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Abstract—Current multi-modal object detection approaches fo-
cus on the vehicle domain and are limited in the perception range
and the processing capabilities. Roadside sensor units (RSUs)
introduce a new domain for perception systems and leverage
altitude to observe traffic. Cameras and LiDARs mounted on
gantry bridges increase the perception range and produce a full
digital twin of the traffic. In this work, we introduce InfraDet3D,
a multi-modal 3D object detector for roadside infrastructure
sensors. We fuse two LiDARs using early fusion and further
incorporate detections from monocular cameras to increase the
robustness and to detect small objects. Our monocular 3D
detection module uses HD maps to ground object yaw hypotheses,
improving the final perception results. The perception framework
is deployed on a real-world intersection that is part of the A9
Test Stretch in Munich, Germany. We perform several ablation
studies and experiments and show that fusing two LiDARs with
two cameras leads to an improvement of +1.90 mAP compared
to a camera-only solution. We evaluate our results on the A9
infrastructure dataset and achieve 68.48 mAP on the test set.
The dataset and code will be available at https://a9-dataset.com to
allow the research community to further improve the perception
results and make autonomous driving safer.

Index Terms—3D Perception, Camera-LiDAR Fusion, Road-
side Sensors, Infrastructure Sensors, Autonomous Driving

I. INTRODUCTION

Roadside perception is vital to improve the situation aware-
ness and to provide a far-reaching view for automated ve-
hicles. Roadside sensors installed on infrastructure systems
like the A9 Test Stretch [2], [3] increase the perception range
drastically. They perceive objects around the corner, e.g. to
warn drivers performing a left or right turn. A cost-effective
solution is needed to process perception models in real-time
and provide accurate results at the same time.

Positional data captured from roadside sensors is sent
through high performance units to all traffic participants to
decrease blind spots and prevent accidents. It has been shown
that roadside sensors increase the situation awareness by
sending important notifications and warnings to vulnerable
road users (VRUs) and drivers [4]–[6]. In this work, we
contribute to the challenge of sparse point clouds in the domain
of roadside perception in the following way:

1The authors are with the School of Computation, Information and Tech-
nology (CIT), Department of Informatics, Technical University of Munich,
TUM, 85748 Garching-Hochbrueck, Germany.
Contact: walter.zimmer@tum.de

Fig. 1: Early and late fusion of two roadside cameras and
LiDARs. We register point clouds from two LiDARs using
G-ICP [1] and project them with the camera-LiDAR detec-
tions into the image. Left column: Night detection results in
more and better classified LiDAR detections. Right column:
Detections during day time demonstrate a 41.67% increase in
detections using the fusion approach. Moreover, even occluded
objects, like the car behind the trailer (right) or the truck
behind the gantry bridge (left), can be detected with our
InfraDet3D Fusion Framework.

• We propose a real-time point cloud registration algorithm
to register infrastructure LiDARs which enhances the
point density. Our experiments show that early fusion of
point clouds leads to an increase of +1.32 mAP.

• Fusing supervised and unsupervised LiDAR 3D object
detectors increases the robustness and reduces the number
of false positive detections.

• We connect our perception module to real HD maps (+2.7
mAP) of the A9 Testbed to extract road information, as
well as to validate and filter the perception results.

• Our camera-LiDAR fusion module further enhances the
robustness of our whole perception toolbox (+1.62 mAP)
by providing perception results during day and night time.

• Finally, we evaluate all 3D detectors on the A9-I dataset
and introduce a leaderboard to allow the research com-
munity to benchmark their models on our dataset.
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Fig. 2: InfraDet3D Perception Framework Architecture. Our proposed model is deployed on a real intersection (S110) part of
the A9 Test Stretch for Autonomous Driving in Munich, Germany.

