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Abstract

Recently, the stochastic Polyak step size (SPS) has emerged as a competitive adaptive step
size scheme for stochastic gradient descent. Here we develop ProxSPS, a proximal variant
of SPS that can handle regularization terms. Developing a proximal variant of SPS is par-
ticularly important, since SPS requires a lower bound of the objective function to work well.
When the objective function is the sum of a loss and a regularizer, available estimates of
a lower bound of the sum can be loose. In contrast, ProxSPS only requires a lower bound
for the loss which is often readily available. As a consequence, we show that ProxSPS is
easier to tune and more stable in the presence of regularization. Furthermore for image
classification tasks, ProxSPS performs as well as AdamW with little to no tuning, and results
in a network with smaller weight parameters. We also provide an extensive convergence
analysis for ProxSPS that includes the non-smooth, smooth, weakly convex and strongly
convex setting.

1 Introduction

Consider problems of the form

min
x∈Rn

f(x), f(x) := EP [f(x;S)] =
∫
S
f(x; s)dP (s), (1)

where S is a sample space (or sample set). Formally, we can see S as a random variable mapping to S and
P (s) as the associated probability measure. Let us assume that for each s ∈ S, the function f(·; s) : Rn → R
is locally Lipschitz and hence possesses the Clarke subdifferential ∂f(·; s) (Clarke, 1983). Problems of form
(1) arise in machine learning tasks where S is the space of available data points (Bottou et al., 2018). An
efficient method for such problems is stochastic (sub)gradient descent (Robbins & Monro, 1951; Bottou,
2010; Davis & Drusvyatskiy, 2019), given by

xk+1 = xk − αkgk, gk ∈ ∂f(xk;Sk), where Sk ∼ P. (SGD)

Moreover, we will also consider the composite problem

min
x∈Rn

ψ(x), ψ(x) := f(x) + ϕ(x), (2)
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where ϕ : Rn → R ∪ {∞} is a proper, closed, and convex regularization function. In practical situations,
the expectation in the objective function f is typically approximated by a sample average over N ∈ N data
points. We formalize this special case with

S = {s1, . . . , sN}, P (si) = 1
N
, fi := f(·; si) i = 1, . . . , N. (ER)

In this case, problem (1) becomes the empirical risk minimization problem

min
x∈Rn

1
N

N∑
i=1

fi(x).

1.1 Background and Contributions

Polyak step size. For minimizing a convex, possibly non-differentiable function f , Polyak (1987, Chapter
5.3) proposed

xk+1 = xk − αkgk, αk = f(xk)−min f
‖gk‖2

, gk ∈ ∂f(xk) \ {0}.

This particular choice of αk, requiring the knowledge of min f , has been subsequently called the Polyak step
size for the subgradient method. Recently, Berrada et al. (2019); Loizou et al. (2021); Orvieto et al. (2022)
adapted the Polyak step size to the stochastic setting: consider the (ER) case and assume that each fi is
differentiable and that a lower bound C(si) ≤ infx fi(x) is known for all i ∈ [N ]. The method proposed by
(Loizou et al., 2021) is

xk+1 = xk −min
{
γb,

fik(xk)− C(sik)
c‖∇fik(xk)‖2

}
∇fik(xk), (SPSmax)

with hyper-parameters c, γb > 0 and where in each iteration ik is drawn from {1, . . . , N} uniformly at
random. It is important to note that the initial work (Loizou et al., 2021) used C(si) = inf fi; later, Orvieto
et al. (2022) established theory for (SPSmax) for the more general case of C(si) ≤ infx fi(x) and allowing for
mini-batching. Other works analyzed the Polyak step size in the convex, smooth setting (Hazan & Kakade,
2019) and in the convex, smooth and stochastic setting (Prazeres & Oberman, 2021). Further, the stochastic
Polyak step size is closely related to stochastic model-based proximal point (Asi & Duchi, 2019) as well as
stochastic bundle methods (Paren et al., 2022).

Contribution. We propose a proximal version of the stochastic Polyak step size, called ProxSPS, which
explicitly handles regularization functions. Our proposal is based crucially on the fact that the stochastic
Polyak step size can be motivated with stochastic proximal point for a truncated linear model of the ob-
jective function (we explain this in detail in Section 3.1). Our method has closed-form updates for squared
`2-regularization. We provide theoretical guarantees for ProxSPS for any closed, proper, and convex regular-
ization function (including indicator functions for constraints). Our main results, Theorem 7 and Theorem 8,
also give new insights for SPSmax, in particular showing exact convergence for convex and non-convex settings.

Lower bounds and regularization. Methods such as SPSmax need to estimate a lower bound C(s) for each
loss function f(·; s). Though infx f(x; s) can be precomputed in some restricted settings, in practice the lower
bound C(s) = 0 is used for non-negative loss functions.1 The tightness of the choice C(s) is further reflected
in the constant σ2 := min f −EP [C(S)], which affects the convergence guarantees of SPSmax (Orvieto et al.,
2022).

Contribution. For regularized problems (2) and if ϕ is differentiable, the current proposal of SPSmax would
add ϕ to every loss function f(·; s). In this case, for non-negative regularization terms, such as the squared
`2-norm, the lower bound C(s) = 0 is always loose. Indeed, if ϕ ≥ 0, then infx∈Rn(f(x; s) + ϕ(x)) ≥
infx∈Rn f(x; s) and this inequality is strict in most practical scenarios. For our proposed method ProxSPS,

1See for instance https://github.com/IssamLaradji/sps.
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we now need only estimate a lower bound for the loss f(x; s) and not for the composite function f(x; s)+ϕ(x).
Further, ProxSPS decouples the adaptive step size for the gradient of the loss from the regularization (we
explain this in detail in Section 4.1 and Fig. 1).

Proximal and adaptive methods. The question on how to handle regularization terms has also been
posed for other families of adaptive methods. For Adam (Kingma & Ba, 2015) with `2-regularization it
has been observed that it generalizes worse and is harder to tune than AdamW (Loshchilov & Hutter, 2019)
which uses weight decay. Further, AdamW can be seen as an approximation to a proximal version of Adam
(Zhuang et al., 2022).2 On the other hand, Loizou et al. (2021) showed that – without regularization –
default hyperparameter settings for SPSmax give very encouraging results on matrix factorization and image
classification tasks. This is promising since it suggests that SPSmax is an adaptive method, and can work
well across varied tasks without the need for extensive hyperparameter tuning.

Contribution. We show that by handling `2-regularization using a proximal step, our resulting ProxSPS is less
sensitive to hyperparameter choice as compared to SPSmax. This becomes apparent in matrix factorization
problems, where ProxSPS converges for a much wider range of regularization parameters and learning rates,
while SPSmax is more sensitive to these settings. We also show similar results for image classification over
the CIFAR10 and Imagenet32 dataset when using a ResNet model, where, compared to AdamW, our method
is less sensitive with respect to the regularization parameter.

The remainder of our paper is organized as follows: we will first recall how the stochastic Polyak step size,
in the case of ϕ = 0, can be derived using the model-based approach of (Asi & Duchi, 2019; Davis &
Drusvyatskiy, 2019) and how this is connected to SPSmax. We then derive ProxSPS based on the connection
to model-based methods, and present our theoretical results, based on the proof techniques in (Davis &
Drusvyatskiy, 2019).

2 Preliminaries

2.1 Notation

Throughout, we will write E instead of EP . For any random variable X(s), we denote E[X(S)] :=∫
S X(s)dP (s). We denote (·)+ := max{·, 0}. We write Õ when we drop logarithmic terms in the O-notation,
e.g. Õ( 1

K ) = O( ln(1+K)
K ).

2.2 General assumptions

Throughout the article, we assume the following:
Assumption 1. It is possible to generate infinitely many i.i.d. realizations S1, S2, . . . from S.
Assumption 2. For every s ∈ S, infx f(x; s) is finite and there exists C(s) satisfying C(s) ≤ infx f(x; s).

In many machine learning applications, non-negative loss functions are used and thus we can satisfy the
second assumption choosing C(s) = 0 for all s ∈ S.

2.3 Convex analysis

Let h : Rn → R be convex and α > 0. The proximal operator is given by

proxαh(x) := arg min
y

h(y) + 1
2α‖y − x‖

2.

Further, the Moreau envelope is defined by envαh(x) := miny h(y) + 1
2α‖y − x‖2, and its derivative is

∇envαh(x) = 1
α (x − proxαh(x)) (Drusvyatskiy & Paquette, 2019, Lem. 2.1). Moreover, due to the opti-

mality conditions of the proximal operator, if h ∈ C1 then

x̂ = proxαh(x) =⇒ ‖∇h(x̂)‖ = α−1‖x− x̂‖ = ‖∇envαh(x)‖. (3)
2For SGD treating `2-regularization as a part of the loss can be seen to be equivalent to its proximal version (cf. Appendix C).
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Davis & Drusvyatskiy (2019) showed how to use the Moreau envelope as a measure of stationarity: if
‖∇envαh(x)‖ is small, then x is close to x̂ and x̂ is an almost stationary point of h. Formally, the gradient
of the Moreau envelope can be related to the gradient mapping (cf. (Drusvyatskiy & Paquette, 2019, Thm.
4.5) and Lemma 11).

We say that a function h : Rn → R is L-smooth if its gradient is L–Lipschitz, that is

‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (4)

If h is L-smooth, then

h(y) ≤ h(x) + 〈∇h(x), y − x〉+ L

2 ‖y − x‖
2 for all x, y,∈ Rn.

A function h : Rn → R is ρ–weakly convex for ρ ≥ 0 if h+ ρ
2‖·‖

2 is convex. Any L–smooth function is weakly
convex with parameter less than or equal to L (Drusvyatskiy & Paquette, 2019, Lem. 4.2). The above results
on the proximal operator and Moreau envelope can immediately be extended to h being ρ–weakly convex if
α ∈ (0, ρ−1), since then h+ ρ

2‖ · ‖
2 is convex.

If we assume that each f(·; s) is ρs-weakly convex for ρs ≥ 0, then applying (Bertsekas, 1973, Lem. 2.1)
to the convex function f(·; s) + ρs

2 ‖ · ‖
2 yields that f + ρ

2‖ · ‖
2 is convex and thus f is ρ–weakly convex for

ρ := E[ρS ]. In particular, f is convex if each f(·; s) is assumed to be convex. For a weakly convex function h,
we denote with ∂h the regular subdifferential (cf. (Davis & Drusvyatskiy, 2019, section 2.2) and (Rockafellar
& Wets, 1998, Def. 8.3)).

