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Abstract

Image classifiers play a critical role in detecting diseases in medical imaging and
identifying anomalies in manufacturing processes. However, their predefined be-
haviors after extensive training make post hoc model editing difficult, especially
when it comes to forgetting specific classes or adapting to distribution shifts. Exist-
ing classifier editing methods either focus narrowly on correcting errors or incur
extensive retraining costs, creating a bottleneck for flexible editing. Moreover, such
editing has seen limited investigation in image classification. To overcome these
challenges, we introduce Class Vectors, which capture class-specific representation
adjustments during fine-tuning. Whereas task vectors encode task-level changes
in weight space, Class Vectors disentangle each class’s adaptation in the latent
space. We show that Class Vectors capture each class’s semantic shift and that
classifier editing can be achieved either by steering latent features along these
vectors or by mapping them into weight space to update the decision boundaries.
We also demonstrate that the inherent linearity and orthogonality of Class Vectors
support efficient, flexible, and high-level concept editing via simple class arithmetic.
Finally, we validate their utility in applications such as unlearning, environmental
adaptation, adversarial defense, and adversarial trigger optimization.

1 Introduction

Classifiers have long been fundamental in Computer Vision (CV), applied in diverse fields from
medical imaging [35] to anomaly detection [84]. With the rise of Vision Transformers (ViTs) [13, 44],
their classification capabilities have significantly improved, leading to the widespread availability of
fully fine-tuned models across various tasks. As a result, open platforms such as HuggingFace now
offer extensive collections of classifiers, enabling plug-and-play usage for diverse applications [66].
However, even within the same task, users may have specific requirements for certain deterministic
rules. For example, in disease diagnosis, some users may prioritize minimizing errors for specific
conditions they handle, as even minor misclassifications can have serious consequences. Alternatively,
others may require a classifier that performs reliably in their own distributional context, such as a
snowy environment. Thus, a one-size-fits-all classifier is impractical for meeting diverse user needs
within the current model supply chain. This highlights the importance of classifier editing, which
modifies class-specific knowledge post hoc while preserving unrelated prior knowledge [72].

Despite its importance, classifier editing remains challenging because deeply optimized models
encode rigid behaviors shaped by their training distributions. For example, data scarcity for vehicles
in snowy scenes often teaches the model to adopt the shortcut vehicle + snow → snowplow,
causing it to mislabel buses in snow as snowplows [60, 26]. Moreover, efficiently modifying
classifiers with minimal data in real-world scenarios remains an open problem. Recent classifiers
(e.g., ViTs), for instance, require significantly more training compared to traditional CNNs [64, 68],
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making knowledge modifications with few samples more difficult [39, 36] and increasing the risk of
introducing new biases [67, 5]. As a result, existing classifier editing methods are computationally
intensive [80] and often rely on auxiliary information such as object mask, requiring representations
to be modified one by one for each image [60]. These challenges, amplified by the sparse information
density of visual data [23], require defining “where-to-edit” and remains underexplored in vision
models, whose scope is largely restricted to correcting image-wise misclassifications [62, 80].

Figure 1: Class Vector and its applications. (a)
Class Vector captures centroid representation adap-
tation in the latent space. (b) Editing vector with
high-level concepts using arithmetic operations on
Class Vectors. (c) Editing vectors can undo predic-
tive behaviors by reversing the adaptation direction,
or transition the classifier logic to correct errors.

To address these challenges, we revisit recent
image classifiers through the lens of a model’s
adaptation to specific classes during training by
introducing the novel concept of Class Vectors.
Class Vectors capture per-class representation
shifts during fine-tuning by computing the dif-
ference between the centroid representations of
pretrained and fine-tuned models. Inspired by
task vectors [29], which represent weight up-
dates for tasks during fine-tuning, Class Vec-
tors aim to disentangle class-specific behavior
from task-wide adaptations. Although task vec-
tors are effective for task-level applications such
as model alignment [21, 6, 43, 25] and detox-
ification [29, 83], they inherently capture task-
level modifications, limiting their applicability
for fine-grained classifier editing. In contrast,
Class Vectors operate at the class level and can
be applied either by directly steering latent rep-
resentations via a training-free approach or by mapping them back into weight space for model
editing. This class-level modification alleviates existing editing constraints by replacing predictive
rules across an entire class rather than adjusting the model on an image-by-image basis.

Our findings reveal that linear trajectories exist along which the model adapts to specific classes
during fine-tuning, forming the basis of Class Vectors. This behavior remains barrier-free despite
the complexity of high-dimensional representation learning and the nonlinear characteristics of
modern classifiers [57, 56], supported by Cross-Task Linearity (CTL) [87]. We then explore two
key properties of Class Vectors that enable their effective use in classifier editing: (1) linearity and
(2) independence. During inter-class interpolation, predictions and logits transition smoothly along
linear paths. Furthermore, we demonstrate that modifying a target class’s representations does not
influence other classes, confirming that Class Vectors act independently. This behavior is supported
by the Neural Collapse [55]: during fine-tuning, class-specific feature shifts become quasi-orthogonal,
enabling targeted adjustments with minimal interference. These fundamental properties of Class
Vectors enable precise editing of class-specific predictive rules through simple arithmetic operations
such as addition, subtraction, and scaling (Fig. 1), offering several advantages as follows:

• High efficiency: Enables edits without retraining via latent steering, or for specific tasks
can be trained in under 1.5 seconds using fewer than 1.5K parameters and a single sample.

• High-level interaction: Facilitates intuitive high-level concept editing, also allowing non-
expert users to perform edits without neural network expertise.

• Flexibility: Provides precise control over the degree and nature of edits by adjusting the
scaling coefficients of Class Vectors to align with user intentions.

We present extensive experiments demonstrating the effectiveness of Class Vectors in real-world
applications such as model unlearning, adapting to unfamiliar environments, preventing typographic
attacks, and optimizing triggers for backdoor attacks.

2 Related Work

Adaptation vectors. Empirical studies of neural network loss landscapes show that fine-tuning
proceeds along convex, well-aligned directions in weight space [18, 73]. Building on this, task
vectors [29], the weight delta from a pretrained model to its fine-tuned version, have been used in
classifiers [76, 78], large language models [77, 81], and LoRA adapters [74, 10], enabling multi-task
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learning [27, 79], detoxification [61], and style mixing [74]. Meanwhile, in large language models
(LLMs), in-context vectors steer model outputs at inference time by encoding task- or example-level
instructions as additive offsets in latent space (e.g., for controllable text generation [43, 25, 47]).
Such adaptation vectors typically perform model editing at the global, task-wide level. In contrast,
our Class Vectors isolate adaptations at the per-class level in latent feature space, providing localized,
class-specific control with minimal interference to other classes. Unlike task vectors, which impose
global weight shifts, Class Vectors capture intrinsic, persistent representation shifts that can be
mapped to weights. They differ also from in-context vectors—transient, label-agnostic offsets—and
from concept activation vectors (CAVs) [33], which describe rather than edit concepts.

Characterizing Neural Networks. Early work [18] demonstrated that the loss landscape along the
straight-line path from random initialization to a fully trained model is nearly convex, suggesting
that training could follow a linear trajectory. Linear Mode Connectivity (LMC) [28, 15, 49] then
showed that independently trained models on the same task maintain almost constant loss under linear
weight interpolation, and the concept of task vectors [29, 53] revealed that scaling these vectors yields
semantically meaningful performance changes. Layerwise Linear Feature Connectivity (LLFC) [86]
extended this phenomenon to the feature space, proving that at every layer the feature maps of an
interpolated model align proportionally with the linear blend of the feature maps of the original
models that show LMC. More recently, Cross-Task Linearity (CTL) [87] found that models fine-tuned
on different tasks still exhibit approximate linear behavior in their features under weight interpolation,
and Neural Collapse (NC) described how penultimate-layer features converge to equidistant class
prototypes [55]. In this work, we show that pretrained-to-fine-tuned model pairs also satisfy a CTL
with feature alignment, and we use NC to establish the independence of Class Vectors.

3 Foundations for Class Vectors

Given n data {x1, x2, . . . , xn} ⊂ Xtask with corresponding k labels {c1, c2, . . . , ck} ⊂ Y , image
classifier is defined asM(·, θ ∈ Rd) : Xtask 7→ Y , comprising an encoder f(·, θe ∈ Rde) : Xtask 7→ Z
and a classification head g(·, θh ∈ Rdh) : Z 7→ Y . Here, classifier is represented asM = g ◦ f ,
where ◦ denotes function composition. Let θepre ∈ Rde represent the pretrained weight and θeft ∈ Rde

be the fine-tuned weight of the classifier encoder for a specific task. We first define the Class Vector.

