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Abstract001

With the advancement of artificial intelligence002
and computer vision technologies, multimodal003
emotion recognition has become a promi-004
nent research topic. However, existing meth-005
ods face challenges such as heterogeneous006
data fusion and the effective utilization of007
modality correlations. This paper proposes008
a novel multimodal emotion recognition ap-009
proach, DeepMSI-MER, based on the inte-010
gration of contrastive learning and visual se-011
quence compression. The proposed method012
enhances cross-modal feature fusion through013
contrastive learning and reduces redundancy014
in the visual modality by leveraging visual se-015
quence compression. Experimental results on016
two public datasets, IEMOCAP and MELD,017
demonstrate that DeepMSI-MER significantly018
improves the accuracy and robustness of emo-019
tion recognition, validating the effectiveness020
of multimodal feature fusion and the proposed021
approach.022

1 Introduction023

The rapid advancement of artificial intelligence024

and computer vision has made emotion recogni-025

tion a crucial research area in fields such as human-026

computer interaction (HCI), intelligent customer027

service, and mental health monitoring (Poria et al.,028

2017a). The goal of emotion recognition is to ana-029

lyze an individual’s emotional state through multi-030

modal information, including speech, text, and vi-031

sual data, to enhance emotional understanding in032

intelligent systems. However, conventional emo-033

tion recognition methods predominantly rely on034

single-modal feature extraction and classification,035

limiting their applicability in complex real-world036

scenarios. In recent years, advances in multimodal037

learning and deep learning have propelled multi-038

modal emotion recognition (MER) into a promi-039

nent research focus, as it improves the accuracy040

and robustness of emotion classification by inte-041

grating multiple data sources.042

Figure 1: Overall Architecture of the Proposed
DeepMSI-MER Framework.

