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ABSTRACT

Vision-language models (VLMs) are essential to Embodied Al, enabling robots
to perceive, reason, and act in complex environments. They also serve as the
foundation for the recent Vision-Language-Action (VLA) models. Yet most eval-
uations of VLMs focus on single-view settings, leaving their ability to integrate
multi-view information underexplored. At the same time, multi-camera setups
are increasingly standard in robotic platforms, as they provide complementary
perspectives to mitigate occlusion and depth ambiguity. Whether VLMs can ef-
fectively leverage such multi-view inputs for robotic reasoning therefore remains
an open question. To bridge this gap, we introduce MV-RoboBench, a bench-
mark specifically designed to evaluate the multi-view spatial reasoning capabil-
ities of VLMs in robotic manipulation. MV-RoboBench consists of 1.7k manu-
ally curated QA items across eight subtasks, divided into two primary categories:
spatial understanding and robotic execution. We evaluate a diverse set of exist-
ing VLMs, including both open-source and closed-source models, along with en-
hanced versions incorporating Chain-of-Thought (CoT)-inspired techniques. The
results show that state-of-the-art models remain far below human performance,
underscoring the substantial challenges VLMs face in multi-view robotic percep-
tion. Additionally, our analysis uncovers two key findings: (i) spatial intelligence
and robotic task reasoning are correlated in multi-view robotic scenarios; and (ii)
strong performance on existing general-purpose single-view spatial understand-
ing benchmarks does not reliably translate to success in the robotic spatial tasks
assessed by our benchmark. We release MV-RoboBench as an open resource to
foster progress in spatially grounded VLMs and VLAs, providing a foundation for
advancing embodied multi-view intelligence in robotics.

1 INTRODUCTION

Vision-language models (VLMs) (OpenAll 2024; [Team et al. 2023} |Anthropic, [2024; [Zhu
et al.| [2025; Bai et all 2025; Liu et al. 2023b) play a pivotal role in Embodied AI, enabling
multimodal perception and reasoning for robots while also serving as the foundation for Vi-
sion-Language—Action (VLA) models (Zitkovich et al.,2023; |0’ Neill et al.| 2024} Kim et al.,[2024;
Li et al.,|2024; Black et al., |2024; Intelligence et al.| [2025) that empower robots to operate in com-
plex real-world environments. By leveraging VLMs, VLAs inherit broad multimodal competence
while adding the ability to ground decisions in physical planning and reasoning, positioning them
as the backbone of next-generation robotic intelligence.

Unlike generic multimodal reasoning, robots operate in physical environments rather than abstract
2D tasks. Robotic execution naturally requires spatial intelligence: the capacity to interpret 3D
structure, reason about geometric relationships, and maintain consistency across viewpoints. Single-
view inputs are inherently limited by challenges like occlusion, depth ambiguity, and restricted
fields of view. Multi-view observations, by contrast, offer complementary perspectives that help
overcome these limitations. As they become increasingly standard on robotic platforms, multi-view
observations enable more robust perception and decision-making.
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Table 1: Comparison of spatial reasoning benchmarks. Prior datasets emphasize single-view rela-
tions, abstract reasoning, or non-embodied multi-view perception. The “Partial” in “Multi-View”
indicates that these datasets contain only a subset of multi-view samples, mixed with single-view in-
puts. MV-RoboBench uniquely targets multi-view spatial reasoning within robotic manipulation
scenarios, combining embodiment with multi-view perception.

Benchmark Multi-View Task Category Environment / Scenario Annotation QA

EmbSpatial-Bench (Du et al.||2024) X Spatial Indoor ScanNet Template 3.6K
Visual Spatial (Liu et al.;,[2023a) X Spatial MSCOCO Template 10K
RoboSpatial (Song et al.}[2025a) X Spatial Indoor tabletop Template M

Spatial-MM (Shiri et al.|[2024) X Spatial Internet Template 2.3K
Spatial VLM (Chen et al.,[2024) X Spatial WebLi Template 546