3 The unregularized case

For this section, consider problems of form (1), i.e. no regularization term ϕ is added to the loss f .

3.1 A model-based view point

Many classical methods for solving (1) can be summarized by model-based stochastic proximal point: in
each iteration, a model fx(·; s) is constructed approximating f(·; s) locally around x. With Sk ∼ P being
drawn at random, this yields the update

xk+1 = arg min
y∈Rn

fxk(y;Sk) + 1
2αk
‖y − xk‖2. (5)

The theoretical foundation for this family of methods has been established by Asi & Duchi (2019) and Davis
& Drusvyatskiy (2019). They give the following three models as examples:

(i) Linear: fx(y; s) := f(x; s) + 〈g, y − x〉 with g ∈ ∂f(x; s).

(ii) Full: fx(y; s) := f(y; s).

(iii) Truncated: fx(y; s) := max{f(x; s) + 〈g, y − x〉, infz∈Rn f(z; s)} where g ∈ ∂f(x; s).

It is easy to see that update (5) for the linear model is equal to (SGD) while the full model results in the
stochastic proximal point method. For the truncated model, (5) results in the update

xk+1 = xk −min
{
αk,

f(xk;Sk)− infz∈Rn f(z;Sk)
‖gk‖2

}
gk, gk ∈ ∂f(xk, Sk). (6)

More generally, one can replace the term infx∈Rn f(x;Sk) with an arbitrary lower bound of f(·;Sk) (cf.
Lemma 10). The model-based stochastic proximal point method for the truncated model is given in Algo-
rithm 1. The connection between the truncated model and the method depicted in (6) is not a new insight
and has been pointed out in several works (including (Asi & Duchi, 2019; Loizou et al., 2021) and (Berrada
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et al., 2019, Prop. 1)). For simplicity, we refer to Algorithm 1 as SPS throughout this article. However, it
should be pointed out that this acronym (and variations of it) have been used for stochastic Polyak-type
methods in slightly different ways (Loizou et al., 2021; Gower et al., 2021).

Algorithm 1 SPS

Require: x0 ∈ Rn, step sizes αk > 0.
for k = 0, 1, 2, . . . ,K − 1 do
1. Sample Sk and set Ck := C(Sk).
2. Choose gk ∈ ∂f(xk;Sk). If gk = 0, set xk+1 = xk. Otherwise, set

xk+1 = xk − γkgk, γk = min
{
αk,

f(xk;Sk)− Ck
‖gk‖2

}
. (7)

return xK

For instance consider again the SPSmax method

xk+1 = xk −min
{
γb,

fik(xk)− C(sik)
c‖∇fik(xk)‖2

}
∇fik(xk), (SPSmax)

where c, γb > 0. Clearly, for c = 1 and αk = γb, update (7) is identical to SPSmax. With this in mind, we
can interpret the hyperparameter γb in SPSmax simply as a step size for the model-based stochastic proximal
point step. For the parameter c on the other hand, the model-based approach motivates the choice c = 1.
In this article, we will focus on this natural choice c = 1 which also reduces the amount of hyperparameter
tuning. However, we should point out that, in the strongly convex case, c = 1/2 gives the best rate of
convergence in (Loizou et al., 2021).

4 The regularized case

Now we consider regularized problems of the form (2), i.e.

min
x∈Rn

ψ(x), ψ(x) = f(x) + ϕ(x),

where ϕ : Rn → R ∪ {∞} is a proper, closed, λ-strongly convex function for λ ≥ 0 (we allow λ = 0). For
s ∈ S, denote by ψx(·; s) a stochastic model of the objective ψ at x. We aim to analyze algorithms with the
update

xk+1 = arg min
x∈Rn

ψxk(x;Sk) + 1
2αk
‖x− xk‖2, (8)

where Sk ∼ P and αk > 0. Naively, if we know a lower bound C̃(s) of f(·; s) + ϕ(·), the truncated model
could be constructed for the function f(x; s) + ϕ(x), resulting in

ψx(y; s) = max{f(x; s) + ϕ(x) + 〈g + u, y − x〉, C̃(s)}, g ∈ ∂f(x; s), u ∈ ∂ϕ(x). (9)

In fact, Asi & Duchi (2019) and Loizou et al. (2021) work in the setting of unregularized problems and hence
their approaches would handle regularization in this way. What we propose instead, is to only truncate a
linearization of the loss f(x; s), yielding the model

ψx(y; s) = fx(y; s) + ϕ(y), fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)}, g ∈ ∂f(x; s). (10)

Solving (8) with the model in (10) results in

xk+1 = arg min
y∈Rn

max{f(xk;Sk) + 〈gk, y − xk〉, C(Sk)}+ ϕ(y) + 1
2αk
‖y − xk‖2. (11)

5



Published in Transactions on Machine Learning Research (05/2023)

−6 −4 −2 0 2 4 6
−1

0

1

2

3

4

5

6

x0

x?
x̂1

x1

f(x; s) = ln(1 + exp(−0.5 · x)), α = 10.0, λ = 0.1

f(·; s) + ϕ

ProxSPS model

SPS model

ProxSPS objective

SPS objective

(a) Regularized logistic loss.

−2 0 2
−3

−2

−1

0

1

2

3
ProxSPS

−2 0 2
−3

−2

−1

0

1

2

3
SPS

(b) Regularized squared loss with αk = 1, λ = 1.

Figure 1: a) SPS refers to model (9) whereas ProxSPS refers to (10). We plot the corresponding model
ψx0(y; s) and the objective function of (8). x1 (resp. x̂1) denotes the new iterate for ProxSPS (resp. SPS), x?
is the minimizer of f(·; s) + ϕ. b) Streamlines of the vector field V (xk) := xk+1 − xk, for f(x) = ‖Ax− b‖2
and for the deterministic update, i.e. f(x; s) = f(x). ProxSPS refers to update (14) and SPS refers to (13).
The circle marks the minimizer of f(x) + λ

2 ‖x‖
2.

The resulting model-based stochastic proximal point method is given in Algorithm 2 3. Lemma 12 shows
that, if proxϕ is known, update (11) can be computed by minimizing a strongly convex function over a
compact one-dimensional interval. The relation to the proximal operator of ϕ motivates the name ProxSPS.
Further, the ProxSPS update (11) has a closed form solution when ϕ is the squared `2-norm, as we detail in
the next section.

Algorithm 2 ProxSPS

Require: x0 ∈ Rn, step sizes αk > 0.
for k = 0, 1, 2, . . . ,K − 1 do
1. Sample Sk and set Ck := C(Sk).
2. Choose gk ∈ ∂f(xk;Sk).

Update xk+1 according to (11).
return xK

4.1 The special case of `2-regularization

When ϕ(x) = λ
2 ‖x‖

2 for some λ > 0, ProxSPS (11) has a closed form solution as we show next in Lemma 1.
For this lemma, recall that the proximal operator of ϕ(x) = λ

2 ‖x‖
2 is given by proxαϕ(x) = 1

1+αλx for all
α > 0, x ∈ Rn.
Lemma 1. Let ϕ(x) = λ

2 ‖x‖
2 and let g ∈ ∂f(x; s) and C(s) ≤ infz∈Rn f(z; s) hold for all s ∈ S. For

ψx(y; s) = fx(y; s) + ϕ(y) with fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)} consider the update

xk+1 = arg min
x∈Rn

ψxk(x;Sk) + 1
2αk
‖x− xk‖2.

Denote Ck := C(Sk) and let gk ∈ ∂f(xk;Sk). Define

τ+
k :=

0 if gk = 0,

min
{
αk,
(

(1+αkλ)(f(xk;Sk)−Ck)−αkλ〈gk,xk〉
‖gk‖2

)
+

}
else.

3For ϕ = 0, Algorithm 2 is identical to Algorithm 1.
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Update (11) is given by

xk+1 = 1
1 + αkλ

(
xk − τ+

k gk

)
= proxαkϕ(xk − τ+

k gk). (12)

See Lemma 9 in the appendix for an extended version of the above lemma and its proof. The update (12)
can be naturally decomposed into two steps, one stochastic gradient step with an adaptive stepsize, that is
x̄k+1 = xk− τ+

k gk followed by a proximal step xk+1 = proxαkϕ(x̄k+1). This decoupling into two steps, makes
it easier to interpret the effect of each step, with τ+

k adjusting for the scale/curvature and the following
proximal step shrinking the resulting parameters. There is no clear separation of tasks if we apply the SPS
method to the regularized problem, as we see next.

Algorithm 3 ProxSPS for ϕ = λ
2 ‖ · ‖

2

Require: x0 ∈ Rn, step sizes αk > 0.
for k = 0, 1, 2, . . . ,K − 1 do
1. Sample Sk and set Ck := C(Sk).
2. Choose gk ∈ ∂f(xk;Sk). If gk = 0, set xk+1 = 1

1+αkλx
k. Otherwise, set

xk+1 = 1
1 + αkλ

[
xk −min

{
αk,

(
(1 + αkλ)(f(xk;Sk)− Ck)− αkλ〈gk, xk〉

‖gk‖2

)
+

}
gk

]
.

return xK

4.2 Comparing the model of SPS and ProxSPS

For simplicity, assume again the discrete sample space setting (ER) with differentiable loss functions fi and
let ϕ = λ

2 ‖ · ‖
2. Clearly, the composite problem (2) can be transformed to an instance of (1) by setting

`i(x) := fi(x) + λ
2 ‖x‖

2 and solving minx `(x) with `(x) := 1
N

∑N
i=1 `i(x). Assume that a lower bound

`i ≤ infx `i(x) is known. In this case (9) becomes

ψx(y; si) = max
{
fi(x) + λ

2 ‖x‖
2 + 〈∇fi(x) + λx, y − x〉, `i

}
.

