DeepChem’s model library, allowing users
to easily swap between Inception V3 and MobileNetV2
implementations if desired or integrate variant calling into
larger machine learning workflows, such as multi-task learn-
ing frameworks or pipelines incorporating other types of
genomic data.

Figure 4. Architectures of Inception V3 and MobileNetV2 as used
in DeepVariant.

3. Case Studies
We validated DeepChem-Variant across three genomic
contexts using DeepVariant as baseline, since no estab-
lished ground truth exists for these specialized datasets.
DeepChem-Variant values in Table 2 represent the sub-
set of DeepVariant calls that our method successfully de-
tected. Sensitivity measures DeepChem-Variant’s ability to
recover DeepVariant’s calls, calculated as the percentage of
DeepVariant variants successfully identified by DeepChem-
Variant. VCF outputs from both methods were compared by
intersecting variant positions and alleles between them.

CRISPR Off-Target Detection: Synthetic datasets simu-
lated CRISPR-Cas9 (Jinek et al., 2012) off-target effects
at PAM sites (protospacer adjacent motifs) with insertion,
deletion, and random edit patterns across NNNNGATT and
NGG motifs. Off-target detection is critical for CRISPR
therapeutic safety, as unintended edits can cause harmful
mutations.

Ancient DNA Analysis: Simulated characteristic ancient
DNA damage patterns including C→T transitions, fragmen-
tation, and age-dependent preservation effects spanning 100
to 50,000 years. Ancient DNA analysis enables evolutionary

3

DeepChem-Variant

studies and population history reconstruction but requires
specialized variant calling due to extreme degradation.

Population Genomics: Analyzed whole exome sequencing
from adult female, adult male, and pediatric male samples
to assess demographic-specific variant detection. Popula-
tion genomics applications require consistent variant calling
across diverse samples for disease association studies and
personalized medicine.

Table 2. Variant detection sensitivity across genomic contexts
Context Sample/Type DeepVariant DeepChem-Variant Sensitivity (%)

CRISPR NNNNGATT Insertion 2103 1717 81.6
NNNNGATT Deletion 2284 1819 79.6
NNNNGATT Random 2051 1623 79.1
NGG Insertion 284 251 88.4
NGG Deletion 312 282 90.4
NGG Random 298 274 91.9

Ancient DNA Recent (100y) 32,847 30,942 94.2
Medieval (800y) 51,293 47,251 92.1
Neanderthal (50,000y) 78,164 68,503 87.6

Population Adult Female 61,245 55,732 91.0
Adult Male 59,874 54,605 91.2
Pediatric Male 60,298 54,992 91.2

4. Discussion
DeepChem-Variant marks a progression in the development
of open-source tools for genomic variant calling. By embed-
ding advanced deep learning techniques within a flexible
machine learning framework, this integration improves ac-
cessibility and customizability of variant calling infrastruc-
ture for a wide range of research applications. DeepChem’s
modular architecture enables easy adaptation, allowing re-
searchers to explore new methodologies, within genomic
data analysis workflows.

4.1. Performance and efficiency

The original DeepVariant combined C++ and Python, cre-
ating complexity requiring proficiency in both languages.
DeepChem-Variant’s all-Python implementation (approx-
imately 1,500 lines versus DeepVariant’s 35,000 as men-
tioned in Table 3) simplifies development, reduces barri-
ers to entry, and leverages Python’s scientific computing
ecosystem for easier extensibility and rapid prototyping.
DeepChem-Variant offers two CNN architectures: Inception
V3 and MobileNetV2 Our models were trained on HG001,
HG002, HG004, and HG005 WES deduplicated samples at
100x coverage from IDT NovaSeq (300 million rows), com-
pared to production DeepVariant models trained on 8-9 fold
larger multi-technology GIAB datasets (2.6 billion rows)
(Zook et al., 2016) and all models were validated on HG003.
The code was implemented in PyTorch (Paszke et al., 2019)
on Google Colab (Colab). More details about hyperparame-
ters and system specifications are mentioned in Appendix
B, details about datasets are mentioned in Appendix C.

Table 3. Comparison of lines of code between DeepVariant and
DeepVariant (DeepChem)
Method Language(s) Lines of Code (approx.)