VSI-Bench (Yang et al.||2025b) X Spatial Indoor egocentric video Template 5K

OmniSpatial (Jia et al.|[2025) X Spatial Internet Manual 1.5K
ShareRobot (Eval) (Ji et al.;[2025) X Robotic Robot manipulation Manual 1.2K
ERQA (Team et al.}|2025a) Partial Spatial + Robotic Human-egocentric + robotic manipulation ~ Manual 0.4K
MMSI-Bench (Yang et al.||2025c) Partial Spatial Multi-Domain 3D + Egocentric + Driving  Manual 1.0K
All-Angles Bench (Yeh et al.}|2025) v Spatial Multi-view photos and videos Template 2.1K
Ego3D-Bench (Gholami et al.|[2025) v Spatial Egocentric 3D navigation Template 8.6K
MV-RoboBench (Ours) v Spatial + Robotic Robot manipulation Manual 1.7K

Although many benchmarks have been proposed to assess the spatial reasoning capabilities of
VLMs (Du et al., 20245 [Liu et al., 2023a; Shiri et al.,[2024; |Chen et al.,[2024; |Song et al.| 2025a;[Yang
et al., 2025b; Jia et al., 2025)), they mostly focus on single-view data. ERQA (Team et al., [2025a)
contains only a small portion of multi-view data, and the diversity of views remains limited, and
the tasks remain relatively basic. Moreover, they often emphasize general spatial intelligence tasks
while giving less attention to the embodied, action-oriented requirements of robotic manipulation.
ShareRobot (Ji et al.| [2025) extends evaluation to embodied robotic tasks but without multi-view
perception. MMSI-Bench (Yang et al.}2025¢) includes multi-view tasks, but its questions primarily
target basic spatial perception and understanding. All-Angles Bench (Yeh et al.| 2025) and Ego3D-
Bench (Gholami et al., [2025)) address multi-view reasoning, yet primarily focused on photographic
or navigation-related domains.

To fill this gap, we introduce MV-RoboBench, a benchmark specifically designed to evaluate multi-
view spatial reasoning in robotic manipulation scenarios. It is built from real robotic demonstrations
with synchronized multi-camera views and encompasses both spatial reasoning and robotic execu-
tion tasks. The benchmark includes a total of 1.7K carefully-curated QA items by humans, spanning
diverse manipulation tasks and environments. It offers a systematic evaluation of whether VLMs can
effectively integrate complementary information from multiple camera views to support decision-
making for robots in the real world.

Our key contributions are as follows:

* We establish the first benchmark that integrates spatial and robotic reasoning with synchro-
nized multi-view inputs in robotic manipulation scenarios, enabling a thorough evaluation
of existing open-source and closed-source VLM models.

* We show through extensive experiments that robotic multi-view scenarios remain signifi-
cantly challenging. The most powerful VLM models still fall far below human performance
and many others perform close to random. We further explore CoT-inspired enhancements,
which yield mixed and model-dependent effects across models.

* We provide a correlation analysis in multi-view robotic scenarios, uncovering two key find-
ings. First, there is a clear correlation between spatial reasoning and robotic execution.
Second, strong performance on general-purpose single-view spatial benchmarks, which as-
sess reasoning from concrete to abstract settings but are devoid of robotic context, does
not reliably transfer either to robotic tasks or to spatial reasoning tasks within multi-view
robotic scenarios. These findings highlight the unique challenges of multi-view reasoning
in robotics and the need for specialized benchmarks like MV-RoboBench.
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Question: In the right-gripper camera view, the item is outlined with a red Question: If T want o pour water from the kettle on the table into the
bounding box. Which colored bounding box encloses that same item in the water cup. <Head coordinate system>

left-gripper camera view and the head camera view?
Answer: The pink bounding box.

élﬂ Spatial: Distance Judgement

Answer: Move the left gripper leftward, then forward, then downward to
grasp the handle of the kettle. Then lift the kettle, move it upward, and
then rightward to pour water into the cup.

/

Robotic: Step Execution

Questions: Which option corresponds to the shortest grasping distance?
Answer: Grab the item in the blue bounding box using the right gripper.

Question: Suppose I want to use the right gripper to grab the spoon in the
bowl. <Description of coordinate system definition>

Answer: Move the right gripper down and then to the left, then forward
to grab.

@Spaﬁal: 3D Spatial Consistency

Q= Robotic: Trajectory Selection

Question: If a spatial cube coordinate system is
established in the head view, which of the following
sets of representations better matches the relative
positions of the objects marked in the figure?