II. RELATED WORK

Much research has been done in the area of roadside 3D
perception. Traditional approaches [7] increase the robustness
of roadside LiDAR perception systems because of the simi-
larity and the lack of diversity in the background point cloud.
Furthermore, they do not require labeled data and process point
clouds efficiently. In [8] a 3D vehicle detection approach is
proposed that uses a single camera. First, they segment the
instance mask in the image, extract the bottom contour and
project it on the road plane to get the 3D position. Then,
they cluster the projected points into objects by applying K-
means clustering. Afterwards, they estimate the dimensions
(length and width) and orientation (heading angle) of vehicles
by fitting a box for each cluster. Finally, they refine the 3D
box to fit it within the 2D box by maximizing the posterior
probability. Bai et al. proposes a learning-based approach
[9] that requires huge labeled datasets and performs poorly
in domains where no labeled data is available. The authors
introduce a real-time LiDAR-based traffic surveillance system
to detect objects in 3D. They develop 3DSORT, a 3D multi-
object tracker by extending DeepSORT [10]. The limitation of
all mentioned approaches is that they have no labeled training
data of roadside LiDARs and use open-source datasets like
nuScenes [11] to train the model. To the best of our knowledge
there is no roadside 3D perception framework available that
is able to fuse data from multiple road side sensor units.
Furthermore, there is no solution that combines different
fusion levels (early and late fusion), as well as traditional and
learning-based approaches into a single framework.

III. A9 INTERSECTION DATASET

The A9 Intersection (A9-I) dataset is an extension of the A9
Dataset [12]. It contains labeled data (in OpenLABEL format)
of two cameras and two LiDAR sensors mounted on the S110
gantry bridge that is part of the A9 Test Stretch for Autonomous

Driving. It contains 9,600 labeled point clouds and images
with 57,743 labeled 3D objects (∅12/frame) and is split into
a training (80%), validation (10%), and test set (10%). The test
set contains a sequence with labeled track IDs and sampled
frames from four different scenarios. We applied stratified
sampling to balance the dataset among sensor types and
scenarios. The set contains 25% night data with severe weather
conditions like heavy rain which allows the model to perform
well under challenging weather conditions. Our dataset was
created by labeling experts and some improvements were done
to further enhance the label quality using the proAnno labeling
toolbox which is based on [13].

IV. SENSOR CALIBRATION

In our framework multiple roadside LiDAR and camera
sensors are fused and processed together for the detection
task. Our automatic calibration of infrastructure LiDARs and
cameras, which outputs the precise pose of these sensors,
is the most fundamental part of the framework. In order
to calibrate the sensors in the real world, we propose an
automatic target-less LiDAR-camera calibration model. We
use the calibration method proposed in [14] as a baseline and
extend it to outdoor scenes captured by infrastructure roadside
sensors of a different manufacturer. To improve the robustness
of the model under different external conditions, such as
different scene complexities, lighting conditions, or sensor
conditions, we introduce various automatic preprocessing
submodules (see Figure 3).

First, we undistort the input images. After that, an automatic
background cropping (based on monocular depth estimation
[15]) is employed to remove the background objects. If there is
shadow on the ground, the automatic shadow filtering module
will be activated to filter the shadow. After the preprocessing,
the Canny edge detector [16] is adopted to extract 2D edges
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Fig. 3: Automatic calibration pipeline. We integrate four
camera image and seven LiDAR point cloud preprocessing
modules into our pipeline in order to increase the robustness
of real-world outdoor calibration of roadside sensors. The
algorithm takes the image and point cloud that is published
continuously on the live system as input and outputs both, the
calibration results and qualitative projections of point clouds
into camera images.

in images.
For LiDAR preprocessing, point clouds from three LiDARs
are registered to the target LiDAR. The input point cloud is
cropped and only four dimensions are preserved (x,y,z and
intensity). Scattering is applied to increase the density of
single frame point cloud scans. Afterwards, the point cloud
is automatically subdivided into ground and non-ground point
clouds. Outlier removal is applied to the ground point cloud to
filter the noise in order to preserve more points of the gantry
bridge. We also use point upsampling [17] to improve the
surface texture of point clouds. After the preprocessing, voxels
are extracted from the point clouds. For faster extraction,
adaptive voxelization [18] is introduced. RANSAC plane fitting
is applied to extract planes within the voxel. The intersections
among planes are extracted as LiDAR edge clouds.
After the edges are extracted from the point cloud, they are
projected into the image and correspondences between LiDAR
and camera edges are established. A cost based on maximum
likelihood estimate is optimized and the qualitative result
is generated. Our automatic calibration model demonstrates
good robustness against different weather conditions and traffic
scenarios in the intersection and provides accurate extrinsic
calibration values for the perception framework.