DeepVariant C++/Python 35,000
DeepChem-Variant Python 1,500

Table 4. Performance comparison of variant calling methods
Method Variant Type Recall Precision F1-Score

DeepVariant INDEL 0.971 0.993 0.982
DeepVariant SNP 0.988 0.998 0.993

DeepChem-Variant (MobileNetV2) INDEL 0.912 0.934 0.923
DeepChem-Variant (MobileNetV2) SNP 0.922 0.941 0.943

DeepChem-Variant (InceptionV3) INDEL 0.923 0.951 0.933
DeepChem-Variant (InceptionV3) SNP 0.931 0.954 0.939

4.2. Limitations and future work

An evaluation of performance metrics (Table 4) indicates
some discrepancies between the original DeepVariant im-
plementation and DeepChem-Variant. This is due to lim-
ited training data diversity in our experiments compared to
production DeepVariant (discussed in section 4.1). The Mo-
bileNetV2 (3.4 million parameters) results are particularly
notable given its significantly fewer parameters compared
to InceptionV3 (24 million parameters) and lower ImageNet
accuracy, yet achieving competitive performance in genomic
variant calling. Despite these limitations, our modular open-
source Python implementation allows users to easily swap
components, such as the CNN architecture or realignment
algorithm, as new methods and technologies emerge.

5. Conclusion
In this work, we introduce DeepChem-Variant which en-
ables researchers to utilize advanced deep learning methods
for genomics within a customizable Python framework, ex-
panding machine learning applications in genomics. While
performance differences compared to the original CNN im-
plementation were observed, due to training on smaller
datasets and architectural choices, the integration within
DeepChem facilitates rapid future improvements. This will
also allow for the easier incorporation of novel genomic
analysis methodologies. We note that the observed perfor-
mance reflects the current training data and model architec-
ture, and leave further optimization for future work. As an
open-source tool, we anticipate community contributions
will drive further enhancements, ultimately benefiting areas
such as personalized medicine and population genetics.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

4

DeepChem-Variant

References
Colab, G. Google colaboratory. https://colab.
research.google.com/.

Frey, N. C., Gadepally, V., and Ramsundar, B. Fastflows:
Flow-based models for molecular graph generation, 2022.

Gilman, P., Janzou, S., Guittet, D., Freeman, J., DiOrio, N.,
Blair, N., Boyd, M., Neises, T., and Wagner, M. Pysam
(python wrapper for system advisor model “sam”) [swr-
19-57]. OSTI OAI (U.S. Department of Energy Office
of Scientific and Technical Information), aug 2019. doi:
10.11578/dc.20190903.1. URL https://www.osti.
gov/biblio/1559931.

Gomes, J., Ramsundar, B., Feinberg, E. N., and Pande, V. S.
Atomic convolutional networks for predicting protein-
ligand binding affinity, 2017.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna,
J. A., and Charpentier, E. A programmable dual-rna–
guided dna endonuclease in adaptive bacterial immunity.
Science, 337(6096):816–821, 2012. doi: 10.1126/science.
1225829.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems,
volume 25, pp. 1097–1105. Curran Associates, Inc.,
2012. URL https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J.,
Homer, N., Marth, G., Abecasis, G., Durbin, R., and
Subgroup, . G. P. D. P. The sequence alignment/map
format and samtools. bioinformatics, 25(16):2078–2079,
2009.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibul-
skis, K., Kernytsky, A., Garimella, K., Altshuler, D.,
Gabriel, S., Daly, M., et al. The genome analysis toolkit:
a mapreduce framework for analyzing next-generation
dna sequencing data. Genome research, 20(9):1297–1303,
2010.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Poplin, D. P. Deepvariant: Highly accurate
genomes with deep neural networks, 2017.
URL https://research.google/blog/
deepvariant-highly-accurate-genomes-with-deep-neural-networks/.
Google Research Blog.

Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S.,
Colthurst, T., Ku, A., Newburger, D., Dijamco, J.,
Nguyen, N., Afshar, P. T., et al. A universal snp and
small-indel variant caller using deep neural networks.
Nature biotechnology, 36(10):983–987, 2018.

Ramsundar, B., Eastman, P., Walters, P., Pande,
V., Leswing, K., and Wu, Z. Deep Learn-
ing for the Life Sciences. O’Reilly Me-
dia, 2019. https://www.amazon.com/
Deep-Learning-Life-Sciences-Microscopy/
dp/1492039837.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4510–4520, 2018.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion, 2015. URL https://arxiv.org/abs/1512.
00567.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: A benchmark for molecular machine learn-
ing, 2018.

Zhao, M., Lee, W.-P., Garrison, E. P., and Marth, G. T. SSW
Library: An SIMD Smith-Waterman C/C++ Library for
Use in Genomic Applications. PLOS ONE, 8(12):e82138,
December 2013. doi: 10.1371/journal.pone.0082138.

Zook, J. M., Catoe, D., McDaniel, J., Vang, L., Spies, N.,
Sidow, A., Weng, Z., Liu, Y., Mason, C. E., Alexander,
N., et al. Extensive sequencing of seven human genomes
to characterize benchmark reference materials. Scientific
Data, 3(1):160025, 2016. doi: 10.1038/sdata.2016.25.