Answer: (Red box, 2, 4, 4), (Yellow box, 4, 4, 4),
(Green box, 3, 4, 1), (Blue box, 1, 2, 3), (Pink box,
4,3,2)

n
Question: If I want to place the pink wet wipes into the plastic bag, which
color frajectory is most likely to accomplish this task? Answer: The pink line.

&Roboﬁc: Affordance Recognition

@Spaﬁal: Viewpoint Identification

Question: Given the image
captured by the head
camera, which shows the
left gripper camera's view

‘ n “\ at this moment?
) rs [—

%

Question: Which colour-coded line represents the grasp candidate most likely

Answer
I to succeed? Answer: Yellow line.

Figure 1: Representative questions from the eight tasks in MV-RoboBench, with spatial tasks
shown on the left and robotic tasks on the right. For clarity, only simplified versions with ground-
truth answers are presented here, omitting distractors. Full examples are provided in Appendix|lj

2 MV-ROBOBENCH

2.1 OVERVIEW

We introduce MV-RoboBench, a benchmark designed to evaluate the multi-view reasoning capa-
bilities of VLMs in robotic manipulation scenarios. It is built from the AgiWorld
and BridgeV2 (Walke et all, [2023)) datasets, spanning both single-arm and dual-arm robotic manip-
ulation settings. In total, we construct 1,708 multiple-choice questions across eight subtasks, each
with exactly one correct answer, enabling objective, reproducible, and easily extensible evaluation.

Figure [T]illustrates representative examples from the eight subtasks in MV-RoboBench. To system-
atically evaluate multi-view reasoning in robotic contexts, we divide the benchmark into two com-
plementary categories: spatial understanding and robotic execution. Spatial understanding focuses
on perception and reasoning across multiple camera views, assessing whether multi-view observa-
tions can be integrated into a coherent 3D representation of the scene. Robotic execution, in contrast,
extends this spatial reasoning to embodied action, probing whether multi-view information can be
effectively leveraged to plan, select, and validate actions in manipulation tasks.

The four spatial understanding subtasks each target a distinct aspect of multi-view perception: cross-
view matching requires identifying the same object across different viewpoints; distance judgement
evaluates relative distances between objects; viewpoint identification tests the ability to reason about
viewpoint transformations; and 3D spatial consistency probes whether models can maintain consis-



Under review as a conference paper at ICLR 2026

tent relative positions of objects in 3D space. Most of these subtasks rely on paired images as input,
emphasizing the integration of complementary viewpoints.

The four robotic execution subtasks test whether multi-view information can support robust ac-
tion selection. Action planning requires choosing an appropriate multi-step sequence to complete
a task, while step execution focuses on verifying whether the next single-step movement is correct.
Trajectory selection evaluates the feasibility of candidate motion paths, and affordance recognition
assesses the feasibility of object-specific interactions. Together, these subtasks emphasize the role of
multi-view observations in resolving occlusion and depth ambiguity for embodied decision-making.

2.2 BENCHMARK CONSTRUCTION

I: Data Collection II: QA Generation

Tool-based annotation
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Figure 2: Construction pipeline of MV-RoboBench, consisting of three stages: data collection, QA
generation, and human-in-the-loop quality review.

We design a carefully engineered, multi-stage pipeline that has been iteratively refined to ensure the
construction of high-quality QA pairs at scale (Figure [2)).

Data Collection. We first apply rule-based filtering to synchronized multi-view image pairs to
ensure sufficient temporal separation, scene diversity, and visual clarity. GPT-4.1 then filters pairs by
checking whether they satisfy at least one of the eight task definitions, after which human annotators
verify clarity and appropriateness to retain only high-quality candidates for QA construction.

