QueryAgent: A Reliable and Efficient Reasoning Framework with
Environmental Feedback based Self-Correction

Anonymous ACL submission

Abstract

Employing Large Language Models (LLMs)
for semantic parsing has achieved remarkable
success. However, we find existing meth-
ods fall short in terms of reliability and effi-
ciency when hallucinations are encountered. In
this paper, we address these challenges with a
framework called QueryAgent, which solves
a question step-by-step and performs step-
wise self-correction. We introduce an environ-
mental feedback-based self-correction method
called ERASER. Unlike traditional approaches,
ERASER leverages rich environmental feed-
back in the intermediate steps to perform se-
lective and differentiated self-correction only
when necessary. Experimental results demon-
strate that QueryAgent notably outperforms all
previous few-shot methods using only one ex-
ample on GrailQA and GraphQ by 7.0 and 15.0
points. Furthermore, our approach exhibits su-
periority in terms of efficiency, including run-
time, query overhead, and API invocation costs.
By leveraging ERASER, we further improve
another baseline (i.e., AgentBench) by approxi-
mately 10 points, validating the strong transfer-
ability of our approach.

1 Introduction

Recent advances in employing Large language
models (LLMs) on various tasks have exhibited
impressive performance (Brown et al., 2020; Ope-
nAl, 2023). Among these tasks, Knowledge Base
Question Answering (KBQA), which aims to an-
swer questions over KB, has emerged as a critical
and complex challenge, serving as an ideal testbed
for assessing the reasoning capabilities of LLMs
over structured data (Gu et al., 2023).

However, despite their remarkable achievements,
we find that existing LLM-backend KBQA meth-
ods fall short in both reliability (the credibility of
results) and efficiency (i.e., running time, query
times, and API invocation cost). Following the
popular In-Context Learning (ICL) paradigm, Li

ICL-based

Question » Logic Form
End-to-end for a complex task, prone to hallucinate

Agent-based

Question—>{ Step 1 —>» ... —»{Step N[—> Logic Form

Suffer from error propagation

4 ERASER

Question Step 1 Step N Logic Form

¥, Reliable and Efficient

Figure 1: QueryAgent compared with two mainstream
KBQA paradigms employing LLMs.

et al. (2023); Nie et al. (2023) generates the target
query with few-shot demonstrations. They consider
LLMs as a black box and complete a complex task
in one go. As aresult, it lacks interpretability and is
prone to hallucination (Yao et al., 2023), leading to
lower accuracy of the top-1 candidate. To alleviate
these issues, they employ beam search and self-
consistency (Wang et al., 2023). However, these
also result in numerous unreliable candidates, thus
increasing the running time and query times. Typi-
cally, it requires querying thousands of SPARQL
and several minutes to obtain the answer.

For a complex task, solving it step-by-step has
emerged as a promising solution (Wei et al., 2022;
Zhou et al., 2023). AgentBench (Liu et al., 2024)
implements an Agent-based (Yao et al., 2023)
KBQA system by progressively invoking tools to
build the target query. However, its iterative nature
dictates that each step strictly relies on the previ-
ous steps. When hallucination occurs, subsequent
reasoning processes would be built upon erroneous
foundations, resulting in unreliable candidates and
meaningless resource wastage. Additionally, the
necessity to invoke an LLM at each step renders



beam search unaffordable, placing a high demand
on the accuracy of the top-1 results of each step. In
our preliminary experiments, we observed that 35%
of the questions in AgentBench suffer from various
hallucinations. As a result, AgentBench achieves
unsatisfactory performance, only 57% of the state-
of-the-art ICL-based methods on GrailQA.

In view of these challenges, we introduce a
framework called QueryAgent to explore more
reliable and efficient reasoning in complex en-
vironments. Specifically, QueryAgent models
KBQA as a multi-turn generation task to step-
by-step construct the target query with tools and
perform stepwise self-correction. To mitigate
the error accumulation issue of multi-step rea-
soning, we propose an environmental feedback-
based method called ERASER (EnviRonmental
feedbAck SElf-coRrection). For each LLM gener-
ated text, ERASER infers whether it is erroneous
and analyzes the possible causes based on the feed-
back from environments (e.g., KB execution results,
Python interpreter execution status, previous rea-
soning history) in the intermediate steps. Upon ana-
lyzing this feedback, ERASER provides the system
with potential causes of errors and general guide-
lines for correction. Based on the guidelines, LLM
can reconsider and correct the erroneous result.