Despite the progress in multimodal emotion 043

recognition, several challenges remain. First, dif- 044

ferent modalities exhibit distinct feature represen- 045

tations, making the effective fusion of heteroge- 046

neous data a critical challenge in capturing emo- 047

tional information (Hadsell et al., 2006; Chen 048

et al., 2020). Second, temporal and spatial features 049

in the visual modality often contain substantial re- 050

dundant information. Reducing this redundancy 051

while retaining emotion-relevant features remains 052

an open research question (Tran et al., 2018; Car- 053

reira and Zisserman, 2017). Lastly, while deep 054

learning has significantly advanced feature extrac- 055

tion, fully leveraging the latent correlations among 056

different modalities to enhance emotional under- 057

standing remains a persistent challenge (Zadeh 058

et al., 2017; Liu et al., 2018). 059

To address the aforementioned challenges, this 060

paper proposes a novel multimodal emotion recog- 061

nition framework, DeepMSI-MER, as illustrated 062

in Figure 1. This framework introduces a multi- 063

modal semantic guidance mechanism and a visual 064

sequence compression strategy to achieve efficient 065

fusion of heterogeneous modalities such as text 066

and audio, while significantly reducing the redun- 067

dancy present in the temporal and spatial features 068

of the visual modality. Furthermore, by incorpo- 069

rating an improved contrastive learning algorithm, 070

the framework effectively captures the latent cor- 071

relations among different modalities, thereby en- 072

hancing the accuracy and robustness of emotion 073

understanding. Accordingly, the main contribu- 074

1



tions of this paper are as follows:075

• We propose a semantic-guided multimodal076

fusion method that effectively integrates tex-077

tual, acoustic, and visual features. A Vi-078

sual Sequence Compression (VSC) mod-079

ule is designed to reduce visual redundancy080

within the Swin-TransformerV2-Tiny archi-081

tecture, and a Temporal Convolutional Net-082

work (TCN) captures temporal dependencies083

to enhance recognition performance.084

• We introduce an improved contrastive learn-085

ing strategy by incorporating a label-based086

mask matrix, converting traditional unsuper-087

vised contrastive learning into a supervised088

paradigm, thereby strengthening cross-modal089

feature alignment.090

• Our method achieves 84.7% accuracy and F1091

score on the IEMOCAP dataset, exceeding092

current SOTA by 10.9 and 10.8 percentage093

points respectively, demonstrating substantial094

performance gains in multimodal emotion095

recognition.096

2 Related Work097

2.1 Multimodal Emotion Recognition098

Multimodal emotion recognition has been a long-099

standing research area, with early studies primar-100

ily focusing on single-modal approaches such as101

speech emotion recognition, text sentiment anal-102

ysis, and visual emotion recognition. However,103

these methods often struggle to capture the com-104

plexity of human emotions due to their reliance on105

a single source of information. To address this lim-106

itation, recent advancements have focused on inte-107

grating multiple modalities to enhance recognition108

performance.109

In particular, deep neural networks have played110

a crucial role in multimodal fusion, significantly111

improving emotion classification accuracy. For in-112

stance, some studies have proposed deep learning-113

based multimodal models that combine speech114

and text features, demonstrating superior recog-115

nition performance compared to single-modal ap-116

proaches (Abdullah et al., 2021). Other research117

has introduced fusion frameworks incorporating118

speech, text, and visual information, leveraging119

joint training techniques to further improve emo-120

tion prediction accuracy (Gupta et al., 2024).121

These advances highlight the potential of multi- 122

modal integration in enhancing the robustness and 123

generalization of emotion recognition models. 124

2.2 Application of Contrastive Learning in 125

Emotion Recognition 126

In recent years, contrastive learninga self- 127

supervised learning paradigmhas demonstrated 128

remarkable success across multiple domains, 129

including computer vision, speech processing, 130

and natural language understanding. The core 131

principle of contrastive learning is to maximize 132

the similarity between semantically related 133

samples while minimizing the distance between 134

unrelated ones, allowing models to learn more 135

discriminative feature representations. 136

In the context of multimodal emotion recogni- 137

tion, contrastive learning has been effectively uti- 138

lized to improve cross-modal feature alignment. 139

For example, recent studies have proposed con- 140

trastive learning-based multimodal frameworks, 141

enhancing the fusion of speech and text modal- 142

ities by learning a shared latent space for both 143

modalities. This approach has led to substantial 144

performance improvements in emotion classifica- 145

tion tasks (Mai et al., 2022). By aligning mul- 146

timodal features in a mutually informative repre- 147

sentation space, contrastive learning mitigates the 148

challenges of modality mismatch and enhances the 149

model’s ability to capture emotion-related infor- 150

mation across different data sources. 151

3 Proposed Method 152

The DeepMSI-MER framework proposed in this 153

study is illustrated in Figure 2. The detailed imple- 154

mentation of the model is provided in Appendix 155

A. 156

To address the three challenges outlined in the 157

introduction: (1) the distinct feature representa- 158

tions of different modalities, which raises the ques- 159

tion of how to effectively fuse heterogeneous data 160

for accurate emotion recognition; (2) the substan- 161

tial redundancy often present in the temporal and 162

spatial features of the visual modality, and how to 163

effectively reduce this redundancy while retaining 164

emotion-relevant features; (3) despite significant 165

advancements in feature extraction through deep 166

learning, the challenge remains of fully exploiting 167

the latent correlations between different modali- 168

ties to enhance emotional understanding, we pro- 169

pose the following solutions. 170
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Figure 2: The overall architecture of DeepMSI-MER for multimodal emotion recognition. DeepMSI-MER consists
of a high-level semantic feature module, an early feature fusion module, and a late feature fusion module. The high-
level semantic feature module fuses the semantic features of text and audio to further extract contextual semantic
features, which are ultimately used in VSC-Swin.

