
Under review as a conference paper at ICLR 2022

EFFICIENT WINNING TICKETS DRAWING OVER FINE-
GRAINED STRUCTURED SPARSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

The fine-grained structured sparsity has been proposed as a middle-ground between
unstructured sparsity, where weights are pruned independently, and coarse-grained
structured sparsity, where entire blocks of weights are pruned. Specifically, N:M
fine-grained structured sparsity allows for at most N nonzero weights across a
group of M consecutive weights. A recent implementation of 2:4 sparsity (N=2
and M=4) in Sparse Tensor Cores of Nvidia A100 GPUs shows significant im-
provement in throughput compared to unstructured sparsity while maintaining
similar performance (e.g., accuracy). However, despite its potential for superior
computational performance, how to efficiently train DNNs with N:M fine-grained
structured sparsity remains a challenging problem. In this work, we leverage the
recent advance of Lottery Ticket Hypothesis (LTH) and propose an iterative pruning
algorithm for N:M fine-grained structured sparsity. By leveraging the N:M sparsity
constraint, we can identify the unimportant weights across each group of M weights
at earlier stages of iterative pruning, which significantly lowers the cost of iterative
training compared to conventional unstructured pruning.

1 INTRODUCTION

In recent years, there has been a proliferation of Deep Neural Network (DNN) architectures that have
achieved state-of-the-art performances across a variety of domains (He et al., 2016; Redmon et al.,
2016; Vaswani et al., 2017). However, the algorithmic superiority of DNNs comes at extremely high
computation and memory costs that pose significant challenges to the hardware platforms executing
them, which seriously limits their deployments on resource-limited devices such as mobile phones,
IoT devices, etc. To alleviate the computation cost, tremendous research efforts have been made on
efficient DNN implementation. Among these approaches, DNN pruning, which aims at removing
less important parameters from DNNs, has emerged as one of the main techniques to improve DNN
resource efficiency.

DNN pruning can be generally categorized into unstructured pruning and structured pruning. The
pruning mechanism in unstructured pruning removes DNN parameters individually, leaving the
resulting DNN with nonzero weights that are distributed in an irregular pattern. Although this
approach enables a high degree of model sparsity without impacting the accuracy, the irregular
positions of the nonzero weights make efficient hardware implementation difficult. In contrast,
structured pruning enforces that entire groups of model parameters are eliminated, making it more
amenable for efficient hardware implementations. However, coarse-grained structured sparsity usually
leads to a suboptimal model accuracy relative to unstructured sparsity due to the restricted flexibility
of the sparsity pattern. Recently, a new class of fine-grained structured called N:M sparsity (Kung
et al., 2019; Nvi, 2020) has received an increasing amount of attention by the DNN community. As
shown in Figure 1, N:M sparsity enforces the constraint that there are at most N nonzero weights
within a group of consecutive M (N<M) weights. This N:M sparsity structure has been shown to
obtain significant acceleration on commodity hardware platforms compared to the original dense
DNN. For instance, the Nvidia A100 GPU is equipped with the Sparse Tensor Cores to support the
efficient implementation of 2:4 sparsity, which can achieve an average of 1.5× inference latency
reduction for the BERT-large model (Nvi, 2020).

Pruning algorithms for unstructured and structured sparsity have been studied extensively by the
literature. In particular, the recently-proposed Lottery Ticket Hypothesis (LTH) (Frankle & Carbin,

1

Under review as a conference paper at ICLR 2022

2018) conjectures that dense, randomly-initialized DNNs always contain small sub-networks which
can match or even outperform the test accuracy of original DNNs when trained alone from scratch. The

2:4 pruning Compress

-0.1 0.2 -0.4 0.3

0.4 -0.2 -0.4 -0.1

0.2 0.3 -0.1 0.3

0.10.4 0.1-0.2

0.2 -0.4 0.2 -0.4

0.4 -0.4 0.4 -0.4

0.3 0.3 0.3 0.3

0.4-0.2 0.4-0.2
Dense

weight tensor
2:4 compressed

weight tensor
2:4 sparse

weight tensor

Figure 1: An example on 2:4 sparsity. Two
weights are pruned for each row of four weights.
The weights with larger magnitude are shown
with darker color.

process to find these sub-networks (i.e., winning
tickets) utilizes a procedure called iterative mag-
nitude pruning (IMP), which requires repeated cy-
cles of training and pruning until a target sparsity
level has been obtained. Specifically, to achieve
a target sparsity of p, at each pruning round r
(1 ≤ r ≤ R), the current DNN is first trained
to convergence. After that, 1− (1− p) 1

R smallest
weights are pruned by ranking all weights with
their magnitude. The remaining weights with
largest magnitudes are then rewound back to their
values at an earlier iteration of training. Despite
the superior accuracy for a target sparsity achieved
by IMP, it requires multiple round of training, mak-
ing winning tickets computationally expensive to
find. With this in mind, this paper tries to answer the following question:

Does the N:M sparsity constraint enable winning tickets to be identified more efficiently?

In this work, we show that the answer is yes to the question above. In particular, we add additional
constraints to IMP in order to enforce N:M sparsity. Importantly, we find that this constraint
dramatically speeds up the procedure of iterative pruning without impacting model accuracy. The
main contributions of the paper are:

• A novel masked iterative magnitude pruning (mIMP) algorithm that can learn N:M sparse
DNN with high accuracy. At each pruning round, mIMP adds the smallest M −N weights
from each group into a losing ticket pool. mIMP progressively prune the weights in the
losing ticket pool until the desired sparsity is reached.

• We leverage the structured nature of N:M sparsity with Proactive Local Pruning (PLP)
which identifies and eliminates less important weights at earlier pruning rounds compared
to mIMP. This substantially reduces the number of pruning rounds (and therefore training
time) needed to reach a target sparsity.

• Finally, we show that the Early-Bird (EB) tickets (You et al., 2019) also appear consistently
under the N:M sparsity constraint. We design an approach to identify the EB tickets at an
earlier stage of training, which enables further reduction to the training cost by stopping each
pruning round early. By integrating PLP and EB detection with mIMP, the result solution,
termed L-mIMP, can reduce the training cost of mIMP by more than 20× without impacting
the accuracy of the final model.