Unlike previous self-correction methods (Pour-
reza and Rafiei, 2023; Chen et al., 2023) which
purposelessly correct every generated result with
the same few-shot demonstrations, the idea of
ERASER is to actively identify and differentiate
different errors based on the rich environmental
feedback in the intermediate reasoning steps and
then provide tailored guidelines for the distinct
error type. With the help of environmental feed-
back, ERASER has a more solid basis for more
precise detection, analysis, and correction, rather
than relying solely on the final answer. Moreover,
ERASER distinguishes between different types of
errors, allowing it to provide guidelines specifi-
cally tailored to each error scenario. This targeted
approach makes ERASER more purposeful and
scalable. In situations where there are numerous
potential error scenarios, the guideline of differ-
ent errors can be independently developed without
the need to encode all possible error cases to the
prompt.

We conduct extensive experiments to evaluate
the effectiveness of QueryAgent and ERASER.
With only 1 example, QueryAgent notablely sur-
passes all few-shot methods, which require up to

100 shots, on GrailQA (+7.0), GraphQ (+15.0), We-
bQSP (+3.4), and MetaQA (+2.0). While achiev-
ing superior performance, our approach exhibits
significant efficiency improvements. Compared
to ICL-based methods, QueryAgent reduces run-
time and query overhead to several orders. Com-
pared to Agent-based methods, QueryAgent al-
lows for approximately a 50% reduction in API
invocation costs and runtime. These results high-
light our proposed method is both reliable and effi-
cient. We also evaluate QueryAgent on a Text2SQL
dataset (WikiSQL), and adapt ERASER to another
system (AgentBench), to demonstrate their versa-
tility. Results reveal that QueryAgent outperforms
the previous 32-shot method by 6.9 points. Besides,
ERASER relatively yields an additional improve-
ment for AgentBench by 26% and 42% in F1 on
the GrailQA and GraphQ, respectively '.

2 Related Work
2.1 Few-shot KBQA

Recent advances in adopting LLMs for few-shot
KBQA can be broadly categorized into 3 groups:

1) ICL-based KB-BINDER (Li et al., 2023) and
KB-Coder (Nie et al., 2023) implement an ICL-
based system by taking dozens of annotated ex-
amples into the prompt. Since they model this
complex task as a simple end-to-end generation
process, LLMs are directly confronted with a large
search space and thus more likely to generate un-
reliable results. Although they incorporate beam
search and self-consistency to increase the likeli-
hood of encompassing the correct logic form, these
also introduce the need to process a large number
of candidates. On average, to solve a question, it
takes executing thousands of candidate queries and
several minutes to obtain the final answer

2) IR-based Starting from an entity, StructGPT
(Jiang et al., 2023), and ToG (Sun et al., 2023)
iteratively walk on the graph, selecting the next
neighboring entity to jump to, until finding the an-
swer. Compared with the methods that generate
an executable query, these methods can only solve
questions whose reasoning process can be mod-
eled as a single, non-branching chain. They cannot
model questions with multi-constraints whose rea-
soning process is a tree or graph. As they traverse
in the KG to obtain the answer, they have limita-
tions on questions whose answer is not an entity in
the KG (e.g., aggregation or boolean question).

'Our code will be released after acceptance



3) Agent-based AgentBench (Liu et al., 2024)
utilizes some pre-defined SPARQL templates to
solve the question step-by-step, including acquiring
the one-hop relation, merging two reasoning paths,
adding aggregation, and so on. For a complex task,
solving it step by step aligns with human intuition
and helps reduce the potential search space. How-
ever, at each step, AgentBench heavily relies on the
previous results, hence demanding high precision.
We observe that AgentBench encounters various
unexpected outputs during reasoning, leading to
serious error accumulation. When hallucinations
arise in the preceding steps, the subsequent become
meaningless or unreliable. These factors contribute
to inferior performance, which is only half as effec-
tive as the ICL-based methods.

In this work, based on the agent paradigm, we
propose a reliable and efficient framework called
QueryAgent, and alleviate LLM’s hallucination by
introducing a self-correction method.

2.2 Self-Correction

As the concern persists in the accuracy and ap-
propriateness of LLM’s generated content, self-
correction has been proposed as a remedy to these
issues (Pan et al., 2023). DIN-SQL (Pourreza
and Rafiei, 2023) utilizes a zero-shot prompt to
rectify errors in the generated SQL queries. The
prompt asks the LLMs to examine the generated
SQL queries for potential errors and correct them,
while skipping those that are deemed error-free.
Such intrinsic self-correction, which is solely based
on LLMs’ inherent capabilities without the crutch
of external feedback, fails to achieve significant im-
provement and is unreliable (Huang et al., 2023a).
An intuitive improvement would be to incorpo-
rate few-shot demonstrations in the prompt (Chen
et al., 2023). However, this would result in longer
prompts, and can only cover a limited number
of scenarios. Since they indiscriminately apply
the same prompt to all cases, LLMs may be con-
fused about which example fits the current situ-
ation. Some works like SALAM (Wang and Li,
2023) train a model to retrieve the most similar
error case. Even so, it still can not ensure precise
error discrimination and is heavyweight. Besides,
the above methods overlook the rich feedback that
the environment (e.g., KB, DB) can provide for er-
ror correction. These approaches rely solely on the
final output as the basis for error correction, pre-
senting substantial challenges for LLMs to make
accurate judgments.

