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Abstract

With the advancement of artificial intelligence
and computer vision technologies, multimodal
emotion recognition has become a promi-
nent research topic. However, existing meth-
ods face challenges such as heterogeneous
data fusion and the effective utilization of
modality correlations. This paper proposes
a novel multimodal emotion recognition ap-
proach, DeepMSI-MER, based on the inte-
gration of contrastive learning and visual se-
quence compression. The proposed method
enhances cross-modal feature fusion through
contrastive learning and reduces redundancy
in the visual modality by leveraging visual se-
quence compression. Experimental results on
two public datasets, IEMOCAP and MELD,
demonstrate that DeepMSI-MER significantly
improves the accuracy and robustness of emo-
tion recognition, validating the effectiveness
of multimodal feature fusion and the proposed
approach.

1 Introduction

The rapid advancement of artificial intelligence
and computer vision has made emotion recogni-
tion a crucial research area in fields such as human-
computer interaction (HCI), intelligent customer
service, and mental health monitoring (Poria et al.,
2017a). The goal of emotion recognition is to ana-
lyze an individual’s emotional state through multi-
modal information, including speech, text, and vi-
sual data, to enhance emotional understanding in
intelligent systems. However, conventional emo-
tion recognition methods predominantly rely on
single-modal feature extraction and classification,
limiting their applicability in complex real-world
scenarios. In recent years, advances in multimodal
learning and deep learning have propelled multi-
modal emotion recognition (MER) into a promi-
nent research focus, as it improves the accuracy
and robustness of emotion classification by inte-
grating multiple data sources.
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Figure 1: Overall Architecture of the Proposed
DeepMSI-MER Framework.

Despite the progress in multimodal emotion
recognition, several challenges remain. First, dif-
ferent modalities exhibit distinct feature represen-
tations, making the effective fusion of heteroge-
neous data a critical challenge in capturing emo-
tional information (Hadsell et al., 2006; Chen
etal., 2020). Second, temporal and spatial features
in the visual modality often contain substantial re-
dundant information. Reducing this redundancy
while retaining emotion-relevant features remains
an open research question (Tran et al., 2018; Car-
reira and Zisserman, 2017). Lastly, while deep
learning has significantly advanced feature extrac-
tion, fully leveraging the latent correlations among
different modalities to enhance emotional under-
standing remains a persistent challenge (Zadeh
et al., 2017; Liu et al., 2018).

To address the aforementioned challenges, this
paper proposes a novel multimodal emotion recog-
nition framework, DeepMSI-MER, as illustrated
in Figure 1. This framework introduces a multi-
modal semantic guidance mechanism and a visual
sequence compression strategy to achieve efficient
fusion of heterogeneous modalities such as text
and audio, while significantly reducing the redun-
dancy present in the temporal and spatial features
of the visual modality. Furthermore, by incorpo-
rating an improved contrastive learning algorithm,
the framework effectively captures the latent cor-
relations among different modalities, thereby en-
hancing the accuracy and robustness of emotion
understanding. Accordingly, the main contribu-



tions of this paper are as follows:

* We propose a semantic-guided multimodal
fusion method that effectively integrates tex-
tual, acoustic, and visual features. A Vi-
sual Sequence Compression (VSC) mod-
ule is designed to reduce visual redundancy
within the Swin-TransformerV2-Tiny archi-
tecture, and a Temporal Convolutional Net-
work (TCN) captures temporal dependencies
to enhance recognition performance.

* We introduce an improved contrastive learn-
ing strategy by incorporating a label-based
mask matrix, converting traditional unsuper-
vised contrastive learning into a supervised
paradigm, thereby strengthening cross-modal
feature alignment.

* Our method achieves 84.7% accuracy and F1
score on the IEMOCAP dataset, exceeding
current SOTA by 10.9 and 10.8 percentage
points respectively, demonstrating substantial
performance gains in multimodal emotion
recognition.

