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Abstract

Employing Large Language Models (LLMs)001
for semantic parsing has achieved remarkable002
success. However, we find existing meth-003
ods fall short in terms of reliability and effi-004
ciency when hallucinations are encountered. In005
this paper, we address these challenges with a006
framework called QueryAgent, which solves007
a question step-by-step and performs step-008
wise self-correction. We introduce an environ-009
mental feedback-based self-correction method010
called ERASER. Unlike traditional approaches,011
ERASER leverages rich environmental feed-012
back in the intermediate steps to perform se-013
lective and differentiated self-correction only014
when necessary. Experimental results demon-015
strate that QueryAgent notably outperforms all016
previous few-shot methods using only one ex-017
ample on GrailQA and GraphQ by 7.0 and 15.0018
points. Furthermore, our approach exhibits su-019
periority in terms of efficiency, including run-020
time, query overhead, and API invocation costs.021
By leveraging ERASER, we further improve022
another baseline (i.e., AgentBench) by approxi-023
mately 10 points, validating the strong transfer-024
ability of our approach.025

1 Introduction026

Recent advances in employing Large language027

models (LLMs) on various tasks have exhibited028

impressive performance (Brown et al., 2020; Ope-029

nAI, 2023). Among these tasks, Knowledge Base030

Question Answering (KBQA), which aims to an-031

swer questions over KB, has emerged as a critical032

and complex challenge, serving as an ideal testbed033

for assessing the reasoning capabilities of LLMs034

over structured data (Gu et al., 2023).035

However, despite their remarkable achievements,036

we find that existing LLM-backend KBQA meth-037

ods fall short in both reliability (the credibility of038

results) and efficiency (i.e., running time, query039

times, and API invocation cost). Following the040

popular In-Context Learning (ICL) paradigm, Li041
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Figure 1: QueryAgent compared with two mainstream
KBQA paradigms employing LLMs.

et al. (2023); Nie et al. (2023) generates the target 042

query with few-shot demonstrations. They consider 043

LLMs as a black box and complete a complex task 044

in one go. As a result, it lacks interpretability and is 045

prone to hallucination (Yao et al., 2023), leading to 046

lower accuracy of the top-1 candidate. To alleviate 047

these issues, they employ beam search and self- 048

consistency (Wang et al., 2023). However, these 049

also result in numerous unreliable candidates, thus 050

increasing the running time and query times. Typi- 051

cally, it requires querying thousands of SPARQL 052

and several minutes to obtain the answer. 053

For a complex task, solving it step-by-step has 054

emerged as a promising solution (Wei et al., 2022; 055

Zhou et al., 2023). AgentBench (Liu et al., 2024) 056

implements an Agent-based (Yao et al., 2023) 057

KBQA system by progressively invoking tools to 058

build the target query. However, its iterative nature 059

dictates that each step strictly relies on the previ- 060

ous steps. When hallucination occurs, subsequent 061

reasoning processes would be built upon erroneous 062

foundations, resulting in unreliable candidates and 063

meaningless resource wastage. Additionally, the 064

necessity to invoke an LLM at each step renders 065
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beam search unaffordable, placing a high demand066