5

https://colab.research.google.com/
https://colab.research.google.com/
https://www.osti.gov/biblio/1559931
https://www.osti.gov/biblio/1559931
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://research.google/blog/deepvariant-highly-accurate-genomes-with-deep-neural-networks/
https://research.google/blog/deepvariant-highly-accurate-genomes-with-deep-neural-networks/
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1512.00567

DeepChem-Variant

A. Implementation Details
This project added significant functionality to DeepChem through new classes and enhancements spanning featurizers, data
loaders, models, and variant calling infrastructure. Table 5 summarizes the key contributions.

Table 5. Code contributions to DeepChem framework

Class Name Parent Class Description

SAMFeaturizer Featurizer Processes SAM alignment files
BAMFeaturizer Featurizer Processes BAM alignment files
CRAMFeaturizer Featurizer Processes CRAM alignment files
FASTAFeaturizer Featurizer Enhanced sequence processing with 210× speedup

SAMLoader DataLoader Loads SAM format files
BAMLoader DataLoader Loads BAM format files
CRAMLoader DataLoader Loads CRAM format files
FASTALoader DataLoader Loads reference genome sequences

MobileNetV2Model TorchModel Efficient CNN for variant classification
InceptionV3Model TorchModel High-accuracy CNN for variant classification

CandidateFeaturizer Featurizer Identifies potential variant sites
PileupFeaturizer Featurizer Generates multi-channel alignment images
DeepChemVariant TorchModel Complete variant calling pipeline

B. Hyperparameters and System Specifications
DeepChem-Variant (both InceptionV3 and MobileNetV2) utilized a pileup image representation with a window size of
221 base pairs, capturing 100 read depths across 6 channels encoding base identity, base quality, mapping quality, strand
orientation, variant support, and reference match indicators. Training was conducted using the Adam optimizer with a
learning rate of 1e-3, batch size of 128, and 10 epochs. The model was trained on Google Colab’s L4 GPU infrastructure
with 8 data loader workers for parallel data processing. Variant candidates were filtered using minimum allele count
and frequency thresholds of 2 reads and 1% respectively, ensuring adequate support for downstream classification while
maintaining computational efficiency.

C. Datasets
DeepChem-Variant (both InceptionV3 and MobileNetV2) was trained on a constrained dataset comprising HG001, HG002,
HG004, and HG005 WES deduplicated samples at 100x coverage from a single sequencing platform (IDT NovaSeq, 12
GB total). In contrast, production DeepVariant models utilize extensive multi-technology GIAB datasets that are 8-9 fold
larger, incorporating data from diverse sequencing platforms including HiSeqX, NovaSeq, and PCR-positive samples across
multiple WES capture kits, different sequencing depths, and various sample preparation methods (Zook et al., 2016). This
substantial difference in training data scale, technological diversity, and sample heterogeneity results in reduced performance
due to our model’s limited exposure to the full spectrum of sequencing artifacts and variant patterns present in real-world
genomic data.

D. Computation of Candidate Variants
D.1. CandidateVariantFeaturizer

The CandidateVariantFeaturizer algorithm processes genomic data in sliding windows to identify potential variant sites. For
each genomic region, it extracts aligned reads and reference sequences, optionally performs Smith-Waterman realignment to
improve accuracy, then counts allele frequencies at each position. Candidate variants are detected by comparing observed
alleles against the reference using minimum count and frequency thresholds. Finally, indel variants are left-aligned to ensure
standardized representation. The algorithm returns an array of candidate variants with associated metadata for downstream

6

DeepChem-Variant

analysis.

Algorithm 1 CandidateVariantFeaturizer
Input: BAM file B, FASTA file F
Output: Candidate variant array
for each region (chrom, start, end) do
reads← fetch(B, chrom, start, end) /* extract aligned reads */
ref seq ← fetch(F, chrom, start, end) /* extract reference sequence */
if realign enabled then
reads← smith waterman realign(reads, ref seq) /* improve alignment accuracy */

end if
counts← count alleles(reads, ref seq) /* tally base frequencies */
variants← detect candidates(counts,min count,min frac) /* identify variant sites */
for each variant v ∈ variants do
v ← left align indel(v) /* standardize representation */
output.append(v) /* add to result set */

end for
end for
Return: candidate variants with metadata

D.2. Realignment of Reads

Algorithm 2 Smith-Waterman Alignment
Input: Query sequence Q, reference sequence R
Output: Aligned query sequence
H,E, F ← zeros(|Q|+ 1, |R|+ 1) /* alignment, gap matrices */
pointer ← zeros(|Q|+ 1, |R|+ 1) /* traceback directions */
max score,max pos← 0, (0, 0) /* track optimal alignment */
for i = 1 to |Q| do

for j = 1 to |R| do
match← H[i− 1, j − 1] + score(Q[i], R[j]) /* diagonal score */
E[i, j]← max(H[i− 1, j] + gap open,E[i− 1, j] + gap extend) /* vertical gap */
F [i, j]← max(H[i, j − 1] + gap open, F [i, j − 1] + gap extend) /* horizontal gap */
H[i, j]← max(0,match,E[i, j], F [i, j]) /* local alignment score */
if H[i, j] > max score then

max score,max pos← H[i, j], (i, j) /* update maximum */
end if

end for
end for
aligned← traceback(pointer,max pos,Q) /* reconstruct alignment */
Return: aligned