2 BACKGROUND AND RELATED WORKS

2.1 UNSTRUCTURED AND STRUCTURED PRUNING

DNN pruning has been studied extensively in the previous literature (Han et al., 2015; Molchanov
et al., 2016; Sanh et al., 2020; He et al., 2017; Molchanov et al., 2016; Li et al., 2016; Frankle &
Carbin, 2018; Liu et al., 2018; Zhuang et al., 2018; He et al., 2019). The tolerance of DNNs to small
quantities of noise grants the possibility for DNNs to be compressed significantly without degrading
the accuracy (e.g., 49× for VGG-16 (Han et al., 2015)). Multiple criteria have been proposed for
evaluating the importance of the weights, including magnitude-based pruning (Han et al., 2015),
Hessian based heuristics (LeCun et al., 1990), gradient-based pruning (Molchanov et al., 2016; Sanh
et al., 2020), etc. As discussed earlier, DNN pruning can be further divided into unstructured pruning
and structured pruning. In unstructured pruning, each parameter is removed individually, giving rise
to an irregular distribution of the nonzero weights. Although the resulting model has a high sparsity
ratio, the irregular sparsity pattern makes the sparse DNN difficult to implement efficiently. This
inefficiency leads to the proposal of structured pruning (Wen et al., 2016), which removes the DNN
weights at a higher granularity (e.g., channel-wise pruning (Zhuang et al., 2018; Ye et al., 2018)

2

Under review as a conference paper at ICLR 2022

Train Aggregate

lo
si

ng

tic
ke

ts
 p

oo
l

✖

lo
si

ng

tic
ke

ts
 p

oo
l

✖

LTP Rewind

✔ ✔

✔✔

✔

✔✔

✔

✖ ✖

✖✖

✖ ✖

✖✖

1 2 3 4
mIMP Pruning Round Operation

Figure 2: A single pruning round of mIMP with 2:4 sparsity. The step numbers are shown in circles.

and filter-wise pruning (He et al., 2019; Luo & Wu, 2020)). Structured pruning usually leads to a
higher hardware utilization rate at the price of suboptimal model accuracy. In this work, we focus
on N:M structured sparsity, which has not been extensively studied in the prior literature. In Zhou
et al. (2021), the authors proposes SR-STE to train a N:M sparse network from the outset of training.
In Hubara et al. (2021), the authors apply N:M sparsity to accelerate the DNN training.

2.2 LOTTERY TICKET HYPOTHESIS

The Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2018) conjectures that every dense, randomly-
initialized DNNs always contains sparse sub-networks which can match or even outperform the test
accuracy of the original network. These sparse sub-networks (i.e., winning tickets) can be found
with Iterative Magnitude Pruning (IMP). At each pruning round of IMP, the current DNN is first
trained until convergence. Then, a percentage of the weights are pruned based on their importance
(i.e., magnitude), and the remaining weights are rewound to their values at some prior iteration k,
where k is usually small (Frankle et al., 2019; 2020a; Renda et al., 2020). This iterative procedure is
repeated until the target sparsity level is achieved. Despite its superior performance, IMP usually
incurs a large training cost. Multiple following works have been conducted to mitigate this training
overhead. For example, it has been shown that the resulting sparsity pattern of winning tickets can be
transferred across different datasets (Morcos et al., 2019; Chen et al., 2020) and optimizers (Morcos
et al., 2019) without significant accuracy loss. In You et al. (2019), the authors demonstrate that the
winning tickets can be identified at a very early training stage, which reduces the training cost of IMP.
While these studies have achieved significant saving on general sparsity pattern, none of them has
been shown to work for N:M fine-grained structured sparsity.

3 METHODOLOGY

In this section, we first describe the masked Iterative Magnitude Pruning (mIMP) for obtaining N:M
fine-grained structured sparsity. mIMP requires many rounds of training and further incurs a large
training cost. To mitigate this cost, we leverage the structured nature in the N:M sparsity, and propose
two additional methods to relieve the training cost while maintaining the high accuracy.

3.1 MASKED ITERATIVE MAGNITUDE PRUNING

In this section, we illustrate the procedure of mIMP for generating DNNs with N:M sparsity. An
example of mIMP with 2:4 sparsity is given in Figure 2. For illustration purposes, the weight tensor
has been reshaped into a size of 4 × 4 so that it is organized by groups of length M=4 across the
rows. At the beginning of a pruning round, the DNN is first trained until convergence (step 1 in
Figure 2). Within each row, the top N=2 weights with the largest magnitude, called local winning
tickets (highlighted by X in Figure 2), are separated from the rest weights, called local losing tickets
(X in Figure 2). All the local losing tickets are then sent into the losing tickets pool (step 2). The
losing tickets pool contains the local losing tickets from all the groups in the all the weight matrices
across the entire DNN. After that, p% of the smallest weights are pruned from the losing ticket pool,
where p% is a hyperparameter that specifies the percentage of removed weights at each pruning round
(step 3). Note that no local winning tickets are pruned even if they have smaller magnitudes than
losing tickets in other groups. We call this step losing tickets pruning (LTP). Finally, the remaining
weights in the weight matrix are rewound (step 4). This iterative process will repeat for multiple
rounds. Between each round, the weights selected in the losing ticket pool may be different, but there

3

Under review as a conference paper at ICLR 2022

Algorithm 1: Masked Iterative Magnitude Pruning at Round r
Input: W r

l is the DNN weight matrix of layer l ∈ L at pruning round r. p is the percentage of weights
pruned at each round. N weights are kept for every M weights. I is the total number of iterations
within each pruning round. Ulose are sets that contain the local losing tickets. ε is the threshold for
removing all the weights in Ulose.

Train W r
l , l ∈ L with I iterations until convergence.

for l← 1 to L do
for every M weights in W r

l do
Find the top N weights with the largest magnitude, collect the rest weights to Ulose.