on the accuracy of the top-1 results of each step. In067

our preliminary experiments, we observed that 35%068

of the questions in AgentBench suffer from various069

hallucinations. As a result, AgentBench achieves070

unsatisfactory performance, only 57% of the state-071

of-the-art ICL-based methods on GrailQA.072

In view of these challenges, we introduce a073

framework called QueryAgent to explore more074

reliable and efficient reasoning in complex en-075

vironments. Specifically, QueryAgent models076

KBQA as a multi-turn generation task to step-077

by-step construct the target query with tools and078

perform stepwise self-correction. To mitigate079

the error accumulation issue of multi-step rea-080

soning, we propose an environmental feedback-081

based method called ERASER (EnviRonmental082

feedbAck SElf-coRrection). For each LLM gener-083

ated text, ERASER infers whether it is erroneous084

and analyzes the possible causes based on the feed-085

back from environments (e.g., KB execution results,086

Python interpreter execution status, previous rea-087

soning history) in the intermediate steps. Upon ana-088

lyzing this feedback, ERASER provides the system089

with potential causes of errors and general guide-090

lines for correction. Based on the guidelines, LLM091

can reconsider and correct the erroneous result.092

Unlike previous self-correction methods (Pour-093

reza and Rafiei, 2023; Chen et al., 2023) which094

purposelessly correct every generated result with095

the same few-shot demonstrations, the idea of096

ERASER is to actively identify and differentiate097

different errors based on the rich environmental098

feedback in the intermediate reasoning steps and099

then provide tailored guidelines for the distinct100

error type. With the help of environmental feed-101

back, ERASER has a more solid basis for more102

precise detection, analysis, and correction, rather103

than relying solely on the final answer. Moreover,104

ERASER distinguishes between different types of105

errors, allowing it to provide guidelines specifi-106

cally tailored to each error scenario. This targeted107

approach makes ERASER more purposeful and108

scalable. In situations where there are numerous109

potential error scenarios, the guideline of differ-110

ent errors can be independently developed without111

the need to encode all possible error cases to the112

prompt.113

We conduct extensive experiments to evaluate114

the effectiveness of QueryAgent and ERASER.115

With only 1 example, QueryAgent notablely sur-116

passes all few-shot methods, which require up to117

100 shots, on GrailQA (+7.0), GraphQ (+15.0), We- 118

bQSP (+3.4), and MetaQA (+2.0). While achiev- 119

ing superior performance, our approach exhibits 120

significant efficiency improvements. Compared 121

to ICL-based methods, QueryAgent reduces run- 122

time and query overhead to several orders. Com- 123

pared to Agent-based methods, QueryAgent al- 124

lows for approximately a 50% reduction in API 125

invocation costs and runtime. These results high- 126

light our proposed method is both reliable and effi- 127

cient. We also evaluate QueryAgent on a Text2SQL 128

dataset (WikiSQL), and adapt ERASER to another 129

system (AgentBench), to demonstrate their versa- 130

tility. Results reveal that QueryAgent outperforms 131

the previous 32-shot method by 6.9 points. Besides, 132

ERASER relatively yields an additional improve- 133

ment for AgentBench by 26% and 42% in F1 on 134

the GrailQA and GraphQ, respectively 1. 135

2 Related Work 136

2.1 Few-shot KBQA 137

Recent advances in adopting LLMs for few-shot 138

KBQA can be broadly categorized into 3 groups: 139

1) ICL-based KB-BINDER (Li et al., 2023) and 140

KB-Coder (Nie et al., 2023) implement an ICL- 141

based system by taking dozens of annotated ex- 142

amples into the prompt. Since they model this 143

complex task as a simple end-to-end generation 144

process, LLMs are directly confronted with a large 145

search space and thus more likely to generate un- 146

reliable results. Although they incorporate beam 147

search and self-consistency to increase the likeli- 148

hood of encompassing the correct logic form, these 149

also introduce the need to process a large number 150

of candidates. On average, to solve a question, it 151

takes executing thousands of candidate queries and 152

several minutes to obtain the final answer 153

2) IR-based Starting from an entity, StructGPT 154

(Jiang et al., 2023), and ToG (Sun et al., 2023) 155

iteratively walk on the graph, selecting the next 156

neighboring entity to jump to, until finding the an- 157

swer. Compared with the methods that generate 158

an executable query, these methods can only solve 159

questions whose reasoning process can be mod- 160

eled as a single, non-branching chain. They cannot 161

model questions with multi-constraints whose rea- 162

soning process is a tree or graph. As they traverse 163

in the KG to obtain the answer, they have limita- 164

tions on questions whose answer is not an entity in 165

the KG (e.g., aggregation or boolean question). 166

1Our code will be released after acceptance

2



3) Agent-based AgentBench (Liu et al., 2024)167

utilizes some pre-defined SPARQL templates to168

solve the question step-by-step, including acquiring169

the one-hop relation, merging two reasoning paths,170

adding aggregation, and so on. For a complex task,171

solving it step by step aligns with human intuition172

and helps reduce the potential search space. How-173

ever, at each step, AgentBench heavily relies on the174