The Smith-Waterman algorithm performs optimal local sequence alignment using dynamic programming. It initializes
three scoring matrices: H for alignment scores, E and F for gap penalties. The algorithm fills these matrices by calculating
match/mismatch scores and gap costs, maintaining traceback pointers for reconstruction. It identifies the maximum
local alignment score during matrix filling, then traces back from this position to reconstruct the optimal alignment path.
This implementation uses PyTorch tensors for vectorized operations, providing GPU acceleration while maintaining the
algorithm’s quadratic time complexity.

D.3. Counting Alleles

The count alleles funtion tallies base frequencies at each genomic position by processing aligned reads. It initializes a
dictionary array to store counts per position, then iterates through each read’s CIGAR string to handle matches, insertions,

7

DeepChem-Variant

and deletions appropriately. For matched regions, it extracts base calls and increments corresponding position counters.
The algorithm advances position pointers based on CIGAR operations, ensuring proper coordinate mapping between read
sequences and reference positions.

Algorithm 3 Count Alleles
Input: Reads R, reference sequence ref , region start start
Output: Allele counts per position
counts← empty dict array(|ref |) /* one dict per position */
for each read r ∈ R do

if r is unmapped or duplicate then
continue /* skip low-quality reads */

end if
ref pos, query pos← r.start, 0 /* initialize positions */
for each (operation, length) in r.cigar do

if operation == MATCH then
for i = 0 to length− 1 do
pos← ref pos+ i− start /* convert to region coordinates */
if 0 ≤ pos < |ref | and query pos+ i < |r.sequence| then
base← r.sequence[query pos+ i] /* extract base call */
counts[pos][base]← counts[pos][base] + 1 /* increment count */

end if
end for
ref pos, query pos← ref pos+ length, query pos+ length /* advance both */

else if operation == INSERTION then
query pos← query pos+ length /* advance query only */

else if operation == DELETION then
ref pos← ref pos+ length /* advance reference only */

end if
end for

end for
Return: counts

D.4. Detecting candidates

The detect candidates function identifies potential variant sites by applying frequency-based filtering to allele counts.
It examines each genomic position with coverage, calculates total read depth, and compares observed alleles against the
reference. Variants are flagged as candidates if they differ from the reference allele and exceed both minimum count and
frequency thresholds, helping reduce false positives from sequencing errors while retaining true biological variants.

D.5. Left Aligning Indels

The left align indels algorithm standardizes indel representation by shifting variants to their leftmost valid position. It first
checks if the variant is a SNP (equal lengths or different first bases), returning unchanged if so. For indels, it trims common
prefix and suffix sequences, then iteratively shifts the variant leftward by comparing flanking bases from the reference
genome until no further movement is possible, ensuring consistent variant notation across different calling methods.

E. Pileup image generation
The PileupFeaturizer algorithm converts genomic variants into multi-channel images for CNN processing. It creates
a 6-channel tensor where each channel captures different alignment properties: base identity (A/C/G/T encoded as intensity
values), base quality scores, mapping quality, read strand direction, and matches to alternate/reference alleles. The algorithm
centers a fixed-width window around each variant position, extracts aligned reads from the BAM file, sorts them by quality,
and populates the image tensor row-by-row. The reference sequence occupies the bottom row with maximum quality values,
while aligned reads fill remaining rows based on their CIGAR alignment coordinates. This transforms raw sequencing data

8

DeepChem-Variant

Algorithm 4 Detect Candidate Variants
Input: Allele counts counts, reference ref , thresholds min count, min frac
Output: Candidate variant list
candidates← empty list() /* initialize result list */
for i = 0 to |counts| − 1 do
total←

∑
(counts[i].values()) /* sum all allele counts */

if total == 0 then
continue /* skip positions with no coverage */

end if
ref base← ref [i] /* get reference allele */
for each (base, count) in counts[i] do

if base ̸= ref base and count ≥ min count and count
total ≥ min frac then

candidate← (i, ref base, base, count, total) /* create variant record */
candidates.append(candidate) /* add to candidates */

end if
end for

end for
Return: candidates

Algorithm 5 Left Align Indels
Input: Chromosome chrom, position pos, reference allele ref , alternate allele alt, FASTA fasta
Output: Left-aligned position and alleles
if |ref | == |alt| or ref [0] ̸= alt[0] then