Due to Lemma 10, if ∇fik(xk) + λxk 6= 0, the update (8) is given by

xk+1 = xk −min
{
αk,

fik(xk) + λ
2 ‖x

k‖2 − `ik
‖∇fik(xk) + λxk‖2

}
(∇fik(xk) + λxk). (13)

We refer to this method, which is using model (9), as SPS. On the other hand, using model (10) and if
∇fik(xk) 6= 0, the update of ProxSPS (12) is

xk+1 = 1
1+αkλ

[
xk −min

{
αk,
(

(1+αkλ)(fik (xk)−C(sik ))−αkλ〈∇fik (xk),xk〉
‖∇fik (xk)‖2

)
+

}
∇fik(xk)

]
. (14)

In Fig. 1a, we illustrate the two models (9) (denoted by SPS) and (10) (denoted by ProxSPS) for the logistic
loss with squared `2-regularization. We can see that the ProxSPS model is a much better approximation of
the (stochastic) objective function as it still captures the quadratic behaviour of ϕ. Furthermore, as noted
in the previous section, ProxSPS decouples the step size of the gradient and of the shrinkage, and hence the
update direction depends on αk. In contrast, the update direction of SPS does not depend on αk, and the
regularization effect is intertwined with the adaptive step size. Another way to see that the model (10) on
which ProxSPS is based on is a more accurate model as compared to the SPS model (9), is that the resulting
vector field of ProxSPS takes a more direct route to the minimum, as illustrated in Fig. 1b.

Update (14) needs to compute the term 〈∇fik(xk), xk〉 while (13) needs to evaluate ‖xk‖2. Other than that,
the computational costs are roughly identical. For (14), a lower bound `i is required. For non-negative loss
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functions, in practice both `i and C(si) are often set to zero, in which case (10) will be a more accurate
model as compared to (9). 4

4.3 Convergence analysis

For the convergence analysis of Algorithm 2, we can work with the following assumption on ϕ.
Assumption 3. ϕ : Rn → R ∪ {∞} is a proper, closed, λ-strongly convex function with λ ≥ 0.

Throughout this section we consider model (10), i.e. for g ∈ ∂f(x; s), let

ψx(y; s) = fx(y; s) + ϕ(y), fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)}.

Let us first state a lemma on important properties of the truncated model:
Lemma 2. Consider fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)}, where g ∈ ∂f(x; s) is arbitrary and C(s) ≤
infz∈Rn f(z; s). Then, it holds:

(i) The mapping y 7→ fx(y; s) is convex.

(ii) For all x ∈ Rn, it holds fx(x; s) = f(x; s). If f(·; s) is ρs–weakly convex for all s ∈ S, then

fx(y; s) ≤ f(y; s) + ρs
2 ‖y − x‖

2 for all x, y ∈ Rn.

Proof. (i) The maximum over a constant and linear term is convex.

(ii) Recall that C(s) ≤ f(y; s) for all y ∈ Rn. Therefore, fx(x; s) = max{C(s), f(x; s)} = f(x; s). From
weak convexity of f(·; s) it follows f(x; s) + 〈g, y − x〉 ≤ f(y; s) + ρs

2 ‖y − x‖
2 and therefore

fx(y; s) ≤ max{C(s), f(y; s) + ρs
2 ‖y − x‖

2} = f(y; s) + ρs
2 ‖y − x‖

2 for all y ∈ Rn.

4.3.1 Globally bounded subgradients

In this section, we show that the results for stochastic model-based proximal point methods in Davis &
Drusvyatskiy (2019) can be immediately applied to our specific model – even though this model has not
been explicitly analyzed in their article. This, however, requires assuming that the subgradients are bounded.
Proposition 3. Let Assumption 3 hold and assume that there is an open, convex set U containing dom ϕ.
Let f(·; s) be ρs–weakly convex for all s ∈ S and let ρ = E[ρS ]. Assume that there exists Gs ∈ R+ for all
s ∈ S, such that G :=

√
E[G2

S ] <∞ and

‖g(x; s)‖ ≤ Gs ∀g(x; s) ∈ ∂f(x; s), ∀x ∈ U. (15)

Then, ψx(y; s) satisfies (Davis & Drusvyatskiy, 2019, Assum. B), in particular it holds

fx(x; s)− fx(y; s) ≤ Gs‖x− y‖ for all s ∈ S and all x, y ∈ U. (16)

Remark 1. We state all four properties (B1)–(B4) of (Davis & Drusvyatskiy, 2019, Assum. B) explicitly in
the Appendix, see Proposition 14 which also contains the proof. The first three properties follow immediately
in our setting. Only the last property (B4), stated in (16), requires the additional assumption (15).
Corollary 4 (Weakly convex case). Let the assumptions of Proposition 3 hold with ρs > 0 for all s ∈ S.
Let ρ = E[ρS ] < ∞ and let ∆ ≥ env1/(2ρ)

ψ (x0) − minψ. Let {xk}k=0,...,K be generated by Algorithm 2 for

constant step sizes αk =
(

2ρ+
√

4ρG2K
∆

)−1
. Then, it holds

E‖∇env1/(2ρ)
ψ (xK∼ )‖2 ≤ 8ρ∆

K
+ 16G

√
ρ∆
K
,

where xK∼ is uniformly drawn from {x0, . . . , xK−1}.
4For single element sampling, inf `i can sometimes be precomputed (e.g. regularized logistic regression, see (Loizou et al.,

2021, Appendix D)). But even in this restricted setting it is not clear how to estimate inf `i when using mini-batching.
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Proof. The claim follows from Proposition 3 and (Davis & Drusvyatskiy, 2019, Thm. 4.3), (4.16) setting
η = 0, ρ̄ = 2ρ, T = K − 1 and βt = α−1

k .

Corollary 5 ((Strongly) convex case). Let the assumptions of Proposition 3 hold with ρs = 0 for all s ∈ S.
Let λ > 0 and x? = arg minx ψ(x). Let {xk}k=0,...,K be generated by Algorithm 2 for step sizes αk = 2

λ(k+1) .
Then, it holds

E
[
ψ
(

2
(K+1)(K+2)−2

K∑
k=1

(k + 1)xk
)
− ψ(x?)

]
≤ λ

(K + 1)2 ‖x
0 − x?‖2 + 8G2

λ(K + 1) .

Proof. As ρs = 0 and hence ρ = 0, we have that (Davis & Drusvyatskiy, 2019, Assum. B) is satisfied with
τ = 0 (in the notation of (Davis & Drusvyatskiy, 2019), see Proposition 14). Moreover, by Lemma 2, (i)
and λ–strong convexity of ϕ, we have λ–strong convexity of ψx(·; s). The claim follows from Proposition 3
and (Davis & Drusvyatskiy, 2019, Thm. 4.5) setting µ = λ, T = K − 1 and βt = α−1

k .

4.3.2 Lipschitz smoothness

Assumption (15), i.e. having globally bounded subgradients, is strong: it implies Lipschitz continuity of f
(cf. (Davis & Drusvyatskiy, 2019, Lem. 4.1)) and simple functions such as the squared loss do not satisfy
this. Therefore, we provide additional guarantees for the smooth case, without the assumption of globally
bounded gradients.

The following result, similar to (Davis & Drusvyatskiy, 2019, Lem. 4.2), is the basic inequality for the
subsequent convergence analysis.
Lemma 6. Let Assumption 3 hold. Let xk+1 be given by (11) and ψxk be given in (10). For every x ∈ Rn
it holds

(1 + αkλ)‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 + 2αk
(
ψxk(x;Sk)− ψxk(xk+1;Sk)

)
. (17)

Moreover, it holds

ψxk(xk+1;Sk) ≥ f(xk;Sk) + 〈gk, xk+1 − xk〉+ ϕ(xk+1). (18)

Proof. The objective of (11) is given by Ψk(y) := ψxk(y;Sk)+ 1
2αk ‖y−x

k‖2. Using Lemma 2, (i) and λ-strong
convexity of ϕ, Ψk(y) is (λ+ 1

αk
)–strongly convex. As xk+1 is the minimizer of Ψk(y), for all x ∈ Rn we have

Ψk(x) ≥ Ψk(xk+1) + 1 + αkλ

2αk
‖xk+1 − x‖2 ⇐⇒

(1 + αkλ)‖xk+1 − x‖2 ≤ ‖xk − x‖2 − ‖xk+1 − xk‖2 + 2αk
(
ψxk(x;Sk)− ψxk(xk+1;Sk)

)
.

Moreover, by definition of fx(y; s) in (10) we have

ψxk(xk+1;Sk) = fxk(xk+1;Sk) + ϕ(xk+1) ≥ f(xk;Sk) + 〈gk, xk+1 − xk〉+ ϕ(xk+1).

We will work in the setting of differentiable loss functions with bounded gradient noise.
Assumption 4. The mapping f(·; s) is differentiable for all s ∈ S and there exists β ≥ 0 such that

E‖∇f(x;S)−∇f(x)‖2 ≤ β for all x ∈ Rn. (19)

The assumption of bounded gradient noise (19) (in the differentiable setting) is indeed a weaker assumption
than (15) since E[∇f(x;S)] = ∇f(x) and

E‖∇f(x;S)−∇f(x)‖2 ≤ β ⇐⇒ E‖∇f(x;S)‖2 ≤ ‖∇f(x)‖2 + β.

9
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Remark 2. Assumption 4 (and the subsequent theorems) could be adapted to the case where f(·; s) is
weakly convex but non-differentiable: for fixed x ∈ Rn, due to (Bertsekas, 1973, Prop. 2.2) and (Davis &
Drusvyatskiy, 2019, Lem. 2.1) it holds

E[∂f(x;S)] = E
[
∂
(
f(x;S) + ρS

2 ‖x‖
2)− ρSx] = ∂f(x) + ρx− E[ρSx] = ∂f(x),

where we used ρ = E[ρS ]. Hence, for gs ∈ ∂f(x; s) we have E[gS ] ∈ ∂f(x) and (19) is replaced by

E‖gS − E[gS ]‖2 ≤ β for all x ∈ Rn.

However, as we will still require that f is Lipschitz-smooth, we present our results for the differentiable
setting.