Remove p percent of the weights from Ulose with the smallest magnitudes by setting their values to zero.
if |Ulose|∑

l∈L |Wr
l
| ≤ ε then

Remove all the weights in Ulose. // Clear the losing ticket pool if its size is small.
Rewind the remaining weights.

0 3 6 9

0

3

6

9

VGG-16

0 3 6 9

ResNet-20

0 3 6 9

VGG-16

0 3 6 9

ResNet-20
0.0

0.2

0.4

Unstructured 2:8 Structured

Pruning Round DNN Drawn From

Pr
un

in
g

Ro
un

d
D

N
N

 D
ra

w
n

Fr
om

Figure 3: Average hamming distance between every pair of binary masks for unstructured and 2:8
structured sparsity on VGG-16 and ResNet-20.

are always N winning tickets remained for each group. This iterative process will continue until the
losing ticket pool is exhausted and the target 2:4 sparsity will be reached. The completed mIMP
algorithm is described by Algorithm 1.

3.2 REGULARITY OF THE WINNING TICKETS DISTRIBUTION

The structured nature of the N:M sparsity enforces that for every group of M weights, only N of them
will remain at the end of mIMP. Compared to the traditional unstructured pruning where the winning
tickets can appear anywhere in the weight matrix, N:M sparsity places a strong restriction on the
winning ticket distribution. To illustrate this, we perform ablation studies using two representative
DNNs: ResNet-20 (He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014) on CIFAR-10. We
follow the training details of Frankle et al. (2019). The batch size is set to 128 for all the DNNs.
During each pruning round, we train the DNNs with 30K for ResNet-20 and 63K iterations for
VGG-16. For ResNet-20, the learning rate is set to 0.1, 0.01 and 0.001 at the iterations 1, 20K and
25K, and the result weights at each pruning round is rewound to the values at the k=500th iteration.
For VGG-16, we set the learning rate to 0.1, 0.01 and 0.001 at the iterations of 1, 32K and 48K,
respectively. We rewind the result weights to their values at the k=1000th iteration. We apply SGD
with a momentum of 0.9 and weight decay of 10 for DNN training. At each round, p = 20% of the
nonzero weights with the smallest magnitude are removed using mIMP until 2:8 sparsity is achieved.
For comparison, we apply the unstructured magnitude pruning on the same weight matrix, with the
amount of pruned weights the same as that of mIMP for each pruning round. Define the binary weight
mask produced at the end of the pruning round as B ∈ {0, 1}|W |, where W is the weight matrix and
|W | is the total number of parameters in W , ’1’ means the corresponding weight remains, and vice
versa. We record the binary masks of mIMP and unstructured pruning at the end of every pruning
round and compute the average hamming distances between every pair of masks across the pruning
round. From the 2D heatmap shown in Figure 3, we observe that the 2:8 structured sparsity incurs
much smaller hamming distances between the masks than the unstructured sparsity. This indicates
that N:M sparsity enables a much more regular winning ticket distribution over the unstructured
sparsity, offering a great potential for us to detect and eliminate more unimportant weights at each
pruning round. Therefore the mIMP process can terminate much earlier with a reduced training cost.

4

Under review as a conference paper at ICLR 2022

✖ ✖ ✖

LTP PLP

(a) (b)

LTP + PLP

L-mIMP

Input model

Output model

Train with
early stopping Aggregate

LTP + PLPRewind

Target
sparsity
is not

reached

Figure 5: (a) Proactive local pruning (PLP) can be applied in addition to losing tickets pruning (LTP)
for further reducing the weights in the losing ticket pool. (b) The steps of L-mIMP.

3.3 PROACTIVE LOCAL PRUNING FOR N:M SPARSITY

Given the regular mask patterns shown in Figure 3, one natural question is can we leverage this fact
to early predict more unimportant weights that will be pruned by mIMP at later pruning rounds?
For example, assume a weight will be pruned by mIMP at the fourth round, can we detect and
prune this weight at early rounds? Given the fact that only N weights will be kept within every
M weights at the end of mIMP, one approach is to proactively remove the weights that are much
smaller than the rest weights within the same group after a period of training, because it is unlikely
for the relatively smaller weights to surpass other relatively larger weights within the group over the
remaining training process. This local comparison scheme allows us to early detect and eliminate
more weights during each pruning round, which further accelerates the mIMP. To measure the relative
magnitudes of the weights within a group, we first apply group-based normalization across each group
of M weights. Specifically, denote wl

j,k the jth nonzero weights in the kth group in Wl, and denote
vlk,j the normalized version of wl

k,j . wl
k,j will be removed if |vlk,j | < α, where α is a hyperparameter

that specifies the threshold. We name this pruning scheme Proactive Local Pruning (PLP). Figure 5
(a) shows how PLP can be integrated with mIMP to eliminate more weights in the losing ticket pool
and further accelerate IMP. Algorithm 3 in the Appendix describes the PLP in detail.

To evaluate the performance of PLP, we train ResNet-20 and VGG-16 on CIFAR-10 using the
same setting as we used in Section 3.2. At the end of each pruning round, we first apply the LTP
in the losing ticket pool (step 3 of Figure 2). Among the remaining weights in the losing ticket

2 4 6 8 10 12
Pruning Round

0

5

10

15

20

25

M
isp

re
. r

at
e

on
 C

IF
AR

-1
0

(%
)

ResNet-20 alpha=-0.1
VGG-16 alpha=-0.1
ResNet-20 alpha=-0.3
VGG-16 alpha=-0.3
ResNet-20 alpha=-0.5
VGG-16 alpha=-0.5

2 4 6 8 10 12
Pruning Round

0

5

10

15

20

M
isp

re
. r

at
e

on
 Im

ag
eN

et
 (%

)

ResNet-20 alpha=-0.1
VGG-16 alpha=-0.1
ResNet-20 alpha=-0.3
VGG-16 alpha=-0.3
ResNet-20 alpha=-0.5
VGG-16 alpha=-0.5