To address the above issues, we propose
ERASER, an environmental feedback based self-
correction method. Based on the feedback
from the environment in the intermediate steps,
ERASER proactively identifies when errors arise
and provide tailored guidelines.

3 Method

3.1 Overview

In this work, we model KBQA as a semantic pars-
ing task. We propose an LLM-backed symbolic
agent called QueryAgent which step-by-step con-
structs formal queries with tools and performs
stepwise self-correction. The process of QueryA-
gent can be divided into two parts: Query construc-
tion and Self-Correction (ERASER). At each step,
QueryAgent first generates the action to be taken in
this step, then leverages environmental feedback to
identify and distinguish potential errors. If an error
is detected, the system provides tailored guidelines
to help LLMs perform error correction.

The reliability and efficiency of QueryAgent are
reflected in the following aspects. For reliability:
1) It solves questions progressively rather than di-
rectly outputting the complete answer. 2) We in-
troduce a correction process, namely ERASER,
during reasoning. 3) ERASER is purposeful and
more precise. For efficiency: 1) The high accu-
racy of our top-1 candidate eliminates the need
for beam search and self-consistency. 2) Self-
correction reduces meaningless reasoning along
erroneous paths. 3) We perform self-correction
only when necessary and only incorporate related
guidance to the prompt.

3.2 Query Construction

To interact with KB and step-by-step build a target
query, we leverage PyQL (Huang et al., 2023b) to
systematically construct the workflow. PyQL is a
management toolset designed for query building
over knowledge bases, including various tools to
incorporate clauses to the final executable query
(i.e., SPARQL) , such as adding triple patterns, fil-
ters, aggregations, etc. As the final query can be
transformed from a sequence of PyQL functions,
our objective is to generate these functions incre-
mentally during the multi-turn interaction.

As shown in Figure 2, at each step, the LLM
provides its thoughts over the current step and sug-
gests the next action to be taken. The action is
a PyQL function, we execute it to get the execu-



{

Question: How many key designers does a computer designed by tom_kilburn have?

Guidelines

~

P

M

Thought: Based on the guideline, we
need to revise the action to ...
Action: add_fact(tom_kilburn,
computer_designed, ?computer.)

Thought: Among the relations, the most
possible relation is "computer_designed"
Action: add_fact(?designer,
computer_designed, 2computer.)

Thought: The question is to ask ... So
firstly we need to get the relation of
tom_kilburn.

ction: get_relation(tom_kilburn)

No Errors

t Guideline 1.

—==Z

{ No Errors /#3\
@

Thought: ... Now we need to get

:

Q ERASER

y) You add a triple pattern where the
head and tail are both new variables. This
triple cannot bind to the existing query graph.
I suggest you reconsider the head and tail
entity.

1

1
1
1

1
1
,' (Python) get_relation func needs one
parameter to indicate which entity or variable
1 you want fo get the one-hop relations.
However, you pass in no parameter. I suggest

Environment

the relation of 2computer.
Action: get_relation()

Thought: Based on the previous
guideline, we need to correct the

B0 (e

b Error detection &
“o;  distinguish

Guidelines

(o

you generate get_relation with one parameter
from AVAILABLE_ENTITY_LIST
or AVAILABLE_VARIABLE_LIST next time.

(KB and Memory) Execution on KB got an

action to ...
Action: get_relation(?computer)

empty result. I notice that the relation you
use is not one of the relations of 2computer

v

@ \ you just queried by get_relation(). You can
No Errors @ [ =/ No Errors ¥ \ only choose the relation obtained by

Thought: ... the most possible relation
is "key_designer" ...

Action: add_fact( 2computer,
computer_designer, ?designer.)

Action: add_fact( ?computer,

Thought: Based on the guideline, we
should use "key_designer" ...
key_designer, ?designer.)

N

get_relation(), otherwise, you may encounter

Thought: ... Now we need to acquire the factual error.

number of ?designer as the answer.

1
\
\
\
Action: add_count(?designer) \
\

iy : (Other guidelines)

v

KB_EXECUTION_RESULT

Logic Form: SELECT COUNT(?designer) AS ?ans WHERE

[

{ tom_kilburn computers_designed ?computer. ?computer key_designer ?designer. }

(No errors detected.)