previous results, hence demanding high precision.175

We observe that AgentBench encounters various176

unexpected outputs during reasoning, leading to177

serious error accumulation. When hallucinations178

arise in the preceding steps, the subsequent become179

meaningless or unreliable. These factors contribute180

to inferior performance, which is only half as effec-181

tive as the ICL-based methods.182

In this work, based on the agent paradigm, we183

propose a reliable and efficient framework called184

QueryAgent, and alleviate LLM’s hallucination by185

introducing a self-correction method.186

2.2 Self-Correction187

As the concern persists in the accuracy and ap-188

propriateness of LLM’s generated content, self-189

correction has been proposed as a remedy to these190

issues (Pan et al., 2023). DIN-SQL (Pourreza191

and Rafiei, 2023) utilizes a zero-shot prompt to192

rectify errors in the generated SQL queries. The193

prompt asks the LLMs to examine the generated194

SQL queries for potential errors and correct them,195

while skipping those that are deemed error-free.196

Such intrinsic self-correction, which is solely based197

on LLMs’ inherent capabilities without the crutch198

of external feedback, fails to achieve significant im-199

provement and is unreliable (Huang et al., 2023a).200

An intuitive improvement would be to incorpo-201

rate few-shot demonstrations in the prompt (Chen202

et al., 2023). However, this would result in longer203

prompts, and can only cover a limited number204

of scenarios. Since they indiscriminately apply205

the same prompt to all cases, LLMs may be con-206

fused about which example fits the current situ-207

ation. Some works like SALAM (Wang and Li,208

2023) train a model to retrieve the most similar209

error case. Even so, it still can not ensure precise210

error discrimination and is heavyweight. Besides,211

the above methods overlook the rich feedback that212

the environment (e.g., KB, DB) can provide for er-213

ror correction. These approaches rely solely on the214

final output as the basis for error correction, pre-215

senting substantial challenges for LLMs to make216

accurate judgments.217

To address the above issues, we propose 218

ERASER, an environmental feedback based self- 219

correction method. Based on the feedback 220

from the environment in the intermediate steps, 221

ERASER proactively identifies when errors arise 222

and provide tailored guidelines. 223

3 Method 224

3.1 Overview 225

In this work, we model KBQA as a semantic pars- 226

ing task. We propose an LLM-backed symbolic 227

agent called QueryAgent which step-by-step con- 228

structs formal queries with tools and performs 229

stepwise self-correction. The process of QueryA- 230

gent can be divided into two parts: Query construc- 231

tion and Self-Correction (ERASER). At each step, 232

QueryAgent first generates the action to be taken in 233

this step, then leverages environmental feedback to 234

identify and distinguish potential errors. If an error 235

is detected, the system provides tailored guidelines 236

to help LLMs perform error correction. 237

The reliability and efficiency of QueryAgent are 238

reflected in the following aspects. For reliability: 239

1) It solves questions progressively rather than di- 240

rectly outputting the complete answer. 2) We in- 241

troduce a correction process, namely ERASER, 242

during reasoning. 3) ERASER is purposeful and 243

more precise. For efficiency: 1) The high accu- 244

racy of our top-1 candidate eliminates the need 245

for beam search and self-consistency. 2) Self- 246

correction reduces meaningless reasoning along 247

erroneous paths. 3) We perform self-correction 248

only when necessary and only incorporate related 249

guidance to the prompt. 250

3.2 Query Construction 251

To interact with KB and step-by-step build a target 252

query, we leverage PyQL (Huang et al., 2023b) to 253

systematically construct the workflow. PyQL is a 254

management toolset designed for query building 255

over knowledge bases, including various tools to 256

incorporate clauses to the final executable query 257

(i.e., SPARQL) , such as adding triple patterns, fil- 258

ters, aggregations, etc. As the final query can be 259

transformed from a sequence of PyQL functions, 260

our objective is to generate these functions incre- 261

mentally during the multi-turn interaction. 262

As shown in Figure 2, at each step, the LLM 263

provides its thoughts over the current step and sug- 264

gests the next action to be taken. The action is 265

a PyQL function, we execute it to get the execu- 266
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Thought: Based on the  guideline, we
need to revise the action to ...
Action: add_fact(tom_kilburn,
computer_designed, ?computer.)

Thought: The question is to ask ... So
firstly we need to get the relation of
tom_kilburn.
Action: get_relation(tom_kilburn)

Thought: ... Now we need to acquire the
number of  ?designer as the answer.
Action: add_count(?designer)

Thought: Based on the guideline, we
should use "key_designer" ...
Action: add_fact( ?computer,
key_designer, ?designer.)

Thought: ... the most possible relation
is "key_designer" ...
Action: add_fact( ?computer,
computer_designer, ?designer.)

KB Python
interpreter

Thought: ... Now we need to get
the relation of ?computer.
Action: get_relation()

Thought: Based on the previous
guideline, we need to correct the
action to ...
Action: get_relation(?computer)

Question: How many key designers does a computer designed by tom_kilburn have?