QA Generation. For each subtask, task-specific templates were designed, and trained annotators
constructed corresponding five-choice QA pairs from the curated image pairs. During annotation,
we explicitly avoided designing overly ambiguous or artificially tricky questions, while ensuring
that distractors remain plausible yet clearly distinguishable from the correct option. All annotated
items were collected into a shared VQA pool for subsequent refinement. Further implementation
details are provided in Appendices [EHF|

Human-in-the-loop Quality Review. Samples from the VQA pool were iteratively reviewed by
trained annotators. Items that did not align with the objectives of the benchmark were discarded,
while those with minor issues were revised. Content-related issues were corrected manually to
maintain consistency between images and QA, while minor grammar or structural issues were re-
fined with GPT-4.1. The revised items were then returned to the VQA pool for subsequent review
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AgiWorld (Unique Scenes: 597) QAs Cross-View  Affordance
® Cross-View Matching 121 Matching Recognition
= Distance Judgement 120 11.7% 12.2%
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Figure 3: Data distribution of MV-RoboBench, showing QA counts per subtask and dataset source
(AgiWorld and BridgeV2), and the overall balance between spatial and robotic domains.

and balancing. Accepted items were then rebalanced to randomize answer distributions, ensuring
fairness and reducing bias before inclusion in the final benchmark.

Finally, Figure[3|provides a detailed breakdown of MV-RoboBench, showing both per-subtask statis-
tics and the balance between spatial and robotic domains. In addition to the 1,708 QA pairs, the
benchmark is derived from 980 episodes, highlighting its grounding in diverse real-world robotic
demonstrations.

2.3  EXPLORING COT-INSPIRED ENHANCEMENTS FOR MULTI-VIEW UNDERSTANDING

Motivated by challenges unique to multi-view manipulation, including cross-view correspondence,
viewpoint alignment under narrow baselines, and consistent geometric fusion, we investigate Chain-
of-Thought (CoT)—inspired enhancements for vision—language models. Inspired by the success of
CoT prompting in language reasoning, we explore three analogous directions. First, enriching vi-
sual inputs with additional scene descriptions serves as a textual CoT, explicitly verbalizing spatial
context that may otherwise remain implicit; to implement this, we adopt GPT-4.1 for generating
descriptions. Second, generating new perspectives through view synthesis or geometry pipelines
provides a visual CoT, creating intermediate views that guide cross-perspective alignment; to im-
plement this, we adopt VGGT (Wang et al.| 2025aE| as a representative synthesis baseline. Third,
introducing depth priors supplies a structural CoT, adding geometric constraints that reduce ambigu-
ity in 3D reasoning; to implement this, we adopt MoGe-2 (Wang et al., 2025b) for depth estimation.
Further implementation details are provided in Appendix [C|

2.4 FROM PERCEPTION TO ACTION: CORRELATION ANALYSIS

The design of MV-RoboBench explicitly separates tasks into spatial and robotic categories, with
the central aim of probing their correlation in multi-view manipulation scenarios. Stronger spatial
reasoning is expected to support more reliable robotic execution, motivating an analysis of how
perception relates to action. Beyond this internal connection, we also investigate how spatial intel-
ligence in multi-view robotic settings compares with that measured in single-view settings. Unlike
single-view tasks, which assess perception from a fixed perspective, multi-camera setups demand
integrating complementary viewpoints into a coherent spatial understanding. This distinction raises
two key questions: (i) how spatial and robotic reasoning relate within multi-view manipulation, and
(ii) whether spatial intelligence measured in single-view settings can transfer to embodied multi-
view tasks. We next provide systematic evidence on these issues in Section 4]



Under review as a conference paper at ICLR 2026

Table 2: Evaluation on MV-RoboBench in a zero-shot setting with a unified prompt across all mod-
els. Dark purple indicates the best result and light purple the second-best within each column.

Qwen2.5-vl-72B achieves the strongest performance among open-source models. GPT-5 leads the
proprietary reasoning models, yet both remain far below human accuracy.