Figure 4: Misprediction rate by PLP after each
pruning round on CIFAR-10 (left) and ImageNet
(right).

pool, we compute their normalized values vlk,j
and record weights that would be pruned by PLP
(i.e., |vlk,j | < α). Using this, we can determine
the percentage of weights that are predicted
mistakenly (i.e., percentage of the weights that
would have been pruned under PLP but are ac-
tually kept under mIMP without PLP). We eval-
uate PLP by setting α = −0.5,−0.3,−0.1 on
2:8 sparsity pattern. The results are given in Fig-
ure 4 (a). We have the following observations:
First, the misprediction rate decreases with α.
This is because the weights pruned by a smaller
α have a smaller relative magnitudes, and are
therefore more likely to be pruned with magnitude pruning. Second, the misprediction rate decreases
rapidly after the initial pruning rounds (e.g., first two rounds) and becomes stable in the later rounds.
For example, with α = −0.5, the misprediction rate decreases from 20% to less than 6% at round
3, and results in a misprediction rate of 1.8% at pruning round 6 on ResNet-20. This suggests that
PLP can be applied more successfully after the initial pruning rounds (e.g., two rounds). We have
performed a similar study for ResNet-20 and VGG-16 on ImageNet (Figure 4(b)) and results show a
similar trend.

3.4 EARLY-BIRD TICKETS IN N:M SPARSITY

You et al. (2019) showed that winning tickets can be identified at earlier iterations in the training
process. For each pruning round, instead of training the DNN model for a full I iteration, we can stop
the training process at I ′(I ′ < I) iteration and use the intermediate weights to identify the winning

5

Under review as a conference paper at ICLR 2022

3 6 9 12 15

85

90

Re
tr

ai
n

Ac
cu

ra
cy

 (
%

) VGG-16 (CIFAR-10)

2:4
2:8

3 6 9 12 15
Training Iteration (103)

85

90

95
ResNet-20 (CIFAR-10)

2:8
2:4

3 6 9 12 15

85

90

ResNet-56 (CIFAR-10)
2:4
2:8

Figure 6: The performance of the EB tickets drawn from different iterations with 2:4 and 2:8 sparsity
over VGG-16, ResNet-20 and ResNet-56. The vertical bars show the 95% confidence interval. The
star signs indicate the accuracies acquired by training the DNNs with full I iterations.

tickets. The result winning tickets, termed as Early-Bird (EB) tickets, can obtain a similar and even
higher accuracy than the winning tickets drawn using the fully trained DNN.

We first check the existence of EB tickets on the N:M sparsity. To test this, we apply mIMP to train
ResNet-18, ResNet-50 and VGG-16 on CIFAR-10 and ImageNet. At each pruning round, instead
of training the DNN for the full I iterations, we stop the training process at an earlier iteration
I ′(I ′ < I). The rest settings are the same as described Section 3.2. Figure 6 shows the best test
accuracies achieved by mIMP with the intermediate weights drawn from different iterations. For
CIFAR-10, the EB tickets generally exist as early as I ′ = 6K − 9K iterations (with a total of
I = 30K iterations for ResNet-18 and ResNet-56 and I = 63K iterations for VGG-16).

The consistent observations above indicate that we can apply the EB tickets in the N:M sparsity to
further reduce the training cost. To detect the EB tickets, we adopt a similar approach as You et al.
(2019) by computing the hamming distances between the binary masks generated by the intermediate
weights at the different iterations. If the hamming distances between the consecutive masks is less
than a predefined threshold β, the current pruning round will be stopped early.

3.5 EFFICIENT MIMP TRAINING

PLP and early stopping mechanism described in Section 3.3 and Section 3.4 can be leveraged and
integrated with mIMP to greatly reduce the training cost. This result algorithm, termed as Light
mIMP (L-mIMP), is described in Figure 5(b). The detailed algorithm is presented by Algorithm 2 in
the Appendix.

4 EXPERIMENTS

In this section, we evaluate the performance of mIMP and L-mIMP on different applications including
multiple CNNs (ResNet-18 (He et al., 2016), ResNet-50 (He et al., 2016) and VGG-16 (Simonyan &
Zisserman, 2014)) on CIFAR-10 and ImageNet (Deng et al., 2009), and pretrained BERT model (De-
vlin et al., 2018) on GLUE tasks (Wang et al., 2018). We first show the performances of mIMP and
L-mIMP on CIFAR-10 and ImageNet in Section 4.1. Then we compare L-mIMP with the other early
pruning approaches in Section 4.2. In Section 4.3, we conduct the ablation studies by changing the
threshold parameters α and β of L-mIMP and show its corresponding impacts on the performance.
Section 4.4 depicts the evaluation of the sparse BERT model on the GLUE benchmarks.

4.1 PERFORMANCE EVALUATION ON CIFAR AND IMAGENET

In this section, we evaluate the performance of mIMP and L-mIMP on CIFAR-10 and ImageNet.
For mIMP and L-mIMP, we consider three types of sparsities: 2:4, 1:4 and 2:8. The sparsity level
of 2:4 is 50%, and the sparsity level for 1:4 and 2:8 are both 75%. The implementation details for
these experiments are listed in Section A.3 in the Appendix. We consider multiple recent iterative
pruning algorithms for comparison, including Nvidia ASP (Nvi, 2020), EB (You et al., 2019). In
ASP, the dense DNN is first trained until converge, the result DNN is then pruned with N:M sparsity
using magnitude-based single-shot pruning. Finally the sparse DNN is trained for one more round
to recover the accuracy. The EB method further reduces the training cost of ASP by early stopping
the first round of the DNN training, and the intermediate weights are used for magnitude pruning to

6

Under review as a conference paper at ICLR 2022

Methods ResNet-20 ResNet-56 VGG-16

Acc.(%) FLOPs (1015) Acc.(%) FLOPs (1015) Acc.(%) FLOPs (1015)

