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ABSTRACT

Materials composition, property, processing, testing and applications are important
parts of materials tetrahedron. Due to variations in composition reporting styles in
the text of materials science research papers, extracting them becomes a challenging
task. To address this challenge, we present an end-to-end pipeline essential for
creating and completing the materials science (MatSci) knowledge bases(KBs).
The proposed approach involves creating an automated training dataset using distant
supervision and rule-based extraction. This dataset was used to train models for
identifying sentences (performed well), reporting the composition, and extracting
the composition(performed poorly). To improve the performance of the extraction
model, two steps were taken: first, generating additional training using GPT-4, and
second, classifying the composition reporting styles in text. This dataset was then
used to train the FLAN-T5 language model to extract the compositions from the
text. We also compared the performance of our approach with GPT-4 and observed
that the performance is quite the same for the cases where the compositions are
mentioned in the text in a simplified way. For the cases where composition is
reported in the form of equations which require solving arithmetic expressions and
substitutions, our proposed model has 14.7% better F1-score than GPT-4.

1 INTRODUCTION

In-depth knowledge within the realms of science and engineering is often encapsulated in domain-
specific research papers. Extracting information from these scientific articles requires the development
of advanced machine learning methods designed to automate this process. These efforts contribute to
the creation of extensive domain-specific Knowledge Bases (KBs) (e.g., Ernst et al. (2015)). Such
KBs serve multiple purposes, including enhancing information accessibility for domain researchers
(Tsatsaronis et al. (2015); Hamon et al. (2017)) and providing critical data for the development
of domain-specific machine learning models (Nadkarni et al. (2021)). Additionally, they have the
potential to accelerate scientific discoveries (Jain et al. (2013); Ravinder et al. (2021)).

A recent article on challenges in MatSci Information Extraction (IE) reported that 33.21% of compo-
sitions were documented in text Hira et al. (2024). Our work extends DiSCoMaTGupta et al. (2023)
and provides end-to-end system for extracting compositions from texts. It classifies the sentence into
a composition or non-composition, and further into a direct or equational composition, where the
direct composition refers to sentences that do not contain chemical compound percentages in the
form of equations. The compositions are extracted directly from the sentences for direct composition.
Otherwise, it gives an intermediate composition output in terms of equations, which is then substituted
with the corresponding variable values to get the compositions. We evaluate this system with LLMs
(large language models) to compare our model’s performance.

2 RELATED WORK

Recent advancements have seen the emergence of neural models tailored for various natural language
processing (NLP) tasks, particularly focusing on information extraction from textual data. In the
materials science domain, researchers leverage NLP tools to automate database creation for machine
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learning (ML) applications. Notably, the ChemDataExtractor Swain (2016), an NLP pipeline, has
been instrumental in constructing databases specific to material science. Domain-centric models like
MatSciBERT are pretrained and fine-tuned to facilitate information extraction tasks in this field Gupta
et al. (2022). Exploration into information extraction techniques using distant supervision is evident
in the works of Mintz et al. (2009). However, when it comes to the material science domain, specific
attention is given to numerical data, posing numerous challenges. Madaan et al. (2016) discusses
various challenges and methods associated with extracting numerical data in research, particularly
emphasizing the material science context.

The recent strides in NLP have given rise to a computational paradigm where large, pre-trained
language models (LM) are fine-tuned for domain-specific tasks. A notable contribution is the
proposed instruction-based process for data curation in materials science (MatSci-Instruct)Song et al.
(2023a). This process is further refined through fine-tuning the LLaMA-based language modelsSong
et al. (2023b). However, there is little research on extracting compositions from texts with chemical
compounds and their percentages. Our research helps to extract compositions from the text in a
distantly supervised manner which is used to train extraction models.

3 DATASET

3.1 RAW DATA COLLECTION

Using a text-mining API els, we obtained 2400 materials science research papers from the Elsevier
Science Direct Database, specifically focusing on papers that include compositions listed in the
MatSci Database NGF (2019). These papers were parsed with an XML parser to extract sentences
from various sections, including table captions and figure captions.

3.2 TRAINING DATASET CREATION METHODS

3.2.1 DISTANT SUPERVISION

Since the locations of compositions within the text of the papers are unknown, we employed a distant
supervision approach. Extracted sentences from a given paper were matched with the compositions
listed for that paper in the MatSci database. If all the chemical compounds and their constituent
percentages in a sentence matched those in the database within a specified tolerance range, the
sentence was included as input and the composition as the output for the training set. However, this
method missed many text compositions due to several challenges, as mentioned in Hira et al. (2024).