Guideline 3

Guideline 2 Environment

ERASER

Error detection &
distinguish

Logic Form:

No Errors

Guidelines

SELECT COUNT(?designer) AS ?ans  WHERE
{ tom_kilburn computers_designed ?computer.  ?computer key_designer ?designer. }

No Errors

Reasoning
Memory

(Python) get_relation func needs one
parameter to indicate which entity or variable
you want to get the one-hop relations.
However, you pass in no parameter. I suggest
you generate get_relation with one parameter
from AVAILABLE_ENTITY_LIST 
or AVAILABLE_VARIABLE_LIST next time.

(Memory) You add a triple pattern where the
head and tail are both new variables. This
triple cannot bind to the existing query graph.
I suggest you reconsider the head and tail
entity.

(KB and Memory) Execution on KB got an
empty result. I notice that the relation you
use is not one of the relations of ?computer
you just queried by get_relation(). You can
only choose the relation obtained by
get_relation(), otherwise, you may encounter
factual error.

1

2

3

KB_EXECUTION_RESULT
(No errors detected.)

(Other guidelines)

...

*

No ErrorsGuideline 1

Thought: Among the relations, the most
possible relation is "computer_designed".
Action: add_fact(?designer,
computer_designed, ?computer.)

Guidelines

No Errors

Figure 2: An example of QueryAgent and ERASER.