Sparsity Ratio
2:4

mIMP 91.29 6.40 93.42 12.79 93.18 35.92
L-mIMP 91.22 0.42 93.25 0.72 93.09 3.70

mIMP-high 90.83 4.32 92.83 8.18 92.74 27.30
mIMP-rand 90.40 6.40 92.33 12.79 92.43 35.92

ASP (Nvi, 2020) 90.69 0.47 92.67 0.86 92.67 4.22
EB (You et al., 2019) 90.51 0.39 92.63 0.72 92.46 3.48

L-mIMP Improvement +0.40 8.6× +0.41 9.8× +0.33 6.1×

Sparsity Ratio
1:4

mIMP 91.01 8.66 93.12 17.30 92.90 57.76
L-mIMP 90.82 0.45 92.94 0.80 92.76 4.02

mIMP-high 90.38 6.11 92.36 11.13 92.47 41.35
mIMP-rand 89.98 8.66 91.75 17.30 92.24 57.76

ASP (Nvi, 2020) 90.13 0.47 92.21 0.86 92.31 4.22
EB (You et al., 2019) 90.11 0.41 92.22 0.70 92.23 3.65

L-mIMP Improvement +0.42 10.8× +0.51 11.8× +0.38 8.2×

Sparsity Ratio
2:8

mIMP 91.13 8.66 93.26 17.30 93.02 57.76
L-mIMP 90.90 0.44 93.02 0.81 92.89 4.00

mIMP-high 90.46 6.22 92.53 11.80 92.55 44.35
mIMP-rand 90.11 8.66 92.03 17.30 92.28 57.76

ASP (Nvi, 2020) 90.29 0.47 92.41 0.86 92.36 4.22
EB (You et al., 2019) 90.37 0.41 92.38 0.71 92.30 3.68

L-mIMP Improvement +0.37 8.9× +0.41 11.8× +0.36 8.4×
Dense - 91.27 - 93.45 - 93.21 -

Table 1: Performance on CIFAR-10 on ResNet-20, ResNet-56 and VGG-16 over different methods.
The L-mIMP Improvement is the average improvement of L-mIMP compared to the other methods.
Dense is the accuracy of the dense DNN.

achieve N:M sparsity. We adopt the default settings used in You et al. (2019) for EB method, where
the queue length and the threshold on the mask distance is set to 5 and 0.1, respectively. Additionally,
we consider two variations on the mIMP. The first variation, mIMP-high, achieves the training cost
reduction by increasing the pruning ratio p from 20% to 40%, so that more weights will be pruned
from the losing ticket pool for each pruning round. The remaining settings for mIMP-high are the
same as mIMP. The second variation, mIMP-rand is the same as mIMP, except that the weights are
initialized using random numbers generated by the weight initialization function rather than the early
values during each pruning round. The purpose of mIMP-rand is to investigate the effectiveness of
weight rewinding proposed in Frankle et al. (2019) on N:M sparsity.

Table 1 shows the test accuracies of the algorithms and their corresponding training costs (in terms
of FLOPs) under 2:4, 1:4 and 2:8 sparsity levels for different DNNs on CIFAR-10. We also show
the test accuracies for the dense DNN as well as the improvement of L-mIMP by comparing against
the average accuracy and training cost (denoted as L-mIMP Improvement). First, we see that mIMP
generally outperforms the other algorithms on test accuracy across all DNNs and sparsity ratios. It
also achieves a comparable accuracy to the dense DNN. Second, L-mIMP achieves a slightly lower
test accuracies than mIMP with a 11× lower training FLOPs on average. L-mIMP also consumes
comparable training FLOPs than mIMP-high, ASB and EB, while consistently achieving a 1− 1.5%
higher accuracy. Finally, mIMP-rand performs poorly across all the DNNs, which indicates that
weight rewinding is necessary for maintaining the accuracy under N:M sparsity. Table 2 depicts
the evaluation results of ResNet-18, ResNet-50 and VGG-16 on ImageNet. All the implementation
details are given in Section A.3. From table 2, we observe a similar trend as CIFAR-10. mIMP
achieves the best accuracy performance over the other algorithms, while L-mIMP obtains a slightly
lower accuracy with a much lower training cost.

4.2 COMPARISON WITH THE EARLY PRUNING METHODS

Next, we compare L-mIMP with several early pruning approaches. In these methods, each weight
are first assigned with an importance score using some sample training data. For example, SNIP (Lee
et al., 2018) uses the magnitude of the product between the weight gradient and weight value as the
importance score, while GraSP (Wang et al., 2020) utilizes the hessian-gradient products to estimate
the importance score. In addition, we also consider another baseline, named Early Magnitude
Pruning (EMP), which adopts the initial weight magnitude as the importance score. Given the

7

Under review as a conference paper at ICLR 2022

Methods ResNet-18 ResNet-50 VGG-16

Acc.(%) FLOPs (1018) Acc.(%) FLOPs (1018) Acc.(%) FLOPs (1018)

Sparsity Ratio
2:4

mIMP 70.35 5.28 76.32 10.50 71.00 29.3
L-mIMP 70.18 0.32 76.13 0.55 70.87 1.97

mIMP-high 69.73 3.68 75.52 6.98 70.30 21.67
mIMP-rand 68.90 5.28 74.94 10.50 69.42 29.3

ASP (Nvi, 2020) 69.33 0.37 75.58 0.61 69.86 2.57
EB (You et al., 2019) 68.85 0.28 75.33 0.51 69.58 1.68

L-mIMP Improvement +0.63 9.4× +0.49 10.6× +0.69 8.6×

Sparsity Ratio
1:4

mIMP 69.94 7.13 75.73 14.18 70.66 47.17
L-mIMP 69.82 0.35 75.55 0.59 70.50 2.35

mIMP-high 69.24 4.98 75.13 9.39 69.72 29.05
mIMP-rand 68.60 7.13 74.30 14.18 69.07 47.17

ASP (Nvi, 2020) 68.98 0.38 74.51 0.61 69.23 2.57
EB (You et al., 2019) 68.34 0.36 74.30 0.56 69.20 2.10

L-mIMP Improvement +0.67 11.4× +0.64 13.2× +0.77 10.9×

Sparsity Ratio
2:8

mIMP 70.11 7.01 76.02 14.18 70.78 47.16
L-mIMP 69.92 0.36 75.72 0.58 70.63 2.41

mIMP-high 69.48 5.17 75.21 9.50 69.77 29.1
mIMP-rand 68.69 7.01 74.59 14.18 69.36 47.16

ASP (Nvi, 2020) 69.11 0.38 74.78 0.61 69.64 2.57
EB (You et al., 2019) 68.76 0.34 74.86 0.52 69.29 2.21

L-mIMP Improvement +0.58 11.1× +0.53 13.5× +0.72 10.6×
Dense - 70.53 - 76.50 - 71.12 -

Table 2: Performance on ImageNet for ResNet-18, ResNet-50 and VGG-16 over different methods.