Definition 3.1 (Class Vector). For a class c, let S = {s1, . . . , s|S|} ⊂ S denote the set of its samples.
The Class Vector κc ∈ Rm is the difference between the expected last-layer representations of the
fine-tuned and the pretrained encoders (i.e., penultimate layer of models):

κc = Es∈S

[
f
(
s, θeft

)]
− Es∈S

[
f
(
s, θepre

)]
.

The centroid representation of a fine-tuned classifier zcft for a class c can be formulated as zcft =
zcpre + κc, where zcpre denotes pretrained centroid representation and S = Xtask.

3.1 Formal Justification

We aim to demonstrate that the class-specific changes induced by fine-tuning are captured by a single
latent vector κc := zcft−zcpre, so that merely scaling κc interpolates a smooth path of class-c behavior.
To justify this claim, we build on two well-documented phenomena.

(i) Task-level weight linearity. Prior work [29] shows that the task vector τ = θeft − θepre captures a
linearly meaningful direction in weight space: moving the weights along τ , f

(
x; θepre + λτ

)
, causes

predictable performance shifts as λ varies [18].

(ii) Cross-Task Linearity (CTL) [87]. When two fine-tuned checkpoints θi, θj originate from the
same θpre, weight interpolation is almost equivalent to latent interpolation for every input x:

f(x;αθi + (1− α)θj) ≈ α f(x; θi) + (1− α) f(x; θj).

CTL thus bridges weight-space linearity to latent-space linearity. In Theorem 3.1, beyond any pair
of fine-tuned weights, we show that it is even tighter on the segment connecting the pretrained
model to its fine-tuned checkpoint, and we confirm that this pretrain-to-finetune interpolation traces a
semantically meaningful path in latent space.
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Figure 2: (a) Line-search between zcpre and zcft explores linearly evolving representation. (b) Linear
interpolation between cross-Class Vectors with ViT-B/32 shows smooth transition between classes.

Theorem 3.1 (CTL between pretrained and fine-tuned weights). Suppose the function f : Rp→R,
and two fine-tuned weights θi and θj satisfy CTL [87]. Let θpre be the pre-trained weights. Define

δpre,i =
∣∣f(αθpre + (1− α)θi)−

(
(1− α)f(θpre) + αf(θi)

)∣∣ ,
δi,j =

∣∣f(αθi + (1− α)θj)−
(
(1− α)f(θi) + αf(θj)

)∣∣ .
If ∥θi− θpre∥ < ∥θi− θj∥, then δpre,i < δi,j: the segment from θpre to θi shows strictly smaller CTL
deviation, hence is more linear, than the segment between two fine-tuned solutions θi → θj .

The proof is provided in Appendix §C.1. Using Theorem 3.1, we can apply CTL to pair of θpre and
θft. Applying CTL to the set of inputs xc ∈ Dc for a single class c and averaging over xc yields:

f
(
xc; θpre + ατ

)
≈ f(xc; θpre) + ακc, xc ∈ Dc.

Thus scaling the fixed vector κc in latent space reproduces the effect of moving θpre along τ for
class-c samples, the class-specific adaptation. Fig. 2a (Top) visualizes this effect on ViT-B/32
across six downstream tasks: as α increases from 0 to 1, class-c accuracy (normalized by the
fully fine-tuned score) rises smoothly and concavely, confirming the linear path predicted by the
theory. We observe similar behavior in both an MLP and ResNet-18 [22] with two other tasks
(CIFAR10, CIFAR100), indicating that Class Vectors arise independently of network architecture or
finetuning specifics (Fig. 2a (Middle), Fig. 2a (Bottom)). Experimental evidence for the inequality
∥θi − θpre∥ < ∥θj − θi∥ and training details for all models are in Appendix Fig. 8 and §D.3.

Take-away. The adaptation required for a single class can be approximated by scaling a single latent
vector κc; class-wise representation learning often reduces to simple vector arithmetic.

3.2 Class Vector-based Editing

To edit classifiers, we first construct an editing vector zedit ∈ Rm in the latent space by linearly using
the Class Vectors (§4). Prior work has shown that task vectors (in the weight space) and in-context
vectors (in the latent space) can steer model behavior; our approach supports both injection modes.

Latent-space injection. Given r = f(x, θeft), we shift the representation by zedit and obtain ŷ =
g(r + zedit, θ

h). To avoid collateral edits in other classes (i.e., to ensure localization of the edit),
we gate the shift with β = 1[sim(r) > γ], where sim(r) is given by the cosine similarity to zcft and
γ denotes thresholds for gating (Algorithm.1). Please note that in most cases, zcft is known when
constructing zedit (§4), and latent space injection does not require additional training.

Weight-space mapping. Latent-space manipulation of the classifier cannot fundamentally alter the
deterministic rules encoded in the model’s weights, leaving decision boundaries unchanged [48, 30].
It also imposes additional gating computations on the editor and requires maintaining zcft. Following
previous editing approaches [80, 60, 46] that embed edits directly into the model weights, we
introduce a method for permanently embedding editing vectors into the model parameters. To
mapping editing vectors in the weight space, we learn ϕedit : Rm→Rde such that

θeedit = θeft + ϕedit(zedit),
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Algorithm 1 Latent-space injection

1: Inputs: encoder f(·; θeft); head g(·; θh);
x; zedit; class centroid zcft; threshold γ

2: Output: logits ŷ
3: r ← f(x; θeft)

4: sim(r)← r⊤zcft
∥r∥ ∥zc

ft
∥

5: β = 1[sim(r) > γ]
6: redit ← r + β zedit
7: ŷ ← g(redit; θ

h)
8: return ŷ

Algorithm 2 Weight-space mapping

1: Input: encoder f(·; θe), data Xtask, zedit,
collecting number N , class c, epochs T

2: Freeze all but editable block L
3: for t = 1, . . . , T and each (x, y) ∈ Xtask do
4: Collect N class-c references rc = {f(x) | y = c}
5: Set rtarget = mean(rc) + zedit if rtarget = None
6: r = f(x) ; ℓ = ∥ r[y = c]− rtarget∥2
7: Update L with∇Lℓ
8: end for
9: return θeedit

Figure 3: Independence of Class Vectors in MNIST. (a) Scaling the target class representation using
zedit = α · κc1 (b) Adding non-target Class Vectors to the target class based on the combination count.
(c) Modifying the target class to each destination class (zedit = κdes. − κtar.), with the averaged task
accuracy. (d) Shifting all representations from ci → ci+1 simultaneously with transition success rate.

minimising ∥f(x, ϕedit(zedit))− zedit∥2. To make this more practical, assuming a linear mapping f (a
common assumption [81, 17]), the optimization reduces to θeedit:

θeedit = argmin
θe

edit

∥f(x, θeedit)− (f(x, θeft) + zedit)∥2.

Similar to latent space steering, to ensure that the edit only affects the intended class, we first collect
reference samples from that class and compute their latent representations. We then add the Class
Vector κc to each of these reference embeddings to form fixed target representations, and train the few
encoder layers to map the original embeddings onto these shifted targets (Algorithm. 2). Theorem 3.2
shows that the mapping of Class Vectors from Rm into the model’s weight space Rde admits infinitely
many solutions, implying that it remains effective across diverse mapping configurations.

Theorem 3.2 (Existence of a Mapping). Let ϕedit : Rm → Rde be any mapping that sends latent
Class Vectors to weight perturbations applied in the encoder’s final layer or a small subset of layers.
Under the assumption that these edits are sufficiently small and confined to that small subset of layers
of an overparameterized encoder (e.g., a ViT) with de ≫ m, there exist infinitely many distinct ϕedit.

See Appendix §C.2 for a detailed proof. Note that Theorem 3.2 guarantees the existence of a valid
mapping for overparameterized encoders, provided that the edit is restricted to a local subset of layers.
This theoretical result suggests that such mappings may be inherently robust to the specific training
procedure used for the encoder. The training setup for mapping are provided in Appendix §D.3.2.

3.3 Properties for Effective Classifier Editing

We now explore the properties of Class Vectors. Throughout our experiments, we employ the classes
listed in Tab. 7 and validate our findings via the weight-space mapping approach.

Linearity. The linearity between two classes in a fine-tuned model is crucial for editing, as barriers
or divergence along the path may cause zedit to fail, leading to unpredictable behavior. We interpolate
between two fine-tuned classes c1 and c2 by zedit = −ακc1 + ακc2 . This effectively shifts the
model’s adaptation from c1 to c2. As shown in Fig. 2b, predictions and logits change smoothly:
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Table 1: Comparison of class unlearning with baselines, including the mean and std accuracies.