3.1 Multimodal Semantic Guidance171

To address the challenge of effectively fusing172

heterogeneous data for more accurate emotion173

recognition, we propose a multimodal semantic-174

guided fusion approach. Specifically, we pre-175

train BERT and Wav2Vec models on the IEMO-176

CAP and MELD datasets, respectively, to extract177

richer semantic representations from the textual178

and acoustic modalities. These modality-specific179

semantic features are then integrated to construct a180

unified multimodal semantic representation which181

serves as a more precise and comprehensive foun-182

dation for subsequent emotion recognition tasks.183

The detailed process is illustrated in Equation 1:184

Gcls = Concat(fBERT(xt), fWav2Vec(xa)) (1)185

Where fBERT and fWav2Vec represent the tex-186

tual and acoustic feature extraction models, respec-187

tively. The concatenated feature vector Gcls serves188

as the input to the visual sequence compression189

module, VSC-Swin.190

3.2 Visual Sequence Compression191

To address the challenge of substantial redundancy192

present in the temporal and spatial features of the193

visual modality, we propose a visual sequence194

compression method, as shown in Figure 3. By195

Figure 3: Visual Sequence Compression Process.

applying average pooling to the visual sequence 196

V ∈ RN×d, we obtain the visual semantic fea- 197

ture vcls. The multimodal semantic-guided feature 198

Gcls is fused with vcls to create the fused semantic 199

feature mcls, as shown in Equation 2: 200

mcls = vcls +Gcls

M =
[
m1

cls,m
2
cls, . . . ,m

N
cls

] (2) 201

Where mcls represents the weighted sum of 202

Gcls and vcls, and the fused feature is broadcasted 203

to match the dimension of the visual sequence 204

M ∈ RN×d. We then compute the similarity be- 205

tween M and V , as shown in Equation 3: 206
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S =
V ⊙MT

T

σ(S
′
) =

{
Z lr, S

′
< γ

Zr, S
′ ⩾ γ

(3)207

Where T is the temperature coefficient, and S208

is the similarity matrix. The similarity sequence209

S
′

is extracted from the first row of S, and based210

on the threshold γ, the visual sequence V is di-211

vided into relevant sequences Zr and irrelevant se-212

quences Z lr.213

To prevent information loss, we compute the214

similarity between Zr and Z lr and fuse the rel-215

evant sequences with the highest similarity from216

Z lr, as shown in Equation 4:217

j = max(Z lr
i, Z

lr
i
T
)