The proof of the subsequent theorems can be found in Appendix A.2 and Appendix A.3.
Theorem 7. Let Assumption 3 and Assumption 4 hold. Let f(·; s) be convex for all s ∈ S and let f be
L–smooth (4). Let x? = arg minx∈Rn ψ(x) and let θ > 1. Let {xk}k=0,...,K be generated by Algorithm 2 for
step sizes αk > 0 such that

αk ≤
1− 1/θ
L

. (20)

Then, it holds

(1 + αkλ)E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2αkE[ψ(x?)− ψ(xk+1)] + θβα2
k. (21)

Moreover, we have:

a) If λ > 0 and αk = 1
λ(k+k0) with k0 ≥ 1 large enough such that (20) is fulfilled, then

E
[
ψ
(

1
K

K−1∑
k=0

xk+1
)
− ψ(x?)

]
≤ λk0

2K ‖x
0 − x?‖2 + θβ(1 + lnK)

2λK . (22)

b) If λ = 0 and αk = α√
k+1 with α ≤ 1−1/θ

L , then

E
[
ψ
(

1∑K−1
k=0

αk

K−1∑
k=0

αkx
k+1
)
− ψ(x?)

]
≤ ‖x0 − x?‖2

4α(
√
K + 1− 1)

+ θβα(1 + lnK)
4(
√
K + 1− 1)

. (23)

c) If f is µ–strongly convex with µ ≥ 0,5 and αk = α fulfilling (20), then

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 + θβα

µ+ 2λ. (24)

Remark 3. If λ > 0, for the decaying step sizes in item a) we get a rate of Õ( 1
K ) if λ > 0. In the

strongly convex case in item c), for constant step sizes, we get a linear convergence upto a neighborhood of
the solution. Note that the constant on the right-hand side of (24) can be forced to be small using a small
α. Further, the rate (24) has a 2λ term, instead of λ. This slight improvement in the rate occurs because we
do not linearize ϕ in the ProxSPS model.
Theorem 8. Let Assumption 3 and Assumption 4 hold. Let f(·; s) be ρs–weakly convex for all s ∈ S and
let ρ := E[ρS ] < ∞. Let f be L–smooth6 and assume that inf ψ > −∞. Let {xk}k≥0 be generated by
Algorithm 2. For θ > 1, under the condition

η ∈

{
(0, 1

ρ−λ ) if ρ > λ

(0,∞) else
, αk ≤

1− θ−1

L+ η−1 , (25)

5Note that as f(·; s) is convex, so is f , and that we allow µ = 0 here.
6As f is ρ–weakly convex, this implies ρ ≤ L.
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it holds
K−1∑
k=0

αkE‖∇envηψ(xk)‖2 ≤
2(envηψ(x0)− inf ψ)

1− η(ρ− λ) + βθ

η(1− η(ρ− λ))

K−1∑
k=0

α2
k. (26)

Moreover, for the choice αk = α√
k+1 and with α ≤ 1−θ−1

L+η−1 , we have

min
k=0,...,K−1

E‖∇envηψ(xk)‖2 ≤
envηψ(x0)− inf ψ

α(1− η(ρ− λ))(
√
K + 1− 1)

+ βθ

2η(1− η(ρ− λ))
α(1 + lnK)

(
√
K + 1− 1)

.

If instead we choose αk = α√
K

and with α ≤
√
K 1−θ−1

L+η−1 , we have

E‖∇envηψ(xK∼ )‖2 ≤
2(envηψ(x0)− inf ψ)
α(1− η(ρ− λ))

√
K

+ βθ

η(1− η(ρ− λ))
α√
K
,

where xK∼ is uniformly drawn from {x0, . . . , xK−1}.

4.3.3 Comparison to existing theory

Recalling that Algorithm 1 is equivalent to SPSmax with c = 1 and γb = αk, we can apply Theorem 7 and
Theorem 8 for the unregularized case where ϕ = 0 and hence obtain new theory for (SPSmax). We start
by summarizing the main theoretical results for SPSmax given in (Loizou et al., 2021; Orvieto et al., 2022):
in the (ER) setting, recall the interpolation constant σ2 = E[f(x?;S) − C(S)] = 1

N

∑N
i=1 fi(x?) − C(si). If

fi is Li-smooth and convex, (Orvieto et al., 2022, Thm. 3.1) proves convergence to a neighborhood of the
solution, i.e. the iterates {xk} of SPSmax satisfy

E[f(x̄K)− f(x?)] ≤ ‖x
0 − x?‖2

αK
+ 2γbσ2

α
, (27)

where x̄K := 1
K

∑K−1
k=0 xk, α := min{ 1

2cLmax
, γb}, and Lmax := maxi∈[N ] Li.7 For the nonconvex case, if fi

is Li-smooth and under suitable assumptions on the gradient noise, (Loizou et al., 2021, Thm. 3.8) states
that, for constants c1 and c2, we have

min
k=1,...,K

E‖∇f(xk)‖2 ≤ 1
c1K

+ c2. (28)

The main advantage of these results is that γb can be held constant; furthermore in the convex setting (27),
the choice of γb requires no knowledge of the smoothness constants Li. For both results however, we can
not directly conclude that the right-hand side goes to zero as K → ∞ as there is an additional constant.
Choosing γb sufficiently small does not immediately solve this as c1, α and c2 all go to zero as γb goes to
zero.
Our results complement this by showing exact convergence for the (weakly) convex case, i.e. without constants
on the right-hand side. This comes at the cost of an upper bound on the step sizes αk which depends on the
smoothness constant L. For exact convergence, it is important to use decreasing step sizes αk: Theorem 8
shows that the gradient of the Moreau envelope converges to zero at the rate O(1/

√
K) for the choice of

αk = α√
K
.8 Another minor difference to (Loizou et al., 2021) is that we do not need to assume Lipschitz-

smoothness for all f(·; s) and work instead with the (more general) assumption of weak convexity. However,
we still need to assume Lipschitz smoothness of f .

Another variant of SPSmax, named DecSPS, has been proposed in (Orvieto et al., 2022): for unregularized
problems (1) it is given by

xk+1 = xk − γ̂kgk, γ̂k = 1
ck

min
{f(xk;Sk)− Ck

‖gk‖2
, ck−1γ̂k−1

}
(DecSPS)

7The theorem also handles the mini-batch case but, for simplicity, we state the result for sampling a single ik in each
iteration.

8Notice that αk then depends on the total number of iterations K and hence one would need to fix K before starting the
method.
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where {ck}k≥0 is an increasing sequence. In the (ER) setting, if all fi are Lipschitz-smooth and strongly
convex, DecSPS converges with a rate of O( 1√

K
), without knowledge of the smoothness or convexity constants

(cf. (Orvieto et al., 2022, Thm. 5.5)). However, under these assumptions, the objective f is strongly convex
and the optimal rate is O( 1

K ), which we achieve up to a logarithmic factor in Theorem 7, (22). Moreover,
for DecSPS no guarantees are given for nonconvex problems.

For regularized problems, the constant in (27) is problematic if σ2 (computed for the regularized loss) is
moderately large. We refer to Appendix D.5 where we show that this can easily happen. For ProxSPS, our
theoretical results Theorem 7 and Theorem 8 are not affected by this as they do not depend on the size of
σ2. To the best of our knowledge, this is the first work to show theory for the stochastic Polyak step size in
a setting that explicitly considers regularization. Moreover, our results also cover the case of non-smooth or
non-real-valued regularization ϕ where the theory in (Loizou et al., 2021) can not be applied.

5 Numerical experiments

Throughout we denote Algorithm 1 with SPS and Algorithm 3 with ProxSPS. For all experiments we use
PyTorch (Paszke et al., 2019)9.

5.1 General parameter setting

For SPS and ProxSPS we always use C(s) = 0 for all s ∈ S. For αk, we use the following schedules:

• constant: set αk = α0 for all k and some α0 > 0.

• sqrt: set αk = α0√
j
for all iterations k during epoch j.

As we consider problems with `2-regularization, for SPS we handle the regularization term by incorporating
it into all individual loss functions, as depicted in (13). With ϕ = λ

2 ‖ · ‖
2 for λ ≥ 0, we denote by ζk the

adaptive step size term of the following algorithms:

• for SPS we have ζk := f(xk;Sk)+λ
2 ‖x

k‖2

‖gk+λxk‖2 (cf. (13) with `ik = 0 ),

• for ProxSPS we have ζk :=
(

(1+αkλ)f(xk;Sk)−αkλ〈gk,xk〉
‖gk‖2

)
+

and thus τ+
k = min{αk, ζk} (cf. Lemma 1

with C(Sk) = 0).

5.2 Regularized matrix factorization

Problem description: For A ∈ Rq×p, consider the problem

min
W1∈Rr×p,W2Rq×r

Ey∼N(0,I)‖W2W1y −Ay‖2 = min
W1∈Rr×p,W2Rq×r

‖W2W1 −A‖2F .

For the above problem, SPSmax has shown superior performance than other methods in the numerical experi-
ments of (Loizou et al., 2021). The problem can can be turned into a (nonconvex) empirical risk minimization
problem by drawing N samples {y(1), . . . , y(N)}. Denote b(i) := Ay(i). Adding squared norm regularization
with λ ≥ 0 (cf. (Srebro et al., 2004)), we obtain the problem

min
W1∈Rr×p,W2Rq×r

1
N

N∑
i=1
‖W2W1y

(i) − b(i)‖2 + λ
2
(
‖W1‖2F + ‖W2‖2F

)
. (29)

This fits the format of (2), where x = (W1,W2), using a finite sample space S = {s1, . . . , sN}, f(x; si) =
‖W2W1y

(i)−Ay(i)‖2, and ϕ = λ
2 ‖·‖

2
F . Clearly, zero is a lower bound of f(·; si) for all i ∈ [N ]. We investigate

ProxSPS for problems of form (29) on synthetic data. For details on the experimental procedure, we refer
9The code for our experiments and an implementation of ProxSPS can be found at https://github.com/fabian-sp/ProxSPS.
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Figure 2: Objective function for the Matrix Factorization problem (29), with constant (left) and sqrt
(right) step size schedule and several choices of initial values. Here mink ψ(xk) is the best objective function
value found over all methods and all iterations.

to Appendix D.1.
Discussion: We discuss the results for the setting matrix-fac1 in Table 1 in the Appendix. We first fix
λ = 0.001 and consider the three methods SPS, ProxSPS and SGD. Fig. 2 shows the objective function over
50 epochs, for both step size schedules sqrt and constant, and several initial values α0. For the constant
schedule, we observe that ProxSPS converges quickly for all initial values while SPS is unstable. Note that
for SGD we need to pick much smaller values for α0 in order to avoid divergence (SGD diverges for large α0).
SPS for large α0 is unstable, while for small α0 we can expect similar performance to SGD (as γk is capped
by αk = α0). However, in the regime of small α0, convergence will be very slow. Hence, one of the main
advantages of SPS, namely that its step size can be chosen constant and moderately large (compared to SGD),
is not observed here. ProxSPS fixes this by admitting a larger range of initial step sizes, all of which result
in fast convergence, and therefore is more robust than SGD and SPS with respect to the tuning of α0.