Method MNIST EuroSAT GTSRB RESISC45 DTD

ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑)

Pretrained 53.4±36.8 51.7±4.2 66.5±21.5 53.4±2.5 81.8±17.7 41.7±1.2 76.8±18.5 66.2±0.4 36.0±35.8 44.9±0.8
Fine-tuned 99.9±0.1 99.8±0.0 99.9±0.2 99.8±0.0 99.6±0.0 99.2±0.0 99.3±0.8 96.8±0.0 73.5±16.9 82.3±0.4

Retrained 0.1±0.1 76.4±0.0 0.0±0.0 85.7±0.0 41.8±25.3 57.5±0.0 33.9±20.6 75.0±0.0 14.5±26.5 55.5±0.0
NegGrad 0.0±0.0 43.4±10.3 0.0±0.0 11.6±1.0 0.0±0.0 15.6±25.6 0.0±0.0 2.5±0.6 0.0±0.0 13.6±16.7
Random Vector 99.9±0.1 99.8±0.0 99.9±0.1 80.9±26.1 99.6±0.5 98.2±0.7 100±0.0 79.4±19.1 72.0±31.8 51.1±11.1

Class Vector 0.0±0.0 99.7±0.0 0.0±0.0 99.5±0.2 0.0±0.0 98.6±0.0 28.2±26.1 94.6±7.2 13.5±16.5 78.1±0.8
Class Vector† 0.0±0.0 96.2±0.1 0.0±0.0 99.7±0.0 0.0±0.0 93.4±0.0 10.0±10.9 90.7±3.2 15.2±18.7 72.9±0.1

samples switch cleanly from c1 to c2 at the midpoint, with no detours to other classes. This results
show that Class Vectors permit precise linear edits of the classifier.

Independence To modify class c1 towards c2 without effect other classes, we require f(x′, θeft) =
f(x′, θeft + ϕ(zedit)) for all x′ /∈ c1, while f(xc1 , θ

e
ft + ϕ(zedit)) = f(xc2 , θ

e
ft). Neural Collapse (NC)

phenomenon [55] states that, near the end of training, (i) all penultimate-layer features belonging to
the same class tightly collapse to a class mean, and (ii) these class means themselves form a simplex
Equiangular Tight Frame (ETF) centred at the global mean. Building on NC structure, we show that
a class-specific update vector κc exerts negligible influence on the embeddings of every other class.

Theorem 3.3 (Independence of Class Vectors). Suppose (i) the pretrained class embeddings col-
lapse to a common mean z̄pre, that is zprec ≈ z̄pre; (ii) after fine-tuning the embeddings follow a
centre-shifted ETF form zftc = µ + uc with

∑
c uc = 0; and (iii) the global drift ∥µ − z̄pre∥ is

negligible compared to the class-specific update ∥uc∥. Then, for any two distinct classes c ̸= c′,

cos
(
κc, z

ft
c′
)
≈ 0,

i.e. the Class Vector κc is approximately orthogonal to the fine-tuned embedding of every other class.

A detailed proof and empirical evidence that strongly support these conditions for ViT are presented
in Appendix §C.3. In Fig. 3, we empirically evaluate the independence of Class Vectors. It shows
that Class Vectors preserve the accuracy of non-target classes and ensure independent edits across
classes, even when multiple classes are edited simultaneously.

4 Editing Classifiers

We now introduce editing applications with Class Vectors. For all applications, we first design zedit,
then steer the models in latent spaces or map it to the weight space to alter their predictive behavior.

4.1 Experimental Setups

To evaluate Class Vectors for classifier editing, we extract pretrained and fine-tuned class centroids
from three widely adopted CLIP encoders, ViT-B/16, ViT-B/32, and ViT-L/14 [58], and form Class
Vectors as their differences. In §4.3 and §4.4, Class Vectors are derived from initialized and pretrained
encoders, as they predict ImageNet classes, the pretraining dataset for these classifiers. We denote
latent-space steering by Class Vector and weight-space mapping by Class Vector†, using a default
similarity threshold of γ = 0.5. As baselines, we include Retrained [80, 60], which retrains only the
target class using cross-entropy loss (or excludes it entirely in the unlearning setting), and Random
Vector, which is initialized to match the magnitude of zedit and mapped to the weight space to test for
non-semantic effects. Among all considered methods, only the Class Vector method enables latent
steering without requiring any additional training.

We note that Task Vector [29] is not included as a baseline in our main experiments, since it
operates at the task-wide level and is unsuitable for evaluating class-wise editing. For completeness,
we additionally provide comparative results between task vectors and Class Vectors in the class
unlearning setting in Tab. 17. Additional task-specific baselines are described in their respective
sections, and full experimental details in Appendix §D.
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4.2 Class Unlearning

Since ViT classifiers are exposed to a wide range of data during training, they naturally encode
information across all classes. Practically, class unlearning is intended to modify classifier decision
boundaries to prevent classification into specific categories, while minimizing unintended changes to
non-target classes, often motivated by privacy or security concerns [52]. Existing class unlearning
methods typically involve retraining the model or performing multi-stage post hoc edits, which are
computationally expensive and risk inadvertently erasing features shared across classes [7].

To evaluate Class Vectors on class unlearning, we set zedit = λ · κc with λ = −1.5 to effectively
modify the model to unlearn adapted predictive rules for class c. We utilize the ViT-B/16 model for
our experiments (See Appendix §E for results on other ViTs). For an additional baseline method,
we retrain models with gradient ascent to the target class (i.e., , NegGrad) following previous
studies [37, 40]. For mapping, we utilize the single reference samples in the subset of each task’s
test set and evaluate on the remaining data, training only the final layer’s layer normalization of the
encoder. The first five labels in each task are used as the target (forget) class in each experiment. As
shown in Tab. 1, Class Vectors demonstrate the most effective editing strategy for unlearning the
target class (ACCf ) while preserving the performance of the non-target classes (ACCr). In contrast,
random vectors have minimal effects, indicating that Class Vectors point to meaningful directions in
the latent space. Additionally, retraining struggles with limited data and trainable parameters.

4.3 Adapting to New Environment

Figure 4: Adapting the classifier to a
snowy environment. Red text marks the
misclassifications made by the original
model, while blue text shows the correct
predictions after classifier editing.

Imbalanced training scenes often lead classifiers to re-
duced performance in specific contexts [65]. Thus, adapt-
ing open-hub classifiers to suit individual users’ environ-
ments in an efficient manner is necessary in practice. Fol-
lowing a previous study [60], we examine a scenario where
the model struggles to classify objects in snowy environ-
ments (Fig. 4). This occurs when the representation of
snowy objects fails to accurately capture the object’s fea-
tures due to the ambiguous influence of snow.

Class Vectors can effectively address this through high-
level concept-based arithmetic operations. Specifically,
our goal is to eliminate the snow features from the image
representation. Therefore, the objective of zedit is:

cobject = g(zobject, θh) = g(zc + zedit), θ
h)), (1)

where zedit is designed to eliminate the representation acti-
vated by the model when snow is input, ensuring that the model focuses solely on the object.

We consider practical scenarios when only limited external samples are accessible. Namely, the editor
can obtain a few images of the target object c1 from external sources. We set zedit as λ(κsnow+c1−κc1).
Here, κsnow+c1 denotes the representation adaptation of the model with snowy images. At a high
level, this retains only the model adaptation related to snow. Editor can steer the model or map zedit
to satisfy Eq. 1, with λ < 0 used to suppress snow features. We evaluate on Snowy ImageNet [60]
(7 classes, 20 images each), using 5 reference samples per class for mapping and testing on the
remainder for mapping experiments. As an additional baseline, DirMatch [60] trains models to
align images to target-class representations using external samples individually. We train only the
final MLP and layer-norm in the transformer block, reporting mean ± standard deviation accuracy
across classes. With λ = −1.0 and 4 external samples (Fig. 10), Class Vectors deliver a 10–20%
improvement over the pre-edit classifier (Tab. 2a), underscoring their high-level interactions and
effectiveness.

4.4 Defending Against Typography Attacks

Vision-language pretrained models like CLIP have exhibited vulnerabilities to typography attacks,
where the text in an image leads to misclassification of the model [16]. Thus, mitigating typographic
attack risk is crucial in safety-critical domains, such as medical imaging, before deploying classifiers.
Similar to §4.3, given an object with text written on it, the representation is expected to become
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Table 2: Results on classifier editing with Class Vectors in two scenarios: (a) adapting to a new
distribution (snowy environments) and (b) defending against typographic attacks.