2 Related Work

2.1 Multimodal Emotion Recognition

Multimodal emotion recognition has been a long-
standing research area, with early studies primar-
ily focusing on single-modal approaches such as
speech emotion recognition, text sentiment anal-
ysis, and visual emotion recognition. However,
these methods often struggle to capture the com-
plexity of human emotions due to their reliance on
a single source of information. To address this lim-
itation, recent advancements have focused on inte-
grating multiple modalities to enhance recognition
performance.

In particular, deep neural networks have played
a crucial role in multimodal fusion, significantly
improving emotion classification accuracy. For in-
stance, some studies have proposed deep learning-
based multimodal models that combine speech
and text features, demonstrating superior recog-
nition performance compared to single-modal ap-
proaches (Abdullah et al., 2021). Other research
has introduced fusion frameworks incorporating
speech, text, and visual information, leveraging
joint training techniques to further improve emo-
tion prediction accuracy (Gupta et al., 2024).

These advances highlight the potential of multi-
modal integration in enhancing the robustness and
generalization of emotion recognition models.

2.2 Application of Contrastive Learning in
Emotion Recognition

In recent years, contrastive learninga self-
supervised learning paradigmhas demonstrated
remarkable success across multiple domains,
including computer vision, speech processing,
and natural language understanding. The core
principle of contrastive learning is to maximize
the similarity between semantically related
samples while minimizing the distance between
unrelated ones, allowing models to learn more
discriminative feature representations.

In the context of multimodal emotion recogni-
tion, contrastive learning has been effectively uti-
lized to improve cross-modal feature alignment.
For example, recent studies have proposed con-
trastive learning-based multimodal frameworks,
enhancing the fusion of speech and text modal-
ities by learning a shared latent space for both
modalities. This approach has led to substantial
performance improvements in emotion classifica-
tion tasks (Mai et al., 2022). By aligning mul-
timodal features in a mutually informative repre-
sentation space, contrastive learning mitigates the
challenges of modality mismatch and enhances the
model’s ability to capture emotion-related infor-
mation across different data sources.

3 Proposed Method

The DeepMSI-MER framework proposed in this
study is illustrated in Figure 2. The detailed imple-
mentation of the model is provided in Appendix
A.

To address the three challenges outlined in the
introduction: (1) the distinct feature representa-
tions of different modalities, which raises the ques-
tion of how to effectively fuse heterogeneous data
for accurate emotion recognition; (2) the substan-
tial redundancy often present in the temporal and
spatial features of the visual modality, and how to
effectively reduce this redundancy while retaining
emotion-relevant features; (3) despite significant
advancements in feature extraction through deep
learning, the challenge remains of fully exploiting
the latent correlations between different modali-
ties to enhance emotional understanding, we pro-
pose the following solutions.
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Figure 2: The overall architecture of DeepMSI-MER for multimodal emotion recognition. DeepMSI-MER consists
of a high-level semantic feature module, an early feature fusion module, and a late feature fusion module. The high-
level semantic feature module fuses the semantic features of text and audio to further extract contextual semantic

features, which are ultimately used in VSC-Swin.

3.1 Multimodal Semantic Guidance

To address the challenge of effectively fusing
heterogeneous data for more accurate emotion
recognition, we propose a multimodal semantic-
guided fusion approach. Specifically, we pre-
train BERT and Wav2Vec models on the IEMO-
CAP and MELD datasets, respectively, to extract
richer semantic representations from the textual
and acoustic modalities. These modality-specific
semantic features are then integrated to construct a
unified multimodal semantic representation which
serves as a more precise and comprehensive foun-
dation for subsequent emotion recognition tasks.
The detailed process is illustrated in Equation 1:

Geas = Concat( fggrr(2t), fwavavec(Za)) (1)

Where fgprr and fwavovec represent the tex-
tual and acoustic feature extraction models, respec-
tively. The concatenated feature vector G5 serves
as the input to the visual sequence compression
module, VSC-Swin.

