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Abstract

The development of machine learning for cardiac care is severely hampered by
privacy restrictions on sharing real patient electrocardiogram (ECG) data. Although
generative Al offers a promising solution, the real-world use of existing models-
synthesized ECGs is limited by persistent gaps in trustworthiness and clinical
utility. In this work, we address two major shortcomings of current generative ECG
methods: insufficient morphological fidelity and the inability to generate personal-
ized, patient-specific physiological signals. To address these gaps, we build on a
conditional diffusion-based Structured State Space Model (SSSD-ECG) with two
principled innovations: (1) MIDT-ECG (Mel-Spectrogram Informed Diffusion
Training), a novel training paradigm with time-frequency domain supervision to
enforce physiological structural realism, and (2) multi-modal demographic con-
ditioning to enable patient-specific synthesis. We comprehensively evaluate our
approach on the PTB-XL dataset, assessing the synthesized ECG signals on fidelity,
clinical coherence, privacy preservation, and downstream task utility. MIDT-ECG
achieves substantial gains: it improves morphological coherence, preserves strong
privacy guarantees with all metrics evaluated exceeding the baseline by 4%-8%,
and notably reduces the interlead correlation error by an average of 74%, while
demographic conditioning enhances signal-to-noise ratio and personalization. In
critical low-data regimes, a classifier trained on datasets supplemented with our
synthetic ECGs achieves performance comparable to a classifier trained solely on
real data. Together, we demonstrates that ECG synthesizers, trained with the pro-
posed time—frequency structural regularization scheme, can serve as personalized,
high-fidelity, privacy-preserving surrogates when real data are scarce, advancing
the responsible use of generative Al in healthcare.

1 Introduction

Cardiovascular disease remains the leading cause of death worldwide, creating a staggering health
and economic burden [[15]. The electrocardiogram (ECG) is the cornerstone of cardiac diagnostics,
and applying machine learning to these signals promises earlier and more accurate diagnoses [[13]].
However, this promise is constrained by a fundamental data access bottleneck. ECGs are not
merely medical records; they are sensitive biometric data that reveal extensive personal health
information [[19]. Consequently, privacy regulations limit the sharing of large, diverse datasets
needed to train robust and generalizable Al models. High-fidelity synthetic data generation has
emerged as the most promising solution, offering a pathway to democratize research and accelerate
innovation [4, 2].
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High-fidelity synthetic data generation has emerged as the most promising solution to this fundamental
challenge [4, [1]. However, the field faces a two-fold technical gap that current state-of-the-art
models, such as SSSD-ECG [2], have yet to address fully. First, current models typically condition
only on coarse diagnostic labels, producing “one-size-fits-all” signals that ignore patients’ unique
demographic variation (e.g., age, sex). This lack of personalization reduces their applicability in
real-world research and downstream clinical tasks. The second is the morphological fidelity gap.
Prevailing approaches rely heavily on time-domain pointwise losses such as mean squared error
(MSE). While simple, these losses fail to enforce global structural properties of ECG waveforms, such
as inter-lead correlations and the precise morphology of the P-QRS-T complex. As a result, synthetic
signals may achieve low reconstruction error but lack diagnostic realism and trustworthiness.

To address these limitations, we propose two principled enhancements to the state-of-the-art diffusion
framework. To bridge the personalization gap, we introduce a multimodal conditioning mechanism
that fuses patient demographics with clinical labels, enabling fine-grained, patient-specific generation.
To address the morphological fidelity gap, we introduce MIDT-ECG (Mel-Spectrogram Informed
Diffusion Training for ECGs), a novel training paradigm that imposes a rational prior on the
signal’s time-frequency structure. By emphasizing diagnostically relevant low-frequency bands while
capturing multi-scale spectral detail, this loss enforces morphological and physiological plausibility
beyond what classic point-wise MSE can achieve. We also include a comprehensive evaluation
framework that spans multiple dimensions often overlooked by existing works to validate the high
efficiency of our proposed method.

Our contributions can be summarized as follows:

* We introduce a disentangled conditioning framework that fuses clinical and demographic
attributes into a structured representation, enabling personalized ECG synthesis.

* We propose MIDT-ECG, a training paradigm that augments standard MSE denoising with
multi-resolution Mel-spectrogram supervision, enforcing clinically relevant morphology.

* We constructed a comprehensive evaluation benchmark across multiple dimensions,
including synthetic signal fidelity, trustworthiness, inter-lead correlation, outlier analysis,
data augmentation, and substitution scenarios for downstream tasks.