2:4 1:4 2:8
65

66

67

68

69

70

71

To
p-

1
Ac

cu
ra

cy
 (

%
)

ResNet-18 (ImageNet)

2:4 1:4 2:8

70

72

74

76

ResNet-50 (ImageNet)

2:4 1:4 2:8
65

66

67

68

69

70

71
VGG-16 (ImageNet)

L-mIMP
SR-STE
SNIP
GraSP
EMP

Comparison against Early Pruning Methods

Figure 7: Accuracy comparison between L-mIMP and the early pruning methods. All the early
pruning methods have a training FLOPs of 0.19E(1018), 0.33E and 1.32E on ResNet-18, ResNet-50
and VGG-16, respectively. The training FLOPs of L-mIMP are shown in Table 3.

importance scores, the weights are then pruned at one-shot based on their scores to reach the target
sparsity level. In SR-STE (Zhou et al., 2021), the N:M sparse DNN is trained from scratch using
sparse-refined straight through estimator (SR-STE). Ignoring the overhead of the score computation,
the above approaches only requires to train the DNN once, which significantly reduces the training
cost. However, the resulting sparse DNN accuracies are usually suboptimal to those obtained via
IMP (Frankle et al., 2020b).

We compare the test accuracies of L-mIMP (α = −0.1, β = 0.1) with these approaches on ImageNet
under different sparsity levels. We train ResNet-20, ResNet-50 and VGG-16 with each of the early
pruning method using a batch size of 128 for 90 epochs. The remaining training details (e.g., learning
rate, optimizer) are the same as described in Section A.3 in the Appendix. Figure 7 shows the
accuracies of different methods. We notice that L-mIMP outperforms the other approaches by 2− 4%
on average, at a price of 1.8× higher training FLOPs on average.

4.3 ABLATION STUDY ON THRESHOLD PARAMETERS

In this section, we evaluate the impact of the threshold parameters α and β on the test accuracy and
training costs of L-mIMP. α controls the criteria of weight removal within the group for PLP, while
β specifies the average hamming distances between the consecutive binary masks for EB detection.
Table 3 show the changes to test accuracies and training FLOPs under different α and β on ImageNet.
We can see that both the accuracies and training FLOPs decrease as the α and β grow. In particular,
compared with the setting of α = −0.1, β = 0.1, smaller threshold values (α = −0.3, β = 0.05) can
obtain almost identical accuracy performance as mIMP with 4-6× lower training cost. This indicates

8

Under review as a conference paper at ICLR 2022

Methods Sparsity ratio ResNet-18 ResNet-50 VGG-16

Acc.(%) FLOPs (1018) Acc. (%) FLOPs (1018) Acc. (%) FLOPs (1018)

L-mIMP
(α=-0.3,
β=0.05)

2:4 70.29 1.43 76.26 3.44 70.93 9.12
1:4 69.89 1.67 75.66 4.49 70.64 13.88
2:8 70.06 1.70 75.94 4.40 70.72 13.75

L-mIMP
(α=-0.1,
β=0.05)

2:4 70.23 1.06 76.18 1.93 70.90 4.13
1:4 69.85 1.31 75.60 2.40 70.54 6.06
2:8 70.01 1.30 75.89 2.51 70.67 6.08

L-mIMP
(α=-0.1,
β=0.1)

2:4 70.18 0.32 76.13 0.55 70.87 1.97
1:4 69.82 0.35 75.55 0.59 70.50 2.35
2:8 69.92 0.36 75.72 0.58 70.63 2.41

Table 3: Performance under different α and β on ImageNet.

Methods MRPC SST-2 MNLI

Acc. FLOPs (1015) Acc. FLOPs (1015) Acc. FLOPs (1015)

Sparsity Ratio
2:4

mIMP 84.40 4.17 92.11 74.40 82.60 440.88
L-mIMP 84.18 0.48 91.90 8.72 82.46 49.90

mIMP-high 83.66 3.26 91.41 60.21 81.90 386.71
ASP (Nvi, 2020) 83.06 0.51 91.16 9.22 81.57 54.43

EB (You et al., 2019) 82.79 0.45 91.21 7.99 81.48 43.39

Sparsity Ratio
2:8

mIMP 84.08 5.86 91.73 88.94 82.37 533.61
L-mIMP 83.80 0.51 91.61 9.87 82.11 50.85

mIMP-high 83.12 4.70 91.04 69.71 81.65 410.84
ASP (Nvi, 2020) 82.45 0.51 90.60 9.22 81.27 54.43

EB (You et al., 2019) 82.28 0.46 90.57 8.03 81.19 44.96

Dense - 84.44 - 92.12 - 82.66 -

Table 4: Performance comparison of BERT on MRPC, SST-2 and MNLI.

that α and β can be adjusted to obtain a trade-off between accuracy and training cost. The results for
CIFAR-10 is given by Table 5 in the Appendix.