Return: (pos, ref, alt) /* SNP, no alignment needed */
end if
seq, seq alt, left← ref, alt, pos /* initialize working variables */
while |seq| > 1 and |seq alt| > 1 and seq[−1] == seq alt[−1] do
seq, seq alt← seq[: −1], seq alt[: −1] /* trim common suffix */

end while
while |seq| > 1 and |seq alt| > 1 and seq[0] == seq alt[0] do

seq, seq alt← seq[1 :], seq alt[1 :] /* trim common prefix */
left← left+ 1 /* adjust position */

end while
while left > 1 do

prev base← fasta.fetch(chrom, left− 2, left− 1) /* get preceding base */
if deletion and seq[−1] == prev base then
seq ← prev base+ seq[: −1] /* shift deletion left */
left← left− 1 /* update position */

else if insertion and seq alt[−1] == prev base then
seq alt← prev base+ seq alt[: −1] /* shift insertion left */
left← left− 1 /* update position */

else
break /* cannot shift further */

end if
end while
Return: (left, seq, seq alt)

9

DeepChem-Variant

into structured image format suitable for deep learning variant classification.

Algorithm 6 PileupFeaturizer
Input: BAM file B, FASTA file F , candidates C
Output: Multi-channel pileup images dataset
n← |C| /* number of candidate variants */
X ← zeros(n, channels, height, window) /* image tensor */
y ← zeros(n) if labeled else None /* labels if training */
for i = 0 to n− 1 do
chrom, pos, ref, alt← C[i][0 : 4] /* extract variant info */
start← pos− window/2 /* define window boundaries */
end← pos+ window/2 + 1
ref seq ← fetch reference(F, chrom, start, end) /* get reference */
reads← fetch reads(B, chrom, start, end) /* get aligned reads */
reads← sort(reads, by mapping quality) /* prioritize high-quality reads */
pile← zeros(channels, height, window) /* initialize image */
for col = 0 to window − 1 do
pile[0, height− 1, col]← base to intensity(ref seq[col]) /* reference base */
pile[1 : 5, height− 1, col]← [1.0, 1.0, 1.0,alt match] /* reference row */

end for
for row = 0 to height− 2 do
read← reads[row] /* process each read */
for each aligned position (qpos, rpos) in read do

if start ≤ rpos < end then
col← rpos− start /* column in image */
base← read.sequence[qpos] /* read base */
pile[0, row, col]← base to intensity(base) /* base identity */
pile[1, row, col]← read.quality[qpos]/40.0 /* base quality */
pile[2, row, col]← read.mapping quality/60.0 /* mapping quality */
pile[3, row, col]← 0.0 if reverse else 1.0 /* strand */
pile[4, row, col]← 1.0 if base == alt else 0.0 /* alt match */
pile[5, row, col]← 1.0 if base == ref else 0.0 /* ref match */

end if
end for

end for
X[i]← pile /* store completed image */
if labeled then
y[i]← C[i][−1] /* extract label if training */

end if
end for
Return: NumpyDataset(X, y)

F. DeepChem-Variant
The DeepChem-Variant algorithm implements a complete variant calling pipeline using deep learning. It first extracts
candidate variants from aligned reads using frequency thresholds, then generates multi-channel pileup images around each
candidate site. These images are processed through a convolutional neural network (MobileNetV2) in batches to predict
genotype probabilities (reference, heterozygous, or homozygous alternate). The algorithm computes genotype quality scores
from prediction confidence, filters out reference calls, and writes remaining variants to a standard VCF file with proper
formatting and metadata.

10

DeepChem-Variant

Algorithm 7 DeepChem-Variant
Input: BAM file B, FASTA file F , output VCF path O
Output: VCF file with variant calls
candidates← CandidateFeaturizer(B,F) /* extract potential variants */
if candidates is empty then
write empty vcf(O,F) /* create empty VCF with header */
Return: O

end if
pileup images← PileupFeaturizer(B,F, candidates) /* generate 6-channel images */
predictions← [] /* initialize prediction array */
for i = 0 to |pileup images| step batch size do

batch← pileup images[i : i+ batch size] /* create batch */
batch preds← MobileNetV2(batch) /* predict genotype probabilities */
predictions.append(batch preds) /* collect predictions */

end for
all predictions← concatenate(predictions) /* combine batches */
genotypes← argmax(all predictions) /* most likely genotype */
gq ← compute quality(all predictions) /* genotype quality scores */
write vcf header(O,F, sample name) /* write VCF header */
for each (candidatei, genotypei, qualityi) ∈ zip(candidates, genotypes, gq) do

if genotypei == 0 then
continue /* skip reference calls */

end if
chrom, pos, ref, alt← candidatei[0 : 4] /* extract variant info */
gt string ← ”0/1” if genotypei == 1 else ”1/1” /* format genotype */
write vcf record(O, chrom, pos, ref, alt, gt string, qualityi) /* write variant */

end for
Return: O

11

DeepChem-Variant

G. MobileNetV2
The complete MobileNetV2 architecture implements efficient mobile computer vision. It begins with standard convolution
for initial feature extraction, then processes through configurable inverted residual blocks that balance accuracy and
computational efficiency. Each block configuration [t, c, n, s] specifies expansion ratio, output channels, repetition
count, and stride. Width multipliers enable scaling model capacity for different resource constraints. Final layers include
high-dimensional feature mapping (1280 channels), global average pooling for spatial dimension reduction, and linear
classification head.