Method Average (↑)

ViT-B/16 ViT-B/32 ViT-L/14

Pretrained 55.2±24.6 53.4±29.9 60.2±22.5

Retrained 55.8±48.4 55.8±48.5 75.3±15.5
Random Vector 26.2±23.0 16.2±22.7 49.7±26.1
DirMatch 72.0±22.8 73.9±23.5 74.6±16.4

Class Vector 69.7±2.6 72.2±3.8 71.3±3.2
Class Vector† 72.7±21.4 76.2±21.2 78.3±16.9

(a)

Method Average (↑)

ViT-B/16 ViT-B/32 ViT-L/14

Pretrained (Clean) 75.0±38.2 100±0.0 100±0.0
Pretrained (Attack) 48.9±38.2 76.7±33.1 38.9±19.4

Retrained 80.0±34.2 66.7±47.1 98.8±2.5
Random Vector 41.1±30.7 74.4±38.6 33.3±21.4
DirMatch 97.7±3.1 91.1±8.3 87.8±13.0

Class Vector 88.9±22.0 98.9±2.5 93.3±7.7
Class Vector† 98.9±2.5 99.0±2.5 93.3±6.7

(b)

(a) (b)

Figure 5: Visual examples for the scenarios in §4.4 and §4.5: (a) examples of typographic attacks that
cause the model to misclassify inputs as iPod. (b) optimized backdoor triggers on traffic-sign images.

zobject after classifier editing, allowing the deterministic rules of the model to focus solely on the
object for accurate recognition. Thus, our goal aligns with that described in Eq. 1. Practically,
the editor can easily generate small set of augmented samples by directly adding text to objects or
performing data augmentation. Using them, the Class Vectors κtext+object for text-affected images
and κobject for clean images can be derived by feeding each image sets into the model. Finally, we
define zedit = λ(κtext+object − κobject), where zedit removes adaptations from text-object images at a
high-level, isolating the model’s clean object representations.

Following a previous study [60], we utilize web-sourced image sets with 6 classes from ImageNet
that include both clean and text with objects. Each image is augmented into 15 images per class
(Fig. 5a). For mapping, we use a total of 4 reference images for training and evaluate on the remaining
images. We use the same baselines as §4.3, setting λ = −1.5. For DirMatch, text-augmented images
are trained to directly align with clean image representations. Results in Tab. 2b demonstrate that the
Class Vector effectively defends against typographic attacks, achieving average accuracies on par
with or exceeding clean-image performance across models.

4.5 Adversarial Trigger Optimizations

Class Vectors can also be utilized for backdoor attacks, which alter a model’s logic using adversarial
triggers such as small patches [20] or imperceptible noise [85], typically optimized by training the
classifier to misclassify triggered images [82]. However, primary limitations of these approaches
are the requirement for large amounts of triggered samples and full access to the training process to
adjust the model’s weights. We consider a scenario where an editor (i.e., attacker) aims to mislead
a classifier into misclassifying specific classes, without altering the model’s weights. The attacker
knows the classifier’s architecture but lacks access to the user’s model or training process. With
knowledge of the architecture, the attacker can acquire a model with the same design from an open
hubs. By embedding the intended representation into a trigger patch or an invisible trigger using the
same model architecture, the attacker can cause the classifier to misclassify any object or scene where
the pattern appears, whether on the object itself or attached to the camera lens.

To effectively embed malicious representations into the trigger, the attacker aims to optimize the
initialized trigger xtrigger’s representation into zedit = λ · (κc2 −κc1) such that when xtrigger is attached
to an image, the classifier misclassifies c1 as c2. Unlike previous sections, zedit is mapped to the pixel
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space by training the pixels in xtrigger (Algorithm 4):

xtrigger = argmin
xtrigger

∥f(xtrigger, θ
e
ft)− zedit∥2. (2)

Note that, because the backdoor triggers are optimized, latent-space steering cannot be applied in
this scenario. Class Vectors are evaluated across real-world tasks, including GTSRB, RESISC45,
and SVHN. For mapping, 30, 10, and 200 samples are selected from each test set, with performance
assessed on the remaining data. We additionally include BadNet [20] for baselines, where weights
are manipulated with unlearnable triggered images to classify into the destination class.

Table 3: Results on backdoor attacks with opti-
mized triggers.

Method Small Patch Invisible

ASR (↑) CA (↑) ASR (↑) CA (↑)

Pretrained 19.6±26.2 43.8±9.7 22.2±27.9 43.8±9.7
Finetuned 0.0±0.1 95.2±7.1 0.0±0.1 95.2±7.1

BadNet 100±0.0 10.0±5.0 100±0.0 9.3±7.4
Random Vector 0.1±0.1 95.2±7.1 39.4±55.8 95.2±7.1
DirMatch 96.5±4.7 95.2±7.1 96.8±4.5 95.2±7.1

Class Vector† 99.8±2.8 95.2±7.1 99.0±1.4 95.2±7.1

We measure Attack Success Rate (ASR) on trig-
gered images and Clean Accuracy (CA) on clean
images, averaged across tasks. For DirMatch,
the triggers are optimized directly toward the
destination representation of target class. The
scaling coefficient λ for zedit is set to 1.5 for
small patches, using 0.8% of total pixels and 1.0
for invisible noise by default. All experiments
use ViT-B/32 (see Appendix §E for results on
other ViTs). Tab. 3 shows that Class Vectors
achieve high ASR, achieving high effectiveness
without modifying model weights. As shown in
Fig. 5b, triggers are optimized to be either very
small or stealthy, making them imperceptible.

Table 4: Results of class unlearning on MNIST using ResNet18, ResNet50, and ConvNeXT-Tiny.

Method
ResNet18 ResNet50 ConvNeXT-Tiny

ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑)

Retrained 99.8 99.5 89.9 99.6 78.2 99.4
NegGrad 14.2 97.2 1.0 95.0 0.0 11.2
Random Vector 99.7 99.4 99.5 99.4 99.5 99.3
Class Vector 2.2 97.0 11.5 84.2 0.0 95.3
Class Vector† 0.0 99.4 0.0 99.1 0.0 99.1

Table 5: Class unlearning with BERT-Base.

Method
AG-NEWS DBPedia-14 20-Newsgroups

ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑)

Retrained 71.9 89.3 98.4 99.0 59.8 66.5
NegGrad 0.0 48.9 0.0 93.8 0.0 47.0
Random Vector 93.8 94.3 98.6 99.1 62.9 67.9
Class Vector 0.0 93.2 0.0 96.9 0.0 57.9
Class Vector† 3.2 94.4 0.0 99.1 0.0 63.8

4.6 In-Depth Analysis

Model Generality across Architectures. To examine the architectural generality of Class Vectors,
we extend our analysis beyond ViT encoders to convolutional and language models, including
ResNet18, ResNet50, ConvNeXT-Tiny [45], and BERT-Base [12]. For each model, Class Vectors
are derived from the pretrained and fine-tuned representations and applied to the class unlearning
setting, targeting the first class in the dataset. As shown in Tab. 4 and Tab. 5, Class Vector maintains
strong forgetting performance while preserving non-target accuracy across all architectures. Notably,
both the latent-space variant (Class Vector) and its weight-space mapping (Class Vector†) exhibit
consistent gains compared to gradient-based or random baselines, confirming that Class Vectors
capture transferable, semantically meaningful directions independent of network type.

Impact of threshold in latent space steering. In the latent-space steering method, Class Vector
injection is applied only to inputs whose cosine similarity to the target feature exceeds the threshold
γ. To examine the impact of γ, we perform a systematic γ sweep accompanied by class-unlearning
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Figure 6: In-depth analysis: (a) Effect of the cosine-similarity threshold γ on class-unlearning clean
accuracy; (b) Effect of the scaling coefficient λ on controllable editing. Horizontal dashed lines
denote pretrained model performance.
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Figure 7: Effect of sample ratio on editing performance. Each curve shows how model accuracy
varies as the proportion of available samples increases for (a) Snowy ImageNet and (b) Typo Attack.

evaluations to assess both editing efficacy and collateral impact. In Fig. 6a, editing remains effective
for γ ∈ [0.0, 0.5], and, even at γ = 0, we observe that edits retain independence, owing to the
independence of Class Vectors (Theorem 3.3).

Impact of scaling coefficient. The scaling coefficient λ determines both the strength and direction of
an edit. To make editing intuitive for non-experts, λ should yield predictable, controllable outcomes.
For instance, in defense against typographic attacks, a more negative λ aggressively removes the
learned “iPod” adaptation, while in other cases a milder edit suffices. We sweep λ in the snowy-
environment and typography-attack (Fig. 6b) scenarios, observing clear trends: negative values erase
snow features and restore correct predictions, whereas positive values amplify them and degrade
performance. This demonstrates that λ can be tuned reliably based on high-level editing goals.