tion result as the observation from the environ-267

ment. For the example in Figure 2, the LLM sug-268

gests firstly we need to obtain the one-hop rela-269

tions of “tom kilburn” (thought) and the function270

get_relation(tom_kilburn) should be invoked271

at this step (action). By executing this function,272

we obtain relations around “tom kilburn” for the273

next step (observation). This process is iteratively274

repeated. When the reasoning process concludes275

we execute the generated query to obtain the an-276

swer. Given that each step corresponds to an ex-277

ecutable query, we can easily observe the result278

of the current reasoning process, similar to how279

humans progressively write, execute, and validate280

a query.281

The prompt consists of four parts: the task de-282

scription, the document of available functions, a283

running example, and the new question. We first284

provide an overview of the task and the rules that285

must be followed. Then we provide a brief docu-286

ment of all available functions. Following that, we287

present a detailed step-by-step reasoning process288

for an example question. Finally, we concatenate289

the new question that needs to be solved at the end.290

3.3 ERASER291

In this section, we propose an environmental feed-292

back based self-correction method (ERASER). The293

key ideas underlying ERASER are to let the envi-294

ronment “speak out” and distinguish different types295

of errors. We require the system to provide feed-296

back on its current status and any encountered er-297

rors. Based on this feedback, we attempt to identify298

what types of errors arise and then provide targeted299

and valuable guidance. 300

The feedback mainly originates from three en- 301

vironments: Knowledge Base (KB), Python Inter- 302

preter, and Reasoning Memory. For example, KB 303

can provide feedback such as: whether the executed 304

result is empty, if the reasoning process ends with a 305

blank node (CVT) or multiple variables, error mes- 306

sages from the query engine, and so on. For Python 307

interpreters, it can provide error messages of vari- 308

ous invalid function calls (e.g., not enough values 309

to unpack). For reasoning memory, we can access 310

information including but not limited to: what steps 311

have been taken, what variables have been created, 312

and the executed result of the previous steps. 313

By analyzing the above feedback, we can detect 314

some errors and determine the cause of them. As 315

illustrated in Figure 2, an error is raised by the 316

Python interpreter at the fourth step due to insuf- 317

ficient parameters in the generated action. In the 318

sixth step, the query engine yields an empty result 319

after a triple pattern constraint is added. Since we 320

have acquired the relation of “?computer” but the 321

used relation is not any of them, it is likely an in- 322

correct relation was chosen in the previous steps. 323

This example also showcases the importance of 324

leveraging various feedback from different environ- 325

ments for error distinction. For instance, whether 326

or not the system has obtained the relationship of 327

the head/tail entity can be indicative of two distinct 328

causes of error, but they both manifest as empty 329

results in the execution. Compared with the previ- 330

ous methods only focus on the final answer, this 331

rich environmental feedback in the intermediate 332

steps can serve as crucial observational points for 333

4



detecting and distinguishing various errors.334

The guidance in ERASER typically is some spec-335

ulation about possible causes of error and general336

suggestions. Examples are shown in the right part337

of Figure 2. Compared to some code generation338

work which simply returns the original system er-339

ror message (Chen et al., 2023), the guidance pro-340

vided in the prompt can be seen as an intermedi-341

ate language. It shields the LLM from directly342

considering the original error, instead focusing on343

easier-to-comprehend guidance, which ultimately344

contributes to a successful correction. Besides, by345

injecting the guidelines into the reasoning process,346

ERASER has no need for designing another spe-347

cific module or agent to perform self-correction.348

In this manner, the system designers only need to349

figure out how to identify potential errors from vari-350

ous environmental feedback and then provide mod-351

ification suggestions for each type of error. To sum-352

marize, ERASER has the following advantages: 1)353

Purposeful and Precise: ERASER has the ability354

to detect errors. For each error, it provides tai-355

lored guidelines that relate to the current situation.356

2) Independent and Scalable: The triggers for357

each type of error are independent of others. It358

provides convenience for incremental development359

without affecting the results of other questions. 3)360

Lightweight and Economical: Invocation of the361

LLM occurs exclusively when an error is detected.362

The correction prompt is a general guideline rather363

than lengthy few-shot examples.364

4 Experiment365

4.1 Datasets366

We experiment with four KBQA datasets. The367

statistics can be found in Table 1. For GrailQA,368

we report the performance of the dev set to stay369

within our budget. For other datasets, we report the370

performance of the test set.371

GRAILQA (Gu et al., 2021) is a large-scale com-372

plex dataset that evaluates three levels of general-373

ization (i.e., i.i.d., compositional, and zero-shot)374

GRAPHQ (Su et al., 2016) is a particularly chal-375

lenging dataset given that it exclusively focuses on376

non-i.i.d. generalization. In this paper, we use the377

processed version by (Gu and Su, 2022).378

WEBQSP (Yih et al., 2016) is a simple KBQA379

dataset with questions from Google query logs. It380

mainly tests i.i.d. generalization.381

METAQA (Zhang et al., 2018) consists of 1-3 hops382

question based on Wiki-Movies KG. We experi-383

Dataset Training Dev Test

GRAILQA 44,337 6,763 13,231
GRAPHQ 2,381 - 2,395
WEBQSP 3,098 - 1,639

METAQA-3HOP 114,196 14,274 14,274
WIKISQL 56,355 8,421 15,878

Table 1: Statistics of experiment datasets.

ment on the most difficult 3-hop subset (denoted as 384

MetaQA-3Hop). 385

4.2 Baselines 386

We compare QueryAgent with fine-tuning and few- 387

shot KBQA method. For simplicity, we mainly 388

introduce the few-shot method here. 389

KB-BINDER (Li et al., 2023) is an ICL-based 390

KBQA method utilizing dozens of (Question, S- 391

expression) pairs as examples. 392

KB-Coder (Nie et al., 2023) converts the s- 393

expression to a sequence of function calls thus 394

reducing the format error rate. 395

Pangu (Gu et al., 2023) is a general framework 396

with experiments on both fine-tuning and few-shot 397

settings. For the few-shot setting, Pangu also 398

adopts the ICL paradigm. 399

AgentBench (Liu et al., 2024) proposes an agent- 400

based baseline by modeling the KBQA as a multi- 401

turn open-ended generation task. 402

4.3 Experimental Setup 403

We use gpt-3.5-turbo for our experiment by de- 404

fault. All datasets use F1 as the evaluation metric. 405

For baseline methods with the same setting, we re- 406

port the performance from their original paper. KB- 407

BINDER uses Codex which has been deprecated. 408

For a fair comparison, We report the performance 409

reproduced by KB-Coder with gpt-3.5-turbo. 410

For KB-BINDER and KB-Coder, we compare the 411

setting without similarity retrieval since it is not a 412

strictly few-shot setting that requires the whole an- 413

notated training set can be accessed. AgentBench 414

reports the performance on a mixed subset and uses 415

golden linking results. We reproduce AgentBench 416

with the same entity linking result as ours. We also 417

implement the one-shot setting of KB-BINDER 418

critically based on their public code. 419

4.4 Main Result 420

As shown in Table 2, with only one example, our 421

method outperforms all few-shot methods that re- 422
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Methods GrailQA GraphQ WebQSP MetaQA-3Hop