Algorithm 8 MobileNetV2 Network
Input: Image I with Cin channels, input size H ×W
Params: Width multiplier α, class count Nclass
x← ConvBNReLU(I, out channels = 32, stride = 2) /* initial feature extraction */
for each block configuration [t, c, n, s] in settings do
Cout ← ⌈ c×α

8 ⌉ × 8 /* apply width multiplier */
for i = 1 to n do

if i = 1 then
x← InvertedResidual(x,Cout, stride = s, expand ratio = t) /* first block with stride */

else
x← InvertedResidual(x,Cout, stride = 1, expand ratio = t) /* subsequent blocks */

end if
end for

end for
x← ConvBNReLU(x, out channels = 1280) /* final feature mapping */
x← Mean(x, over spatial dims) /* global average pooling */
y ← Linear(x, out features = Nclass) /* classification layer */
Return: Class logits y

G.1. ConvBNReLU block

The ConvBNReLU block is a standard convolutional building block optimized for mobile inference. The 3×3 convolution
extracts spatial features while batch normalization stabilizes training and inference. ReLU6 activation (min(max(0, x), 6))
provides bounded non-linearity that improves quantization precision for mobile deployment, reducing numerical precision
requirements compared to unbounded ReLU.

Algorithm 9 ConvBNReLU Block
Input: Feature map x, input channels Cin, output channels Cout, stride s
y ← Conv2D(x, kernel = 3× 3, stride = s, padding = 1, bias = False) /* convolution */
y ← BatchNorm(y) /* normalize activations */
y ← ReLU6(y) /* bounded activation function */
Return: y

G.2. Inverted Residual Block

The Inverted Residual block is a core MobileNetV2 innovation addressing traditional depthwise convolution limitations.
The ”inverted” design expands narrow input channels to higher dimensions (expansion phase), applies efficient depthwise
convolution for spatial feature extraction (filtering phase), then compresses back to narrow output channels (projection
phase). This pattern maintains information flow in high-dimensional space while keeping input/output narrow for efficiency.
Linear bottlenecks (no activation after final projection) preserve information flow. Residual connections enable gradient
flow and feature reuse when input/output dimensions align, following ResNet principles adapted for mobile efficiency.

12

DeepChem-Variant

Algorithm 10 Inverted Residual Block
Input: Feature map x, input channels Cin, output channels Cout, stride s, expand ratio t
Chidden ← Cin × t /* calculate expanded channels */
use residual← (s = 1) ∧ (Cin = Cout) /* residual only if dimensions match */
if t = 1 then
y ← DepthwiseConv(x, kernel = 3× 3, stride = s) /* no expansion needed */
y ← BatchNorm(y) /* normalize */
y ← ReLU6(y) /* activate */
y ← PointwiseConv(y, Cout) /* project to output channels */
y ← BatchNorm(y) /* normalize projection */

else
y ← PointwiseConv(x,Chidden) /* expand channels */
y ← BatchNorm(y) /* normalize expansion */
y ← ReLU6(y) /* activate expanded features */
y ← DepthwiseConv(y, kernel = 3× 3, stride = s) /* spatial filtering */
y ← BatchNorm(y) /* normalize filtering */
y ← ReLU6(y) /* activate filtered features */
y ← PointwiseConv(y, Cout) /* project to output */
y ← BatchNorm(y) /* normalize final projection */

end if
if use residual then
y ← x+ y /* add residual connection */

end if
Return: y

H. InceptionV3
InceptionV3 architecture implements the network-in-network design philosophy, where convolutional filters of various
sizes (1×1, 3×3, 5×5) are applied in parallel within each module to capture features at multiple scales. The architecture
systematically processes images through a hierarchical feature extraction pipeline that begins with stem convolutions
for low-level feature extraction, progresses through InceptionA modules for multi-scale pattern recognition, utilizes
reduction modules to compress spatial dimensions while expanding channel depth, employs InceptionC modules with
factorized 7×7 convolutions for efficient mid-level feature processing, and concludes with InceptionE modules for high-level
abstraction. The network incorporates factorized convolutions that break down larger convolutions into smaller, more
efficient sequences (such as decomposing 3×3 into 1×3 and 3×1), significantly reducing computational complexity while
maintaining representational power. Auxiliary classifiers are strategically placed to provide intermediate supervision during
training, acting as regularizers that combat vanishing gradients in deep networks. Dimensionality reduction techniques are
employed throughout to control computational complexity without sacrificing model expressiveness.