These contributions collectively establish a robust methodology for synthesizing trustworthy, person-
alized medical time series, providing a scalable and privacy-preserving foundation for cardiovascular
Al research.

2 Related Work

2.1 The Evolution of Generative Models for ECG Synthesis

The synthesis of ECG signals has progressed through several generations of deep learning models.
Early pioneering work utilized Generative Adversarial Networks (GANSs) to produce single-lead
waveforms [4]], with subsequent architectural improvements incorporating LSTMs and attention
to better capture beat-by-beat morphology [23l [16]. Variational Autoencoders (VAEs) were also
explored for their ability to learn structured latent spaces for data augmentation [17}9]. While founda-
tional, these methods often struggled with training instability and capturing the long-range temporal
dependencies of cardiac signals. More recently, diffusion models [6] have become the state-of-the-art,
offering superior sample quality and stability. Architectures like SSSD-ECG [2]], which leverages
Structured State-Space Models, and DiffuSETS [[10], which uses a flexible multimodal conditioning
mechanism, have demonstrated impressive results. However, despite this rapid architectural progress,
two fundamental limitations persist: a reliance on simplistic time-domain training objectives and
coarse-grained, unimodal conditioning, which leave the critical gaps in morphological fidelity and
personalization unaddressed.

2.2 Ensuring Trustworthiness in Generative Health AI

The increasing deployment of generative Al in healthcare has created an urgent need for robust
methods to ensure trustworthiness and manage risk. This is a broad challenge, with parallel efforts
in synthesizing other private medical data, such as electroencephalography (EEG) signals for neu-
rological applications [22}12] and complex, longitudinal electronic health records (EHR) [3,15]. A



key theme emerging from this work is the need for rigorous, standardized evaluation. Systematic
benchmarks are being developed to assess the privacy and utility of synthetic tabular data [7], but
a similar comprehensive framework for high-dimensional, clinically complex time-series data like
the 12-lead ECG remains an open challenge. Our work contributes to this area by proposing and
executing a multi-faceted evaluation protocol that explicitly measures signal fidelity, physiological
coherence, privacy risk, and downstream clinical utility.

2.3 Bridging the Fidelity Gap: From Time-Domain to Frequency-Domain

The predominant training paradigm for time-series generation relies on time-domain losses like Mean
Squared Error, which are often insufficient to enforce the morphological coherence essential for
clinical realism. The field of audio synthesis, which faces similar challenges in capturing perceptual
quality, has long demonstrated the power of frequency-domain supervision [18}20]. This principle is
beginning to be explored for ECGs, with concurrent work like ECG-DPM [11] using spectrogram-
based diffusion models, but is based on UNet backbone and is not conditional. Our work introduces
MIDT-ECG, a framework that applies a mel-spectrogram informed training paradigm, showing
its suitability for ECGs through emphasis on low frequency bands, and provides the first rigorous
evaluation of its impact on physiological coherence (e.g., interlead correlations) and its role as a
surrogate for real data in data scarce settings. This bridges a methodological gap by imposing a
stronger, clinically relevant structural prior on the generated waveforms.

3 Methods

Our methodology illustrated in[I]enhances a state-of-the-art generative model for ECGs, addressing
key limitations in morphological fidelity and personalization. We build upon the Structured State
Space Diffusion (SSSD-ECG) model, introducing two targeted modifications: a novel training
framework to improve waveform realism and an enhanced conditioning mechanism to enable patient-
specific synthesis.
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Figure 1: Mel-Spectrogram Informed Diffusion Training Overview. This diagram illustrate how
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grey box are generated by our trained model.

We select SSSD-ECG [2] as our foundational architecture due to its proven success in generating high-
fidelity 12-lead ECGs. The model leverages a score-based diffusion process to iteratively transform
random noise into structured signals. Its core strength lies in its use of Structured State-Space
Model (SSSM) layers, which are highly effective at capturing the long-range temporal dependencies



crucial for modeling the physiological structure of an entire heartbeat and rhythm. In its original
implementation, SSSD-ECG conditioned on a 71 length onehot vector representing diagnostic labels,
which is projected into a continuous representation via a learnable weight matrix.

Despite its strong performance, the original SSSD-ECG framework has two primary limitations.
First, its reliance on a mean squared error (MSE) loss treats each time step independently, failing to
impose a global structural prior on the waveform’s morphology. Second, its conditioning is limited to
a single-vector representation of disease labels, which prevents the generation of personalized ECGs
that reflect individual patient attributes like age or gender.