Impact of sample size. Retraining-based methods improve with more samples, but such abundance is
rare in real deployments. To test scalability, we varied the sample ratio—the portion of available target
data—in Snowy ImageNet and Typo Attack (Fig. 7a, 7b). With less than 30% of data, both Class
Vector and Class Vector† outperform retraining, which only catches up after 35%. This highlights
Class Vector’s strong data efficiency, leveraging latent semantic directions instead of full parameter
optimization, and maintaining competitiveness even under low-data regimes.

5 Conclusion and Future Work

We have introduced Class Vectors, which capture class-specific representation adaptations during
training. Open-hub models can leverage Class Vectors to modify predictive rules for task-specific
personalization. Our analysis of their linearity and independence, supported by extensive experiments,
highlights their potential for efficient and interpretable classifier editing across diverse applications.
While our work primarily focuses on image classification, we anticipate future extensions of Class
Vectors to natural language processing (NLP) and generative models, including Large Language
Models (LLMs) and image generative models.
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A Broader Discussion

A.1 Extended Related Work

Model interventions Model intervention aims to adapt trained models to new knowledge for
specific user needs. Retraining an entire model is time-consuming and data-intensive, driving the
development of more efficient methods that use limited data. These include model alignment [1,
54, 70, 32], debugging [59], and editing [29, 60, 50, 4]. Model intervention in Computer Vision
(CV) remains limited. Previous work propose editing generative adversarial networks (GANs) by
identifying and modifying specific locations [4], while this approach is extended to classifiers for
debugging errors by mapping new rules to existing ones [60]. However, these methods require editing
locations or additional data. More recent meta-learning-based approach [80] address this but remain
computationally demanding.

Latent representations Latent space interpolation in generative models aims to blend the styles
of different images by navigating their latent vectors. This approach has been widely explored
in GANs [69, 31] and diffusion models [71, 2], while its application to classifiers remain largely
unexplored. Meanwhile, recent efforts to explain deep neural networks have focused on linking
models’ internal processes to high-level concepts, such as analyzing human-understandable features
or testing their influence on predictions (i.e., decomposability) [8, 14, 34, 3, 19]. Building on these
ideas, we investigate representation adaptation in the latent space, revealing properties and enabling
effective, high-level editing.

A.2 Limitations

While Class Vectors enable efficient and interpretable classifier editing across a variety of tasks, our
method exhibits several limitations. First, the approach assumes that class representations are well-
structured and approximately linearly separable in the latent space. This assumption is empirically
supported by CTL and Neural Collapse, but may not hold in scenarios with high intra-class variance,
noisy labels, or long-tailed distributions. Second, the method currently focuses on single-label
classification tasks where each example is associated with a single semantic class. Extending Class
Vector-based editing to multi-label or hierarchical classification, where class boundaries are less
distinct and often overlapping, remains an open challenge. In addition, the latent-space steering
method relies on access to the centroid representation of each class, which may not be readily available
in privacy-constrained or black-box settings. Similarly, the weight-space mapping method requires
updating a small subset of layers with a few reference samples, which still assumes partial access
to model internals. This limits the applicability of our method in fully closed-source environments.
Despite these limitations, our work lays the foundation for structured classifier editing and invites
further research into expanding its scope to more complex, unconstrained settings.

A.3 Ethic Statement

This work does not involve research with human participants, sensitive data, or personally identifiable
information. All experiments were conducted using publicly available pretrained models and open-
source datasets. We include limited web-sourced or user-generated imagery (e.g., for typographic
attack evaluation), and such images are used solely for non-commercial, academic research purposes
under fair use or Creative Commons–compliant terms. While our method enables editing of classifiers
for beneficial purposes such as unlearning and robustness, we recognize that similar techniques may
be repurposed for malicious intent, such as backdoor trigger optimization. To mitigate such risks, we
release code and dataset under a non-commercial license (CC-BY-NC-SA 4.0) and emphasize that
practical deployment of editing techniques should be preceded by careful threat modeling and access
control.

A.4 Licenses

We plan to release our code under the Apache 2.0 license.
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B Algorithms

We present algorithms that leverage Class Vectors by mapping them into non-latent spaces. For latent
space steering, refer to Algorithm 1. Specifically, we introduce two approaches: (1) standard mapping
via an encoder, and (2) pixel-space mapping for adversarial trigger optimization.

Algorithm 3 Pseudocode for optimizing classifier encoder with Class Vector

Require: Classifier encoder (f(·, θe) and trainable layers), Dataset Xtask, Editing vector zedit,
Number of epochs T , Target class c, Learning rate η

Ensure: Edited encoder weight θeedit such that f(x ∈ Xtask, θ
e) = zc + zedit

1: Freeze all layers of θe except the final trainable layers
2: rtarget ← None
3: Initialize listR ← [ ] {to store class-c representations}
4: for epoch = 1 to T do
5: for each mini-batch (X,Y ) in X do
6: r← f(X, θe) {Encoder representation}
7: if rtarget = None then
8: Collect rc ← r[Y = c], Append rc toR {Representations for target class}
9: if enough class-c reps in R then

10: r← mean(R) {Average representation when reference sample number is satis-
fied}

11: rtarget ← r+ zedit {Add editing vector}
12: end if
13: Continue to next mini-batch if rtarget = None
14: end if
15: Filter r̃← r[Y = c] {Only align class-c representations}
16: Compute alignment loss: ℓ = ∥r̃− rtarget∥2
17: Backpropagation with ℓ
18: end for
19: end for
20: return M {Edited encoder weight θeedit}

Algorithm 4 Pseudocode for optimizing adversarial trigger with Class Vector

Require: Classifier encoder f(·, θe) , Trainable trigger xtrigger, Dataset Xtask, Editing vector zedit,
Number of epochs T , Target class c, Learning rate η

Ensure: Edited encoder weight θeedit such that f(x+ xtrigger, θ
e) = zc + zedit

rtarget ← None
2: Initialize listR ← [ ] {to store class-c representations}

for epoch = 1 to T do
4: for each mini-batch (X,Y ) in X do

r← f(X + xtrigger, θ
e) {Encoder representation}

6: if rtarget = None then
Collect rc ← r[Y = c], Append rc toR {Representations for target class}

8: if enough class-c reps in R then
r← mean(R) {Average representation when reference sample number is satis-
fied}

10: rtarget ← r+ zedit {Add editing vector}
end if

12: Continue to next mini-batch if rtarget = None
end if

14: Filter r̃← r[Y = c] {Only align class-c representations}
Compute alignment loss: ℓ = ∥r̃− rtarget∥2

16: Backpropagation with ℓ
end for

18: end for
return xtrigger {Edited trigger xtrigger}
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Figure 8: Empirical validation of Theorem 3.1: CTL deviation increases with parameter distance.
Blue markers denote interpolation between pretrained and fine-tuned weights (θpre ↔ θi); red
markers denote interpolation between different fine-tuned weights (θi ↔ θj).

C Supplementary Theoretical Analysis

In this section, we provide theoretical analyses, including proofs for the theorems, as well as empirical
evidence supporting them.

C.1 Theoretical Justification of Class Vectors

Here, we prove Theorem 3.1 and provide empirical results supporting the assumptions illustrated in
the figure.
Theorem 3.1 (CTL between pretrained and fine-tuned weights). Suppose the function f : Rp→R is
three-times differentiable on an open convex set Θ ⊂ Rp, and that its Hessian is spectrally bounded
at every θ0 ∈ Θ: λmin ≤

∥∥∇2f(θ0)
∥∥ ≤ λmax [87]. Let θpre be the pre-trained weights and θi, θj

two fine-tuned weights that satisfy CTL. Define

δpre,i =
∣∣f(αθpre + (1− α)θi)−

(
(1− α)f(θpre) + αf(θi)

)∣∣ ,
δi,j =

∣∣f(αθi + (1− α)θj)−
(
(1− α)f(θi) + αf(θj)

)∣∣ .
If ∥θi− θpre∥ < ∥θi− θj∥, then δpre,i < δi,j: the segment from θpre to θi shows strictly smaller CTL
deviation, hence is more linear, than the segment between two fine-tuned solutions θi → θj .