Q

)

Figure 2: An example of QueryAgent and ERASER.

tion result as the observation from the environ-
ment. For the example in Figure 2, the LLM sug-
gests firstly we need to obtain the one-hop rela-
tions of “tom kilburn (thought) and the function
get_relation(tom_kilburn) should be invoked
at this step (action). By executing this function,
we obtain relations around “tom kilburn” for the
next step (observation). This process is iteratively
repeated. When the reasoning process concludes
we execute the generated query to obtain the an-
swer. Given that each step corresponds to an ex-
ecutable query, we can easily observe the result
of the current reasoning process, similar to how
humans progressively write, execute, and validate
a query.

The prompt consists of four parts: the task de-
scription, the document of available functions, a
running example, and the new question. We first
provide an overview of the task and the rules that
must be followed. Then we provide a brief docu-
ment of all available functions. Following that, we
present a detailed step-by-step reasoning process
for an example question. Finally, we concatenate
the new question that needs to be solved at the end.

3.3 ERASER

In this section, we propose an environmental feed-
back based self-correction method (ERASER). The
key ideas underlying ERASER are to let the envi-
ronment “speak out” and distinguish different types
of errors. We require the system to provide feed-
back on its current status and any encountered er-
rors. Based on this feedback, we attempt to identify
what types of errors arise and then provide targeted

and valuable guidance.

The feedback mainly originates from three en-
vironments: Knowledge Base (KB), Python Inter-
preter, and Reasoning Memory. For example, KB
can provide feedback such as: whether the executed
result is empty, if the reasoning process ends with a
blank node (CVT) or multiple variables, error mes-
sages from the query engine, and so on. For Python
interpreters, it can provide error messages of vari-
ous invalid function calls (e.g., not enough values
to unpack). For reasoning memory, we can access
information including but not limited to: what steps
have been taken, what variables have been created,
and the executed result of the previous steps.

By analyzing the above feedback, we can detect
some errors and determine the cause of them. As
illustrated in Figure 2, an error is raised by the
Python interpreter at the fourth step due to insuf-
ficient parameters in the generated action. In the
sixth step, the query engine yields an empty result
after a triple pattern constraint is added. Since we
have acquired the relation of “?computer” but the
used relation is not any of them, it is likely an in-
correct relation was chosen in the previous steps.
This example also showcases the importance of
leveraging various feedback from different environ-
ments for error distinction. For instance, whether
or not the system has obtained the relationship of
the head/tail entity can be indicative of two distinct
causes of error, but they both manifest as empty
results in the execution. Compared with the previ-
ous methods only focus on the final answer, this
rich environmental feedback in the intermediate
steps can serve as crucial observational points for



detecting and distinguishing various errors.

The guidance in ERASER typically is some spec-
ulation about possible causes of error and general
suggestions. Examples are shown in the right part
of Figure 2. Compared to some code generation
work which simply returns the original system er-
ror message (Chen et al., 2023), the guidance pro-
vided in the prompt can be seen as an intermedi-
ate language. It shields the LLM from directly
considering the original error, instead focusing on
easier-to-comprehend guidance, which ultimately
contributes to a successful correction. Besides, by
injecting the guidelines into the reasoning process,
ERASER has no need for designing another spe-
cific module or agent to perform self-correction.

In this manner, the system designers only need to
figure out how to identify potential errors from vari-
ous environmental feedback and then provide mod-
ification suggestions for each type of error. To sum-
marize, ERASER has the following advantages: 1)
Purposeful and Precise: ERASER has the ability
to detect errors. For each error, it provides tai-
lored guidelines that relate to the current situation.
2) Independent and Scalable: The triggers for
each type of error are independent of others. It
provides convenience for incremental development
without affecting the results of other questions. 3)
Lightweight and Economical: Invocation of the
LLM occurs exclusively when an error is detected.
The correction prompt is a general guideline rather
than lengthy few-shot examples.

4 Experiment

4.1 Datasets

We experiment with four KBQA datasets. The
statistics can be found in Table 1. For GrailQA,
we report the performance of the dev set to stay
within our budget. For other datasets, we report the
performance of the test set.

GRAILQA (Gu et al., 2021) is a large-scale com-
plex dataset that evaluates three levels of general-
ization (i.e., i.i.d., compositional, and zero-shot)
GRAPHQ (Su et al., 2016) is a particularly chal-
lenging dataset given that it exclusively focuses on
non-i.i.d. generalization. In this paper, we use the
processed version by (Gu and Su, 2022).
WEBQSP (Yih et al.,, 2016) is a simple KBQA
dataset with questions from Google query logs. It
mainly tests i.i.d. generalization.