3.2 Visual Sequence Compression

To address the challenge of substantial redundancy
present in the temporal and spatial features of the
visual modality, we propose a visual sequence
compression method, as shown in Figure 3. By
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Figure 3: Visual Sequence Compression Process.

applying average pooling to the visual sequence
V e RNVXd we obtain the visual semantic fea-
ture v.;s. The multimodal semantic-guided feature
G 1s fused with v, to create the fused semantic
feature m,;s, as shown in Equation 2:

Mels = Vels + Gels

2
M= [m @

2
cls) Melss -+ - 7mcls]

Where m;s represents the weighted sum of
G5 and v, and the fused feature is broadcasted
to match the dimension of the visual sequence
M € RV*4 We then compute the similarity be-
tween M and V, as shown in Equation 3:
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Where 7 is the temperature coefficient, and S
is the similarity matrix. The similarity sequence
S’ is extracted from the first row of S , and based
on the threshold +, the visual sequence V is di-
vided into relevant sequences Z" and irrelevant se-
quences Z'".

To prevent information loss, we compute the
similarity between Z" and Z'" and fuse the rel-
evant sequences with the highest similarity from
Z' as shown in Equation 4:

j = maX(eri, eriT)
N—-L (4)

ZW = Z (Oé * er -+ (1 — Oé) * erij)
1=0

Where j is the sequence position of the highest
similarity, « is the fusion threshold, and N — L
is the length of the non-relevant sequence. The
updated relevant sequence Z"’ is the output.

As shown in Figure 4, we integrate the pro-
posed module into the Swin-TransformerV2-Tiny
architecture. Specifically, the VSC module is in-
troduced at Step 3, compressing the number of
patches in Steps 3 and 4 from 256, 196, and
144 down to 100. This compression strategy re-
duces the number of parameters in these stages by
approximately 20%, significantly enhancing the
model’s computational efficiency. The training re-
sults, presented in Figure 5, further validate the
effectiveness of our approach. We refer to the re-
sulting model as VSC-Swin.

Last but not least, while VSC-Swin effectively
addresses spatial redundancy, it does not capture
the temporal dependencies across video frames.
To address this limitation, we subsequently em-
ploy a Temporal Convolutional Network (TCN)
as the temporal feature extraction module. TCN
captures long-range dependencies through dilated
convolutions, as defined in Equation 5:

K-1
y(t)=> x4 a- Wi (5)
k=0

Where y(t) is the output at time step ¢, x; is the
input sequence, wy, is the convolution kernel, d is

the dilation factor, and K is the kernel size. The
dilated convolution expands the receptive field, al-
lowing TCN to efficiently capture temporal de-
pendencies without increasing computational com-
plexity.

In video-based sentiment recognition, we
choose 15 frames as the input for each video based
on the periodic nature of emotional changes. The
following points justify this choice:

* Emotional Change Cycles: 15 frames cover
key emotional transitions, balancing informa-
tion capture without overloading the model.

* Receptive Field of TCN: With dilated convo-
lutions, TCN efficiently captures long-range
dependencies from 15 frames, preserving im-
portant details.

Thus, using 15 frames strikes a balance between
capturing temporal relationships and ensuring ac-
curate sentiment recognition.

3.3 Improved Contrastive Learning

To address the issue of insufficiently leveraging
the latent correlations between different modal-
ities to enhance emotional understanding, we
propose an improved contrastive learning algo-
rithm. We propose an improved contrastive learn-
ing algorithm, with the key innovation being the
introduction of a mask matrix that transforms
the originally unsupervised contrastive learning
into a supervised one. By generating positive
and negative sample masks based on the labels
within each batch, the model can explicitly distin-
guish between positive and negative pairs, thereby
more effectively enhancing the correlations among
features from different modalities. This super-
vised approach addresses the limitations of tradi-
tional unsupervised contrastive learningwhich of-
ten overlooks inter-modal relationshipsand signifi-
cantly improves cross-modal emotion understand-
ing.