For the sqrt schedule, we observe in Fig. 2 that SPS can be stabilized by reducing the values of αk over
the course of the iterations. However, for large α0 we still see instability in the early iterations, whereas
ProxSPS does not show this behaviour. We again observe that ProxSPS is less sensitive with respect to the
choice of α0 as compared to SGD. The empirical results also confirm our theoretical statement, showing exact
convergence if αk is decaying in the order of 1/

√
k. From Fig. 3, we can make similar observations for the

validation error, defined as 1
Nval

∑Nval
i=1 ‖W2W1y

(i) − b(i)val‖2, where b
(i)
val are the Nval = N measurements from

the validation set (cf. Appendix D.1 for details).

We now consider different values for λ and only consider the sqrt schedule, as we have seen that for constant
step sizes, SPS would not work for large step sizes and be almost identical to SGD for small step sizes. Fig. 4
shows the objective function and validation error. Again, we can observe that SPS is unstable for large
initial values α0 for all λ ≥ 10−4. On the other hand, ProxSPS has a good performance for a wide range
of α0 ∈ [1, 10] if λ is not too large. Indeed, ProxSPS convergence only starts to deteriorate when both α0
and λ are very large. For α0 = 1, the two methods give almost identical results. Finally, in Fig. 5a we plot
the validation error as a function of λ (taking the median over the last ten epochs). The plot shows that
the best validation error is obtained for λ = 10−4 and for large α0. With SPS the validation error is higher,
in particular for large α0 and λ. Fig. 5b shows that ProxSPS leads to smaller norm of the iterates, hence a
more effective regularization. Finally, we plot the actual step sizes for both methods in Fig. 6. We observe
that the adaptive step size ζk (Definition at end of Section 5.1) is typically larger and has more variance
for SPS than ProxSPS, in particular for large λ. This increased variance might explain why SPS is unstable
when α0 is large: the actual step size is the minimum between αk and ζk and hence both terms being large
could lead to instability. On the other hand, if α0 = 1, the plot confirms that SPS and ProxSPS are almost
identical methods as ζk > αk for most iterations.
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Figure 3: Validation error for the Matrix Factorization problem (29), with constant (left) and sqrt (right)
step size schedule and several choices of initial values.
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Figure 4: Objective function value and validation error over the course of optimization. For the validation
error, we plot a rolling median over five epochs in order to avoid clutter.

We provide additional numerical results which confirm the above findings in the Appendix: this includes the
results for the setting matrix-fac2 of Table 1 in Appendix D.2 as well as a matrix completion task on a
real-world dataset of air quality sensor networks (Rivera-Muñoz et al., 2022) in Appendix D.3.

5.3 Deep networks for image classification

We train a ResNet56 and ResNet110 model (He et al., 2016) on the CIFAR10 dataset. We use the data
loading and preprocessing procedure and network implementation from https://github.com/akamaster/
pytorch_resnet_cifar10. We do not use batch normalization. The loss function is the cross-entropy loss
of the true image class with respect to the predicted class probabilities, being the output of the ResNet56
network. We add λ

2 ‖x‖
2 as regularization term, where x consists of all learnable parameters of the model.

The CIFAR10 dataset consists of 60,000 images, each of size 32 × 32, from ten different classes. We use
the PyTorch split into 50,000 training and 10,000 test examples and use a batch size of 128. For AdamW,
we set the weight decay parameter to λ and set all other hyperparameters to its default. We use the
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is one standard deviation (computed over ten independent runs). For all values, we take the median over
epochs [40, 50].

Figure 6: Adaptive step size selection for SPS and ProxSPS. We plot ζk (see definition in Section 5.1) as dots
for each iteration as well as their median over each epoch. For this plot, we use the results of only one of
the ten runs.

AdamW-implementation from https://github.com/zhenxun-zhuang/AdamW-Scale-free as it does not – in
contrast to the Pytorch implementation – multiply the weight decay parameter with the learning rate, which
leads to better comparability to SPS and ProxSPS for identical values of λ. For SPS and ProxSPS we use the
sqrt-schedule and α0 = 1. We run each method repeatedly using (the same) three different seeds for the
dataset shuffling.
Discussion: For Resnet56, from the bottom plot in Fig. 7, we observe that both SPS and ProxSPS work well
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Figure 7: ResNet56: (Top): Validation accuracy and model norm for three values of the regularization
parameter λ. Validation accuracy is defined as the ratio of correctly labeled images on the validation set (i.e.
Top-1 accuracy), plotted as five-epoch running median. (Bottom): With ‖xk‖ we denote the norm of all
learnable parameters at the k-th iteration. Shaded area is two standard deviations over three independent
runs.

with ProxSPS leading to smaller weights. For λ = 5e − 4, the progress of ProxSPS stagnates after roughly
25 epochs. This can be explained by looking at the adaptive step size term ζk in Fig. 9a: as it decays over
time we have τ+

k = ζk � αk. Since every iteration of ProxSPS shrinks the weights by a factor 1
1+αkλ , this

leads to a bias towards zero. This suggests that we should choose αk roughly of the order of ζk, for example
by using the values of ζk from the previous epoch.

For the larger model Resnet110 however, SPS does not make progress for a long time because the adaptive
step size is very small (see Fig. 8 and Fig. 9b). ProxSPS does not share this issue and performs well after a
few initial epochs. For larger values of λ, the training is also considerably faster than for AdamW. Generally,
we observe that ProxSPS (and SPS for Resnet56) performs well in comparison to AdamW. This is achieved
without extensive hyperparameter tuning (in particular this suggests that setting c = 1 in SPSmax leads to
good results and reduces tuning effort).

Furthermore, we trained a ResNet110 with batch norm on the Imagenet32 dataset. The plots and exper-
imental details can be found in Appendix D.4. From Fig. 15, we conclude that SPS and ProxSPS perform
equally well in this experiment. Both SPS and ProxSPS are less sensititve with respect to the regularization
parameter λ than AdamW and the adaptive step size leads to faster learning in the initial epochs compared to
SGD. We remark that with batch norm, the effect of `2-regularization is still unclear as the output of batch
norm layers is invariant to scaling and regularization becomes ineffective (Zhang et al., 2019).

6 Conclusion

We proposed and analyzed ProxSPS, a proximal version of the stochastic Polyak step size. We arrived
at ProxSPS by using the framework of stochastic model-based proximal point methods. We then used this
framework to argue that the resulting model of ProxSPS is a better approximation as compared to the model
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Figure 8: ResNet110: Validation accuracy as five-epoch running median (top) and model norm (bottom) for
three values of λ. Shaded area is two standard deviations over three independent runs.

used by SPS when using regularization. Our theoretical results cover a wide range of optimization problems,
including convex and nonconvex settings. We performed a series of experiments comparing ProxSPS, SPS,
SGD and AdamW when using `2-regularization. In particular, we find that SPS can be very hard to tune
when using `2-regularization, and in contrast, ProxSPS performs well for a wide choice of step sizes and
regularization parameters. Finally, for our experiments on image classification, we find that ProxSPS is
competitive to AdamW, whereas SPS can fail for larger models. At the same time ProxSPS produces smaller
weights in the trained neural network. Having small weights may help reduce the memory footprint of the
resulting network, and even suggests which weights can be pruned.
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A Missing Proofs

A.1 Proofs of model-based update formula

Lemma 9. For λ ≥ 0, let ϕ(x) = λ
2 ‖x‖

2 and let g ∈ ∂f(x; s) and C(s) ≤ infz∈Rn f(z; s) hold for all s ∈ S.
For

ψx(y; s) = fx(y; s) + ϕ(y), fx(y; s) = max{f(x; s) + 〈g, y − x〉, C(s)},

consider the update

xk+1 = arg min
x∈Rn

ψxk(x;Sk) + 1
2αk
‖x− xk‖2. (30)

Denote Ck := C(Sk) and let gk ∈ ∂f(xk;Sk). Define

τ+
k :=

0 if gk = 0,

min
{
αk,
(

(1+αkλ)(f(xk;Sk)−Ck)−αkλ〈gk,xk〉
‖gk‖2

)
+

}
else.

Then, we have

xk+1 = 1
1 + αkλ

xk −
τ+
k

1 + αkλ
gk = 1

1 + αkλ

(
xk − τ+

k gk

)
= proxαkϕ(xk − τ+

k gk). (31)

Define τk := 0 if gk = 0 and τk := min
{
αk,

(1+αkλ)(f(xk;Sk)−Ck)−αkλ〈gk,xk〉
‖gk‖2

}
else. Then, it holds τk ≤ τ+

k

and

ψxk(xk+1;Sk) = f(xk;Sk)− αkλ
1+αkλ 〈gk, x

k〉 − τk
1+αkλ‖gk‖

2 + ϕ(xk+1). (32)

Proof. Note that max{f(xk;Sk) + 〈gk, y − xk〉, Ck} is convex as a function of y. The update is therefore
unique. First, if gk = 0, then clearly xk+1 = proxαkϕ(xk) = 1

1+αkλx
k and (32) holds true. Now, let gk 6= 0.

The solution of (30) is either in {y|f(xk;Sk) + 〈gk, y− xk〉 < Ck}, or in {y|f(xk;Sk) + 〈gk, y− xk〉 > Ck} or
in {y|f(xk;Sk) + 〈gk, y − xk〉 = Ck}. We therefore solve three problems:

(P1) Solve
y+ = arg min

y
Ck + λ

2 ‖y‖
2 + 1

2αk
‖y − xk‖2.

Clearly, the solution is y+ = 1
1+αkλx

k. This y+ solves (30) if f(xk;Sk) + 〈gk, y+ − xk〉 < Ck.