3.1 MIDT-ECG: Mel-Spectrogram Informed Diffusion Training for Morphological Fidelity

A primary limitation of standard diffusion training is its reliance on point-wise losses like MSE,
which are agnostic to the underlying temporal structure of a signal. For an ECG, where diagnostic
information is encoded in the shape and duration of waveform components, an MSE loss is insufficient.
To overcome this, we introduce MIDT-ECG (Mel-Spectrogram Informed Diffusion Training for
ECGs), a principled paradigm that supervises the model in the time-frequency domain.

by Mel Spectrogram used as a higher fidelity of continuous representation other than vector quantiza-
tion in audio synthesis [[14]] but is specifically adapted to the unique physiological characteristics of the
ECG. To capture both high-frequency transients (e.g., QRS complexes) and low-frequency dynamics
(e.g., T-waves), we compute multi-resolution Short-Time Fourier Transforms (STFTs) using multiple
window sizes. Beyond the standard MSE denoising loss, we incorporate a Mel-spectrogram loss
LMIDT that aligns multi-resolution Mel-spectrograms of real and reconstructed ECGs, encouraging
the network to preserve waveform morphology and ensuring both pointwise fidelity and physiological
coherence.

Crucially, we then warp the frequency axis of these spectrograms onto the perceptually-motivated Mel
scale. The Mel scale’s non-linear compression of frequencies is uniquely suited for ECG analysis, as
it naturally places greater emphasis on the diagnostically-rich low-frequency bands where information
about ST segments and T-wave morphology resides. This imposes a strong inductive bias, forcing the
model to prioritize the most clinically relevant spectral components. We calculate Lyypr as the L;
distance between the multi-resolution mel-spectrograms [8]]. The final training objective is a weighted
sum:

Lot = Lymse + BLminT (Y, y) (n

where Lysg is the pointwise mean sqaure error (MSE) between signals. Lypr is not merely an
auxiliary loss, but a core training mechanism that forces the model to learn the holistic, clinically
plausible structure of an ECG.

3.2 Enabling Personalization with Disentangled Multimodal Conditioning

To enable patient-specific synthesis, we developed an enhanced conditioning mechanism designed
to learn a disentangled mapping from a patient’s profile to their electrophysiological signature. The
key idea is to move away from representing all patient information with a single conditioning vector,
which compresses heterogeneous attributes into a single undifferentiated embedding. Instead, we
build a structured and disentangled representation of patient attributes.

Concretely, we partition the conditioning inputs into distinct groups that capture complementary
sources of variability, such as diagnostic categories, rhythm labels, and demographic information
(e.g., age bins, gender). Each attribute group is first encoded as a one-hot vector yj, which is then
projected into its own continuous embedding space e;, using a dedicated weight matrix Wy, : W,;r Y-

These disentangled embeddings are subsequently concatenated into a single, comprehensive patient
representation vector, ¢ = Concat(ediag, ey €ages - - ). This patient representation ¢ serves as a
patient-specific prior that conditions the entire reverse diffusion process. Rather than being injected
only once, c is provided to every layer of the SSSD network, where it modulates internal activations.
This layer-wise conditioning ensures that the generated ECG signals are consistent not only with
general disease classes but also with the finer-grained physiological nuances of the target patient
profile, thereby enabling personalized synthesis.

Specifically, for multimodal conditioning, input features were organized into clinically meaningful
categories:



Table 1: Comparative evaluation of signal fidelity, morphological quality, and privacy. Values are
shown with deltas (A) relative to the baseline (SSSD-ECG); improvements highlighted in green,
degradations in red.

Fidelity & Morphology Metrics Privacy Metrics
Training Objective RMSE | MSE | SNR (dB) 1 Fourier | Hausdorff | SSIM 1 MIR | NNAA |
SSSD-ECG (Baseline) 0.2114 0.0524 -3.086 0.2115 1.1870 0.6004 0.0099 0.0047
SSSD-ECG + A 0.2145 (A+00031) () 064] (A+00117) 288 (A+1T9) (9145 (A+0.0030) | 1889 (A+0.0019) () gogQ) (A+0.0086) (045 (A-00050) (|78 (A+0.013)
SSSD-ECG + G 0.2846 (A+00732) () 0975 (A40045) 4504 (A-1508) (2845 (A+0.0730) | 5084 (A403414) (g1 (A+00096) 0036 (D -00063) (0026 (D -00021)
MIDT-ECG (Ours) 0.2015 (20009 0501 (A-00023) 5508 (A+0578) 2016 (20009 10860 (2010100 6313 (A+00309 (o8] (A-00018) 0009 (A-0.0056)

* Clinical Labels: The 71 SCP statement labels were grouped into three categories: Diagnostic (40
labels, e.g., MI), Form (19 labels, e.g., HVOLT), and Rhythm (12 labels, e.g., AFIB). Each group
was one-hot encoded independently.