As shown in Figure 6, the original text, audio,
and video features undergo low-dimensional map-
ping. The labels of the current batch are then used
to create positive and negative sample mask ma-
trices. The loss value is calculated by comparing
the mapped text and audio features with the video-
mapped features, which are then fed back into the
mapping module. The fusion process is based on a
contrastive learning algorithm, and the formula for
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Figure 4: Since we incorporated the VSC module into the Swin-TransformerV2-Tiny architecture, it was necessary
to modify the Patch Partition and Swin Transformer Block in Step 3, as well as the Patch Partition in Step 4. The
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Figure 6: Contrastive Learning Algorithm Process

the contrastive learning loss is as shown in Equa-
tion (6):

Where B is the batch size, ¢ and j are the
row and column indices of the similarity matrix,
cos(x;, z;) represents the similarity of positive
samples, cos(z;, ;) represents the similarity of
negative samples, and 7 is the temperature hyper-
parameter. The loss computation involves expo-
nentiating the similarities, accumulating the neg-
ative sample values for each row, and computing
the log of the result. The final contrastive learning
loss is obtained by averaging the individual loss
values across all rows.

4 Experiments

4.1 Dataset

The DeepMSI-MER model proposed in this paper
was evaluated on two benchmark datasets, IEMO-

CAP and MELD. These datasets all contain three
modalities: text, video, and audio.

IEMOCAP(Busso et al., 2008) is a widely used
public dataset in emotion recognition research,
created by the Sippy team at the University of
Southern California. It provides detailed anno-
tations of emotional interactions and speech/non-
verbal behaviors, with six emotion categories: hap-
piness, sadness, anger, excitement, frustration, and
neutrality. The data were consistently annotated
by multiple evaluators and involve 10 participants.
Details of the data pre-processing process for
IEMOCAP can be found in Appendix B.

MELD(Poria et al., 2018) is an open multi-
modal dataset created by researchers at the Univer-
sity of Toronto, containing text data from movie
script dialogues. It includes annotations for six
emotion categories: joy, sadness, anger, fear, sur-
prise, and neutrality, with emotional annotations
independently performed by multiple annotators.

4.2 Training

We train our method using a combination of cross-
entropy and contrastive learning, with the specific
formula as follows Formula 7.
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where L. is the cross-entropy loss, C' is the to-
tal number of classes, y. is the one-hot encoding
of the true label, p,. is the predicted probability for
the class ¢, and «. and 3 are the weights for the
cross-entropy loss and contrastive learning loss, re-
spectively.

In the training process, we use K-fold cross-
validation to assess the model’s generalization
ability and reduce biases due to data splitting. The
dataset is randomly divided into K equally sized
subsets (with K = 10), and in each round of cross-
validation, one subset is used as the validation set
while the remaining K — 1 subsets are used for
training. The model is trained on the training set
and evaluated on the validation set, and this pro-
cess is repeated for K rounds. The final perfor-
mance metric is the average of the results from all
rounds.

4.3 Baselines and Evaluation Metrics

CMN(Zadeh et al., 2017): This method integrates
speaker information and multimodal features by
introducing an attention mechanism.

be-LSTM(Poria et al., 2017b): It performs fi-
nal emotion recognition by extracting contextual
information from discourse sequences, which is
context-sensitive.

LFM(Liu et al., 2018): It efficiently addresses
the dimensionality curse in multimodal feature fu-
sion using low-rank decomposition.

A-DMN(Xing et al., 2020): A-DMN considers
both intra- and cross-speaker contextual informa-
tion and employs GRU to perform cross-modal
feature fusion.

ICON(Hazarika et al., 2018): This approach
utilizes GRU to extract contextual information
from multimodal features and employs an atten-
tion layer for multimodal semantic information fu-
sion.

(cos(wi,xi) >
exp | =2
6
exp (cos(fj,:ci)) + Z]B exp (cos(?,xﬂ) (6)
DialogueGCN(Ghosal et al., 2019): Dia-

logueGCN constructs a speaker relationship graph
using contextual semantic features and leverages
both contextual semantic and speaker relationship
information for emotion classification.

DialogueRNN(Majumder et al., 2019): This
method constructs three different gating units to
extract and fuse speaker information, emotion in-
formation, and global information.