(P2) Solve
y+ = arg min

y
f(xk;Sk) + 〈gk, y − xk〉+ λ

2 ‖y‖
2 + 1

2αk
‖y − xk‖2.

The optimality condition is 0 = αkgk+αkλy++y+−xk. Thus, the solution is y+ = 1
1+αkλ (xk−αkgk).

This y+ solves (30) if f(xk;Sk) + 〈gk, y+ − xk〉 > Ck.

(P3) Solve

y+ = arg min
y

λ

2 ‖y‖
2 + 1

2αk
‖y − xk‖2, s.t. f(xk;Sk) + 〈gk, y − xk〉 = Ck.
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The KKT conditions are given by

αkλy + y − xk + µgk = 0,
f(xk;Sk) + 〈gk, y − xk〉 = Ck.

Taking the inner product of the first equation with gk, we get

(1 + αkλ)〈gk, y〉 − 〈gk, xk〉+ µ‖gk‖2 = 0.

From the second KKT condition we have 〈gk, y〉 = Ck − f(xk;Sk) + 〈gk, xk〉, hence

(1 + αkλ)
(
Ck − f(xk;Sk) + 〈gk, xk〉

)
− 〈gk, xk〉+ µ‖gk‖2 = 0.

Solving for µ gives µ = (1+αkλ)(f(xk;Sk)−Ck)−αkλ〈gk,xk〉
‖gk‖2 . From the first KKT condition, we obtain

y+ = 1
1 + αkλ

(
xk − µgk

)
= 1

1 + αkλ

(
xk − (1 + αkλ)(f(xk;Sk)− Ck)− αkλ〈gk, xk〉

‖gk‖2
gk
)
.

This y+ solves (30) if neither (P1) nor (P2) provided a solution.

For all three cases, the solution takes the form y+ = 1
1+αkλ [xk − tgk] =: y(t). As ‖gk‖2 > 0, the term

f(xk;Sk) + 〈gk, y(t)−xk〉 is strictly monotonically decreasing in t. We know f(xk;Sk) + 〈gk, y(t)−xk〉 = Ck
for t = µ (from (P3)). Hence, f(xk;Sk) + 〈gk, y(t)− xk〉 < Ck (> Ck) if and only if t > µ (t < µ).

We conclude:

• If f(xk;Sk) + 〈gk, y(0)− xk〉 < Ck, then the solution to (P1) is the solution to (30). This condition
is equivalent to µ < 0.

• If f(xk;Sk) + 〈gk, y(αk)−xk〉 > Ck, then the solution to (P2) is the solution to (30). This condition
is equivalent to αk < µ.

• If neither 0 > µ nor αk < µ hold, i.e. if µ ∈ [0, αk], then the solution to (30) comes from (P3) and
hence is given by y(µ).

Altogether, we get that xk+1 = 1
1+αkλ [xk − τ+

k gk] with τ+
k = min{αk, (µ)+}.

Now, we prove (32). Note that if gk 6= 0, then τk = min{αk, µ} with µ defined as in (P3). In the case of
(P1), we have ψxk(xk+1;Sk) = Ck + ϕ(xk+1). Moreover, it holds µ < 0 and as αk > 0 we have τk = µ.
Plugging τk = µ into the right hand-side of (32), we obtain Ck + ϕ(xk+1).
In the case of (P2) or (P3), we have Ck ≤ f(xk;Sk) + 〈gk, xk+1 − xk〉. Due to f(xk;Sk) + 〈gk, y(t)− xk〉 =
f(xk;Sk)− 1

1+αkλ 〈gk, x
k〉+ t

1+αkλ‖gk‖
2, we obtain (32) as xk+1 = y(αk) and µ > αk in the case of (P2) and

xk+1 = y(µ) and µ ≤ αk in the case of (P3).

Lemma 10. Consider the model fx(y; s) := max{f(x; s) + 〈g, y − x〉, C(s)} where g ∈ ∂f(x; s) and C(s) ≤
infz∈Rn f(z; s) holds for all s ∈ S. Then, update (5) is given as

xk+1 = xk − γkgk, γk =
{

0 if gk = 0,
min

{
αk,

f(xk;Sk)−C(Sk)
‖gk‖2

}
else.

where gk ∈ ∂f(xk;Sk). Moreover, it holds

fxk(xk+1;Sk) = max{C(Sk), f(xk;Sk)− αk‖gk‖2}, (33)

and therefore fxk(xk+1;Sk) = f(xk;Sk)− γk‖gk‖2.

Proof. We apply Lemma 9 with λ = 0. As f(xk;Sk) ≥ C(Sk), we have that τ+
k = τk = γk.
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A.2 Proof of Theorem 7

From now on, denote with Fk the filtration that is generated by the history of all Sj for j = 0, . . . , k − 1.

Proof of Theorem 7. In the proof, we will denote gk = ∇f(xk;Sk). We apply Lemma 6, (17) with x = x?.
Due to Lemma 2 (ii) and convexity of f(·; s) it holds

ψxk(x?;Sk) ≤ f(x?;Sk) + ϕ(x?).

Together with (18), we have

(1 + αkλ)‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 − ‖xk+1 − xk‖2 + 2αk[ϕ(x?)− ϕ(xk+1)]
+ 2αk

[
f(x?;Sk)− f(xk;Sk)− 〈gk, xk+1 − xk〉

]
.

(34)

Smoothness of f yields

−f(xk) ≤ −f(xk+1) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖x

k+1 − xk‖2.

Consequently,

− 〈gk, xk+1 − xk〉 = f(xk)− f(xk)− 〈gk, xk+1 − xk〉
≤ f(xk)− f(xk+1) + 〈∇f(xk)− gk, xk+1 − xk〉+ L

2 ‖x
k+1 − xk‖2

≤ f(xk)− f(xk+1) + θαk
2 ‖∇f(xk)− gk‖2 + 1

2θαk
‖xk+1 − xk‖2 + L

2 ‖x
k+1 − xk‖2.

for any θ > 0, where we used Young’s inequality in the last step. Plugging into (34) gives

(1 + αkλ)‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 +
[
αkL+ 1

θ − 1
]
‖xk+1 − xk‖2 + 2αk[ϕ(x?)− ϕ(xk+1)]

+ 2αk
[
f(x?;Sk)− f(xk;Sk) + f(xk)− f(xk+1)

]
+ θα2

k‖∇f(xk)− gk‖2.

Applying conditional expectation, we have E[f(x?;Sk)|Fk] = f(x?) and

E[−f(xk;Sk) + f(xk)|Fk] = 0, E[‖∇f(xk)− gk‖2|Fk] ≤ β.

Moreover, by assumption, αkL+ 1
θ − 1 ≤ 0. Altogether, applying total expectation yields

(1 + αkλ)E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + 2αkE[ψ(x?)− ψ(xk+1)] + θβα2
k

which proves (21).
Proof of a): let αk = 1

λ(k+k0) . Denote ∆k := E‖xk − x?‖2. Rearranging and summing (21), we have

K−1∑
k=0

E[ψ(xk+1)− ψ(x?)] ≤
K−1∑
k=0

[
1

2αk∆k − 1+αkλ
2αk ∆k+1 + θβαk

2

]
.

Plugging in αk, we have 1+αkλ
2αk = λ(k+k0)

2 + λ
2 and thus

K−1∑
k=0

E[ψ(xk+1)− ψ(x?)] ≤
K−1∑
k=0

[
λ(k+k0)

2 ∆k − λ(k+1+k0)
2 ∆k+1

]
+ θβ

2

K−1∑
k=0

1
λ(k+k0) .

Dividing by K and using convexity of ψ10, we have

E
[
ψ
(

1
K

K−1∑
k=0

xk+1
)
− ψ(x?)

]
≤ λk0

2K ‖x
0 − x?‖2 + θβ

2λK

K−1∑
k=0

1
k+k0

.

10By assumption f is convex and therefore ψ is convex.
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Finally, as k0 ≥ 1, we estimate
∑K−1
k=0

1
k+k0

≤
∑K−1
k=0

1
k+1 ≤ 1 + lnK by Lemma 13 and obtain (22).

Proof of b): Similar to the proof above, we rearrange and sum (21) from k = 0, . . . ,K − 1, and obtain

K−1∑
k=0

αkE[ψ(xk+1)− ψ(x?)] ≤ ‖x
0 − x?‖2

2 + θβ
∑K−1
k=0 α2

k

2 .

We divide by
∑K−1
k=0 αk and use convexity of ψ in order to obtain the left-hand side of (23). Moreover, by

Lemma 13 we have
K−1∑
k=0

αk ≥ 2α(
√
K + 1− 1),

K−1∑
k=0

α2
k ≤ α2(1 + lnK).

Plugging in the above estimates, gives

E
[
ψ
(

1∑K−1
k=0

αk

K−1∑
k=0

αkx
k+1
)
− ψ(x?)

]
≤ ‖x0 − x?‖2

4α(
√
K + 1− 1)

+ θβα(1 + lnK)
4(
√
K + 1− 1)

.

Proof of c): If f is µ–strongly–convex, then ψ is (λ+ µ)–strongly convex and

ψ(x?)− ψ(xk+1) ≤ −µ+λ
2 ‖x

k+1 − x?‖2.

From (21), with αk = α, we get

(1 + α(µ+ 2λ))E‖xk+1 − x?‖2 ≤ E‖xk − x?‖2 + θβα2.

Doing a recursion of the above from k = 0, . . . ,K − 1 gives

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 + θβα2
K∑
k=1

(1 + α(µ+ 2λ))−k

Using the geometric series,
∑K
k=1(1 + α(µ+ 2λ))−k ≤ 1+α(µ+2λ)

α(µ+2λ) − 1 = 1
α(µ+2λ) , and thus

E‖xK − x?‖2 ≤ (1 + α(µ+ 2λ))−K‖x0 − x?‖2 + θβα

µ+ 2λ.

A.3 Proof of Theorem 8

Proof of Theorem 8. In the proof, we will denote gk = ∇f(xk;Sk). By assumption f is ρ-weakly convex and
hence ψ is (ρ− λ)-weakly convex if ρ > λ and convex if ρ ≤ λ. Hence, x̂k := proxηψ(xk) is well-defined for
η < 1/(ρ − λ) if ρ > λ and for any η > 0 else. Note that x̂k is Fk–measurable. We apply Lemma 6, (17)
with x = x̂k. Due to Lemma 2 (ii) it holds

ψxk(x̂k;Sk) = fxk(x̂k;Sk) + ϕ(x̂k) ≤ f(x̂k;Sk) + ρSk
2 ‖x̂

k − xk‖2 + ϕ(x̂k).