Zr ′ =
N−L∑
i=0

(
α ∗ Zr

j + (1− α) ∗ Z lr
ij

) (4)218

Where j is the sequence position of the highest219

similarity, α is the fusion threshold, and N − L220

is the length of the non-relevant sequence. The221

updated relevant sequence Zr ′ is the output.222

As shown in Figure 4, we integrate the pro-223

posed module into the Swin-TransformerV2-Tiny224

architecture. Specifically, the VSC module is in-225

troduced at Step 3, compressing the number of226

patches in Steps 3 and 4 from 256, 196, and227

144 down to 100. This compression strategy re-228

duces the number of parameters in these stages by229

approximately 20%, significantly enhancing the230

model’s computational efficiency. The training re-231

sults, presented in Figure 5, further validate the232

effectiveness of our approach. We refer to the re-233

sulting model as VSC-Swin.234

Last but not least, while VSC-Swin effectively235

addresses spatial redundancy, it does not capture236

the temporal dependencies across video frames.237

To address this limitation, we subsequently em-238

ploy a Temporal Convolutional Network (TCN)239

as the temporal feature extraction module. TCN240

captures long-range dependencies through dilated241

convolutions, as defined in Equation 5:242

y (t) =
K−1∑
k=0

xt−d ·Wk (5)243

Where y(t) is the output at time step t, xt is the244

input sequence, wk is the convolution kernel, d is245

the dilation factor, and K is the kernel size. The 246

dilated convolution expands the receptive field, al- 247

lowing TCN to efficiently capture temporal de- 248

pendencies without increasing computational com- 249

plexity. 250

In video-based sentiment recognition, we 251

choose 15 frames as the input for each video based 252

on the periodic nature of emotional changes. The 253

following points justify this choice: 254

• Emotional Change Cycles: 15 frames cover 255

key emotional transitions, balancing informa- 256

tion capture without overloading the model. 257

• Receptive Field of TCN: With dilated convo- 258

lutions, TCN efficiently captures long-range 259

dependencies from 15 frames, preserving im- 260

portant details. 261

Thus, using 15 frames strikes a balance between 262

capturing temporal relationships and ensuring ac- 263

curate sentiment recognition. 264

3.3 Improved Contrastive Learning 265

To address the issue of insufficiently leveraging 266

the latent correlations between different modal- 267

ities to enhance emotional understanding, we 268

propose an improved contrastive learning algo- 269

rithm. We propose an improved contrastive learn- 270

ing algorithm, with the key innovation being the 271

introduction of a mask matrix that transforms 272

the originally unsupervised contrastive learning 273

into a supervised one. By generating positive 274

and negative sample masks based on the labels 275

within each batch, the model can explicitly distin- 276

guish between positive and negative pairs, thereby 277

more effectively enhancing the correlations among 278

features from different modalities. This super- 279

vised approach addresses the limitations of tradi- 280

tional unsupervised contrastive learningwhich of- 281

ten overlooks inter-modal relationshipsand signifi- 282

cantly improves cross-modal emotion understand- 283

ing. 284

As shown in Figure 6, the original text, audio, 285

and video features undergo low-dimensional map- 286

ping. The labels of the current batch are then used 287

to create positive and negative sample mask ma- 288

trices. The loss value is calculated by comparing 289

the mapped text and audio features with the video- 290

mapped features, which are then fed back into the 291

mapping module. The fusion process is based on a 292

contrastive learning algorithm, and the formula for 293
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Figure 4: Since we incorporated the VSC module into the Swin-TransformerV2-Tiny architecture, it was necessary
to modify the Patch Partition and Swin Transformer Block in Step 3, as well as the Patch Partition in Step 4. The
specific implementation details of these modifications are provided in the accompanying code A.

Figure 5: The detailed compression process of the VSC-Swin model in Step 3.

Figure 6: Contrastive Learning Algorithm Process

the contrastive learning loss is as shown in Equa-294

tion (6):295

Where B is the batch size, i and j are the296

row and column indices of the similarity matrix,297

cos(xi, xi) represents the similarity of positive298

samples, cos(xi, xj) represents the similarity of299

negative samples, and τ is the temperature hyper-300

parameter. The loss computation involves expo-301

nentiating the similarities, accumulating the neg-302

ative sample values for each row, and computing303

the log of the result. The final contrastive learning304

loss is obtained by averaging the individual loss305

values across all rows.306

4 Experiments307

4.1 Dataset308

The DeepMSI-MER model proposed in this paper309

was evaluated on two benchmark datasets, IEMO-310

CAP and MELD. These datasets all contain three 311

modalities: text, video, and audio. 312

IEMOCAP(Busso et al., 2008) is a widely used 313

public dataset in emotion recognition research, 314

created by the Sippy team at the University of 315

Southern California. It provides detailed anno- 316

tations of emotional interactions and speech/non- 317

verbal behaviors, with six emotion categories: hap- 318

piness, sadness, anger, excitement, frustration, and 319

neutrality. The data were consistently annotated 320

by multiple evaluators and involve 10 participants. 321

Details of the data pre-processing process for 322

IEMOCAP can be found in Appendix B. 323

MELD(Poria et al., 2018) is an open multi- 324

modal dataset created by researchers at the Univer- 325

sity of Toronto, containing text data from movie 326

script dialogues. It includes annotations for six 327

emotion categories: joy, sadness, anger, fear, sur- 328

prise, and neutrality, with emotional annotations 329

independently performed by multiple annotators. 330

4.2 Training 331

We train our method using a combination of cross- 332

entropy and contrastive learning, with the specific 333

formula as follows Formula 7. 334
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Lcl = − 1

B (B − 1)

B∑
i

B∑
j

log
exp

(
cos(xi,xi)