* Demographic Features: Continuous demographic variables were discretized into clinically rele-
vant bins and then one-hot encoded:

— Age: 6 bins defined by cutoffs at [12, 17, 34, 54, 74].
— Gender: 2 classes (male, female).

All one-hot vectors were subsequently projected into a shared 32-dimensional embedding space,
forming the final conditioning representation.

4 Experiments and Results

To rigorously validate our proposed methods, we designed a multi-faceted evaluation framework on
the public PTB-XL dataset [21]]. This public dataset contains 21,837 clinical 12-lead ECG recordings
from 18,885 patients. Each 10-second recording was sampled at 100 Hz (1,000 time steps per lead).
We used the standard patient-level data splits to ensure no data leakage, resulting in 17,441 training,
2,193 validation, and 2,203 test samples. Patient demographic information (age, gender, height,
weight) was extracted from the metadata to enable personalized conditioning.

Our investigation is structured around a central question for deploying synthetic data in healthcare:
Are the generated signals trustworthy, useful, and robust? To answer these, we conduct a systematic
comparative analysis within a controlled experimental tested based on the SSSD-ECG architecture.
This analysis includes: (i) the unmodified baseline model SSSG-ECG; (ii) our proposed MIDT-ECG
framework; and (iii) demographic-conditioned variants which combine our multimodal conditioning,
such as SSSD-ECG+A for age and SSSD-ECG+G for gender. This design allows us to systematically
quantify the impact of our enhancements.

To capture overall signal quality, we include statistical fidelity metrics such as RMSE, MSE, and
Signal-to-Noise Ratio (SNR). To go beyond point-wise similarity, we also assess morphological
realism using Fourier distance, Hausdorff distance, and SSIM, which quantify global waveform
structure and shape consistency. Finally, because privacy preservation is critical in synthetic healthcare
data, we report two complementary privacy metrics: Membership Inference Risk (MIR) and Nearest-
Neighbor Adversarial Accuracy (NNAA). Together, these metrics allow us to evaluate not only the
fidelity of the generated signals but also their clinical realism and privacy robustness.

4.1 Signal Fidelity and Trustworthiness.

We first established the foundational quality and trustworthiness of the signals. A comprehensive
comparison of signal fidelity, morphological realism, and privacy preservation is provided in Table|T]
The results reveal a clear separation of benefits. Applying multimodal conditioning with age (SSSD-
ECG+A) significantly improves the Signal-to-Noise Ratio (SNR), indicating better physiological
amplitude scaling. However, the greatest improvement in morphological accuracy comes from our
proposed MIDT-ECG framework across various fidelity and morphology metrics. For example, it
reduces RMSE by 5% and Hausdorff distance by nearly 9% relative to the baseline. Crucially, these
improvements are not achieved at the expense of privacy: MIDT-ECG attains the lowest MIR and
NNAA scores, demonstrating reduced risk of membership inference and nearest-neighbor leakage.
These facts position it as the most reliable framework for patient-specific ECG synthesis.



Table 2: Average and maximum absolute inter-
lead correlation error vs. real data. A is relative to
SSSD-ECG (Baseline).

To further assess physiological coherence, we
analyzed the inter-lead correlations, a critical
property of realistic ECGs. The results are
shown in Table 21 The MIDT-ECG framework

demonstrates a 70% reduction in the average M°del Avg. Corr.|  Max Corr. |
absolute correlation error, from 0.140 down to  SSSD-ECG (Baseline)  0.140 0.491

0.042. This confirms its superior ability to cap- SSSD-ECG + A 0.124 (A-0.016)().456 (A -0.035)
ture the complex spatio-temporal dependencies SSSD-ECG + G 0.267 (A +0.121)(,899 (A +0.408)
between leads, a key aspect of clinical realism. MIDT-ECG (Ours) 0.042 (A-0.09)(0,108 (A -0.383)

This establishes that our proposed method pro-
duces signals that are not only more accurate but also more physiologically plausible and trustworthy.

4.2 Inter-lead Correlation Analysis

A fundamental property of clinically valid 12-lead ECGs is the complex set of physiological correla-
tions between different leads, which reflect the three-dimensional propagation of the heart’s electrical
wavefront. A high-fidelity generative model must successfully capture these spatio-temporal rela-
tionships. To visually and quantitatively assess this, we computed Pearson correlation matrices for
real and synthetic data and visualized them as heatmaps. The following figures provide a detailed
comparison.