Proof. From Theorem 5.1 in Zhou et al. [87], for any pair θa, θb ∈ Θ, if f : Rp → R is three-times
differentiable on open convex domain Θ, and its Hessian satisfies the spectral bound

λmin ≤ ∥∇2f(θ)∥ ≤ λmax, ∀θ ∈ Θ,

then the CTL deviation is bounded by:

δθa,θb = |f(αθa + (1− α)θb)− [αf(θa) + (1− α)f(θb)]| ≤
α(1− α)

2
λmax∥θa − θb∥2 + E,

where the remainder term E = O(∥αθa + (1 − α)θb − θ0∥3) vanishes as the interpolation point
approaches θ0.

Now fix θpre, θi, θj ∈ Θ, and assume:

∥θi − θpre∥ < ∥θi − θj∥.

Apply the bound to each deviation:

δpre,i ≤
α(1− α)

2
λmax∥θi − θpre∥2 + E1,

δi,j ≤
α(1− α)

2
λmax∥θi − θj∥2 + E2,

for small remainder terms E1, E2 of order O(∥ · ∥3).
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Because ∥θi − θpre∥ < ∥θi − θj∥, it follows that:
δpre,i < δi,j up to a cubic-order error.

Therefore, the CTL deviation along the interpolation path from θpre to θi is strictly smaller than that
between θi and θj in the small-distance regime.

Fig. 8 illustrates the empirical validation of Theorem 3.1, which states that the CTL deviation between
two parameter vectors is upper-bounded by a quadratic function of their Euclidean distance. CTL
deviations are computed using a synthetic quadratic loss function as a surrogate for the true task loss.
In particular, the deviation tends to be smaller when interpolating between a pretrained model and a
fine-tuned model (θpre ↔ θi) than between two independently fine-tuned models (θi ↔ θj).

C.2 Existence of a Mapping Function

The mapping function ϕedit effectively exists in practical editing scenarios, such as small weight
modifications within an overparameterized encoder. We demonstrate that KL-divergence–based
mapping also performs effectively (Tab. 19). Furthermore, experiments across various learning rate
configurations (Tab. 18) show that the mapping is robust to different optimization setups.
Theorem 3.2 (Existence of a Mapping). Let ϕedit : Rm → Rde be any mapping that sends latent
editing vectors to weight perturbations applied in the encoder’s final layer or a small subset of layers.
Under the assumption that these edits are sufficiently small and confined to that small subset of layers
of an overparameterized encoder (e.g., a ViT) with de ≫ m, there exist infinitely many distinct ϕedit.

Proof. For any input x, if the editable–parameter perturbation w is sufficiently small, then
f(x; θ + w) = f(x; θ) + Jf (θ)w + o(∥w∥),

so a first–order Taylor approximation around θ is valid. Let J := Jf (θ) ∈ Rm×de denote the
Jacobian of the encoder output with respect to the editable parameters, evaluated at θ. Since edits are
restricted to an overparameterised subset of layers with de ≫ m, we assume rank(J) = m (full row
rank).

We seek a perturbation w ∈ Rde that realises a target change z ∈ Rm in the encoder output, i.e.
Jw = z.

Because J has full row rank, the matrix JJ⊤ ∈ Rm×m is invertible, and the Moore–Penrose
pseudoinverse

J† := J⊤(JJ⊤)−1 ∈ Rde×m

satisfies JJ† = Im. Hence one particular solution of (A) is

w0(z) := J†z.

Let N := ker J = {v ∈ Rde | Jv = 0}. Its dimension is de −m > 0, so the full solution set of (A)
is the affine subspace

S(z) = J†z + ker J = { J†z + v | v ∈ ker J }.
Since N is nontrivial, infinitely many distinct w satisfy Jw = z.

Now take any linear map N ∈ Rde×m whose columns lie in ker J (JN = 0), and define
R := J† +N.

Then JR = JJ† = Im, so for every z ∈ Rm,
J(Rz) = z.

The mapping
ϕedit(z) := Rz

thus provides a valid weight–space perturbation realising the desired edit. Varying N (or equivalently
adding any vector in ker J to Rz) yields infinitely many distinct mappings ϕedit : Rm → Rde that
all satisfy J ϕedit(z) = z.

Finally, since ker J is a linear subspace, for any ε > 0 we may rescale the target z (or equivalently R)
to ensure ∥ϕedit(z)∥ ≤ ε, so the perturbation remains sufficiently small while achieving the desired
first–order effect. Therefore, under the stated conditions, there exist infinitely many sufficiently small
weight–space mappings ϕedit that satisfy J ϕedit(z) = z for all z ∈ Rm.
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C.3 Class Vectors Preserve Inter-Class Orthogonality

The independence of Class Vectors from other classes is a key property for effective localized editing.
Based on Neural Collapse (NC) [55], we provide theoretical evidence supporting this claim.

Theorem 3.3 (Independence of Class Vectors). Suppose (i) the pretrained class embeddings col-
lapse to a common mean z̄pre, that is zprec ≈ z̄pre; (ii) after fine-tuning the embeddings follow a
centre-shifted ETF form zftc = µ + uc with

∑
c uc = 0; and (iii) the global-shift ∥µ − z̄pre∥ is

negligible compared to the class-specific update ∥uc∥. Then, for any two distinct classes c ̸= c′,

cos
(
κc, z

ft
c′
)
≈ 0,

i.e. the Class Vector κc is approximately orthogonal to the fine-tuned embedding of every other class.

Proof. Define the editing vector κc := zftc − zprec . With Assumption (i) we write

zprec = z̄pre + ec, where ∥ec∥ ≪ ∥uc∥.

Hence
κc = (µ+ uc)− (z̄pre + ec) = (µ− z̄pre) + uc − ec.

For a distinct class c′ ̸= c the inner product becomes

⟨κc, z
ft
c′⟩ = ⟨µ− z̄pre, µ+ uc′⟩+ ⟨uc, uc′⟩ − ⟨ec, µ+ uc′⟩.

Assumption (ii) implies
∑

c uc = 0 and that {uc} form an equiangular tight frame, so ⟨uc, uc′⟩ =
−∥uc∥2

k−1 and ⟨µ, uc′⟩ = 0 after choosing µ orthogonal to the span of the uc. Assumption (iii) states
∥µ− z̄pre∥ ≪ ∥uc∥, so ⟨µ− z̄pre, µ+uc′⟩ is negligible compared with ∥uc∥2. Finally, ∥ec∥ ≪ ∥uc∥
makes the last term negligible. Collecting these bounds,∣∣⟨κc, z

ft
c′⟩

∣∣ ≈ ∥uc∥2

k − 1
,

which is small when the number of classes k is moderate to large. Since ∥κc∥ ≈ ∥uc∥ and ∥zftc′∥ ≈√
∥µ∥2 + ∥uc′∥2 = O(∥uc∥), the cosine similarity satisfies

cos
(
κc, z

ft
c′
)

=
⟨κc, z

ft
c′⟩

∥κc∥ ∥zftc′∥
≈ 1

k − 1
≈ 0,

establishing that each Class Vector κc is approximately orthogonal to every other fine-tuned embed-
ding zftc′ for c ̸= c′.

We note that the Neural Collapse (NC) phenomenon emerges across diverse classifier architectures,
data distributions, and training paradigms [55, 42, 75]. Here, we validate the underlying assumptions
on ViT-B/32. In Fig. 9, we observe that the cosine similarity between pretrained class centroids,
z̄pre, is nearly 1. This indicates that the pretrained class embeddings collapse to a common mean,
thereby validating Assumption (i). Furthermore, as shown in Tab. 6, the cosine similarities among
class centroids closely match the theoretical value of −1/(k − 1), strongly supporting the hypothesis
that the centroids form an equiangular tight frame (ETF) structure (Assumption (ii)). Furthermore,
we show that the global shift in the mean representation across all classes is significantly smaller
than class-wise updates, indicating that the editing process remains highly localized (Assumption
(iii)). Fig. 9 further shows that the fine-tuned class representations are quasi-orthogonal, providing
additional evidence for inter-class independence.

D Experimental Details

D.1 Class Configurations

Tab. 7 shows the class configurations used to evaluate class-vector properties. For each task, we
consistently select the first two classes.
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Table 6: Verification of Assumptions 2 and 3 across five tasks. Cosine similarity is computed across
re-centered class embeddings (Assumption 2). The last column reports the deviation of global drift
relative to class-specific update norms (Assumption 3).

Task Cos.Sim. (Ass. 2) Theoretical ETF Cos.Sim. Global-Shift /Cls-update (Ass. 3)

DTD −0.02 −0.02 0.00
EuroSAT −0.10 −0.11 −0.12
GTSRB −0.02 −0.02 −0.02
MNIST −0.10 −0.11 −0.02
RESISC45 −0.02 −0.02 −0.07

Figure 9: Comparison of cosine similarities across class representations within the pretrained and
fine-tuned classifiers.