fine-tuning
ArcaneQA (Gu and Su, 2022) 73.7 31.8 75.6 -
TIARA (Shu et al., 2022) 78.5 - 76.7 -
DecAF (Yu et al., 2023) 81.4 - 78.8 -
Pangu(T5-3B) (Gu et al., 2023) 83.4 57.7 79.6 -

few-shot
Pangu (Gu et al., 2023) 53.5 35.4 48.6 -
KB-BINDER (Li et al., 2023) 50.8 34.5 56.6 96.5
KB-Coder (Nie et al., 2023) 51.7 35.8 60.5 -

one-shot
KB-BINDER (Li et al., 2023) 16.8 4.8 9.0 65.3
AgentBench (Liu et al., 2024) 30.5 25.1 26.4 -
Ours 60.5 50.8 63.9 98.5

w/ GPT4 66.8 63.0 69.0 99.9

Table 2: Overall results on GrailQA, GraphQ, WebQSP, and MetaQA-3Hop. For the few-shot setting, Pangu uses
100-shot for all datasets. KB-BINDER and KB-Coder use 40-shot for GrailQA and 100-shot for GraphQ and
WebQSP. KB-BINDER uses 5-shot for MetaQA.

Method GrailQA GraphQ

Ours 60.5 50.8
w/o ERASER 43.7 35.3
w/ zero-shot SC 38.5 30.2
w/ few-shot SC 48.0 40.1

Table 3: Ablation study of ERASER and a compari-
son with other methods. Zero-shot SC indicates the
“generic” self-correction prompt of DIN-SQL (Pourreza
and Rafiei, 2023). Few-shot SC indicates the “explana-
tion feedback prompt” of Self-Debug (Chen et al., 2023).
We follow and implement their ideas in our tasks.

quire up to 100 annotations on all four datasets.423

For GrailQA and GraphQ, our method notably424

surpasses the best few-shot methods by 7.0 and425

15.0 points. On WebQSP, QueryAgent slightly426

surpasses 100-shot methods by 3.4 points. It is427

expected considering the inherent characteristics428

of the datasets. Since all WebQSP questions are429

under I.I.D. setting and this dataset is relatively430

small, few-shot methods have more opportunities431

to encounter similar questions within the prompts.432

In contrast, most of the questions of GrailQA are433

compositional and zero-shot questions, and 100%434

of GraphQ are compositional questions. Few-shot435

methods lose this advantage on such question types,436

which can reasonably explain why our approach437

exhibits a more pronounced advantage on GrailQA438

and GraphQ. Additionally, all few-shot methods439

incorporate beam search or self-consistency to fur- 440

ther boost the performance. It also implies that 441

there is still space for improvement in our method 442

if we also choose a more costly setting. 443

Compared with the one-shot methods, the per- 444

formance of QueryAgent approximately doubles 445

that of Agentbench, elevating agent-based tech- 446

niques and one-shot KBQA to a new level. We 447

also reproduce the one-shot result of KB-BINDER. 448

The dramatic decline in performance exposes some 449

limitations of the ICL-based method in terms of 450

example quantity. 451

5 Detailed Analysis 452

To gain more insights into QueryAgent’s strong 453

performance, we conduct some in-depth analysis. 454

5.1 Ablation Study 455

In this section, we analyze how ERASER con- 456

tributes to reliable reasoning and compare it with 457

other self-correction methods. The result is shown 458

in Table 3. ERASER improves for 16.8 and 15.5 459

points for GrailQA and GraphQ, demonstrating 460

the effectiveness of our method. For the baseline 461

method, zero-shot SC failed to boost the perfor- 462

mance further and even exhibited negative gains. 463

The few-shot method has made some improve- 464

ments but not that significant and its prompt is 465

considerably longer than ERASER. It is expected 466

since few-shot SC can only cover limited scenar- 467
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Methods GrailQA GraphQ WebQSP

TPQ QPQ CPQ TPQ QPQ CPQ TPQ QPQ CPQ

KB-BINDER 51.2 s 3297.7 $ 0.010 84.0 s 2113.8 $ 0.024 138.6 s 8145.1 $ 0.017
AgentBench 40.0 s 7.4 $ 0.034 65.1 s 7.2 $ 0.035 70.4 s 7.2 $0.038