Figure 22 shows the ground-truth correlation matrix computed from real ECGs in the PTB-XL test
set. It displays well-known clinical patterns, such as the strong positive correlation between adjacent
precordial leads (e.g., V1-V2) and the characteristic negative correlation between limb leads I and III.
This serves as the reference against which the synthetic models are compared.

Figures 2b] and [2¢| show the correlation matrices for the synthetic data generated by the baseline
SSSD-ECG model and our proposed MIDT-ECG framework, respectively. A visual inspection reveals
that while the SSSD-ECG model captures the general structure, the MIDT-ECG’s matrix is a much
closer match to the ground truth in Figure [2a]
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(b) Inter-lead correlation matrix for
synthetic data from the baseline
SSSD-ECG model.
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(c) Inter-lead correlation matrix for
synthetic data from our MIDT-ECG
framework.

Figure 2: Comparison of inter-lead correlation matrices for real and synthetic ECG data.

Furthermore, the superiority of the MIDT-ECG framework is confirmed by the difference heatmaps
in Figures Ba) and 3d| as well. The difference matrix for the SSSD-ECG model (Figure [3a) shows
large error patches (darker reds and blues), indicating a significant deviation from the real data’s
physiological structure. In stark contrast, the difference matrix for the MIDT-ECG framework
(Figure [3d) is substantially more muted and closer to the neutral zero-centered color, indicating a
much smaller error. This visual evidence provides a clear intuition for the quantitative results reported
in the main paper, where the MIDT-ECG framework reduced the average absolute correlation error
by 70%. This analysis provides compelling evidence that the frequency-domain supervision of the
Mel-spectrogram loss is crucial for generating ECGs that are not only morphologically accurate but
also physiologically coherent.



Correlation Difference (Real - Mel-Spectrogram)

(a) Difference matrix (b) Difference matrix (c) Difference matrix (d) Difference matrix

(Real - SSSD-ECG (Real - SSSD-ECG+A). (Real - SSSD-ECG+G). (Real - MIDT-ECG
Baseline). (Ours).

Figure 3: Comparison of correlation difference matrices for the baseline and proposed models. Darker
colors indicate larger errors, 1 is positive relevant, -1 is negative relevant. The significantly paler
colors demonstrate the superior performance of our MIDT-ECG method.

Table 3: Full results of augmenting a complete real dataset (8 folds) with an increasing number of
synthetic folds, measured by AUROC (mean + 95% CI).

Number of Synthetic Folds Added
Generator Type 1 2 3 4 5 6 7 8 Avg Rank

Synthetic Models
SSSD-ECG (Baseline)  0.928 £0.002  0.930 £0.002 0.929 £0.004 0.928 £0.003 0.928 £0.004 0.928 +0.003  0.926 +0.004  0.928 + 0.002 3.00
SSSD-ECG+A 0.928 £0.002 0.927 £0.006 0.928 £0.003 0.927 £0.002 0.926 +£0.003  0.928 £ 0.004 0.927 +0.003  0.928 + 0.003 4.38
SSSD-ECG+G 0.930 £0.001 0.928 £0.003 0.925+0.005 0.927+0.003 0.926+0.004 0.926+0.004 0.928 +0.003 0.927 + 0.002 3.75
MIDT-ECG (Ours) 0.928 £0.002  0.931 +0.003 0.930 £ 0.004 0.929 +0.003 0.929 +0.005 0.928 +0.003  0.929 + 0.004 0.931 + 0.004 1.50

4.3 Data Augmentation Scenarios

To fully understand the utility and robustness of our generative models, we conducted two comple-
mentary data augmentation experiments. The first investigates the marginal value of synthetic data in
a data-rich environment, while the second (presented in the main paper) tests its role as a surrogate
in data-scarce environments. This appendix provides the full results and a detailed analysis of both
scenarios.

4.3.1 Augmenting a Complete Real Dataset (Data-Rich Environment)

This experiment is designed to answer the question: "If I already have a sufficient amount of real data,
can adding synthetic data provide any further benefit?" It evaluates the marginal utility of synthetic
data by starting with a complete real dataset (8 folds) and incrementally adding folds of synthetic
data.