RGAT(Ishiwatari et al., 2020): RGAT inte-
grates positional encoding into graph attention net-
works to improve the model’s ability to understand
context.

LR-GCN(Ren et al., 2021): LR-GCN con-
structs multiple graphs to capture latent dependen-
cies between contexts and employs dense layers
to extract speaker relationship and graph structural
information.

DER-GCN(AI et al., 2023): DER-GCN en-
hances the model’s emotion representation capa-
bilities by constructing speaker relationship and
event graphs.

ELR-GCN(Shou et al., 2024): The model pre-
computes emotion propagation using an extended
forward propagation algorithm and designs an
emotion relation-aware operator to capture seman-
tic connections between utterances.

SDT(Ma et al., 2023): By leveraging intra- and
cross-modal transformers, the model enhances the
understanding of interactions between utterances,
improving modality relationship comprehension.

GS-MCC(Meng et al., 2024): From a graph
spectral perspective, GS-MCC revisits multimodal
emotion recognition, addressing the limitations in
capturing long-term consistency and complemen-
tary information.

4.4 Comparison with State of the Art
Methods

To evaluate the effectiveness of DeepMSI-MER,
we compare it with existing methods on the IEMO-
CAP and MELD datasets.



IEMOCAP

Methods Happy Sad Neutral Angry Excited Frustrated Average(w)
Acec. F1 Ace. F1 Ace. F1 Ace. F1 Ace. F1 Ace. F1  Ace. F1
CMN 25.0 303 559 624 528 523 61.7 59.8 555 602 71.1 606 56.5 56.1
bc-LSTM 29.1 344 57.1 608 54.1 518 570 56.7 51.1 579 67.1 589 552 549
LFM 256 33.1 75.1 788 585 592 647 652 802 71.8 61.1 589 634 627
A-DMN 43.1 50.6 694 768 63.0 629 635 565 883 779 533 557 646 643
ICON 222 299 588 64.6 628 574 647 63.0 589 634 672 608 59.1 585
DialogueGCN  40.6 427 89.1 845 620 635 67.5 641 655 63.1 641 669 652 64.1
RGAT 60.1 516 788 773 60.1 654 70.7 630 780 68.0 643 612 650 652
LR-GCN 542 555 816 79.1 59.1 638 694 69.0 763 740 682 689 68.5 683
DER-GCN 60.7 588 759 798 665 615 713 721 71.1 733 66.1 67.8 69.7 69.4
ELR-GCN 647 629 757 80.8 662 624 707 700 768 78.6 679 681 70.6 709
SDT 727 66.1 795 818 763 746 71.8 69.7 767 80.1 67.1 686 739 74.0
GS-MCC 60.2 654 862 812 757 709 717 70.8 832 814 660 71.0 73.8 739

DeepMSI-MER 76.1 86.2 87.5 93.2 839 911 894 943 805 89.1 86.0 924 84.7 84.7

Table 1: Comparison with Other Baseline Models on the IEMOCAP Dataset.

Methods MELD
Neutral Surprise Fear Sadness Joy Disgust Anger Average(w)
Acc. F1  Ace. F1 Ace. F1 Ace. F1 Ace. F1 Ace. F1 Ace. F1 Ace. F1
A-DMN 76.5 789 562 553 82 86 2211 249 598 574 12 34 413 409 615 604

DialogueGCN  70.3 72.1 424 417 3.0 28 209 218 447 442 65 6.7 390 365 549 547
DialogueRNN  72.1 735 544 494 16 12 239 238 520 50.7 15 1.7 410 415 561 559

RGAT 76.0 781 40.1 415 30 24 321 307 681 586 45 22 400 446 603 61.1
LR-GCN 767 80.0 533 552 00 00 496 351 680 644 107 27 480 51.0 657 656
DER-GCN 76.8 80.6 505 51.0 148 104 56.7 415 693 643 172 103 525 574 668 66.1
ELR-GCN 80.2 836 36.8 354 192 131 80.2 836 76,5 69.7 556 13.0 521 57.7 687 69.9
SDT 832 80.1 612 590 138 17.8 349 436 632 642 226 287 569 543 675 66.6
GS-MCC 784 81.8 569 583 235 238 500 358 694 664 36.7 307 532 544 68.1 69.0

DeepMSI-MER  86.2 92.6 68.9 815 138 221 387 552 641 78.0 229 352 521 683 694 679

Table 2: Comparison with Other Baseline Models on the MELD Dataset.