3.2.2 RULE-BASED PARSING

The rule-based parser in Gupta et al. (2023) was improved to increase coverage and handle equational
compositions. For instance, for the input text : "The glass composed of xSiO2 − (1− x)Na2O
where x=0.2.", the parser generates [ [(′SiO2′, ′(x)/(x+1−x)′), (′Na2O′, ′(1−x)/(x+1−x)′)] ],
an intermediate output of compositions in terms of variables (x, y, z) for equational compositions.
We developed a rule-based parser to fetch the values of the corresponding variables mentioned in the
text, and substituted them into the intermediate output to derive the final compositions.

3.2.3 PROMPTING GPT-4
For extracting compositions from text, gpt4-1106 model via OpenAI Python library was used . The
temperature was set to 0.0 for reproducibility, and 8-shot prompting A.2 was used.

3.3 DATASET VERSIONS

We retained 1,880 papers for training, 329 for validation, and 191 for testing.
Each input in the training data is a sentence, while the output takes the form of:
[[(′SiO2′, 20.0), (′Na2O′, 80.0)], [(′SiO2′, 40.0), (′Na2O′, 60.0)]]. Each list represents a
material composition consisting of tuples, with each tuple containing the name and value of a
chemical compound. Since a sentence can contain multiple compounds, the output is structured as a
list of lists of tuples. In order to achieve optimal extraction performance, we iteratively refined our
dataset through four versions. Starting with Dataset V1 and progressively improving through insights
from each iteration, we culminated in the satisfactory results obtained with Version 4. The detailed
progression and enhancements of each version are described in the following section.

3.3.1 DATASET VERSION 1: UNSPLIT DATA

The first version of dataset was created by combining samples extracted using both distant supervision
3.2.1 and rule-based parsing 3.2.2. A total of 6,691 composition sentences from 1,880 papers for
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training dataset, and 1,399 composition sentences from 329 papers for validation set were extracted.
We also trained a binary classifier to identify the presence of composition in a sentence. The -ve and
+ve samples (sentences having composition) in the training data 3.3.1 are present in ratio 6:1.

3.3.2 DATASET VERSION 2: ADDITIONAL DATA WITH GPT-4 FOR UNSPLIT DATA

As the database NGF (2019) includes compositions from a restricted number of papers, and the
rule-based parsing is constrained by the limited coverage of human-defined rules, our Dataset V1 3.3.1
is limited. To overcome this, GPT-4-based prompting extraction was employed.

From an additional 2,500 downloaded papers, 26,664 sentences were classified as positive composi-
tion sentences using a binary classifier trained with dataset version 1. Ten composition sentences
from each paper were randomly selected, resulting in 8,000 sentences. These were then used for
in-context prompting with GPT-4. After cleaning, the final dataset comprised 6,138 composition
sentences, addressing issues such as empty outputs and incoherent formats.

3.3.3 DATASET VERSION 3: SPLITTING DIRECT AND EQUATIONAL COMPOSITION

The model trained on dataset versions 1 or 2 did not effectively substitute the input (x, y, z) context
values in equational compositions. As a result, we split the samples into two sets: one with the
composition directly in the sentence and the other with the composition presented as an equation. For
example: Direct Composition (DC) = "As40Se60", Equational Composition (EC) = "AsxSe1−x".

Samples were categorized using the rule-based parser 3.2.2, which can extract both Equational Com-
positions (EC) with (x, y, z) value substitution, and Direct Compositions (DC) where no substitution
is needed. Using a flag to determine if substitutions were made during parsing, the samples were
separated. This data was used to train a binary classifier for EC vs DC sentence.

DATASET VERSION 4: ADDITIONAL DATA WITH GPT-4 FOR EC AND DC SPLIT DATA

Table 1: No. of sentences in DC
and EC for train, dev, and test splits

No. of sentences\Split Train Dev Test
Direct Composition 7516 1039 870

Equational Composition 2824 416 387

The additional composition sentences that were extracted in
dataset V. 2 3.3.2 were classified into EC and DC. A total of
2,683 direct compositions were extracted, of which 2,373 were
finalized after post-processing mentioned in A.4. Similarly,
1080 compositions were extracted for EC using GPT-4.

These compositions were incorporated into our training set to
enhance extraction. While the above method was employed to create training and validation datasets,
compositions in the test dataset were manually annotated to ensure accurate performance evaluation.
The final distribution of total sentences across the Train, Val, and Test sets is shown in Table 1.