V. MONOCULAR 3D OBJECT DETECTION

Due to their low cost and high output information density,
monocular RGB cameras are incorporated as sensors into the
InfraDet3D architecture. The monocular detection pipeline is
based on an augmented L-Shape-Fitting algorithm as pro-
posed by [19]. The basic L-Shape-Fitting algorithm has also
been used in other recent roadside infrastructure perception
architectures, such as the detector for the MONA dataset
[20] and the Cooperative Vehicle Infrastructure System 3D
detector [8]. However, the augmentation of this algorithm with

object tracking, to score yaw hypotheses based on historical
plausibility, is novel. Furthermore, we propose the integration
of the High-Definition (HD) map to limit yaw hypotheses
with regard to matching lanes. Both features are inspired by
TrafficNet [21] and UrbanNet [22] architectures. An overview
of the full monocular detection pipeline is given in Figure 4.

A. From 2D Instance Masks to 3D Bottom Contours

We use the YOLOv7 Instance Segmentation model [23]
on RGB camera frames. The RGB frames are downscaled to
1280x720 pixels size, to accelerate the instance segmentation
runtime. The instance masks, which are output from the
model, are processed to extract the bottom image contour
from the masks. The 2D bottom contour coordinates for each
mask are then projected from screen-space to 3D intersection
space via raycasting. Finally, the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [24] algorithm
is applied to denoise each detection’s 3D bottom outline.

B. HD Map Yaw Candidate Lookup

Using lane geometry from an HD map of the sensor-
covered areas, each lane’s road surface is rasterized into
a heading lookup grid, covering the field of view of the
respective camera. The heading lookup grids are rendered to
a resolution of 10x10 cm grid cells. Each grid cell Cij is a
set {(lane idk, θk)}k≤Nij

k=0 of lane ID and heading pairs which
apply to the respective cell. The heading for a lane at the
position of the grid cell is interpolated from the direction
of the surrounding lane borders. At inference time, for each
3D bottom contour point of a detected object, the grids
are queried to compute a set L = {(lane idi, θi)}i≤Ni=0 of
possible heading values along the bottom contour. This set
is aggregated into a histogram with hit counts and average
heading angle per lane ID. The hit counts for each lane ID
are normalized into confidence values in the range of [0, 1]
through division over the maximum hit count value. This
yields one Hj = {(lane idi, θi, confidencei)}i<Mi=0 three-tuple-
set of possible heading values for each instance j.

C. Augmented L-Shape-Fitting

The L-Shape-Fitting (LSF) algorithm searches for a
rectangle that fits a specific bottom contour by maximizing a
score value1, which is calculated as a function of a rectangle
yaw (θ) hypothesis and the 3D bottom contour points. In the
basic form, the algorithm simply goes through several θ values
from the range [0, π] at fixed increments. In our augmented
version of the algorithm, we only run LSF for θ values as
present in the HD map lookup histogram for each 3D bottom
contour. Furthermore, we multiply the calculated score value
for each yaw hypothesis with the respective confidence value
from the normalized map lookup histogram. Finally, the score
is also multiplied with a historical plausibility factor. The
calculation of this factor is explained in the following.

1Such as negative average variance
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Fig. 4: Monocular 3D object detection pipeline, grounding shape hypotheses via tracking and the HD map.