τ

)
exp

(
cos(xi,xi)

τ

)
+
∑B

j exp
(
cos(xi,xj)

τ

) (6)

Lce = −
C∑
c=1

yc log(pc)

L = αce ∗ Lce + βcl ∗ Lcl

(7)335

where Lce is the cross-entropy loss, C is the to-336

tal number of classes, yc is the one-hot encoding337

of the true label, pc is the predicted probability for338

the class c, and αce and βcl are the weights for the339

cross-entropy loss and contrastive learning loss, re-340

spectively.341

In the training process, we use K-fold cross-342

validation to assess the model’s generalization343

ability and reduce biases due to data splitting. The344

dataset is randomly divided into K equally sized345

subsets (with K = 10), and in each round of cross-346

validation, one subset is used as the validation set347

while the remaining K − 1 subsets are used for348

training. The model is trained on the training set349

and evaluated on the validation set, and this pro-350

cess is repeated for K rounds. The final perfor-351

mance metric is the average of the results from all352

rounds.353

4.3 Baselines and Evaluation Metrics354

CMN(Zadeh et al., 2017): This method integrates355

speaker information and multimodal features by356

introducing an attention mechanism.357

bc-LSTM(Poria et al., 2017b): It performs fi-358

nal emotion recognition by extracting contextual359

information from discourse sequences, which is360

context-sensitive.361

LFM(Liu et al., 2018): It efficiently addresses362

the dimensionality curse in multimodal feature fu-363

sion using low-rank decomposition.364

A-DMN(Xing et al., 2020): A-DMN considers365

both intra- and cross-speaker contextual informa-366

tion and employs GRU to perform cross-modal367

feature fusion.368

ICON(Hazarika et al., 2018): This approach369

utilizes GRU to extract contextual information370

from multimodal features and employs an atten-371

tion layer for multimodal semantic information fu-372

sion.373

DialogueGCN(Ghosal et al., 2019): Dia- 374

logueGCN constructs a speaker relationship graph 375

using contextual semantic features and leverages 376

both contextual semantic and speaker relationship 377

information for emotion classification. 378

DialogueRNN(Majumder et al., 2019): This 379

method constructs three different gating units to 380

extract and fuse speaker information, emotion in- 381

formation, and global information. 382

RGAT(Ishiwatari et al., 2020): RGAT inte- 383

grates positional encoding into graph attention net- 384

works to improve the model’s ability to understand 385

context. 386

LR-GCN(Ren et al., 2021): LR-GCN con- 387

structs multiple graphs to capture latent dependen- 388

cies between contexts and employs dense layers 389

to extract speaker relationship and graph structural 390

information. 391

DER-GCN(Ai et al., 2023): DER-GCN en- 392

hances the model’s emotion representation capa- 393

bilities by constructing speaker relationship and 394

event graphs. 395

ELR-GCN(Shou et al., 2024): The model pre- 396

computes emotion propagation using an extended 397