Together with (18), this gives

(1 + αkλ)‖xk+1 − x̂k‖2 ≤(1 + αkρSk)‖xk − x̂k‖2 − ‖xk+1 − xk‖2

+ 2αk
(
ϕ(x̂k)− ϕ(xk+1) + f(x̂k;Sk)− f(xk;Sk)− 〈gk, xk+1 − xk〉

)
Analogous to the proof of Theorem 7, due to Lipschitz smoothness, for all θ > 0 we have

−f(xk;Sk)− 〈gk, xk+1 − xk〉 ≤ −f(xk;Sk) + f(xk)
− f(xk+1) + θαk

2 ‖∇f(xk)− gk‖2 +
[ 1

2θαk + L
2
]
‖xk+1 − xk‖2.

24



Published in Transactions on Machine Learning Research (05/2023)

Plugging in gives

(1 + αkλ)‖xk+1 − x̂k‖2 ≤ (1 + αkρSk)‖xk − x̂k‖2 + 2αk
(
ϕ(x̂k)− ϕ(xk+1)

)
+ 2αk

(
f(x̂k;Sk)− f(xk;Sk) + f(xk)− f(xk+1) + θαk

2 ‖∇f(xk)− gk‖2
)

+
[ 1
θ + αkL− 1

]
‖xk+1 − xk‖2.

It holds E[f(x̂k;Sk)− f(xk;Sk)|Fk] = f(x̂k)− f(xk) and E[ψ(x̂k)|Fk] = ψ(x̂k). By Assumption 4, we have
E[‖gk −∇f(xk)‖2|Fk] ≤ β. Altogether, taking conditional expectation yields

(1 + αkλ)E[‖xk+1 − x̂k‖2|Fk] ≤ (1 + αkρ)‖xk − x̂k‖2 + 2αkE
[
ψ(x̂k)− ψ(xk+1)|Fk

]
+ α2

kθβ +
[ 1
θ + αkL− 1

]
E[‖xk+1 − xk‖2|Fk].

Next, the definition of the proximal operator implies that almost surely

ψ(x̂k) + 1
2η‖x̂

k − xk‖2 ≤ ψ(xk+1) + 1
2η‖x

k+1 − xk‖2,

and hence

E
[
ψ(x̂k)− ψ(xk+1)|Fk

]
≤ E

[ 1
2η‖x

k+1 − xk‖2 − 1
2η‖x̂

k − xk‖2|Fk
]
.

Altogether, we have

(1 + αkλ)E[‖xk+1 − x̂k‖2|Fk] ≤ (1 + αk(ρ− η−1))‖xk − x̂k‖2

+ α2
kθβ +

[ 1
θ + αkL+ αkη

−1 − 1
]
E[‖xk+1 − xk‖2|Fk].

From assumption (25), we can drop the last term. Now, we aim for a recursion in envηψ. Using that

1 + αk(ρ− η−1)
1 + αkλ

= 1 + αkλ− αkλ+ αk(ρ− η−1)
1 + αkλ

= 1 + αk(ρ− η−1 − λ)
1 + αkλ

≤ 1 + αk(ρ− η−1 − λ),

we get

E[envηψ(xk+1)|Fk] ≤ E[ψ(x̂k) + 1
2η ‖x

k+1 − x̂k‖2|Fk]

≤ ψ(x̂k) + 1
2η ‖x

k − x̂k‖2︸ ︷︷ ︸
=envη

ψ
(xk)

+ 1
2η
[
αk(ρ− η−1 − λ)

]
‖xk − x̂k‖2 + α2

k

2η θβ.

Now using ‖xk − x̂k‖ = η‖∇envηψ(xk)‖ we conclude

E[envηψ(xk+1)|Fk] ≤ envηψ(xk) + η

2
[
αk(ρ− η−1 − λ)

]
‖∇envηψ(xk)‖2 + α2

k

2η θβ.

Due to (25), we have η−1 + λ − ρ > 0. Taking expectation and unfolding the recursion by summing over
k = 0, . . . ,K − 1, we get

K−1∑
k=0

αk
2 (1− η(ρ− λ))E‖∇envηψ(xk)‖2 ≤ envηψ(x0)− E[envηψ(xK)] +

K−1∑
k=0

α2
k

2η θβ.

Now using that envηψ(xK) ≥ inf ψ almost surely, we finally get

K−1∑
k=0

αkE‖∇envηψ(xk)‖2 ≤
2(envηψ(x0)− inf ψ)

1− η(ρ− λ) + βθ

η(1− η(ρ− λ))

K−1∑
k=0

α2
k, (35)
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which proves (26). Now choose αk = α√
k+1 and divide (35) by

∑K−1
k=0 αk. Using Lemma 13 for

∑K−1
k=0 αk

and
∑K−1
k=0 α2

k, we have

min
k=0,...,K−1

E‖∇envηψ(xk)‖2 ≤
envηψ(x0)− inf ψ

α(1− η(ρ− λ))(
√
K + 1− 1)

+ βθ

2η(1− η(ρ− λ))
α(1 + lnK)

(
√
K + 1− 1)

.

Choosing αk = α√
K

instead, we can identify the left-hand-side of (35) as α
√
KE‖∇envηψ(xK∼ )‖2. Dividing by

α
√
K and using

∑K−1
k=0 α2

k = α2, we obtain

E‖∇envηψ(xK∼ )‖2 ≤
2(envηψ(x0)− inf ψ)
α(1− η(ρ− λ))

√
K

+ βθ

η(1− η(ρ− λ))
α√
K
.

B Auxiliary Lemmas

Lemma 11 (Thm. 4.5 in (Drusvyatskiy & Paquette, 2019)). Let f be L-smooth and ϕ be proper, closed,
convex. For η > 0, define Gη(x) := η−1(x− proxηϕ(x− η∇f(x))

)
. It holds

1
4‖∇env1/(2L)

ψ (x)‖ ≤ ‖G1/L(x)‖ ≤ 3
2 (1 + 1√

2 )‖∇env1/(2L)
ψ (x)‖ ∀x ∈ Rn.

Lemma 12. Let c ∈ R, a, x0 ∈ Rn and β > 0 and let ϕ : Rn → R ∪ {∞} be proper, closed, convex. The
solution to

y+ = arg min
y∈Rn

(
c+ 〈a, y〉

)
+ + ϕ(y) + 1

2β ‖y − x
0‖2 (36)

is given by

y+ =


proxβϕ(x0 − βa), if c+ 〈a,proxβϕ(x0 − βa)〉 > 0,
proxβϕ(x0), if c+ 〈a,proxβϕ(x0)〉 < 0,
proxβϕ(x0 − βua) else, for u ∈ [0, 1] such that c+ 〈a,proxβϕ(x0 − βua)〉 = 0.

(37)

Remark 4. The first two conditions can not hold simultaneously due to uniqueness of the solution. If neither
of the conditions of the first two cases are satisfied, we have to find the root of u 7→ c+ 〈a,proxβϕ(x0−βua)〉
for u ∈ [0, 1]. Due to strong convexity of the objective in (36), we know that there exists a root and hence
y+ can be found efficiently with bisection.

Proof. The objective of (36) is strongly convex and hence there exists a unique solution. Due to (Beck, 2017,
Thm. 3.63), y is the solution to (36) if and only if it satisfies first-order optimality, i.e.

∃u ∈ ∂(·)+(c+ 〈a, y〉) : 0 ∈ ua+ ∂ϕ(y) + 1
β

(y − x0). (38)

Now, as y = proxβϕ(z) ⇐⇒ 0 ∈ ∂ϕ(y) + 1
β (y − z), it holds

(38) ⇐⇒ ∃u ∈ ∂(·)+(c+ 〈a, y〉) : 0 ∈ ∂ϕ(y) + 1
β

(y − (x0 − βua))

⇐⇒ ∃u ∈ ∂(·)+(c+ 〈a, y〉) : y = proxβϕ(x0 − βua).

We distinguish three cases:

1. Let ȳ := proxβϕ(x0 − βa) and suppose that c+ 〈a, ȳ〉 > 0. Then ∂(·)+(c+ 〈a, ȳ〉) = {1} and hence
ȳ satisfies (38) with u = 1. Hence, y+ = ȳ.
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2. Let ȳ := proxβϕ(x0) and suppose that c + 〈a, ȳ〉 < 0. Then ∂(·)+(c + 〈a, ȳ〉) = {0} and hence ȳ
satisfies (38) with u = 0. Hence, y+ = ȳ.

3. If neither the condition of the first nor of the second case of (37) are satisfied, then, as (38) is
a necessary condition for the solution y+, it must hold c + 〈a, y+〉 = 0. Hence, there exists a
u ∈ ∂(·)+(c+ 〈a, y+〉) = [0, 1] such that

c+ 〈a,proxβϕ(x0 − uβa)〉 = 0.

Lemma 13. For any K ≥ 1 it holds

K−1∑
k=0

1
k+1 = 1 +

K−1∑
k=1

1
k+1 ≤ 1 +

∫ K−1

0

1
s+1ds = 1 + lnK,

K−1∑
k=0

1√
k+1 ≥

∫ K

0

1√
s+1ds = 2

√
K + 1− 2.

The following is a detailled version of Proposition 3. We refer to Section 4.3 for context.
Proposition 14. Let Assumption 1 and Assumption 3 hold and assume that there is an open, convex set U
containing dom ϕ. Let f(·; s) be ρs–weakly convex for all s ∈ S and let ρ = E[ρS ]. Assume that there exists
Gs ∈ R+ for all s ∈ S, such that G :=

√
E[G2

S ] <∞ and

‖g(x; s)‖ ≤ Gs ∀g(x; s) ∈ ∂f(x; s), ∀x ∈ U. (39)

Then, ψx(y; s) (given in (10)) satisfies the following:

(B1) It is possible to generate infinitely many i.i.d. realizations S1, S2, . . . from S.