METAQA (Zhang et al., 2018) consists of 1-3 hops
question based on Wiki-Movies KG. We experi-

Dataset Training  Dev Test
GRAILQA 44,337 6,763 13,231
GRAPHQ 2,381 - 2,395
WEBQSP 3,098 - 1,639
METAQA-3HOP 114,196 14,274 14,274
WIKISQL 56,355 8,421 15,878

Table 1: Statistics of experiment datasets.

ment on the most difficult 3-hop subset (denoted as
MetaQA-3Hop).

4.2 Baselines

We compare QueryAgent with fine-tuning and few-
shot KBQA method. For simplicity, we mainly
introduce the few-shot method here.
KB-BINDER (Li et al., 2023) is an ICL-based
KBQA method utilizing dozens of (Question, S-
expression) pairs as examples.

KB-Coder (Nie et al., 2023) converts the s-
expression to a sequence of function calls thus
reducing the format error rate.

Pangu (Gu et al., 2023) is a general framework
with experiments on both fine-tuning and few-shot
settings. For the few-shot setting, Pangu also
adopts the ICL paradigm.

AgentBench (Liu et al., 2024) proposes an agent-
based baseline by modeling the KBQA as a multi-
turn open-ended generation task.

4.3 Experimental Setup

We use gpt-3.5-turbo for our experiment by de-
fault. All datasets use F1 as the evaluation metric.
For baseline methods with the same setting, we re-
port the performance from their original paper. KB-
BINDER uses Codex which has been deprecated.
For a fair comparison, We report the performance
reproduced by KB-Coder with gpt-3.5-turbo.
For KB-BINDER and KB-Coder, we compare the
setting without similarity retrieval since it is not a
strictly few-shot setting that requires the whole an-
notated training set can be accessed. AgentBench
reports the performance on a mixed subset and uses
golden linking results. We reproduce AgentBench
with the same entity linking result as ours. We also
implement the one-shot setting of KB-BINDER
critically based on their public code.

4.4 Main Result

As shown in Table 2, with only one example, our
method outperforms all few-shot methods that re-



Methods GrailQA GraphQ WebQSP MetaQA-3Hop
fine-tuning
ArcaneQA (Gu and Su, 2022) 73.7 31.8 75.6 -
TIARA (Shu et al., 2022) 78.5 - 76.7 -
DecAF (Yu et al., 2023) 81.4 - 78.8 -
Pangu(T5-3B) (Gu et al., 2023) 83.4 57.7 79.6 -
few-shot
Pangu (Gu et al., 2023) 53.5 354 48.6 -
KB-BINDER (Li et al., 2023) 50.8 34.5 56.6 96.5
KB-Coder (Nie et al., 2023) 51.7 35.8 60.5 -
one-shot
KB-BINDER (Li et al., 2023) 16.8 4.8 9.0 65.3
AgentBench (Liu et al., 2024) 30.5 25.1 26.4 -
Ours 60.5 50.8 63.9 98.5
w/ GPT4 66.8 63.0 69.0 99.9

Table 2: Overall results on GrailQA, GraphQ, WebQSP, and MetaQA-3Hop. For the few-shot setting, Pangu uses
100-shot for all datasets. KB-BINDER and KB-Coder use 40-shot for GrailQA and 100-shot for GraphQ and

WebQSP. KB-BINDER uses 5-shot for MetaQA.

Method GrailQA  GraphQ
Ours 60.5 50.8
w/o ERASER 437 35.3
w/ zero-shot SC 38.5 30.2
w/ few-shot SC 48.0 40.1

Table 3: Ablation study of ERASER and a compari-
son with other methods. Zero-shot SC indicates the
“generic” self-correction prompt of DIN-SQL (Pourreza
and Rafiei, 2023). Few-shot SC indicates the “explana-
tion feedback prompt” of Self-Debug (Chen et al., 2023).
We follow and implement their ideas in our tasks.

quire up to 100 annotations on all four datasets.
For GrailQA and GraphQ, our method notably
surpasses the best few-shot methods by 7.0 and
15.0 points. On WebQSP, QueryAgent slightly
surpasses 100-shot methods by 3.4 points. It is
expected considering the inherent characteristics
of the datasets. Since all WebQSP questions are
under L.I.D. setting and this dataset is relatively
small, few-shot methods have more opportunities
to encounter similar questions within the prompts.
In contrast, most of the questions of GrailQA are
compositional and zero-shot questions, and 100%
of GraphQ are compositional questions. Few-shot
methods lose this advantage on such question types,
which can reasonably explain why our approach
exhibits a more pronounced advantage on GrailQA
and GraphQ. Additionally, all few-shot methods

incorporate beam search or self-consistency to fur-
ther boost the performance. It also implies that
there is still space for improvement in our method
if we also choose a more costly setting.