Table 7: Task overviews and target classes for §3.3
Task # of classes Target classes

MNIST 10 0,1
EuroSAT 10 Annual crop, Herbaceous Vegetation
GTSRB 43 20kph speed limit, 30kph speed limit 1
RESISC45 45 Airplane, Airport
DTD 47 Banded, Blotchy

D.2 Task Details

The fundamental properties of linearity and independence, and applications of Class Vectors in the
context of unlearning are evaluated in §3.3 and §4.2, using six widely adopted image classification
tasks, MNIST [41], EuroSAT [24], SVHN [51], GTSRB [63], RESISC45 [9] and DTD [11]. Addi-
tionally, we empirically justify the Class Vectors in both MLP and ResNet-18 architectures, using
CIFAR-10 and CIFAR-100 datasets. All images are rescaled to image size 224× 224. The details for
each task are as follows:

• MNIST [41]: A handwritten digit classification task with 60,000 training images and 10,000
test images, categorized into 10 classes from 0 to 9.

• EuroSAT [24]: Land use and cover satellite image classification task, containing 13 spectral
bands and 10 classes, with 16,000 training images and 5000 test images, 27,000 images in
total with validation set.

• SVHN [51]: A real-world digit classification benchmark task containing a total of 630,000
images with 2,700 test data of house number plates.

• GTSRB [63]: Traffic sign classification task with 43 categories, containing 39,209 training
data and 12,630 test data under varied lighting and complex backgrounds.
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• RESISC45 [9]: A benchmark for remote sensing scene classification task with 31,500
images across 45 distinct scene types.

• DTD [11]: Image texture classification task with 47 categories, containing a collection of
5,640 texture images, sourced from diverse real-world settings.

• CIFAR10 [38]: The dataset is a 10-class classification task consisting of 60,000 images,
with 6,000 images per class. It contains 50,000 training images and 10,000 test images.

• CIFAR100 [38]: The dataset is a subset of the Tiny Images dataset and consists of 60,000
color images. The 100 classes are organized into 20 superclasses, with each class containing
600 images.

For evaluating Class Vectors in adapting to snowy environments (§4.3) and defending against
typography attacks (§4.4), we use snowy ImageNet and clean and text-attached object images from
previous study [60]. For the snowy environment adaptation scenario, we collect clean images for all
classes from ImageNet, as shown in Fig. 10. For the defense against typography attacks, we augment
images from all classes with: 1) digital text attachment, 2) rotation, random cropping, and color
jittering (Fig. 11). The details for each task are as follows:

• Snowy ImageNet: A collection of images from ImageNet with snowy environments. It
consists of 7 classes with 20 images per class, totaling 140 images.

• Images for typography attack: It consists of web-scraped images with 6 classes of indoor
objects and text-attached images for each. There are 6 images of each object. We augment
each sample into 13 images per class, thus making a total of 90 images, including both
original clean and adversarial images.

D.3 Training Details

D.3.1 Class Vector Justification

In Fig. 2b, we justify Class Vectors using three architectures—ViT-B/32, an MLP, and ResNet-
18—and train each as follows. The Vision Transformer (ViT-B/32) is fine-tuned per task for ap-
proximately 22 epochs with a learning rate of 1e-5 and a batch size of 128. For both the MLP and
ResNet-18, we train on MNIST and CIFAR-10 with a learning rate of 1e-3, batch size 128 for 10
epochs, and on CIFAR-100 with a learning rate of 1e-4, batch size 512 for 300 epochs.

D.3.2 Mapping Editing Vectors

We utilize fully fine-tuned weights for the five tasks mentioned above from open-source repositories
of Task Arithmetic [29]3. We use pretrained ViTs to classify ImageNet classes in §4.3 and §4.4, as
they are trained on ImageNet. For these tasks, we initialize the encoder and create the representation
for all classes from the model to generate Class Vectors. All our experiments first design zedit,
then map it to the weight space (i.e., ϕedit) to achieve classifier editing. The following are detailed
training settings for mapping editing vectors. Refer to Algorithm 3 and Algorithm 4 for details on the
reference sample. All our experiments are conducted on a single NVIDIA A100 GPU.

Exploring properties of Class Vectors §3 explores the fundamental properties of Class Vectors:
linearity and independence. To evaluate the linearity of Class Vectors, we train zedit for 15 epochs,
using target classes within 1% of the test set, with a learning rate of 1.5e-2 and a single reference
sample. For all experiments verifying independence, we train the model for 15 epochs on the 1% test
set, as described above, with a learning rate of 5e-2 and one reference sample.

Class unlearning Tab. 8 shows the hyperparameters for class unlearning. We find the best hyper-
parameter by grid searching [3e-2, 4e-2, 5e-2, 6e-2]. The same hyperparameters with MNIST are
applied to SVHN in the cross-task class unlearning scenario. The following are the hyperparameters
we adopt to evaluate class unlearning:

3https://github.com/mlfoundations/task_vectors

23

https://github.com/mlfoundations/task_vectors


Adapting to new environment and defense against typography attacks In Tab. 11, we present
hyperparameters for training models in §4.3 and §4.5. Note that we post-train the MLPs and layer
normalization in final encoder layer.

Adversarial trigger optimization We present hyperparameters for optimizing adversarial triggers
(small patches and invisible noise) in Tab.12 and Tab.13. Transparency-α in Tab.13 denotes the
process of blurring the noise in xtrigger to make the triggered image stealthy. Specifically, we attack
the model with triggered image, xattack = (1 − α) · xoriginal + α · xtrigger. Additionally, for training
BadNet [20], we post-train the fine-tuned classifier to misclassify trigger-attached images using
cross-entropy loss, with a learning rate of 1e-4, while keeping other settings unchanged.

Table 8: Hyperparameters for class unlearning with ViT-B/32.
Hyperparameters MNIST EuroSAT GTSRB RESISC45 DTD

Epochs 15
Sample size (%) 1 5 1 5 10
Learning rate 4e-2 5e-2 4e-2 3e-2 5e-2
Scaling coefficient -1.5
Reference sample (image) 1

Table 9: Hyperparameters for class unlearning with ViT-B/16.
Hyperparameters MNIST EuroSAT GTSRB RESISC45 DTD

Epochs 15
Sample size (%) 1 5 1 5 10
Learning rate 4e-2 5e-2 6e-2 3e-2 6e-2
Scaling coefficient -1.5
Reference sample (image) 1

Table 10: Hyperparameters for class unlearning with ViT-L/14.
Hyperparameters MNIST EuroSAT GTSRB RESISC45 DTD

Epochs 15
Sample size (%) 1 5 1 5 10
Learning rate 4e-2 3e-2 6e-2 3e-2 6e-2
Scaling coefficient -1.5
Reference sample (image) 1

Table 11: Hyperparameters for adapting to new environment and defense against typography attacks.
Hyperparameters Snowy env. (1) Snowy env. (2) Typography attack

ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14

Epochs 15
Sample size (images) 6 6 4
Learning rate 1e-4
Scaling coefficient 2.5 -1.0 -1.5
Reference sample (image) 1

Table 12: Hyperparameters for optimizing small patches across classifiers.
Hyperparameters SVHN GTSRB RESISC45

ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14

Epochs 100
Sample size (%) 10
Learning rate 5 5 10
Scaling coefficient 1.5
Reference sample 1
Patch Size 20 × 20
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Table 13: Hyperparameters for optimizing invisible noise across classifiers.
Hyperparameters SVHN GTSRB RESISC45

ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14 ViT-B/16 ViT-B/32 ViT-L/14

Epochs 15
Sample size (%) 10
Learning rate 300 200 600
Scaling coefficient 1.0
Reference sample 1
Patch Size 224 × 224
Transparency-α 2e-4

E Additional Experiments

In this section, we present additional experiments on ViT-B/32 and ViT-L/14 for class unlearning,
as well as results for backdoor attacks using adversarial triggers on the ViT-B/16 and ViT-L/14.
As shown in Tab.14 and Tab.15, Class Vectors consistently outperform baselines. Meanwhile,
random vectors highlight that editing with Class Vectors provides an intuitive way to remove model
adaptations. Additionally, gradient ascent (i.e., NegGrad) still struggles to maintain accuracy, while
retraining remains ineffective due to data insufficiency. Tab. 16 also demonstrates Class Vector’s
stable performance in backdoor attack scenario, effectively surpassing other baselines across two
different types of adversarial triggers.

Table 14: Comparison of class unlearning with baselines on ViT-B/32.