4.4 PERFORMANCE EVALUATION ON BERT

In this section, we apply mIMP and L-mIMP to prune the pretrained BERT model (Devlin et al.,
2018) with the GLUE benchmark Wang et al. (2018). GLUE consists of nine downstream tasks
which further includes two single sentence task (CoLA, SST-2), three similarity and paraphrase
tasks (MRPC, QQP, STS-B) and four inference tasks (MNLI, QNLI, RTE, WNLI). We adopt the
12-layer pretrained BERTBASE model from Huggingface repository (Hug) and attach a separate
classification layer on the BERT output for each GLUE task. During each pruning round, we finetune
the BERT model for three epochs with a batch size of 32 for each task. We adopt the AdamW
optimizer (Loshchilov & Hutter, 2017) with an initial learning rate of 2 × 10−5. For mIMP and
L-mIMP, we set Rt = 2, ε = 0.01, p = 20%, α = −0.1 and β = 0.1 as before.

Table 4 shows the test accuracies and the corresponding training FLOPs on MRPC, SST-2 and MNLI
tasks from the GLUE. The performances on the remaining tasks are given in the Appendix. We
can see that the superior performance of mIMP and L-mIMP also translates to the BERT model.
Specifically, L-IMP can achieve almost the same performance as mIMP with 10× lower training
FLOPs. In addition, L-mIMP can achieve 1%−2% higher accuracy than the other baseline algorithms
on average.

5 CONCLUSION

In this paper, we propose mIMP and L-mIMP for efficient learning of N:M sparsity across multiple
DNN models with negligible accuracy loss. We show that, compared to unstructured sparsity, the N:M
sparsity offers a better opportunity to identify the unimportant weights at earlier stages of iterative
pruning, which significantly lowers the cost of iterative training. Evaluation over multiple DNN
models and datasets indicates that we can achieve superior accuracy performance with extremely low
training cost.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Huggingface official repository. https://huggingface.co/transformers/model_
doc/bert.html.

Nvidia a100 tensor core architecture, 2020. https://images.
nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. arXiv preprint
arXiv:2007.12223, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248–255. IEEE, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020a.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576, 2020b.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4340–4349, 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In International Conference on Computer Vision (ICCV), volume 2, 2017.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: m transposable masks. arXiv
preprint arXiv:2102.08124, 2021.

H. T. Kung, Bradley McDanel, and Sai Qian Zhang. Packing sparse convolutional neural networks for
efficient systolic array implementations: Column combining under joint optimization. 24th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, 2019.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. International Conference on Learning Representations, 2016.

10

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

Under review as a conference paper at ICLR 2022

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for efficient
deep model inference. Pattern Recognition, 107:107461, 2020.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Ari S Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: general-
izing lottery ticket initializations across datasets and optimizers. arXiv preprint arXiv:1906.02773,
2019.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by
fine-tuning. arXiv preprint arXiv:2005.07683, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training
of deep networks. arXiv preprint arXiv:1909.11957, 2019.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations, 2021.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. arXiv preprint
arXiv:1810.11809, 2018.

11

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILED IMPLEMENTATION OF L-MIMP

The detailed implementation of the L-mIMP is described in Algorithm 2.

Algorithm 2: L-mIMP Algorithm
Input: W r

l is the weight matrix of layer l ∈ L at pruning round r ∈ R. |W r
l | is number of weights in W r

l .
p is the percentage of weights pruned in the local losing tick pool at each round.
N weights are kept for every M weights.
I is the total number of iterations at each pruning round.
Ieb is period for detecting the EB tickets.
Bl and Blast

l are the current and last binary masks at layer l.
Rt is the pruning round to start the proactive local pruning.
K is the number of weights groups, K =

|Wr
l |

M
.

Ulose is set that contains the local losing tickets. |Ulose| is the size of Ulose.
α, β are the thresholds for proactive local pruning and EB detection.
ε is the threshold for removing all the weights in Ulose.

for r ← 1 to R do
for i← 1 to I do

Train W r
l ,∀l ∈ L for one iteration with the training set.

if i is a multiple of Ieb then
for l← 1 to L do

for k ← 1 to K do
Find the top N weights with the largest magnitude and put the rest nonzero weights to
Ulose.
Aggregate all the nonzero weights wl

k,j in group k, compute the normalized weights
vlk,j .

Prune the smallest p percent of weights from Ulose. // Losing Tickets Pruning (LTP)
for l← 1 to L do

for k ← 1 to K do
if r > Rt and vlk,j ≤ α and wl

k,j ∈ Ulose then
Remove it from Ulose. // Proactive Local Pruning (PLP)

if |Ulose|∑
l∈L |Wr

l
| ≤ ε then

Remove all the weights in Ulose. Terminate the L-mIMP process.
Record the result binary mask Bl for each layer l ∈ L.
Compute the average hamming distance between Blast

l and Bl for each layer l ∈ L.
Set Blast

l = Bl for each layer l ∈ L.
if Average hamming distance between Bl∈L and Blast

l∈L is less than β then
Break the inner for loop. // EB is detected, current round r can be stopped early.

Rewind the remaining weights.

L-mIMP integrates PLP (Section 3.3) and early stopping (Section 3.4) with mIMP (Section 3.1),
which greatly reduces the training cost by reducing the number of pruning rounds and the number of
training iterations per pruning round.

A.2 DETAILED IMPLEMENTATION OF PLP

Algorithm 3 depicts the detailed operations of PLP. All the nonzero weights in the group will be first
aggregated and normalized. If a weight is in the losing ticket pool, and its normalized weights value
is less than the threshold α, then it will be pruned by PLP.

A.3 PARAMETER SETTINGS OF SECTION 4.1

For the hyperparameter in Algorithm 2, we set the threshold parameter ε and percentage of pruned
weight p to 0.01 and 20%, respectively. We set the threshold parameters α and β to −0.1 and 0.1,

12

Under review as a conference paper at ICLR 2022

Algorithm 3: Proactive Local Pruning (PLP)
Input: W r

l is the DNN weights at layer l ∈ L.
α is the threshold for detection.
M weights are kept for every N weights.
K is the number of weights groups, K =

|Wr
l |

N
.