H.1. BasicConv2d

This fundamental building block combines three essential operations: convolution for spatial feature extraction, batch
normalization for training stability and gradient flow optimization, and ReLU activation for introducing non-linearity while
preserving gradient propagation. The bias-free convolution design leverages batch normalization’s inherent bias handling,
reducing parameter redundancy.

H.2. InceptionA

This multi-scale feature extraction module implements parallel processing branches with different receptive fields to capture
diverse spatial patterns. The 1×1 branch captures point-wise features and cross-channel correlations, the 5×5 branch
(preceded by 1×1 reduction) captures medium-scale spatial patterns, the double 3×3 branch efficiently approximates larger
receptive fields while reducing computational cost, and the pooling branch preserves existing feature representations. Feature
concatenation combines these diverse representations into a unified output tensor.

13

DeepChem-Variant

Algorithm 11 InceptionV3
Input: Image x with Cin channels, size 299× 299
Output: Class logits and auxiliary logits (if training)
x← Conv2d 1a 3x3(x) /* initial stem convolution */
x← Conv2d 2a 3x3(x) /* stem progression */
x← Conv2d 2b 3x3(x) /* stem completion */
x← MaxPool2d(x, 3, 2) /* spatial downsampling */
x← Conv2d 3b 1x1(x) /* channel reduction */
x← Conv2d 4a 3x3(x) /* feature extraction */
x← MaxPool2d(x, 3, 2) /* spatial downsampling */
for i = 5b to 5d do
x← InceptionA(x) /* parallel multi-scale convolutions */

end for
x← InceptionB(x) /* reduction with stride 2 */
for i = 6b to 6e do
x← InceptionC(x) /* factorized 7×7 convolutions */

end for
if training and aux logits then

aux← InceptionAux(x) /* auxiliary classifier */
end if
x← InceptionD(x) /* reduction with stride 2 */
for i = 7b to 7c do
x← InceptionE(x) /* high-level feature extraction */

end for
x← AdaptiveAvgPool2d(x, (1, 1)) /* global pooling */
x← Flatten(x) /* vectorize features */
x← Dropout(x) /* regularization */
x← Linear(x, num classes) /* classification head */
Return: x (and aux if training)

Algorithm 12 BasicConv2d
Input: Feature map x, output channels Cout, kernel params
x← Conv2d(x,Cout, bias=False) /* convolution without bias */
x← BatchNorm2d(x) /* normalize activations */
x← ReLU(x) /* non-linear activation */
Return: x

Algorithm 13 InceptionA Module
Input: Feature map x, pool features count
branch11 ← BasicConv2d(x, 64, 11) /* direct 1×1 path */
branch55 ← BasicConv2d(x, 48, 11) /* 5×5 reduction */
branch55 ← BasicConv2d(branch55, 64, 55) /* 5×5 convolution */
branch33 ← BasicConv2d(x, 64, 11) /* double 3×3 reduction */
branch33 ← BasicConv2d(branch33, 96, 33) /* first 3×3 */
branch33 ← BasicConv2d(branch33, 96, 33) /* second 3×3 */
branchpool ← AvgPool2d(x, 3, 1, 1) /* pooling path */
branchpool ← BasicConv2d(branchpool, pool features, 11) /* pool projection */
output← Concatenate([branch11, branch55, branch33, branchpool]) /* combine paths */
Return: output

14

DeepChem-Variant

H.3. InceptionB

This architectural transition module reduces spatial resolution from 35×35 to 17×17 while expanding channel depth from
288 to 768. Multiple reduction paths maintain feature diversity during downsampling: direct 3×3 convolution with stride-2
for efficient reduction, double 3×3 path for complex pattern preservation, and max pooling for spatial downsampling. The
increased channel count compensates for spatial information loss.

Algorithm 14 InceptionB Module
Input: Feature map x
branch33 ← BasicConv2d(x, 384, 33, stride=2) /* direct reduction */
branchdbl ← BasicConv2d(x, 64, 11) /* double 3×3 path */
branchdbl ← BasicConv2d(branchdbl, 96, 33) /* expand channels */
branchdbl ← BasicConv2d(branchdbl, 96, 33, stride=2) /* reduce spatial */
branchpool ← MaxPool2d(x, 3, 2) /* pooling reduction */
output← Concatenate([branch33, branchdbl, branchpool]) /* combine reductions */
Return: output

H.4. InceptionC

This computational optimization module factorizes expensive 7×7 convolutions into more efficient asymmetric sequences.
The 1×7 followed by 7×1 factorization reduces parameters from 49 to 14 while maintaining equivalent receptive field
coverage. The double factorization path provides additional feature diversity through repeated asymmetric convolutions,
enabling complex pattern recognition with reduced computational overhead.