4 METHODOLOGY

4.1 MODEL OVERVIEW

Figure 1: Extraction of com-
positions from text

We investigated papers where DisCoMAT failed to extract any com-
position, and in 96% of them, the compositions were found in text.
To address this limitation, we propose extending the extraction pro-
cess to include text-based compositions.

To achieve satisfactory results, we created four dataset versions,
discussed in 3.3. Using training dataset v1, we developed a FlanT5-
based binary classifier to detect sentences containing compositions.
Additionally, we created another FlanT5-based binary classifier to
distinguish between compositions mentioned directly in the text and
those presented as equations 3.3.3. We trained models for all four
dataset versions, fine-tuning T5-base and FlanT5-Large to extract
compositions. Separate models were trained for DC and EC.

Input sentences are classified into composition or non-composition.
Composition sentences are further categorized into equational com-
position (EC) sentences or direct composition (DC) sentences. DC sentences are sent to the DC
model, which extracts the final composition directly. EC sentences are handled by the EC model,
which extracts composition in a normalized equation form, followed by substituting variable values
to obtain the final composition. The entire composition inference is described in Fig. 1.
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Figure 2: System Architecture with Dataset Versions
Models\Split VAL TEST
FlanT5-Large (Trained on v3) 0.819 0.691
FlanT5-Large (Trained on v4) 0.844 0.704
GPT-4 0.793 0.737
LLaMA 3 0.579 0.516

(a)

Models\Split VAL TEST
FlanT5-Large (Trained on v3) 0.691 0.59
FlanT5-Large (Trained on v4) 0.707 0.618
GPT-4 0.688 0.471
LLaMA 3 0.418 0.293

(b)

Table 2: (a) End-to-End Comp_Match_Tol scores for DC and (b) for EC

4.2 EVALUATION METRIC
A correct composition extraction includes accurately extracting all chemical compounds and their
constituent percentages within a specified tolerance range, regardless of the order. We introduced
a modified F1 score to evaluate this, considering the order invariance of compositions. Precision
is calculated by counting matching compositions, while recall counts missed compositions. For
example, given a gold list of [[(’As’, 20.0), (’Se’, 58.0), (’Ge’, 22.0)], [(’As’, 20.0), (’Se’, 58.0),
(’Na’, 22.0)]] and a predicted list of [[(’Se’, 58.0), (’Na’, 22.0), (’As’, 20.0)]], the second composition
matches, resulting in a precision of 1 and a recall of 0.5, yielding an F1 score of 0.67. This metric is
referred to as comp_match. To handle compositions within a tolerance range, we allowed a tolerance
of 1.0 for composition percentage values, referred to as comp_match_tol.

5 EXPERIMENTS AND RESULTS
5.1 PROMPTING LLM
Initially, GPT-4’s performance was sub-optimal when the output format was a list of lists of tuples.
However, we achieved more consistent results and improved scores by converting the output to JSON
format. The comp_match and comp_match_tol scores for dataset version 1 are detailed in Table 3.
We also evaluated GPT-3.5’s performance using OpenAI version gpt-35-turbo-1106 on this dataset.
On examining the performance of the LLaMA-3 8B-Instruct Model and GPT-4 on datasets split,
while GPT-4 outperformed our model on DC data for test set, it performed poorly on EC data. The
LLaMA-3 8B model lagged behind in both DC and EC categories, shown in Table 2
5.2 MODEL
The F1 scores of the classifiers achieved on the test dataset are 0.99 for Classifier 1 (Comp vs Non-
Comp) and 0.98 for Classifier 2 (DC vs EC). The end-to-end extraction scores, after classification
into composition and non-composition followed by EC and DC classification, are presented in Table
2. FlanT5-Large was trained on dataset v3 and v4 for both EC and DC.
Our model significantly outperforms GPT-4 on the equational composition dataset, which denotes the
lack of mathematical capabilities such as normalization and substitution in LLMs. In contrast, GPT-4
performs slightly better on the direct composition dataset. The comp_match_tol scores for EC in its
intermediate form are 0.91 and 0.82, whereas the precision for the final extracted compositions is
0.707 and 0.745 on validation and test dataset respectively, as mentioned in Table. 2.
6 CONCLUSION AND FUTURE WORK
In this study, we introduce a novel and challenging task: extracting material compositions from
research articles present in the Materials domain. We propose a robust dataset creation pipeline and a
baseline system, which classifies the sentences into composition or non-composition sentences and
further into direct or equational compositions. This helps handle complex equational compositions
and get an intermediate equational composition output, which can be substituted for the corresponding
compositions. In future, it will be interesting to use a combination of materials science domain LLMs
and the information extraction (IE) pipeline reported in this work to extract material compositions
and their properties, which are reported in texts to create a large materials knowledge base.
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Models\Metric Comp_Match Comp_Match_Tol
T5-base 0.568 0.657
FlanT5-Large 0.601 0.681
GPT-4 0.699 0.802
GPT-3.5 0.578 0.663