Using a screen-space SORT tracker [25], we match a
detected object’s bounding box to detections from previous
frames. For a successfully matched detection, historical 3D
position values L = {~lt−1, . . . ,~lt−T } are retrieved. Given
the historical positions L and a position hypothesis ~lt(θt),
the historical plausibility score HP for a yaw hypothesis θt
is calculated as in the following equation:

HP =

δt≤T∏
δt=1

π/2−∆∠(|θt − atan2(~lt(θt)−~lt−δt)| mod π)

The Delta-Angle function ∆∠ : [0, π) → [0, π/2) converts
the passed raw angular difference, which is already less than
π, into a value less than π/2 by returning angular deltas
δ>π/2 larger than π/2 as π − δ>π/2. This ensures that a
yaw hypothesis, which is parallel, yet opposed to a historical
orientation, is not erroneously punished. In practice, we have
implemented a threshold of six historical positions that are
evaluated to determine the plausibility of a yaw hypothesis.

D. Height Estimation and Dimension Filtering

The height for each detection is initialized from a fixed
value for the object type of the detection. Both the height and
the location are then jointly optimized through binary search,
until the estimated projected 2D object height and the original
mask height are the same by ε < 1px. The length and width
values, as estimated by the L-Shape-Fitting algorithm for each
3D bottom contour, are limited to minimum and maximum
values, which are also looked up per object category.

VI. LIDAR 3D OBJECT DETECTION

A. Unsupervised 3D Object Detection

LiDAR sensors are a popular choice for roadside object
detection as they provide accurate 3D information in a large
field of view and are lighting invariant. Studies on roadside
LiDAR object detection favor traditional approaches based
on clustering. Before clustering an extracted foreground point
cloud into individual objects, these studies discard the ground,
walls, trees, and other background artifacts from the raw
point cloud. To discard the irrelevant background, our first
3D LiDAR object detector uses a fast four step procedure.
First, the detector crops a predefined region of interest, which

always remains the same as the LiDAR sensor is installed
statically on roadside infrastructure. This first step removes
69.9% of points on average. Second, the detector finds points
belonging to the ground by considering the Euclidean distance
to a predefined plane model together with a threshold of 0.2 m.
Third, the detector filters background artifacts within the
region of interest based on the coarse-fine triangle algorithm
[26]. The fourth step is radius outlier removal (n = 15,
r = 0.8), which refines the extraction of the foreground point
cloud. The remaining foreground point cloud represents all
traffic objects, including stationary ones. It is divided into
distinct point clusters, each corresponding to a potential road
user, by DBSCAN (ε = 0.8, nmin = 3). Around each point
cluster, the detector fits an oriented 3D bounding box using
its convex hull and principal component analysis. Finally, the
detector classifies the localized objects by means of object
dimensions and point density.

B. Supervised 3D Object Detection

For the data-driven approach, we are using PointPillars [27]
which runs with a fast inference rate of 38 FPS. In comparison
to the unsupervised approach, we can input the registered
point cloud (262k points) directly into the model, consisting of
three modules. In the first step the PillarFeatureNet converts
the point cloud into a sparse pseudo-image. After obtaining
the pseudo-image, the 2D backbone produces features at a
small spatial resolution. Theses features are then upsampled
and concatenated. In the last step, an anchor-based detection
head tries to match the bounding boxes to the ground truth.

We used the PointPillars implementation of OpenPCDet
[28] and adapted it to our A9 intersection dataset. For training,
we limited the point cloud range from −64 to 64 m in x-y
direction and from −8 to 0 m in z direction. In the feature
extraction step, we set the voxel size to [0.16, 0.16, 0.8]. The
model was trained on 10 classes for 160 epochs and optimized
using Adam with a learning rate of α = 0.003, weight decay
of 0.01 and cyclic momentum of β = 0.9.

VII. MULTI-MODAL 3D OBJECT DETECTION

For the fusion of both modalities (LiDAR and camera
detections) a late fusion technique is applied (see Fig. 5).



Fig. 5: Multi-modal 3D object detection pipeline. We apply a
camera field-of-view filtering for all detections.