Algorithm 15 InceptionC Module
Input: Feature map x, 7×7 channel count
branch11 ← BasicConv2d(x, 192, 11) /* direct path */
branch77 ← BasicConv2d(x, channels77, 11) /* 7×7 factorization */
branch77 ← BasicConv2d(branch77, channels77, 17) /* factorize to 1×7 */
branch77 ← BasicConv2d(branch77, 192, 71) /* factorize to 7×1 */
branchdbl ← BasicConv2d(x, channels77, 11) /* double 7×7 path */
branchdbl ← BasicConv2d(branchdbl, channels77, 71) /* first factorization */
branchdbl ← BasicConv2d(branchdbl, channels77, 17) /* second factorization */
branchdbl ← BasicConv2d(branchdbl, channels77, 71) /* third factorization */
branchdbl ← BasicConv2d(branchdbl, 192, 17) /* final factorization */
branchpool ← AvgPool2d(x, 3, 1, 1) /* pooling path */
branchpool ← BasicConv2d(branchpool, 192, 11) /* pool projection */
output← Concatenate([branch11, branch77, branchdbl, branchpool]) /* combine paths */
Return: output

H.5. InceptionD

This second reduction stage transitions from 17×17 to 8×8 spatial resolution while expanding channels from 768 to 1280.
The module combines direct 3×3 reduction for efficiency with complex 7×7×3 factorized paths that maintain information
richness through sequential asymmetric convolutions followed by spatial reduction. This design preserves feature diversity
while preparing for final high-level processing.

H.6. InceptionE

The module splits 3×3 convolutions into separate 1×3 and 3×1 branches, effectively doubling feature diversity by capturing
horizontal and vertical patterns independently. Complex double-branch paths maximize representational capacity through
parallel processing of complementary feature patterns, providing rich feature representations for final classification decisions.

15

DeepChem-Variant

Algorithm 16 InceptionD Module
Input: Feature map x
branch33 ← BasicConv2d(x, 192, 11) /* 3×3 reduction path */
branch33 ← BasicConv2d(branch33, 320, 33, stride=2) /* spatial reduction */
branch773 ← BasicConv2d(x, 192, 11) /* 7×7×3 path */
branch773 ← BasicConv2d(branch773, 192, 17) /* factorize 1×7 */
branch773 ← BasicConv2d(branch773, 192, 71) /* factorize 7×1 */
branch773 ← BasicConv2d(branch773, 192, 33, stride=2) /* final reduction */
branchpool ← MaxPool2d(x, 3, 2) /* pooling reduction */
output← Concatenate([branch33, branch773, branchpool]) /* combine reductions */
Return: output

Algorithm 17 InceptionE Module
Input: Feature map x
branch11 ← BasicConv2d(x, 320, 11) /* direct path */
branch33 ← BasicConv2d(x, 384, 11) /* 3×3 split preparation */
branch33a ← BasicConv2d(branch33, 384, 13) /* horizontal split */
branch33b ← BasicConv2d(branch33, 384, 31) /* vertical split */
branch33 ← Concatenate([branch33a, branch33b]) /* combine splits */
branchdbl ← BasicConv2d(x, 448, 11) /* double 3×3 path */
branchdbl ← BasicConv2d(branchdbl, 384, 33) /* expand features */
branchdbla ← BasicConv2d(branchdbl, 384, 13) /* horizontal split */
branchdblb ← BasicConv2d(branchdbl, 384, 31) /* vertical split */
branchdbl ← Concatenate([branchdbla, branchdblb]) /* combine splits */
branchpool ← AvgPool2d(x, 3, 1, 1) /* pooling path */
branchpool ← BasicConv2d(branchpool, 192, 11) /* pool projection */
output← Concatenate([branch11, branch33, branchdbl, branchpool]) /* combine all paths */
Return: output

16

DeepChem-Variant

H.7. InceptionAux

This auxiliary classifier module addresses vanishing gradient problems in deep networks by providing intermediate
supervision during training. Positioned at the network’s midpoint, it processes intermediate features through spatial
reduction, channel manipulation, and classification layers. The auxiliary loss signal improves gradient flow to earlier
network layers, enhancing training convergence and preventing gradient degradation. During inference, this module is
bypassed to maintain computational efficiency.

Algorithm 18 InceptionAux Module
Input: Feature map x, number of classes
x← AvgPool2d(x, 5, 3) /* spatial reduction */
x← BasicConv2d(x, 128, 11) /* channel reduction */
x← BasicConv2d(x, 768, 55) /* feature expansion */
x← AdaptiveAvgPool2d(x, (1, 1)) /* global pooling */
x← Flatten(x) /* vectorize */
x← Linear(x, num classes) /* classify */
Return: x

17