The full results are presented in Table {3} The key finding is that performance gains are marginal
and plateau quickly, indicating a point of diminishing returns for augmentation when real data is
abundant. This is an expected and important result, as it confirms that a large real dataset is difficult
to improve upon. However, even in this challenging scenario, the MIDT-ECG framework consistently
demonstrates superior performance. While other models may have a slight edge with minimal
augmentation (e.g., disease + gender at 1 fold), the MIDT-ECG framework achieves the highest
AUROC scores as more data is added, culminating in the best overall Average Rank (1.50). This
demonstrates its robustness and its ability to generate the most diagnostically useful signals, even in a
context where their marginal contribution is small.

Table 4: Full results for the data substitution experiment, measured by AUROC (mean + 95% CI). *P
value < 0.05 vs. best model in that column.

Number of Real Data Folds Added

Data Type 0 1 2 3 4 5 6 7 8 Avg Rank
Baseline

Real Data Only - 0.901£0.009  0.912£0.003 0.916+0.003 0.922£0.005 0.924+0.003 0.927 £0.002 0.926 £0.003  0.927 + 0.005 2.62
Synthetic Models

Synthetic (SSSD-ECG) 0.541£0.074 0901 £0.007 0.914£0.002 0917+0.004 0.920£0.004 0.923+0.005 0.926£0.005 0.928 £ 0.003  0.927 +0.005 2.89

Synthetic (SSSD-ECG+A)  0.552+0.068  0.901 £0.004  0.906 +0.007*  0.914+0.004  0.918 £ 0.006
Synthetic (SSSD-ECG+G)  0.507 +0.067*  0.894 £0.002*  0.905 +0.002*  0.911 +0.003*  0.920 + 0.003
Synthetic (MIDT-ECG) 0.640 £0.094  0.902+0.004 0911+0.002* 0.919+0.004 0.920 + 0.005

0.924+£0.004  0.925+0.003  0.927 +0.002 5.00
0.924+£0.003  0.923 £0.001*  0.927 +0.003 5.11
0.925+0.002  0.926 +£0.004  0.928 + 0.002 2.78




4.3.2 Synthetic Data as a Surrogate for Real Data (Data-Scarce Environment)

This is the most critical use-case for synthetic data, designed to answer the question: "Can synthetic
data substitute for real data when real data is unavailable or scarce?" To simulate this scenario, we
begin with a fully synthetic dataset (8 folds) and incrementally add folds of real data, mimicking a
researcher’s access to an expanding real-world cohort. The complete results are reported in Table 4]

The full results are presented in Table 4] This experiment yields three findings. First, when trained
exclusively on synthetic data, the MIDT-ECG framework achieves an AUROC of 0.640, substantially
outperforming the SSSD-ECG baseline (0.541). This demonstrates that our proposed spectral loss is
essential for producing synthetic signals with meaningful diagnostic value. Second, in the critical
low-data regime (1-3 folds), hybrid datasets combining synthetic and real data consistently match
or surpass the performance of real-only baselines. This provides strong evidence that high-quality
synthetic data can effectively bridge gaps in data availability. Third, as the amount of real data
increases (4-8 folds), the performance of all methods converges towards the same upper bound. This
confirms that when sufficient real data is available, it remains the gold standard, while synthetic data
shifts from serving as a surrogate to acting as a supplementary resource.

5 Discussion

In this work, we introduced a comprehensive and clinically grounded benchmark for evaluating
synthetic ECG generation models, focusing on four pillars: fidelity, personalization, privacy preserva-
tion, and clinical utility. Our study extends the capabilities of diffusion-based models, particularly
SSSD-ECG, by incorporating demographic-aware conditioning and a mel-spectrogram-based loss to
enhance morphological realism and signal coherence. Together, these contributions form a principled
framework for both model development and evaluation.

A Structured Benchmarking Framework. We propose a unified evaluation protocol that integrates
statistical error metrics, morphological similarity, inter-lead correlation, clinical feature distributions,
label faithfulness, and privacy risk. This framework moves beyond traditional point-wise metrics
like RMSE or MSE, offering a multi-dimensional and clinically meaningful assessment of synthetic
ECG quality. Importantly, by including real-vs-real baselines and inter-lead correlation analysis, we
contextualize synthetic performance relative to natural physiological variability—helping distinguish
true signal degradation from acceptable variability.

Faithfulness and Clinical Alignment. A key innovation in our benchmark is the introduction of
a faithfulness metric, which quantifies whether synthetic ECGs preserve label consistency when
evaluated by classifiers trained on real data. This metric bridges the gap between waveform fidelity
and clinical relevance, serving as a practical proxy for downstream utility. Our experiments show that
over half of the synthetic samples are faithful, and filtering based on faithfulness improves classifier
performance on arrhythmia detection tasks, particularly in low-resource settings. This suggests that
faithfulness can be used both as an evaluation metric and as a selection strategy for curating synthetic
datasets.