A. Data Association

A widely adopted method for combining and matching
sensor data at the later stage is through data association, also
defined as the linear assignment problem (LAP). It finds a
one-to-one mapping between two sets of elements, such that
the sum of the assigned pairwise costs is minimized.

The Jonker-Volgenant algorithm [29] is a method for solving
the LAP and is based on augmenting paths. The algorithm
starts by finding an initial feasible solution, e.g. by using
the Hungarian algorithm [30]. Then, it repeatedly searches
for an augmenting path, a path of alternating unmatched
and matched elements that starts and ends at an unmatched
element, and increases the number of assigned elements by
one. The algorithm stops when no augmenting path can be
found - the solution is optimal.

The modified Jonker-Volgenant algorithm [31] is a variation
of the original one that improves its performance by using a
heuristic search strategy. The heuristic builds on the idea of
prioritizing the search for augmenting paths that are expected
to have a high gain in terms of reducing the total cost.

In this work, the modified Jonker-Volgenant algorithm is
chosen due to its increased speed (O(n3) [31]) in comparison
to its variants. It also works well with non-integer costs. In
our case, the matching process took 0.008 ms on average per
frame on the test set on a AMD Ryzen 5800X 8-Core CPU
with an average number of 14.55 objects per frame.

B. Early Fusion of LiDAR Sensors

Our first fusion module combines multiple point cloud scans
from different LiDAR sensors at time step t into a single dense
point cloud. We preprocess the point clouds, as described
in [5]. First, we downsample the point cloud and estimate
point normals. Then, we compute a 33-dimensional FPFH2

feature vector [32] for each point. This feature describes the
local geometric property of each 3D point. Afterwards, we
register several point clouds from roadside LiDARs that are
time-synchronized with an NTP time server. The point cloud
registration algorithm makes use of Fast Global Registration

2Fast point feature histogram

[1] to provide an initial transformation. For the refinement of
the transformation, we use point-to-point ICP [33] as it leads
to a lower RMSE value (0.448 m) than point-to-plane ICP.
The full registration pipeline of two Ouster OS1-64 LiDARs
takes 18.36 ms (54 FPS) on an Intel Core i7-9750H CPU and
a voxel size of 2 m.

C. Late Fusion of LiDAR Sensors

For the LiDAR-to-LiDAR late fusion, we operate in LiDAR
coordinate space. We transform the detections obtained by
the unsupervised LiDAR detector and the supervised LiDAR
detector into a common coordinate system. We match de-
tections based on a distance of 3 m between their central
positions. Matched detections are merged by selecting the
central position and yaw vector of the detected object from
the LiDAR sensor closest to the detection. Dimensions of
the merged detections are computed by calculating the mean
average of the detections from both detectors. Additionally,
all unmatched detections are also included in the final result,
resulting in an increase of 12.93% in the number of detections
compared to using only a single LiDAR sensor.

D. Camera-LiDAR Late Fusion

For the camera-LiDAR fusion, we transform the LiDAR
detections into the base coordinate system of the gantry
bridge, which serves as the coordinate system for obtaining
the monocular detections. This step is crucial for computing
the inter-detection distances between camera and LiDAR
instances based on their respective center positions. After the
linear sum assignment, the matched detections are further
filtered by a distance threshold of 3 m. The attributes of
the matched detections are merged by eliminating matched
camera detections and retaining only matched LiDAR
detections, as they demonstrate greater accuracy on average
during evaluation. The integration of the HD map leads to a
substantial improvement (see Table III) in the camera yaw
result, however it remains inferior to the results obtained
from LiDAR. Table II displays the dependence of the mAP
increase on the various attributes.

VIII. EVALUATION

A. Monocular Perception - L-Shape-Fitting Augmentations

To determine the impact of the aforementioned augmenta-
tions on the quality of the 3D pose estimation, we evaluated
the L-Shape-Fitting algorithm in several configurations on the
categories (Car, Bus, Truck, Motorcycle) of the A9 infrastruc-
ture dataset. The ablation study results of the L-Shape-Fitting
augmentation evaluations are presented in Table III.