forward propagation algorithm and designs an 398

emotion relation-aware operator to capture seman- 399

tic connections between utterances. 400

SDT(Ma et al., 2023): By leveraging intra- and 401

cross-modal transformers, the model enhances the 402

understanding of interactions between utterances, 403

improving modality relationship comprehension. 404

GS-MCC(Meng et al., 2024): From a graph 405

spectral perspective, GS-MCC revisits multimodal 406

emotion recognition, addressing the limitations in 407

capturing long-term consistency and complemen- 408

tary information. 409

4.4 Comparison with State of the Art 410

Methods 411

To evaluate the effectiveness of DeepMSI-MER, 412

we compare it with existing methods on the IEMO- 413

CAP and MELD datasets. 414
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Methods IEMOCAP
Happy Sad Neutral Angry Excited Frustrated Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
CMN 25.0 30.3 55.9 62.4 52.8 52.3 61.7 59.8 55.5 60.2 71.1 60.6 56.5 56.1
bc-LSTM 29.1 34.4 57.1 60.8 54.1 51.8 57.0 56.7 51.1 57.9 67.1 58.9 55.2 54.9
LFM 25.6 33.1 75.1 78.8 58.5 59.2 64.7 65.2 80.2 71.8 61.1 58.9 63.4 62.7
A-DMN 43.1 50.6 69.4 76.8 63.0 62.9 63.5 56.5 88.3 77.9 53.3 55.7 64.6 64.3
ICON 22.2 29.9 58.8 64.6 62.8 57.4 64.7 63.0 58.9 63.4 67.2 60.8 59.1 58.5
DialogueGCN 40.6 42.7 89.1 84.5 62.0 63.5 67.5 64.1 65.5 63.1 64.1 66.9 65.2 64.1
RGAT 60.1 51.6 78.8 77.3 60.1 65.4 70.7 63.0 78.0 68.0 64.3 61.2 65.0 65.2
LR-GCN 54.2 55.5 81.6 79.1 59.1 63.8 69.4 69.0 76.3 74.0 68.2 68.9 68.5 68.3
DER-GCN 60.7 58.8 75.9 79.8 66.5 61.5 71.3 72.1 71.1 73.3 66.1 67.8 69.7 69.4
ELR-GCN 64.7 62.9 75.7 80.8 66.2 62.4 70.7 70.0 76.8 78.6 67.9 68.1 70.6 70.9
SDT 72.7 66.1 79.5 81.8 76.3 74.6 71.8 69.7 76.7 80.1 67.1 68.6 73.9 74.0
GS-MCC 60.2 65.4 86.2 81.2 75.7 70.9 71.7 70.8 83.2 81.4 66.0 71.0 73.8 73.9
DeepMSI-MER 76.1 86.2 87.5 93.2 83.9 91.1 89.4 94.3 80.5 89.1 86.0 92.4 84.7 84.7

Table 1: Comparison with Other Baseline Models on the IEMOCAP Dataset.

Methods MELD
Neutral Surprise Fear Sadness Joy Disgust Anger Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
A-DMN 76.5 78.9 56.2 55.3 8.2 8.6 22.1 24.9 59.8 57.4 1.2 3.4 41.3 40.9 61.5 60.4
DialogueGCN 70.3 72.1 42.4 41.7 3.0 2.8 20.9 21.8 44.7 44.2 6.5 6.7 39.0 36.5 54.9 54.7
DialogueRNN 72.1 73.5 54.4 49.4 1.6 1.2 23.9 23.8 52.0 50.7 1.5 1.7 41.0 41.5 56.1 55.9
RGAT 76.0 78.1 40.1 41.5 3.0 2.4 32.1 30.7 68.1 58.6 4.5 2.2 40.0 44.6 60.3 61.1
LR-GCN 76.7 80.0 53.3 55.2 0.0 0.0 49.6 35.1 68.0 64.4 10.7 2.7 48.0 51.0 65.7 65.6
DER-GCN 76.8 80.6 50.5 51.0 14.8 10.4 56.7 41.5 69.3 64.3 17.2 10.3 52.5 57.4 66.8 66.1
ELR-GCN 80.2 83.6 36.8 35.4 19.2 13.1 80.2 83.6 76.5 69.7 55.6 13.0 52.1 57.7 68.7 69.9
SDT 83.2 80.1 61.2 59.0 13.8 17.8 34.9 43.6 63.2 64.2 22.6 28.7 56.9 54.3 67.5 66.6
GS-MCC 78.4 81.8 56.9 58.3 23.5 23.8 50.0 35.8 69.4 66.4 36.7 30.7 53.2 54.4 68.1 69.0
DeepMSI-MER 86.2 92.6 68.9 81.5 13.8 22.1 38.7 55.2 64.1 78.0 22.9 35.2 52.1 68.3 69.4 67.9

Table 2: Comparison with Other Baseline Models on the MELD Dataset.