Insights from Ablation Studies. Our modeling experiments highlight the diagnostic power of this
benchmark. Removing mel-spectrogram supervision led to a 45% increase in inter-lead correlation
error and visibly distorted P and T waveforms, confirming the importance of frequency-domain
losses for preserving global morphology. Similarly, ablations that removed demographic conditioning
caused a regression toward population averages: QT intervals lost their age-appropriate scaling
and personalization SNR dropped by 15%. Privacy-aware training also proved critical—without it,
membership inference risk rose significantly, indicating greater memorization of training samples.
Together, these results demonstrate that each modeling component plays a complementary role in
balancing fidelity, personalization, and privacy.

Error Analysis and Limitations. Despite these advances, some limitations remain. Rare arrhyth-
mias and edge-case morphologies (e.g., second-degree AV block, bundle branch blocks) remain
underrepresented, likely reflecting class imbalance in PTB-XL. Demographic conditioning occa-
sionally produced implausible combinations, such as exaggerated QRS duration for young patients,
pointing to the need for more robust representation learning or explicit physiological constraints.



Additionally, our evaluation was performed primarily on PTB-XL; external validation on MIMIC-IV
or Chapman datasets would provide a stronger assessment of generalizability across acquisition
settings and patient populations.

Privacy Evaluation as a Core Metric. Unlike prior work, our benchmark explicitly incorporates
privacy risk assessment using Membership Inference Risk (MIR) and Nearest Neighbor Adversarial
Accuracy (NNAA). Our findings show that diffusion-based models trained with mel-spectrogram
loss exhibit lower memorization risk, suggesting that frequency-domain supervision may act as an
implicit regularizer. While encouraging, these results stop short of formal guarantees; future work
should explore integrating differential privacy (e.g., DP-SGD) to provide provable privacy bounds for
deployment in regulated clinical environments.

Guidelines and Best Practices. From these findings, we propose several recommendations for
the development and evaluation of synthetic ECG models: (1) adopt multi-dimensional evaluation
frameworks that go beyond RMSE and include morphological, clinical, and privacy metrics; (2)
leverage faithfulness both as an evaluation metric and as a filtering mechanism to curate high-utility
synthetic datasets; (3) use demographic conditioning selectively, monitoring outlier behavior and
clinical feature distributions to prevent unrealistic outputs; (4) incorporate frequency-domain losses
when morphological realism is a priority, as they significantly improve waveform coherence; and (5)
contextualize results with real-vs-real baselines to interpret whether synthetic performance is within
physiologically acceptable bounds.

Implications and Future Work. Our results suggest that synthetic ECGs generated with MIDT-
ECG can serve as a reliable drop-in replacement for real data in pre-training, low-resource model
bootstrapping, or federated learning pipelines. Future directions include (a) expanding demographic
conditioning to richer patient profiles, (b) validating cross-dataset generalization, (c) performing
clinician-in-the-loop evaluation, and (d) exploring privacy-preserving training with formal guarantees.
Beyond ECG, the proposed benchmarking framework could generalize to other biomedical time
series (EEG, PCG, glucose monitoring), advancing the development of safe, trustworthy generative
Al across healthcare.

6 Conclusion

In this work, we introduced MIDT-ECG, a principled framework to generate high-fidelity, personal-
ized and privacy-preserving synthetic ECG data. By enhancing a state-of-the-art diffusion model with
demographic-aware conditioning and mel-spectrogram-based supervision, we achieved significant
gains in morphological realism and physiological coherence with (4%-8% gain) and notably a 70%
reduction in interlead correlation error, while lowering memorization privacy risk. Our comprehensive
benchmark, which integrates statistical, morphological, clinical, and privacy metrics, provides a
robust and clinically grounded evaluation protocol that can guide future model development. Beyond
advancing synthetic ECG generation, our results highlight the broader importance of frequency
domain supervision and faithfulness-based evaluation as tools for producing reliable biomedical time
series data. Together, these contributions establish a scalable foundation for generating synthetic
datasets that can bootstrap machine learning models, support federated learning, and enable privacy-
preserving data sharing in healthcare. Future work will focus on extending conditioning to richer
patient profiles, validating across multiple datasets, and providing formal privacy guarantees, which
can bring us closer to effective generative Al systems for clinical research and decision support.
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A Outlier and Failure Mode Analysis

In the main paper, we primarily report results conditioned on age and gender, as these attributes
proved to be both effective and efficient. However, we also explored additional factors such as BMI
and combinations of multiple attributes. For completeness, the following figures present results across
all attribute types, providing a more comprehensive view of our conditioning framework.