The ablation study confirms that tracking and historical
plausibility alone are not useful to improve over basic L-
Shape-Fitting. With the addition of the HD map, however,
the risk that an earlier bad yaw choice propagates into the
future is greatly reduced, and the historical plausibility further
increases the gain in mAP from +2.7 to +5.64.



Model Modality Fusion Level Dataset Precision Recall mAP3D

MonoDet3D (Ours) Image south1 - A9-I south1 48.12 59.23 49.01
Image south2 - A9-I south2 27.84 29.11 26.33
Image south1+south2 LF A9-I full 37.98 44.17 37.67

LidarDet3D (Ours) Point Cloud S+N EF A9-I full 8.40 6.32 8.13
Point Cloud S+N LF A9-I full 6.34 5.43 6.10

PointPillars* [27] Point Cloud N - A9-I south1 56.66 57.44 56.10
Point Cloud N - A9-I south2 20.96 31.79 20.62
Point Cloud S - A9-I south2 36.32 48.93 35.75
Point Cloud S - A9-I south1 35.37 50.01 34.81
Point Cloud S+N EF A9-I full 62.85 51.22 62.11
Point Cloud S+N LF A9-I full 46.97 51.23 46.10

InfraDet3D (Ours): Image south1 + Point Cloud S+N LF of (Image + Point Cloud EF) A9-I south1 68.83 74.89 (+12.38) 68.48
MonoDet3D + PointPillars Image south2 + Point Cloud S+N LF of (Image + Point Cloud EF) A9-I south2 33.52 44.57 (-2.54) 33.21

Image (south1+south2) + Point Cloud S+N LF of (Image LF + Point Cloud LF) A9-I full 38.93 49.94 38.58
Image (south1+south2) + Point Cloud S+N LF of (Image LF + Point Cloud EF) A9-I full 39.28 48.12 38.86

TABLE I: Evaluation results on the A9-I intersection test set (N=North, S=South, EF=Early Fusion, LF=Late Fusion).
We report the mAP3D@0.1 results for the following six classes: Car, Truck, Bus, Motorcycle, Pedestrian, Bicycle. * PointPillars
inference score threshold is set to 0.3.

TABLE II: Ablation study for matched camera-LiDAR de-
tections calculated for south1 camera using early and late
fusion. Taking LiDAR detection attributes leads to mAP3D

score improvements in all cases.

Fused Attribute Improvement in mAP3D

Center position +2.96
Yaw +0.16
Dimensions +1.65
Category +13.10
Total improvement +17.87

TABLE III: Ablation study of L-Shape-Fitting (LSF) augmen-
tations on the vehicle category superset of the A9-I dataset.

Configuration mAP3D IoU3D

Basic L-Shape-Fitting (LSF) 62.01 0.29
LSF with HD map yaw confidence 64.71 0.43
LSF with hist. plausibility via SORT tracking 48.42 0.31
LSF with both augmentations 67.65 0.44

B. Monocular 3D Perception - Performance Considerations

As presented, the monocular 3D object detection pipeline
achieves a throughput of 22 FPS in our test bench setup using
an RTX 2080S GPU with 1280x720 24-bit RGB input frames.
This is limited by the performance of the YOLOv7 instance
segmentation inference time. At 640x480 resolution, the frame
rate increases to 66 FPS using TensorRT.

C. LiDAR 3D Perception - Runtime Evaluation

Our unsupervised 3D detector achieves a processing speed
of 47 FPS as Table IV demonstrates.

Table V shows the runtime of PointPillars on the A9-I
dataset.

D. Quantitative Results

All four object detection modules were evaluated on the
A9-I south1, south2 and full intersection test set (see Table
I). The performance on the south1 sub set is 80% higher on
average because of better lighting conditions and 2.5x less
occlusions. PointPillars performs much better on the test set
compared to LidarDet3D since it was trained on the A9-I

TABLE IV: Runtime evaluation of detector modules on the
A9-I test set. All modules are implemented in Python 3.8 and
run on a 2.9 GHz dual-core Intel Core i5 CPU.