Ours 16.6 s 5.2 $0.019 15.3 s 6.2 $ 0.021 12.6 s 4.7 $ 0.014

Table 4: Efficiency comparison with KB-BINDER. The TPQ, QPQ, and CPQ respectively represent the time cost,
SPARQL query times, and gpt-3.5-turbo invocation cost per question.

ios and LLM needs to figure out which part in the468

prompt is related to the current situation. We also469

manually analyzed 200 questions of GrailQA to470

investigate how ERASER influences the reasoning471

process. We find that 43% of questions utilized472

ERASER in their reasoning processes. Among473

them, 30% questions were completely corrected.474

Given that our error detection strategy is conserva-475

tive, all questions that triggered the ERASER were476

indeed found to contain errors during reasoning.477

5.2 Efficiency Analysis478

In this section, we evaluate the running efficiency.479

We conduct both horizontal and vertical compar-480

isons by comparing KB-BINDER, which utilizes481

a different paradigm, and AgentBench, which is482

similar to ours. We analyzed the time cost per ques-483

tion (TPQ), query times per question (QPQ), and484

ChatGPT invocation cost (CPQ). All tests were485

conducted in the same network environment, with486

each experiment running independently.487

As shown in Table 4, compared to KB-BINDER,488

our method exhibits overwhelming advantages in489

terms of TPQ and QPQ, while CPQ is a little higher490

on GrailQA. This outcome aligns with our expec-491

tations. KB-BINDER needs to conduct a beam492

search step by step to collect a large pool of can-493

didates and then execute them one by one to find494

the first executable query, which requires querying495

numerous SPARQLs. Additionally, KB-BINDER496

uses self-consistency by repeating this paradigm497

for K times to boost the performance, leading to498

(K − 1)× extra cost. To some extent, these also499

lead to a longer running time. Another thing worth500

noting is that more attempts also imply a lower501

accuracy of the top-1 candidate and a higher pro-502

portion of low-quality candidates. In contrast, our503

method only selects the top-1 candidate at a time,504

which means it requires the method to possess a505

high level of precision at each step. However, even506

under such extreme constraints, our approach still507

outperforms other methods. 508

As for the CPQ, our method incurs slightly 509

higher costs in terms of LLM invocation compared 510

to KB-BINDER. Our method is a step-by-step rea- 511

soning process, and while it has many advantages, 512

we acknowledge that it also has an inevitable issue 513

of requiring multiple requests to the LLM. How- 514

ever, on the flip side, KB-BINDER needs to con- 515

catenate many examples, which also faces the chal- 516

lenge of having a long prompt. In fact, on the 517

100-shot setting, the CPQ of using KB-BINDER 518

has already exceeded that of our method. 519

On the other hand, compared to AgentBench, 520

our method also surpasses it on all three criteria. It 521

is noteworthy that our method is not only faster and 522

cost-effective but also achieves approximately dou- 523

ble the QA performance compared to AgentBench. 524

At first glance, the incorporation of ERASER is a 525

negative factor for efficiency evaluation since the 526

prompt becomes longer than a regular reasoning 527

process. Nonetheless, from a different perspective, 528

timely and accurate error correction prevents the 529

system from deviating further in the wrong direc- 530

tion and reduces the overhead caused by meaning- 531

less reasoning processes. Consequently, to some 532

extent, a reliable reasoning process ultimately con- 533

tributes to achieving efficient reasoning. Besides, 534

by only performing corrections when necessary and 535

distinguishing different types, we have managed to 536

minimize the costs of ERASER. 537

5.3 Generalization Ability 538

In this section, we analyze the generalization ability 539

of our method and ICL-based method from qualita- 540

tive analysis and experimental comparisons. 541

Methodologically speaking, our method tack- 542

les the question step-by-step with atomic symbolic 543

tools. By decomposing the problem into multi- 544

ple reasoning steps, we bridge the semantic gap 545

between different questions and datasets, as all 546

questions can be represented using these limited 547
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Methods WikiSQL

few-shot(32 shot)
Davinci-003 49.1
ChatGPT 51.6
StructGPT(Davinci-003) 64.6
StructGPT(ChatGPT) 65.6

one-shot
AgentBench 57.6
Ours 72.5

w/o ERASER 67.0

Table 5: The results of QueryAgent on WikiSQL. We
evaluate denotation accuracy.