Table 3: Comp_Match and Comp_Match_Tol
scores for val data of Dataset v1: Unsplitted data

A APPENDIX

The datasets (automated training data and the manually annotated test
data), models, along with their codes used in this study are available at -
https://drive.google.com/drive/folders/1GlMckP0IwiInQUqtBvJnZeC13-rAII0a?usp=sharing

A.1 DATASET

A.1.1 DATASET VERSION 1

The comp_match scores for the model trained are shown in the Table 3. GPT-4 performs well with
8-shot promoting and thus, is used to generate additional training data.

A.2 GPT4-PROMPTING

For 8-shot prompting of GPT-4 as mentioned in 3.2.3, the prompts are described in the Table: 4.

Role Content
System You are a materials science expert. Extract the composition of materials from the

following sentence and give output in the fixed JSON format consisting of every
composition containing constituent chemical compounds as keys and weight percent
as a float value. Make sure you normalize the weights percentages in each list. Do not
provide any additional output.

User Sentence: For making gallium–indium fluoride glass containing 20 mol% GaF3, 15
mol% InF3, 30 mol% PbF2, 20 mol% CdF2 and 15 mol% ZnF2, the constituent
fluoride compounds in the powder form were mixed inside a dry nitrogen atmosphere
glove box.

Assistant {
"comp1": {

"ZnF2": 15.0,
"PbF2": 30.0,
"GaF3": 20.0,
"InF3": 15.0,
"CdF2": 20.0

}
}

User Sentence: 2.1 Preparation of precursor glass Four glasses having composition
(25−x/2)SrO–(25−x/2)CaO–5ZnO–5B2O3–40SiO2–xLa2O3 (mol%), where, x=0, 2,
4, 6 were prepared following the conventional melt-quench technique.

Assistant {
"comp1": {

"SiO2": 40.0,
"CaO": 25.0,
"B2O3": 5.0,
"ZnO": 5.0,
"SrO": 25.0

},
"comp2": {

"SiO2": 40.0,
"CaO": 24.0,
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"B2O3": 5.0,
"ZnO": 5.0,
"SrO": 24.0,
"La2O3": 2.0

},
"comp3": {

"SiO2": 40.0,
"CaO": 22.0,
"B2O3": 5.0,
"ZnO": 5.0,
"SrO": 22.0,
"La2O3": 6.0

},
"comp4": {

"SiO2": 40.0,
"CaO": 23.0,
"B2O3": 5.0,
"ZnO": 5.0,
"SrO": 23.0,
"La2O3": 4.0

}
}

User Sentence: The first one was aR12O(1−a)TeO2 where ‘a’ was 0, 10, 15, 20, 30 mol%,
and ‘R1’ was Li, Na, K. The second one was bR11O.cR2111O3(1−b-c)TeO2 where
‘b’ was 0, 10, 20, 30 mol%, and ‘c’ was 0.5% or 16.5%, and ‘R11’ = Ba, ‘R111’ = Al,
Ga, or In.

Assistant {
"comp1": {

"TeO2": 100.0
},
"comp2": {

"Li2O": 20.0,
"TeO2": 80.0

},
"comp3": {

"Na2O": 10.0,
"TeO2": 90.0

},
"comp4": {

"Na2O": 15.0,
"TeO2": 85.0

},
"comp5": {

"Na2O": 20.0,
"TeO2": 80.0

},
"comp6": {

"Na2O": 30.0,
"TeO2": 70.0

},
"comp7": {

"K2O": 20.0,
"TeO2": 80.0

},
"comp8": {

"BaO": 20.0,
"TeO2": 80.0

},
"comp9": {
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"BaO": 16.5,
"In2O3": 6.5,
"TeO2": 77.0

}
}

User Sentence: The molar composition was the following: 53.3% SiO2+14.05%
B2O3+11.3% Na2O+1.6% ZrO2+3.4% Al2O3+5.0% CaO.