Compared with the one-shot methods, the per-
formance of QueryAgent approximately doubles
that of Agentbench, elevating agent-based tech-
niques and one-shot KBQA to a new level. We
also reproduce the one-shot result of KB-BINDER.
The dramatic decline in performance exposes some
limitations of the ICL-based method in terms of
example quantity.

S Detailed Analysis

To gain more insights into QueryAgent’s strong
performance, we conduct some in-depth analysis.

5.1 Ablation Study

In this section, we analyze how ERASER con-
tributes to reliable reasoning and compare it with
other self-correction methods. The result is shown
in Table 3. ERASER improves for 16.8 and 15.5
points for GrailQA and GraphQ, demonstrating
the effectiveness of our method. For the baseline
method, zero-shot SC failed to boost the perfor-
mance further and even exhibited negative gains.
The few-shot method has made some improve-
ments but not that significant and its prompt is
considerably longer than ERASER. It is expected
since few-shot SC can only cover limited scenar-



Methods GrailQA | GraphQ | WebQSP

TPQ QPQ CPQ| TPQ QPQ CPQ| TPQ QPQ CPQ
KB-BINDER 512s 3297.7 $0.010 | 840s 21138 $0.024 | 138.6s 81451 $0.017
AgentBench  40.0's 7.4 $0.034 | 65.1s 72 $0.035| 70.4s 7.2 $0.038
Ours 16.6 s 52 $0.019 | 153 6.2 $0.021 | 12.65 47 $0.014

Table 4: Efficiency comparison with KB-BINDER. The TPQ, QPQ, and CPQ respectively represent the time cost,
SPARQL query times, and gpt-3. 5-turbo invocation cost per question.

ios and LLM needs to figure out which part in the
prompt is related to the current situation. We also
manually analyzed 200 questions of GrailQA to
investigate how ERASER influences the reasoning
process. We find that 43% of questions utilized
ERASER in their reasoning processes. Among
them, 30% questions were completely corrected.
Given that our error detection strategy is conserva-
tive, all questions that triggered the ERASER were
indeed found to contain errors during reasoning.

5.2 Efficiency Analysis

In this section, we evaluate the running efficiency.
We conduct both horizontal and vertical compar-
isons by comparing KB-BINDER, which utilizes
a different paradigm, and AgentBench, which is
similar to ours. We analyzed the time cost per ques-
tion (TPQ), query times per question (QPQ), and
ChatGPT invocation cost (CPQ). All tests were
conducted in the same network environment, with
each experiment running independently.

As shown in Table 4, compared to KB-BINDER,
our method exhibits overwhelming advantages in
terms of TPQ and QPQ, while CPQ is a little higher
on GrailQA. This outcome aligns with our expec-
tations. KB-BINDER needs to conduct a beam
search step by step to collect a large pool of can-
didates and then execute them one by one to find
the first executable query, which requires querying
numerous SPARQLs. Additionally, KB-BINDER
uses self-consistency by repeating this paradigm
for K times to boost the performance, leading to
(K — 1)x extra cost. To some extent, these also
lead to a longer running time. Another thing worth
noting is that more attempts also imply a lower
accuracy of the top-1 candidate and a higher pro-
portion of low-quality candidates. In contrast, our
method only selects the top-1 candidate at a time,
which means it requires the method to possess a
high level of precision at each step. However, even
under such extreme constraints, our approach still

outperforms other methods.

As for the CPQ, our method incurs slightly
higher costs in terms of LLM invocation compared
to KB-BINDER. Our method is a step-by-step rea-
soning process, and while it has many advantages,
we acknowledge that it also has an inevitable issue
of requiring multiple requests to the LLM. How-
ever, on the flip side, KB-BINDER needs to con-
catenate many examples, which also faces the chal-
lenge of having a long prompt. In fact, on the
100-shot setting, the CPQ of using KB-BINDER
has already exceeded that of our method.

On the other hand, compared to AgentBench,
our method also surpasses it on all three criteria. It
is noteworthy that our method is not only faster and
cost-effective but also achieves approximately dou-
ble the QA performance compared to AgentBench.
At first glance, the incorporation of ERASER is a
negative factor for efficiency evaluation since the
prompt becomes longer than a regular reasoning
process. Nonetheless, from a different perspective,
timely and accurate error correction prevents the
system from deviating further in the wrong direc-
tion and reduces the overhead caused by meaning-
less reasoning processes. Consequently, to some
extent, a reliable reasoning process ultimately con-
tributes to achieving efficient reasoning. Besides,
by only performing corrections when necessary and
distinguishing different types, we have managed to
minimize the costs of ERASER.