Method MNIST EuroSAT GTSRB RESISC45 DTD

ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑)

Pretrained 54.6±33 47.3±3.4 57.8±21.4 44.5±2.4 43.3±30.1 32.2±1.6 71±24.4 60.1±0.6 35±33.2 44.6±0.7
Fine-tuned 99.8±0.1 99.7±0.0 99.9±0.1 99.8±0.0 99.5±0.6 98.7±0.0 98.9±0.1 96.1±0.0 70.5±16.7 79.6±0.4

Retrained 0.0±0.0 63.7±2.2 0.0±0.0 79.6±1.6 1.2±2.4 48.6±0.7 27.7±22.5 71.8±0.5 17.0±31.6 54.6±0.6
NegGrad 0.0±0.0 33.7±8.7 0.0±0.0 16.6±6.1 0.0±0.0 31.7±27.6 0.0±0.0 6.1±7.6 0.0±0.0 9.0±11.7
Random Vector 99.8±0.1 99.6±0.0 99.9±0.1 99.4±0.2 99.5±0.6 97.2±1.5 97.9±3.5 43.3±23.1 63.5±30.6 42.4±20.5

Class Vector† 0.0±0.0 99.6±0.1 0.0±0.0 92.0±8.8 0.0±0.0 94.6±5.9 7.1±9.0 65.4±17.9 15.0±19.4 66.3±13.2

Table 15: Comparison of class unlearning with baselines on ViT-L/14.

Method MNIST EuroSAT GTSRB RESISC45 DTD

ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑) ACCf (↓) ACCr (↑)

Pretrained 86.7±8.1 75.2±0.9 58.1±28.7 63.0±4.6 85.4±14.2 49.0±1.1 68.5±18.8 71.4±0.5 35.0±33.5 55.8±0.7
Fine-tuned 99.8±0.0 99.7±0.0 99.9±0.2 99.7±0.0 99.6±0.7 99.2±0.0 99.6±0.7 97.3±0.0 76.5±15.7 84.3±0.3

Retrained 42.8±37.0 88.8±1.0 8.7±14.5 90.1±1.3 59.6±32.0 64.2±1.6 36.1±26.7 80.2±0.4 16.5±30.5 62.7±0.9
NegGrad 0.0±0.0 53.7±18.3 0.0±0.0 11.2±1.0 0.0±0.0 21.2±19.9 0.0±0.0 10.5±12.3 0.0±0.0 9.7±10.2
Random Vector 99.8±0.1 99.7±0.0 100.0±0.0 94.2±8.9 99.5±0.7 99.1±0.1 99.5±0.7 94.8±3.0 59.0±46.2 53.7±23.8

Class Vector† 3.7±7.4 97.9±3.6 0.0±0.0 92.7±8.7 9.7±19.3 94.8±5.0 0.0±0.0 91.2±3.5 23.5±34.9 70.5±12.9

Table 16: Results on backdoor attacks with optimized triggers for ViT models.

Method ViT-B/16 ViT-L/14

Small Patch Invisible Small Patch Invisible

ASR (↑) CA (↑) ASR (↑) CA (↑) ASR (↑) CA (↑) ASR (↑) CA (↑)

Pretrained 32.7±29.0 53.9±9.5 28.5±22.7 53.9±9.5 14.9±20.4 60.1±8.6 22.2±27.9 60.1±8.6
Finetuned 0.3±0.2 98.0±0.9 0.3±0.2 98.0±0.9 0.1±0.1 98.2±0.8 0.1±0.1 98.2±0.8

BadNet 90.9±12.8 29.6±23.9 91.3±12.3 27.4±20.9 70.2±41.1 10.0±5.0 100±0.0 9.3±7.4
Random Vector 0.1±0.1 98.0±0.9 0.2±0.3 98.0±0.9 0.0±0.0 98.2±0.8 1.2±1.7 98.2±0.8
DirMatch 99.8±27.9 98.0±0.9 97.1±2.3 98.0±0.9 69.3±43.2 98.2±0.8 95.3±5.0 98.2±0.8

Class Vector† 100±0.0 98.0±0.9 97.5±2.5 98.0±0.9 100±0.0 98.2±0.8 97.5±1.8 98.2±0.8
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Table 17: Task Vector vs. Class Vector in class unlearning. Each cell reports (ACCf ↓, ACCr).

Model MNIST EuroSAT GTSRB

Task Vector Class Vector Task Vector Class Vector Task Vector Class Vector

ViT-B/32 20.0, 8.8 0.0, 99.6 20.0, 10.1 0.0, 92.0 20.0, 0.3 0.0, 94.6
ViT-B/16 20.0, 8.8 0.0, 99.7 20.0, 9.7 0.0, 99.5 20.0, 0.5 0.0, 98.6
ViT-L/14 0.0, 1.1 3.7, 97.9 0.0, 10.7 0.0, 92.7 0.0, 1.0 9.7, 94.8

F Mapping Sensitivities

Table 18: Impact of learning rate (LR) on Class Vector editing.
LR MNIST EuroSAT GTSRB

ACCf ACCr ACCf ACCr ACCf ACCr

2e-5 0.0 99.7 0.0 99.7 0.0 98.3
5e-5 0.0 99.7 0.0 99.8 0.0 98.6
1e-4 0.0 99.6 0.0 99.8 0.0 98.0
2e-4 0.0 99.4 0.0 99.7 0.0 96.2
5e-4 0.0 98.2 0.0 97.8 0.0 60.3

Table 19: Performance of Class Vector mapping with KLD loss across datasets.
MNIST EuroSAT GTSRB RESISC45 DTD

ACCf ↓ ACCr ↑ ACCf ↓ ACCr ↑ ACCf ↓ ACCr ↑ ACCf ↓ ACCr ↑ ACCf ↓ ACCr ↑

KLD 0.0 99.7 0.0 99.8 0.0 98.7 0.0 94.5 15.0 79.3
MSE 0.0 96.2 0.0 99.7 0.0 93.4 10.0 90.7 15.2 72.9

Sensitivity to learning rate. Tab. 18 examines the effect of learning rate on class-vector editing
across MNIST, EuroSAT, and GTSRB. We report Forget Accuracy (↓) and Retain Accuracy (↑) for
each setting. At low to moderate rates (2e-5–2e-4), forgetting remains at 0% while retention stays
above 94%, peaking at nearly 99.8%. However, at 5e-4, retention on GTSRB plummets to 60.3%,
indicating that an excessively large learning rate destabilizes the edit.

Impact of loss function. Theorem 3.2 demonstrates that mapping solutions can be obtained from
infinitely many distinct configurations. Tab. 19 compares KLD vs. MSE (default) as the mapping loss
across MNIST, EuroSAT, GTSRB, RESISC45, and DTD. Even with KLD loss, forgetting remains
perfect (0%) and retention exceeds 94.5% on all but the most challenging texture dataset (DTD,
79.3%).

G Computational Analysis

Table 20: Analysis on computational complexity of classifier editing with Class Vectors.
Application Task # of parameters Time (s)

Unlearning MNIST 1.5K 2.5
Adapting to new environment - 4.7M 1.2
Defending against typography attacks - 4.7M 10.4
Small patch trigger optimization RESISC45 0.4K 238
Invisible noise trigger optimization RESISC45 1.5M 38.1

We evaluate the computational complexity of classifier editing using Class Vectors mapping by
measuring the number of trainable parameters and the time required for model editing with ViT-B/32.
As shown in Tab. 20, Class Vectors enable efficient classifier editing across diverse applications,
requiring a minimum of 1.5K trainable parameters or just 1.2 seconds. This aligns with the philosophy
of model intervention, which aims to adjust models quickly using a small number of samples while
achieving effective editing performance.
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H Supplementary Figures

Figure 10: (Top) Snowy objects for adaptation to a snowy environment. (Middle) and (Bottom)
Web-crawled clean object images for each class to isolate snow representation in zedit to eliminate
snow representation in the second scenario.

Figure 11: Augmented images across classes for typography attacks.

Figure 12: Trigger-attached images in RESISC45 and SVHN.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have included paper’s contributions and scope in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included the limitations in the conclusion part and in the Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For each theorem, we provide its proof and an empirical validation of its
assumptions in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information for reproducing the experimental results is provided in
the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are going to release our code either during the review period or shortly
thereafter.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental details in Appendix §D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Throughout our experiments, we consistently report error bars representing
standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the resources information in Appendix §D.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have adhered to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss this in Appendix A.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss this in Appendix A.3.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the license and usage guidelines provided by creators of the assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the license, limitations and training details in Appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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