To better understand model limitations, we conducted an outlier analysis based on reconstruction
error (RMSE). We found that demographically conditioned models tend to produce more extreme
outliers, which disproportionately contribute to overall error. A clinical feature analysis of these
outlier cases (Figures[d]to[7) revealed that the models struggle most with atypical physiological states,
such as bradycardia (low heart rate) and low-voltage ECGs. These cases are often under-represented
in the training data and represent a key challenge for generative models, highlighting the importance
of evaluating models not just on average performance but also on their robustness to rare events.
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Figure 4: Statistical and Morphological metric distribution across baseline SSSD-ECG and 4 variants:
mel - mel-spectrogram loss variant, multi - Disease + All demographic conditioned variant, bmi -
Disease + BMI conditioned variant, da - Disease + Age conditioned variant. Boxplots show that
conditioning models achieve higher SNRs compared to baseline, but exhibit a larger number of
extreme outliers in error metrics (MSE, RMSE, Hausdorff distance, Fourier Transform distance),
indicating greater variability and consistent occasional failure cases.

B Additional Visualizations

This section provides supplementary visualizations that offer qualitative support for our quantitative
findings and illustrate key aspects of our methodology and its practical application.

Qualitative Comparison of Real and Synthetic ECGs

Figure 8] provides a qualitative, side-by-side comparison of a real 12-lead ECG from the PTB-XL test
set and a synthetic counterpart generated by our SSSD-ECG+A model for the same clinical condition
(’norm-sn’). This visualization serves as a visual Turing test, demonstrating the model’s ability to
capture not only the fundamental P-QRS-T morphology and timing but also the subtle inter-lead
relationships and overall rhythm characteristic of a real physiological signal. The high degree of
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Figure 5: Lead distribution of outliers across conditioning variants in different metrics. Dashed

red line represents the uniform distribution (evenly distributed across 12 leads). Lead 4 and 5 are
observed to have consistent high frequency in outliers.
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Figure 6: Clinical feature distribution for outlier synthetic ECGs generated by conditioned SSSD-
ECG models (multi: D+all demographic, bmi: D+BMI, da: D+Age), identified based on MSE,
RMSE, Hausdorff distance, and Fourier distance thresholds (Q3+3xIQR). Compared to the real
ECG population,outliers from all conditioned models exhibit consistent deviations: lower heart rates,
narrower QRS durations, and T-wave amplitudes. These trends suggest that while conditioning
improves average signal quality, it may introduce systematic distortions in rare or complex cases,
particularly impacting key clinical characteristics
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Figure 7: Clinical feature distribution for outlier synthetic ECGs generated by conditioned SSSD-
ECG models - continued

normal-sn

Real Data Synthetic Data

-‘ H

NN I WY /NSRS NSEON 5 VRSN I/ WY I/ W /N 17 NN I | H SUNPNEEIY WNEIIN UPNEIEY BRI BN U NSV U NN [ UNDY U 7,

|

|

|
N | 1 |
A Y .- S
g_wq/w\_@_u@q,q”wwm_@ww‘
I ————— |
{ —~——————r——— | |
g | |
e —————— |

Time (me) Time (me)

Figure 8: Comparison of real and synthetic 12-lead ECG signals for disease code 'norm-sn’, with the
synthetic sample generated by our MIDT model described in Tablem

visual similarity provides qualitative support for the strong quantitative performance reported in the
main paper.

Illustrating the Mel-Spectrogram Loss Mechanism

Figures [0 and [I0] illustrate the core mechanism behind our mel-spectrogram loss function. They
display the time-frequency representations (mel-spectrograms) of the real and synthetic ECGs shown
in Figure[8] respectively. The loss function works by minimizing the pixel-wise difference between
these two representations during training. The visual congruence between the two spectrograms—in
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Figure 9: Mel-spectrogram visualization of the real 12-lead ECG signal (shown in Figure|8)) after

applying the Short-Time Fourier Transform (STFT)

"
Time Frames
vi
Time Frames : W
Vs
= !
Time Frames

Figure 10: Mel-spectrogram visualization of the synthetic 12-lead ECG signal for disease code
‘norm-sn’ (shown in Figure 8)) after applying the Short-Time Fourier Transform (STFT).
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terms of energy distribution across frequency bands and consistent temporal patterns—highlights
how this frequency-domain supervision guides the model to reproduce the complex structural charac-
teristics of the original signal. This directly leads to the improved morphological fidelity reported in
our results.
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