Module ∅ Runtime in ms
Region of Interest Selection 4.05
Ground Segmentation 0.83
Background Filtering 1.05
Outlier Removal 4.82
Clustering 8.00
Bounding Box Fitting 2.15
Classification 0.18
Total runtime 21.08 (47 FPS)

TABLE V: Runtime evaluation of PointPillars on the A9
intersection dataset with a single and registered point clouds.
Tested in Python 3.8 and run on a NVIDIA RTX 4090.

Point cloud type ∅ Runtime in ms FPS
Single LiDAR point cloud 23.84 42
Registered point cloud 26.11 38

dataset. The south LiDAR has 2.74x more overlapping with
the south2 camera which leads to higher mAP value (+15.13),
compared to the north LiDAR. Using registered point clouds
(early fusion) we achieve the highest results (68.48 mAP) with
our InfraDet3D fusion model on the A9-I south1 test set by
fusing the camera and LiDAR detections on a late fusion level.
Table VI demonstrates that among all classes, the Bus class
exhibits the highest average precision in terms of detection
accuracy since it is covered well by all LiDARs.

Class Car Truck Motorcycle Bus Pedestrian Bicycle
Precision 71.75 91.20 82.72 99.93 31.37 36.02
Recall 87.33 85.03 70.71 100.00 25.49 80.77
AP 71.64 91.03 82.37 99.93 30.00 35.93

TABLE VI: Average Precision (AP) results across classes in
the A9-I dataset of the best performing InfraDet3D model.

E. Qualitative Results

The qualitative results are shown in Figure 6. Note that even
objects outside of the sensor’s field-of-view, like the black
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Fig. 6: Qualitative results for south1 camera (first and second row) and south2 camera (third and fourth row). We show the
perception results during day time (first and third row) and night time (second and fourth row). The detections are colored
by their class color. Column four shows the fusion results in the following colors: green (unmatched camera detections), blue
(unmatched LiDAR detections) and red (fused detections). From left to right: a) Instance segmentation, b) MonoDet3D, c)
PointPillars, d) InfraDet3D, e) Visualization of the fused perception results in CARLA (using early and late fusion).

car in the first row, can be detected by fusing camera and
LiDAR detections. The final perception results are visualized
in the CARLA simulation environment, that contains a full
reconstruction of the A9 Test Stretch.

IX. CONCLUSION

InfraDet3D is a novel perception architecture that increases
situation awareness and range of traditional single-sensor
systems by combining data from multiple sensors distributed
on a 20 m long infrastructure gantry bridge. We show that our
multi-modal perception framework, fusing multiple roadside
LiDARs and cameras, is able to achieve better results (+1.62
mAP) than object detectors using only the camera input.
The distributed sensors combine their perception results and
allow to detect partially and even fully occluded objects.
Our solution is deployed on high performance edge units
and is very cost-effective, since it is distributed among the
CPU (calibration, unsupervised point cloud detection, fusion)
and the GPU (instance segmentation, supervised detection in
point clouds). Future trends and challenges include a better
perception in adverse weather conditions such as heavy rain,
snow, and fog. These conditions reduce the range, reflection
intensity, resolution of point clouds, increase the noise, and
produce outliers. In [34] and [35], a method to filter snow
points is proposed that will be incorporated in the future.
A point cloud compression module will be integrated for
real-time communication and data sharing between RSUs and

vehicles. In the future, we plan to extend our framework into
a deep fusion architecture. Finally, our goal is to evaluate our
models on other infrastructure roadside datasets like DAIR-
V2X-I [36], Rope3D [37], LUMPI [38], and IPS300+ [39].
We will also label more roadside sensor data and apply few-
shot and active learning [40] to deal with small datasets
and limited information. To improve domain adaptation, we
will adapt our solution to other roadside LiDAR sensors and
different domains (ODDs) to achieve a domain-invariant data
representation.
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