IEMOCAP Confusion Matrix MELD Confusion Matrix
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Figure 7: Confusion matrix of DeepMSI-MER classification on [IEMOCAP and MELD datasets.



Modality IEMOCAP MELD
Acc. F1 Acc. F1
T 59.83 59.65 65.25 64.08
A 4730 46.09 46.59 3197
T+V 78.46 78.46 68.22 66.54
A+V 5799 5649 48.03 31.20
T+A+V  84.75 84.73 69.36 67.95

Table 3: The effect of DeepMSI-MER on the IEMO-
CAP and MELD datasets using unimodal features and
multimodal features, respectively. We report average
accuracy and F1-score.(Please note that the ablation
experiments were conducted independently of the
main experiments. In fact, when trained under the
same unified experimental setting, our methods per-
formance is expected to improve by over 2 percent-
age points compared to the results shown in Table 1
and Table 2.)

4.4.1 Performance on IEMOCAP and MELD
Datasets

As shown in Table 1 and Table 2, DeepMSI-MER
achieves 84.7% and 69.4% accuracy on the [IEMO-
CAP and MELD datasets respectively, signifi-
cantly outperforming mainstream baselines (with
F1 improvements of 5.212.3%) by effectively rec-
ognizing high-arousal (e.g., 80.5% for "Excited")
and low-frequency emotions (e.g., 35.2% F1 for
"Fear"), thanks to three key innovations: hierarchi-
cal cross-modal alignment for distinguishing simi-
lar emotions (e.g., 92.6% F1 for "Neutral"), adap-
tive modality weighting to reduce unimodal dom-
inance (8.7% gain over RGT), and dynamic con-
text modeling that boosts complex emotion recog-
nition (e.g., 92.4% F1 for "Frustrated").

4.4.2 Confusion Matrix Analysis

Figure 7 presents the confusion matrices from 10-
fold cross-validation on both datasets. On IEMO-
CAP, DeepMSI-MER reduces the misclassifica-
tion rate for "Happiness" to 32% of that in base-
line models and lowers "Neutral" misclassifica-
tion by 64% through enhanced noise suppression;
on MELD, its speaker-aware mechanisms boost
"Anger" recognition accuracy to 87.1% and re-
duce cross-modal conflicts by 22.3% compared to
ELR-GCNtogether, these confusion patterns con-
firm the effectiveness of dynamic emotion-state
modeling in addressing class imbalance and im-
proving differentiation of adjacent emotions.

4.5 Ablation Study

We conducted ablation experiments on the IEMO-
CAP and MELD datasets to evaluate the contri-
bution of textual, visual, and acoustic features in
the DeepMSI-MER model. The results are shown
in Table 3.0n the IEMOCAP dataset, visual fea-
tures yielded the best performance, with both ac-
curacy and F1-score reaching 78.46%, underscor-
ing the importance of facial expressions and body
language in emotion recognition. Textual features
followed with 59.83%, while acoustic features per-
formed the weakest (47.30%). Multimodal fu-
sion (T+V, T+A+V) significantly improved perfor-
mance, with the full three-modal setting achiev-
ing the highest score of 84.75%.0n the MELD
dataset, textual features performed well (65.25%),
followed by visual features (68.22%), whereas
acoustic features remained less effective (46.59%).
The combination of text and visual features further
improved performance (68.22%), while the combi-
nation of audio and visual features was less effec-
tive. Fusion of all three modalities led to a final
improvement, reaching 69.36%.