Ulose are the local losing tickets pool.
for l← 1 to L do

for k ← 1 to K do
Aggregate all the nonzero weights wl

k,j in the group k, find the normalized weights vlk,j .

if vlk,j ≤ α and wl
k,j ∈ Ulose then

Remove it from Ulose.

Methods Sparsity ratio ResNet-20 ResNet-56 VGG-16

Acc.(%) FLOPs (1015) Acc.(%) FLOPs (1015) Acc.(%) FLOPs (1015)
L-mIMP
(α=-0.3,
β=0.05)

2:4 91.27 2.11 93.33 3.96 93.17 10.86
1:4 90.94 2.81 93.05 4.87 92.87 14.08
2:8 91.05 2.79 93.13 4.80 92.95 14.11

L-mIMP
(α=-0.1,
β=0.05)

2:4 91.22 1.04 93.31 1.39 93.13 4.44
1:4 90.91 1.55 92.97 2.01 92.80 6.78
2:8 90.96 1.56 93.09 2.08 92.94 6.80

L-mIMP
(α=-0.1,
β=0.1)

2:4 91.22 0.42 93.25 0.72 93.09 3.70
1:4 90.82 0.45 92.94 0.80 92.76 4.02
2:8 90.90 0.44 93.02 0.81 92.88 4.00

Table 5: Performance under different α and β on CIFAR-10.

respectively. The EB tickets are checked at every Ieb = 3000 iterations starting after Rt = 2 pruning
rounds.

For the training on CIFAR-10, the batch size is set to 128 for all the DNNs. We train the DNNs with
30K for ResNet-20 and 63K iterations for VGG-16 for each pruning round except for the EB and
L-mIMP, which can stop the training process at an early stage. For ResNet-20 and ResNet-56, the
learning rate is set to 0.1, 0.01 and 0.001 at the iterations 1, 20K and 25K, respectively. The result
weights at each pruning round is rewound to the values at the k=500th iteration. For VGG-16, the
learning rate is set to 0.1, 0.01 and 0.001 at the iterations of 1, 32K and 48K, respectively. We rewind
the result weights to their values at the k=1000th iteration. We apply SGD with a momentum of 0.9
and weight decay of 10 for DNN training.

For ImageNet, all the DNNs are trained with 90 epochs with a batch size of 128 at each pruning round,
the initial learning rate is set to 0.1, and is decreased by 10× at the epoch 30, 60, 80, respectively.
The result weights at each pruning round are rewound to the values at the fourth epochs at the start of
each pruning round (Frankle et al., 2020a).

A.4 ABLATION STUDY ON CIFAR-10

Table 5 describes the ablation study on CIFAR-10 by changing the hyperparameter α and β of
L-mIMP.

A.5 PERFORMANCE ON THE REST GLUE TASKS

Table 6 and Table 7 show the performance of mIMP and L-mIMP on the rest GLUE tasks including
CoLA, QQP, QNLI, WNLI, RTE and STS-B. They indicate a similar results as Table 4.

13

Under review as a conference paper at ICLR 2022

Methods CoLA QQP QNLI

Acc. FLOPs (1015) Acc. FLOPs (1015) Acc. FLOPs (1015)

Sparsity Ratio
2:4

mIMP 53.54 9.24 89.91 416.23 88.27 122.25
L-mIMP 53.39 0.98 89.80 45.31 88.10 14.72

mIMP-high 52.79 7.18 89.42 350.80 87.77 103.76
ASP (Nvi, 2020) 52.20 1.12 88.76 49.93 87.24 15.41

EB (You et al., 2019) 52.28 0.91 88.67 41.60 87.31 13.85

Sparsity Ratio
2:8

mIMP 53.41 10.76 89.77 487.04 87.83 143.96
L-mIMP 53.33 1.05 89.61 48.92 87.73 17.88

mIMP-high 52.52 8.86 89.12 378.42 87.46 119.69
ASP (Nvi, 2020) 52.10 1.12 88.58 49.93 87.10 15.41

EB (You et al., 2019) 52.11 0.94 88.43 42.15 87.02 13.83

Dense - 53.61 - 89.89 - 88.30 -

Table 6: Accuracy comparison of BERT on CoLA, QQP and QNLI.

Methods WNLI RTE STS-B

Acc. FLOPs (1015) Acc. FLOPs (1015) Acc. FLOPs (1015)

Sparsity Ratio
2:4

mIMP 54.01 0.70 65.60 2.25 87.79 6.32
L-mIMP 53.88 0.09 65.42 0.25 87.55 0.70

mIMP-high 53.61 0.61 65.24 2.02 87.23 4.96
ASP (Nvi, 2020) 53.05 0.10 64.87 0.29 86.89 0.78

EB (You et al., 2019) 53.07 0.08 64.61 0.24 86.91 0.51

Sparsity Ratio
2:8

mIMP 53.45 0.88 65.18 2.70 87.62 8.19
L-mIMP 53.28 0.10 65.04 0.28 87.48 0.74

mIMP-high 52.97 0.71 64.70 2.39 87.17 6.65
ASP (Nvi, 2020) 52.60 0.10 64.29 0.29 86.73 0.78

EB (You et al., 2019) 52.36 0.08 64.13 0.26 86.69 0.54

Dense - 54.09 - 65.66 - 87.81 -

Table 7: Accuracy comparison of BERT on WNLI, RTE and STS-B.

14

	Introduction
	Background and Related Works
	Unstructured and Structured Pruning
	Lottery Ticket Hypothesis

	Methodology
	Masked Iterative Magnitude Pruning
	Regularity of the Winning Tickets Distribution
	Proactive Local Pruning for N:M Sparsity
	Early-bird Tickets in N:M Sparsity
	Efficient mIMP Training

	Experiments
	Performance Evaluation on CIFAR and ImageNet
	Comparison With the Early Pruning Methods
	Ablation Study on Threshold Parameters
	Performance Evaluation on BERT

	Conclusion
	Appendix
	Detailed Implementation of L-mIMP
	Detailed Implementation of PLP
	Parameter Settings of Section 4.1
	Ablation Study on CIFAR-10
	Performance on the Rest GLUE Tasks