Figure 7: Confusion matrix of DeepMSI-MER classification on IEMOCAP and MELD datasets.
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Modality IEMOCAP MELD
Acc. F1 Acc. F1

T 59.83 59.65 65.25 64.08
A 47.30 46.09 46.59 31.97

T+V 78.46 78.46 68.22 66.54
A+V 57.99 56.49 48.03 31.20

T+A+V 84.75 84.73 69.36 67.95

Table 3: The effect of DeepMSI-MER on the IEMO-
CAP and MELD datasets using unimodal features and
multimodal features, respectively. We report average
accuracy and F1-score.(Please note that the ablation
experiments were conducted independently of the
main experiments. In fact, when trained under the
same unified experimental setting, our methods per-
formance is expected to improve by over 2 percent-
age points compared to the results shown in Table 1
and Table 2.)

4.4.1 Performance on IEMOCAP and MELD415

Datasets416

As shown in Table 1 and Table 2, DeepMSI-MER417

achieves 84.7% and 69.4% accuracy on the IEMO-418

CAP and MELD datasets respectively, signifi-419

cantly outperforming mainstream baselines (with420

F1 improvements of 5.212.3%) by effectively rec-421

ognizing high-arousal (e.g., 80.5% for "Excited")422

and low-frequency emotions (e.g., 35.2% F1 for423

"Fear"), thanks to three key innovations: hierarchi-424

cal cross-modal alignment for distinguishing simi-425

lar emotions (e.g., 92.6% F1 for "Neutral"), adap-426

tive modality weighting to reduce unimodal dom-427

inance (8.7% gain over RGT), and dynamic con-428

text modeling that boosts complex emotion recog-429

nition (e.g., 92.4% F1 for "Frustrated").430

4.4.2 Confusion Matrix Analysis431

Figure 7 presents the confusion matrices from 10-432

fold cross-validation on both datasets. On IEMO-433

CAP, DeepMSI-MER reduces the misclassifica-434

tion rate for "Happiness" to 32% of that in base-435

line models and lowers "Neutral" misclassifica-436

tion by 64% through enhanced noise suppression;437

on MELD, its speaker-aware mechanisms boost438

"Anger" recognition accuracy to 87.1% and re-439

duce cross-modal conflicts by 22.3% compared to440

ELR-GCNtogether, these confusion patterns con-441

firm the effectiveness of dynamic emotion-state442

modeling in addressing class imbalance and im-443

proving differentiation of adjacent emotions.444

4.5 Ablation Study 445

We conducted ablation experiments on the IEMO- 446

CAP and MELD datasets to evaluate the contri- 447

bution of textual, visual, and acoustic features in 448

the DeepMSI-MER model. The results are shown 449

in Table 3.On the IEMOCAP dataset, visual fea- 450

tures yielded the best performance, with both ac- 451

curacy and F1-score reaching 78.46%, underscor- 452

ing the importance of facial expressions and body 453

language in emotion recognition. Textual features 454

followed with 59.83%, while acoustic features per- 455

formed the weakest (47.30%). Multimodal fu- 456

sion (T+V, T+A+V) significantly improved perfor- 457

mance, with the full three-modal setting achiev- 458

ing the highest score of 84.75%.On the MELD 459

dataset, textual features performed well (65.25%), 460

followed by visual features (68.22%), whereas 461

acoustic features remained less effective (46.59%). 462

The combination of text and visual features further 463

improved performance (68.22%), while the combi- 464

nation of audio and visual features was less effec- 465

tive. Fusion of all three modalities led to a final 466

improvement, reaching 69.36%. 467

5 Conclusions 468

DeepMSI-MER demonstrates superior perfor- 469

mance in emotion recognition tasks on both the 470

IEMOCAP and MELD datasets. On IEMOCAP, 471

the model achieves high accuracy and F1-scores, 472

particularly in the Sad and Angry categories, show- 473

ing its ability to handle data imbalance and distin- 474

guish between semantically similar emotions. On 475

MELD, it performs well in the Neutral, Surprise, 476

Sadness, Joy, and Anger categories, benefiting 477

from the effective fusion of visual and textual fea- 478

tures.Nevertheless, challenges remain in recogniz- 479

ing certain emotions, such as Happiness and Neu- 480

tral in IEMOCAP, and Fear and Disgust in MELD, 481

mainly due to semantic overlap and class imbal- 482

ance. Despite these issues, DeepMSI-MER con- 483

sistently outperforms a wide range of baselines, 484

demonstrating strong potential for real-world emo- 485

tion classification applications. 486