tools. However, the combination of these steps can548

be numerous, posing challenges for compositional549

generalization. ICL-based methods learn and gen-550

erate the complete query at once, directly facing551

and bearing the significantly larger search space.552

From the perspective of the experiment, KB-553

BINDER is sensitive to whether similar examples554

appear in the prompt. If the most similar ques-555

tions are retrieved as examples in the prompt, KB-556

BINDER can achieve up to 20 point improvement557

on WebQSP (100% i.i.d.) but a negative boost on558

GraphQ (100% non-i.i.d.). In contrast, our method559

uses the same example for all questions. Another560

observation is that, the higher the proportion of561

non-iid questions in the dataset, the greater the de-562

gree to which our approach exceeds the ICL-based563

approach. Compared to GrailQA (75% non-i.i.d.),564

QueryAgent demonstrates greater improvement on565

GraphQ (100% non-i.i.d.). This can also serve as566

evidence that QueryAgent has better generalization567

on unrelated examples.568

5.4 Transfer Experiment569

In the previous sections, we choose KBQA as a rep-570

resentative testbed to instantiate QueryAgent and571

ERASER. To illustrate the versatility of our rea-572

soning framework and ERASER, in this section,573

we conduct another two experiments: 1) we imple-574

ment QueryAgent framework on another seman-575

tic parsing task, namely Text2SQL. 2) we adapt576

ERASER to AgentBench.577

We choose the test set of WikiSQL (Zhong et al.,578

2017) as the experiment dataset. To acquire the exe-579

cution feedback from the database environment, we580

implement a SQL-version PyQL to help LLM ac-581

cess the database and provide tools to construct the582

Methods GrailQA GraphQ WebQSP

AgentBench 30.5 25.1 26.4
w ERASER 38.5 35.6 32.0

Table 6: The performance of AgentBench with
ERASER.

SQL query. We compare our method with Struct- 583

GPT (Jiang et al., 2023). The baseline results of 584

Dacinci-003 and ChatGPT also come from Struct- 585

GPT. Our method outperforms the few-shot method 586

with 32 examples. Besides, ERASER contributes 587

to 7.6% of performance, indicating the generaliza- 588

tion ability of our self-correction method. 589

Another experiment (i.e., AgentBench + 590

ERASER) is to further verify that ERASER can en- 591

hance the existing agent-based KBQA system. Ta- 592

ble 6 shows that ERASER further improves the per- 593

formance of AgentBench by 8.0 and 10.5 points on 594

GrailQA and GraphQ. By integrating ERASER, we 595

have elevated the performance of another method 596

to a new level, highlighting the versatility and plug- 597

and-play nature of ERASER. 598

6 Conclusion 599

In this paper, we present a reliable and efficient 600

framework called QueryAgent, which constructs 601

the target query step-by-step with tools and per- 602

forms stepwise self-correction. We also introduce 603

a novel self-correction method called ERASER. It 604

leverages rich environmental feedback to enable 605

selective and differentiated self-correction, depart- 606

ing from the conventional approach which only 607

uses the final result to conduct correction on every 608

output with the same prompt. Experimental re- 609

sults demonstrate that QueryAgent notably outper- 610

forms all existing few-shot methods on four KBQA 611

datasets with only a single example, especially on 612

GrailQA (+7.0) and GraphQ (+15.0). Moreover, 613

QueryAgent also exhibits superiority in efficiency 614

with faster solving speed and lower resource uti- 615

lization. Compared to ICL-based methods, our ap- 616

proach reduces runtime and query costs by a factor 617

of tens, while compared to agent-based methods, 618

it reduces time and API invocation costs by more 619

than half. We also show the versatility of QueryA- 620

gent and ERASER by evaluating it on a Text2SQL 621

dataset and applying ERASER on another system 622

(AgentBench). QueryAgent outperforms previous 623

few-shot method and ERASER further boosts the 624

performance of QueryAgent. 625
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Limitations626

Here we would like to discuss several limitations627

of our method. Firstly, the various feedback is628

the basis to detect and distinguish different errors.629

If the feedback is unavailable or too simplistic,630

such as only providing the final answer, there is631

insufficient information to confidently conduct er-632

ror detection and differentiate between various er-633

ror types. Therefore, ERASER may have limited634

benefits in end-to-end approaches. Another limi-635

tation is that, while step-by-step solving is widely636

recognized as a promising way of addressing com-637

plex tasks, it inevitably leads to the issue of lengthy638

prompts. The cost can be further minimized by639

optimizing historical encodings and prompt engi-640

neering. However, these engineering techniques641

are not the primary focus of this study.642
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