Assistant {
"comp1": {

"SiO2": 60.12,
"Na2O": 12.75,
"Al2O3": 3.84,
"CaO": 5.64,
"B2O3": 15.85,
"ZrO2": 1.8

}
}

User Sentence: The selected compositions are SiBNa404 (50SiO2·30B2O3·20Na2O,
%mol), SiBNa403 (60SiO2·24B2O3·16Na2O, %mol) both glasses having the same
molar ratio B2O3/Na2O=1.5 and commercial Pyrex® glass
(82.8SiO2·10.6B2O3·3.7Na2O·1.5Al2O3·1CaO·0.3K2O, %mol) taken as a reference.

Assistant {
"comp1": {

"SiO2": 50.0,
"Na2O": 20.0,
"B2O3": 30.0

},
"comp2": {

"SiO2": 60.0,
"Na2O": 16.0,
"B2O3": 24.0

},
"comp3": {

"SiO2": 82.89,
"Na2O": 3.7,
"K2O": 0.3,
"Al2O3": 1.5,
"CaO": 1.0,
"B2O3": 10.61

}
}

User Sentence: The As0.4Se0.3Te0.3 glass has cross linked As2Se3 and As2Te3 structural
units.

Assistant {
"comp1": {

"As": 40.0,
"Te": 30.0,
"Se": 30.0

}
}

User Sentence: All chalcogenide glass membranes Agx(Ge0.25Se0.75)100−x (10≤ x ≤25
at.%), (Ge0.25Se0.75)75(Ag1−yCuy)25 (y =0.05, 0.10, 0.20 at.%) and
(Ge0.25Se0.75)90(Ag0.8Fe0.2)10 are sensitive to Ag+, Cu2+ and Fe3+ ions whereas
they do not evidence any response to Mg2+ and Cd2+. x=(’20’, ’10’, ’15’, ’25’, ’7’),
y=(’0.05’, ’0.2’, ’0.20’, ’0.10’), z=(’0.4’, ’0.2’)

Assistant {
"comp1": {

"Se": 67.5,
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"Ge": 22.5,
"Ag": 10.0

},
"comp2": {

"Se": 63.75,
"Ge": 21.25,
"Ag": 15.0

},
"comp3": {

"Se": 60.0,
"Ge": 20.0,
"Ag": 20.0

},
"comp4": {

"Se": 56.25,
"Ge": 18.75,
"Ag": 22.5,
"Cu": 2.5

},
"comp5": {

"Se": 56.25,
"Ge": 18.75,
"Ag": 20.0,
"Cu": 5.0

},
"comp6": {

"Fe": 2.0,
"Se": 67.5,
"Ge": 22.5,
"Ag": 8.0

},
"comp7": {

"Fe": 4.0,
"Se": 67.5,
"Ge": 22.5,
"Ag": 6.0

}
}

User Sentence: 3.1 Refractive index and material dispersions Fig. 1 shows the refractive
index dispersions of (a) SiO2, 20BaO·80 B2O3 (BB), 40BaO·60 SiO2 (BS),
65CaO·35 Al2O3 (CA) and 20Na2O·80 GeO2 (NG) glasses and (b) 20Tl2O·80 TeO2

(TT), 20Tl2O·80 Sb2O3 (TS) and 80PbO·20 Ga2O3 (PG) glasses.
Assistant {

"comp1": {
"SiO2": 100.0

},
"comp2": {

"B2O3": 80.0,
"BaO": 20.0

},
"comp3": {

"SiO2": 60.0,
"BaO": 40.0

},
"comp4": {

"Al2O3": 35.0,
"CaO": 65.0

},
"comp5": {
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"Na2O": 20.0,
"GeO2": 80.0

},
"comp6": {

"Tl2O": 20.0,
"TeO2": 80.0

},
"comp7": {

"Sb2O3": 80.0,
"Tl2O": 20.0

},
"comp8": {

"PbO": 80.0,
"Ga2O3": 20.0

}
}

Table 4: GPT-4 prompts for 8-shot prompting

A.3 FLOWCHART FOR COMPOSITION EXTRACTION FROM TEXT

The flowchart for the entire inference process is as explained in the Fig. 1. The process starts with
classifying a sentence into composition and non-composition sentence, and again classification of
equational and direct composition. These sentences are then passed to respective models to get the
final extracted compositions.

A.4 POST-PROCESSING USED FOR REMOVING INVALID COMPOSITIONS

The post-processing method involved eliminating sentences that did not meet the required format, for
instance extractions where the total percentage of the constituent compounds in a composition did
not equal 100 (allowing for minor tolerance), or where compositions were represented as a single
compound (e.g., SiO2, 100.0). Such type of extractions are mostly incorrect, and were therefore
removed inorder to enhance the quality of our training data.
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