(B2) It holds E[fx(x;S)] = f(x) and E[fx(y;S)] ≤ f(y) + ρ
2‖y − x‖

2 for all x, y ∈ Rn.

(B3) The mapping ψx(·; s) = fx(·; s) + ϕ(·) is convex for all x ∈ Rn and all s ∈ S.

(B4) For all x, y ∈ U and s ∈ S, it holds fx(x; s)− fx(y; s) ≤ Gs‖x− y‖.

Proof. The properties (B1)–(B4) are identical to (B1)–(B4) in (Davis & Drusvyatskiy, 2019, Assum. B),
setting r = ϕ, fx(·, ξ) = fx(·; s), η = 0, τ = ρ, L = G, and L(ξ) = Gs. (B1) is identical to Assumption 1.
(B2) holds due to Lemma 2, (ii), applying expectation and using the definition of f , i.e. f(x) = E[f(x;S)].
(B3) holds due to Lemma 2, (i) and convexity of ϕ. For (B4), taking g ∈ ∂f(x; s) and x, y ∈ U , we have

fx(x; s)− fx(y; s) ≤ f(x; s)− f(x; s)− 〈g, y − x〉 ≤ ‖g‖‖y − x‖ ≤ Gs‖x− y‖.

C Model equivalence for SGD

In the unregularized case, the SGD update

xk+1 = xk − αkgk, gk ∈ ∂f(xk;Sk),

can be seen as solving (5) with the model

fx(y; s) = f(x; s) + 〈g, y − x〉, g ∈ ∂f(x; s).
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Now, consider again the regularized problem (2) with ϕ(x) = λ
2 ‖x‖

2 and update (8) .
On the one hand, the model ψx(y; s) = f(x; s) + ϕ(x) + 〈g + λx, y − x〉 with g ∈ ∂f(x; s) yields

xk+1 = xk − αk(gk + λxk) = (1− αkλ)xk − αkgk. (40)

On the other hand, the model ψx(y; s) = f(x; s) + 〈g, y − x〉+ ϕ(y) with g ∈ ∂f(x; s) results in

xk+1 = proxαkϕ(xk − αkgk) = 1
1 + αkλ

[
xk − αkgk

]
= (1− αk

1 + αkλ
λ)xk − αk

1 + αkλ
gk. (41)

Running (40) with step sizes αk = βk is equivalent to running (41) with step sizes αk
1+αkλ = βk ⇐⇒ αk =

βk
1−βkλ . In this sense, standard SGD can be seen to be equivalent to proximal SGD for `2–regularized problems.

D Additional information on numerical experiments

D.1 Matrix Factorization

Synthetic data generation: We consider the experimental setting of the deep matrix factorization ex-
periments in (Loizou et al., 2021), but with an additional regularization. We generate data in the following
way: first sample B ∈ Rq×p with uniform entries in the interval [0, 1]. Then choose υ ∈ R (which will be our
targeted inverse condition number) and compute A = DB where D is a diagonal matrix with entries from 1
to υ (equidistant on a logarithmic scale)11. In order to investigate the impact of regularization, we generate
a noise matrix E with uniform entries in [−ε, ε] and set Ã := A�(1+E). We then sample y(i) ∼ N(0, I) and
compute the targets b(i) = Ãy(i). A validation set of identical size is created by the same mechanism, but
computing its targets, denoted by b(i)val, via the original matrix A instead of Ã. The validation set contains
Nval = N samples.

Name p q N υ r ε

matrix-fac1 6 10 1000 1e-5 4 0
matrix-fac2 6 10 1000 1e-5 10 0.05

Table 1: Matrix factorization synthetic datasets.

Model and general setup: Problem (29) can be interpreted as a two-layer neural network without acti-
vation functions. We train the network using the squared distance of the model output and b(i) (averaged
over a mini-batch) as the loss function. We run 50 epochs for different methods, step size schedules and
values of λ. For each different instance, we do ten independent runs: each run has the identical training
set and initialization of W1 and W2, but different shuffling of the training set and different samples y(i) for
the validation set. In order to allow a fair comparison, all methods have identical train and validation sets
across all runs. All metrics are averaged over the ten runs. We always use a batch size of 20.

D.2 Plots for matrix-fac2

In this section, we plot additional results for Matrix Factorization, namely for the setting matrix-fac2
of Table 1, see Fig. 10, Fig. 11, and Fig. 12. The results are qualitatively very similar to the setting
matrix-fac1.

11Note that (Loizou et al., 2021) uses entries from 1 to υ on a linear scale which, in our experiments, did not result in large
condition numbers even if υ is very small.
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Figure 10: Objective function for the Matrix Factorization problem (29), with constant (left) and sqrt
(right) step size schedule and several choices of initial values. Here mink ψ(xk) is the best objective function
value found over all methods and all iterations.
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Figure 11: Validation error for the Matrix Factorization problem (29), with constant (left) and sqrt (right)
step size schedule and several choices of initial values.
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Figure 12: Objective function value and validation error over the course of optimization. For the validation
error, we plot a rolling median over five epochs in order to avoid clutter.
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D.3 Matrix completion experiment

Consider an unknown matrix of interest W ∈ Rd1×d2 . Factorizing W ≈ U>V with U ∈ Rr×d1 , V ∈ Rr×d2 ,
we can estimate the entries of matrix W as

Ŵij = u>i vj + bUi + bVj , i ∈ [d1], j ∈ [d2], (42)

where ui is the i-th column of U and vj is the j-th column of V , and bU ∈ Rd1 , bV ∈ Rd2 are bias terms
(Rivera-Muñoz et al., 2022).

We can interpret this as an empirical risk minimization problem as follows: let T be the set of indices (i, j)
where Wij is known. With Ŵij as in (42) for trainable parameters (U, V, bU , bV ), the (regularized) problem
is then given as

min
U,V,bU ,bV

1
|T |

∑
(i,j)∈T

(Wij − Ŵij)2 + λ

2 ‖(U, V, b
U , bV )‖2.

We use a dataset containing air quality measurements of a sensor network over one month. This dataset has
been studied in Rivera-Muñoz et al. (2022).12 The dataset contains measurements from 130 sensors over
720 timestamps, hence d1 = 130, d2 = 720. In total, there are 56158 nonzero measurements (the rest was
missing data or removed due to being an outlier). We split the nonzero measurements into a training set of
size |T | = 44926 ≈ 0.8 · 56158 and the rest as a validation set. We standardize training and validation set
using mean and variance of the training set. We set r = 24 and use batch size 128. The validation error is
defined as the root mean squared error on the elements of the validation set (which is not used for training).

Discussion: The results are plotted in Fig. 13 and Fig. 14a. For all methods, we use a constant step size
αk. ProxSPS achieves the smallest error on the validation set for the two smaller values of λ. For the largest
λ, ProxSPS, SPS and SGD are almost identical for α0 = 5, but SGD with α0 = 1 is the best method. However,
over all tested values of λ, Fig. 14a shows that ProxSPS obtains the smallest error. Again, from the lower
plot in Fig. 13 we can observe that ProxSPS produces iterates with smaller norm.

D.4 Imagenet32 experiment

Imagenet32 contains 1,28 million training and 50,000 test images of size 32×32, from 1,000 classes. We train
the same ResNet110 as described in Section 5.3 with two differences: we exchange the output dimension of
the final layer to 1,000 and activate batch norm. We use batch size 512. For this experiment we only run
one repetition.

Similar to the setup in Section 5.3, we run all methods for three different values of λ. For AdamW, we use a
constant learning rate 0.001, for SGD, SPS, and ProxSPS we use the sqrt-schedule and α0 = 1. The validation
accuracy and model norm are plotted in Fig. 15: we can observe that all methods perform similarly well
in terms of accuracy. However, AdamW is more sensitive with respect to the choice of λ and the norm of its
iterates differs significantly from the other methods. Further, using an adaptive step size is advantageous:
from Fig. 16, we see that the adaptive step size is active in the initial iterations, which leads to a faster
learning of (Prox)SPS in the initial epochs compared to SGD.

D.5 Interpolation constant

We illustrate how the interpolation constant σ2 behaves if it would be computed for the regularized loss
`i(x) = fi(x) + λ

2 ‖x‖
2 (cf. also Section 4.2). We do a simple ridge regression experiment. Let A ∈ RN×n

be a matrix with row vectors ai ∈ Rn, i ∈ [N ]. We set N = 80, n = 100 and generate x̂ ∈ Rn with
entries drawn uniformly from [0, 1]. We compute b = Ax̂. In this case, we have fi(x) = 1

2 (a>i x − bi)2 and
f(x) = 1

N

∑N
i=1 fi(x).

12The dataset can be downloaded from https://github.com/andresgiraldo3312/DMF/blob/main/DatosEliminados/Ventana_
Eli_mes1.csv.
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Figure 13: Matrix Completion: Validation error (top) and model norm (top) for three values of the regular-
ization parameter λ. Validation error is plotted as five-epoch running median. Shaded area is two standard
deviations over ten independent runs.
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Figure 14: (a) Matrix Completion: Validation error as a function of the regularization parameter λ. Shaded
area is one standard deviation (computed over ten independent runs). For all values, we take the median
over epochs [90, 100]. (b) Interpolation constant for a ridge regression problem for varying regularization
parameter λ. See Appendix D.5 for details.

If one would apply the theory of SPSmax for the regularized loss functions `i with estimates `i = 0, the
constant σ2 =

(
minx∈Rn f(x) + ϕ(x)

)
− 1

N

∑N
i=1 infz `i(z) determines the size of the constant term in the

convergence results of (Loizou et al., 2021; Orvieto et al., 2022). We compute minx∈Rn f(x) + ϕ(x) by
solving the ridge regression problem. Further, the minimizer of `i is given by (aia>i + λId)−1aibi. We plot
σ2 for varying λ in Fig. 14b to verify that σ2 grows significantly if λ becomes large (even if the loss could
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Figure 15: ResNet110 for Imagenet32: Validation accuracy as five-epoch running median (top) and model
norm (bottom) for three values of λ.

be interpolated perfectly, i.e. infx f(x) = 0). We point out that the constant σ2 does not appear in our
convergence results Theorem 7 and Theorem 8.
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Figure 16: ResNet110 for Imagenet32: Adaptive step sizes for SPS and ProxSPS. See definition of ζk in
Section 5.1.
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