5 Conclusions

DeepMSI-MER demonstrates superior perfor-
mance in emotion recognition tasks on both the
IEMOCAP and MELD datasets. On IEMOCAP,
the model achieves high accuracy and F1-scores,
particularly in the Sad and Angry categories, show-
ing its ability to handle data imbalance and distin-
guish between semantically similar emotions. On
MELD, it performs well in the Neutral, Surprise,
Sadness, Joy, and Anger categories, benefiting
from the effective fusion of visual and textual fea-
tures.Nevertheless, challenges remain in recogniz-
ing certain emotions, such as Happiness and Neu-
tral in IEMOCAP, and Fear and Disgust in MELD,
mainly due to semantic overlap and class imbal-
ance. Despite these issues, DeepMSI-MER con-
sistently outperforms a wide range of baselines,
demonstrating strong potential for real-world emo-
tion classification applications.

Limitations

Although the proposed method exhibits certain ad-
vantages in dialogue scenarios with relatively sim-
ple structures, its overall performance still leaves
room for further improvement in more complex
contexts. This may be partially attributed to the
diversity of participants involved in such scenar-



ios, as well as the intricate emotional dynamics
that emerge during interactions. Additionally, in
the processing of multimodal information, specific
strategies for sequence selection and information
focusing might inadvertently affect the holistic
comprehension of the input. Furthermore, some la-
tent and uncontrollable factors inherent in the data
itself could also introduce notable variations in the
results.

Due to practical constraints in time and avail-
able resources (such as computational capacity
and funding), we were unable to conduct more ex-
haustive and fine-grained analyses of each compo-
nent within the proposed framework. Future re-
search could aim to further optimize the model,
extend its applicability to more complex dialogue
scenarios, and explore more effective solutions for
data annotation, thereby enhancing its overall ro-
bustness and generalization capabilities.
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A Code
The code implementation is  available
at [Anonymous GitHub Repository]:

(https://anonymous.4open.science/r/
DeepMSI-MER-B36C/README .md)

B Appendix

In the IEMOCAP paper, the provided data in-
cludes raw text, video, and audio data, which have
not been partitioned and do not have correspond-
ing label annotations. Therefore, we performed
data processing in accordance with the require-
ments outlined in the paper. The specific steps are
as follows:

* Video Processing: Text information is ex-
tracted from the transcriptions in the dialog
folders of each Session folder. Based on the
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time segments in the extracted text, corre-
sponding video segments are then extracted.
Subsequently, video segments are extracted
at 15-frame intervals, and data augmentation
and packaging are performed using albumen-
tations.

* Audio Processing: Audio files correspond-
ing to the video segments extracted from the
text information are retrieved from the wav
files in the dialog folders of each Session
folder, and then packaged accordingly.

Label Processing: Labels corresponding to
the video segments are extracted from the
EmokEvaluation files in the dialog folders of
each Session folder based on the video seg-
ment names in the text information. Labels
such as xxx, oth, dis, fea, and sur are re-
moved, and the labels corresponding to the
texts are finally merged.

After completing the above processing, the
packaged audio files and texts were uploaded to
the cloud server, where training was conducted us-
ing Wav2vec-base for audio and BERT-large for
text. After training the Wav2vec-base and BERT-
large models, the model weights were saved. The
audio files were then feature-extracted using the
trained models and saved in pkl format within the
corresponding audio files. Similarly, features for
the texts were extracted using the trained BERT
model and saved in pkl format in the correspond-
ing text files.

Finally, in accordance with the requirements of
the IEMOCAP dataset paper, the data from the
first four Session files were used as the training
dataset, and the data from the fifth Session file
were used as the test dataset. The data was then
packaged and uploaded to the DeepMSI-MER
model training server for model training. The par-
titioned dataset was saved in txt files, which in-
cluded the video segment names, the correspond-
ing labels for the video segments, and the text data.
The download link for the processed IEMOCAP
dataset is as follows: https://pan.baidu.com/
s/10XYrDnNdxx72vIrSppdZ1w?pwd=4uaa.


(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
(https://anonymous.4open.science/r/DeepMSI-MER-B36C/README.md)
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
https://pan.baidu.com/s/1OXYrDnNdxx72vIrSppdZ1w?pwd=4uaa.
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