Limitations 487

Although the proposed method exhibits certain ad- 488

vantages in dialogue scenarios with relatively sim- 489

ple structures, its overall performance still leaves 490

room for further improvement in more complex 491

contexts. This may be partially attributed to the 492

diversity of participants involved in such scenar- 493
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ios, as well as the intricate emotional dynamics494

that emerge during interactions. Additionally, in495

the processing of multimodal information, specific496

strategies for sequence selection and information497

focusing might inadvertently affect the holistic498

comprehension of the input. Furthermore, some la-499

tent and uncontrollable factors inherent in the data500

itself could also introduce notable variations in the501

results.502

Due to practical constraints in time and avail-503

able resources (such as computational capacity504

and funding), we were unable to conduct more ex-505

haustive and fine-grained analyses of each compo-506

nent within the proposed framework. Future re-507

search could aim to further optimize the model,508

extend its applicability to more complex dialogue509

scenarios, and explore more effective solutions for510

data annotation, thereby enhancing its overall ro-511

bustness and generalization capabilities.512
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A Code635

The code implementation is available636

at [Anonymous GitHub Repository]:637

(https://anonymous.4open.science/r/638

DeepMSI-MER-B36C/README.md)639

B Appendix640

In the IEMOCAP paper, the provided data in-641

cludes raw text, video, and audio data, which have642

not been partitioned and do not have correspond-643

ing label annotations. Therefore, we performed644

data processing in accordance with the require-645

ments outlined in the paper. The specific steps are646

as follows:647

• Video Processing: Text information is ex-648

tracted from the transcriptions in the dialog649

folders of each Session folder. Based on the650

time segments in the extracted text, corre- 651

sponding video segments are then extracted. 652

Subsequently, video segments are extracted 653

at 15-frame intervals, and data augmentation 654

and packaging are performed using albumen- 655

tations. 656

• Audio Processing: Audio files correspond- 657

ing to the video segments extracted from the 658

text information are retrieved from the wav 659

files in the dialog folders of each Session 660

folder, and then packaged accordingly. 661

• Label Processing: Labels corresponding to 662

the video segments are extracted from the 663

EmoEvaluation files in the dialog folders of 664

each Session folder based on the video seg- 665

ment names in the text information. Labels 666

such as xxx, oth, dis, fea, and sur are re- 667

moved, and the labels corresponding to the 668

texts are finally merged. 669

After completing the above processing, the 670

packaged audio files and texts were uploaded to 671

the cloud server, where training was conducted us- 672

ing Wav2vec-base for audio and BERT-large for 673

text. After training the Wav2vec-base and BERT- 674

large models, the model weights were saved. The 675

audio files were then feature-extracted using the 676

trained models and saved in pkl format within the 677

corresponding audio files. Similarly, features for 678

the texts were extracted using the trained BERT 679

model and saved in pkl format in the correspond- 680

ing text files. 681

Finally, in accordance with the requirements of 682

the IEMOCAP dataset paper, the data from the 683

first four Session files were used as the training 684

dataset, and the data from the fifth Session file 685

were used as the test dataset. The data was then 686

packaged and uploaded to the DeepMSI-MER 687

model training server for model training. The par- 688

titioned dataset was saved in txt files, which in- 689

cluded the video segment names, the correspond- 690

ing labels for the video segments, and the text data. 691

The download link for the processed IEMOCAP 692

dataset is as follows: https://pan.baidu.com/ 693

s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa. 694
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(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
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