5.3 Generalization Ability

In this section, we analyze the generalization ability
of our method and ICL-based method from qualita-
tive analysis and experimental comparisons.
Methodologically speaking, our method tack-
les the question step-by-step with atomic symbolic
tools. By decomposing the problem into multi-
ple reasoning steps, we bridge the semantic gap
between different questions and datasets, as all
questions can be represented using these limited



Methods WikiSQL

few-shot(32 shot)

Davinci-003 49.1

ChatGPT 51.6

StructGPT(Davinci-003) 64.6

StructGPT(ChatGPT) 65.6

one-shot

AgentBench 57.6

Ours 72.5
w/o ERASER 67.0

Table 5: The results of QueryAgent on WikiSQL. We
evaluate denotation accuracy.

tools. However, the combination of these steps can
be numerous, posing challenges for compositional
generalization. ICL-based methods learn and gen-
erate the complete query at once, directly facing
and bearing the significantly larger search space.

From the perspective of the experiment, KB-
BINDER is sensitive to whether similar examples
appear in the prompt. If the most similar ques-
tions are retrieved as examples in the prompt, KB-
BINDER can achieve up to 20 point improvement
on WebQSP (100% i.i.d.) but a negative boost on
GraphQ (100% non-i.i.d.). In contrast, our method
uses the same example for all questions. Another
observation is that, the higher the proportion of
non-iid questions in the dataset, the greater the de-
gree to which our approach exceeds the ICL-based
approach. Compared to GrailQA (75% non-i.i.d.),
QueryAgent demonstrates greater improvement on
GraphQ (100% non-i.i.d.). This can also serve as
evidence that QueryAgent has better generalization
on unrelated examples.

5.4 Transfer Experiment

In the previous sections, we choose KBQA as a rep-
resentative testbed to instantiate QueryAgent and
ERASER. To illustrate the versatility of our rea-
soning framework and ERASER, in this section,
we conduct another two experiments: 1) we imple-
ment QueryAgent framework on another seman-
tic parsing task, namely Text2SQL. 2) we adapt
ERASER to AgentBench.

We choose the test set of WikiSQL (Zhong et al.,
2017) as the experiment dataset. To acquire the exe-
cution feedback from the database environment, we
implement a SQL-version PyQL to help LLM ac-
cess the database and provide tools to construct the

Methods GrailQA GraphQ WebQSP

AgentBench 30.5 25.1 26.4

w ERASER 38.5 35.6 32.0
Table 6: The performance of AgentBench with

ERASER.

SQL query. We compare our method with Struct-
GPT (Jiang et al., 2023). The baseline results of
Dacinci-003 and ChatGPT also come from Struct-
GPT. Our method outperforms the few-shot method
with 32 examples. Besides, ERASER contributes
to 7.6% of performance, indicating the generaliza-
tion ability of our self-correction method.

Another experiment (i.e., AgentBench +
ERASER) is to further verify that ERASER can en-
hance the existing agent-based KBQA system. Ta-
ble 6 shows that ERASER further improves the per-
formance of AgentBench by 8.0 and 10.5 points on
GrailQA and GraphQ. By integrating ERASER, we
have elevated the performance of another method
to a new level, highlighting the versatility and plug-
and-play nature of ERASER.

6 Conclusion

In this paper, we present a reliable and efficient
framework called QueryAgent, which constructs
the target query step-by-step with tools and per-
forms stepwise self-correction. We also introduce
a novel self-correction method called ERASER. It
leverages rich environmental feedback to enable
selective and differentiated self-correction, depart-
ing from the conventional approach which only
uses the final result to conduct correction on every
output with the same prompt. Experimental re-
sults demonstrate that QueryAgent notably outper-
forms all existing few-shot methods on four KBQA
datasets with only a single example, especially on
GrailQA (+7.0) and GraphQ (+15.0). Moreover,
QueryAgent also exhibits superiority in efficiency
with faster solving speed and lower resource uti-
lization. Compared to ICL-based methods, our ap-
proach reduces runtime and query costs by a factor
of tens, while compared to agent-based methods,
it reduces time and API invocation costs by more
than half. We also show the versatility of QueryA-
gent and ERASER by evaluating it on a Text2SQL
dataset and applying ERASER on another system
(AgentBench). QueryAgent outperforms previous
few-shot method and ERASER further boosts the
performance of QueryAgent.



Limitations

Here we would like to discuss several limitations
of our method. Firstly, the various feedback is
the basis to detect and distinguish different errors.
If the feedback is unavailable or too simplistic,
such as only providing the final answer, there is
insufficient information to confidently conduct er-
ror detection and differentiate between various er-
ror types. Therefore, ERASER may have limited
benefits in end-to-end approaches. Another limi-
tation is that, while step-by-step solving is widely
recognized as a promising way of addressing com-
plex tasks, it inevitably leads to the issue of lengthy
prompts. The cost can be further minimized by
optimizing historical encodings and prompt engi-
neering. However, these engineering techniques
are not the primary focus of this study.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug.

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t generate,
discriminate: A proposal for grounding language
models to real-world environments. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 4928-4949, Toronto, Canada. Association for
Computational Linguistics.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond I.1.D.:
Three levels of generalization for question answer-
ing on knowledge bases. The Web Conference 2021
- Proceedings of the World Wide Web Conference,
WWW 2021, 2021:3477-3488.

Yu Gu and Yu Su. 2022. ArcaneQA: Dynamic program
induction and contextualized encoding for knowl-
edge base question answering. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 1718-1731, Gyeongju, Republic

of Korea. International Committee on Computational
Linguistics.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2023a. Large language
models cannot self-correct reasoning yet.

Xiang Huang, Sitao Cheng, Yuheng Bao, Shanshan
Huang, and Yuzhong Qu. 2023b. MarkQA: A large
scale KBQA dataset with numerical reasoning. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
10241-10259, Singapore. Association for Compu-
tational Linguistics.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023. StructGPT: A general
framework for large language model to reason over
structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237-9251, Singapore. Associa-
tion for Computational Linguistics.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966—6980, Toronto, Canada. Association for
Computational Linguistics.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Ao-
han Zeng, Zhengxiao Du, Chenhui Zhang, Sheng
Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie
Huang, Yuxiao Dong, and Jie Tang. 2024. Agent-
bench: Evaluating LLMs as agents. In The Twelfth
International Conference on Learning Representa-
tions.

Zhijie Nie, Richong Zhang, Zhongyuan Wang, and
Xudong Liu. 2023. Code-style in-context learning
for knowledge-based question answering.

OpenAl. 2023. Gpt-4 technical report.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies.

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Borje Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
TIARA: Multi-grained retrieval for robust question
answering over large knowledge base. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 8108—-8121,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.


https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.acl-long.270
https://aclanthology.org/2023.acl-long.270
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://doi.org/10.1145/3442381.3449992
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
https://aclanthology.org/2022.coling-1.148
http://arxiv.org/abs/2310.01798
http://arxiv.org/abs/2310.01798
http://arxiv.org/abs/2310.01798
https://doi.org/10.18653/v1/2023.emnlp-main.633
https://doi.org/10.18653/v1/2023.emnlp-main.633
https://doi.org/10.18653/v1/2023.emnlp-main.633
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://doi.org/10.18653/v1/2023.acl-long.385
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2308.03688
http://arxiv.org/abs/2309.04695
http://arxiv.org/abs/2309.04695
http://arxiv.org/abs/2309.04695
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2308.03188
http://arxiv.org/abs/2308.03188
http://arxiv.org/abs/2308.03188
http://arxiv.org/abs/2308.03188
http://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555
https://doi.org/10.18653/v1/2022.emnlp-main.555

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Giir, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for
QA evaluation. In Empirical Methods in Natural
Language Processing (EMNLP), Austin, Texas, USA.
Association for Computational Linguistics.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-
Yeung Shum, and Jian Guo. 2023. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph.

Danqging Wang and Lei Li. 2023. Learning from mis-
takes via cooperative study assistant for large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10667-10685.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201-206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui
Zhu, Alexander Hanbo Li, Jun Wang, Yiqun Hu,
William Yang Wang, Zhiguo Wang, and Bing Xiang.
2023. DecAF: Joint decoding of answers and log-
ical forms for question answering over knowledge
bases. In The Eleventh International Conference on
Learning Representations.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der Smola, and Le Song. 2018. Variational reasoning
for question answering with knowledge graph. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

10

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.


https://aclanthology.org/D16-1054
https://aclanthology.org/D16-1054
https://aclanthology.org/D16-1054
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
https://aclanthology.org/2023.emnlp-main.659.pdf
https://aclanthology.org/2023.emnlp-main.659.pdf
https://aclanthology.org/2023.emnlp-main.659.pdf
https://aclanthology.org/2023.emnlp-main.659.pdf
https://aclanthology.org/2023.emnlp-main.659.pdf
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://arxiv.org/abs/2210.00063
https://ojs.aaai.org/index.php/AAAI/article/view/12057
https://ojs.aaai.org/index.php/AAAI/article/view/12057
https://ojs.aaai.org/index.php/AAAI/article/view/12057
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

	Introduction
	Related Work
	Few-shot KBQA
	Self-Correction

	Method
	Overview
	Query Construction
	ERASER

	Experiment
	Datasets
	Baselines
	Experimental Setup
	Main Result

	Detailed Analysis
	Ablation Study
	Efficiency Analysis
	Generalization Ability
	Transfer Experiment

	Conclusion