Cross-View Distance Viewpoint 3D Spatial | Action Step Trajectory Affordance

Match Judge ID Consist. | Plan. Exec. Sel. Rec.
Method Avg. Rank | Spatial Tasks | Robotic Tasks
Blind Evaluation
Random Choice ~ 19.71 - 17.80 19.40 20.00 19.07 19.41 21.54  20.65 19.81
GPT-3.5-turbo 1852 - 15.50 22.39 20.31 12.25 21.57 1838  23.00 16.75
GPT-4-turbo 2291 - 19.00 13.43 19.92 7.84 41.67 3120  20.00 27.27
Proprietary Models
GPT-40-mini 22.52 8 24.00 22.89 23.44 11.76 2451 28.21 20.50 23.44
GPT-40 2759 3 24.50 37.31 19.92 6.37 3333 13376 33.00 20.10
GPT-4.1-nano 2085 9 17.50 25.37 18.75 14.71 22.55 2222 20.00 17.22
GPT-4.1-mini 2398 7 28.50 33.83 25.00 7.84 2647 21.79  32.00 18.18
GPT-4.1 3090 1 26.00 43.28 32.03 6.37 2990 31.62  41.50 28.23
Claude-3.5 2371 6 17.50 27.86 20.31 8.82 34.80 20.09  33.00 27.27
Claude-3.7 2547 5 18.00 35.32 20.31 6.86 36.76 29.06  34.50 22.97
Gemini-2.0-flash  28.94 2 28.00 32.84 21.48 7.35 32.84 2991  52.50 20.57
Gemini-2.5-flash  27.23 4 26.50 37.31 27.34 6.37 34.80 30.34  42.00 19.14
Proprietary Reasoning Models
04-mini 46.47 3 21.50 48.26 26.17 65.69 7451 63.25  44.00 25.36
GPT-5-chat 3163 7 30.00 42.79 31.64 4.90 36.76  40.17  38.00 27.75
GPT-5-nano 3275 5 21.50 33.33 17.58 56.86 39.71 3547  31.00 26.32
GPT-5-mini 3828 4 22.00 49.25 25.78 72.55 66.18 48.72  47.00 27.75
GPT-5 5641 1 29.00 55.22 44.14 82.35 7941 68.38 54.50 39.23
Claude-3.7-think  31.67 6 24.40 35.04 36.00 52.45 21.50 37.81  21.08 23.05
Gemini-2.5-pro 4952 2 39.50 56.22 38.28 49.02 65.20 50.85 65.50 31.58
Open-Source Models
Gemma-3-4b 1979 11 21.00 22.89 21.09 11.76 17.65 16.67  25.50 22.01
Gemma-3-12b 2049 9 18.00 26.37 20.31 9.80 22.55 2094  25.50 20.57
Gemma-3-27b 20.55 8 21.50 23.88 20.31 9.31 20.10 23.08  29.00 17.22
InternVL3-2b 1893 12 16.50 15.42 20.70 20.59 17.16 2094  21.00 19.14
InternVL3-8b 2097 6 19.00 21.39 26.17 12.75 2647 2137  20.50 20.10
InternVL3-14b 2147 5 19.50 22.39 24.61 10.78 23.53 2350  24.00 23.44
InternVL3-38b 2280 3 24.50 25.87 23.44 6.86 27.94 2521  27.50 21.05
InternVL3-78b 2325 2 19.00 28.86 23.83 11.76 2990 29.06 26.50 21.05
Qwen2.5-v1-3b 20.37 10 17.50 21.89 22.66 17.65 17.16 1795  22.00 25.84
Qwen2.5-vl-7b 20.84 7 20.50 20.40 20.70 8.82 22.55 26.07 24.50 22.49
Qwen2.5-vl-32b 2248 4 20.50 25.87 25.39 10.78 2451 19.66  30.50 22.49
Qwen2.5-vl-72b 2429 1 20.50 34.83 27.34 4.90 2843 2735  29.00 24.88
Open-Source MoE Models
Llama-4-Scout 2212 2 20.50 22.39 23.83 7.35 2549 2821  23.00 18.18
Llama-4-Maverick 26.11 1 14.00 42.79 17.58 5.88 37.75 37.18  36.00 20.10
Human Evaluation
Human 91.04 - | 95.02 94.03 92.19 93.66 | 86.34 89.74  87.56 89.05

3  EVALUATION ON MV-ROBOBENCH

3.1 EVALUATION SETUP

We evaluate a broad spectrum of systems spanning five categories: Blind Evaluation, text-only
LLMs without visual grounding (Random, GPT-3.5-turbo (Roumeliotis & Tselikas, 2023), GPT-
4-turbo (Achiam et al., [2023)); Proprietary Models, multimodal systems from major providers,
including the GPT-40 family (Hurst et al) 2024), the GPT-4.1 series (OpenAll [2024), Claude-
3.5/3.7 (Anthropic} [2024), and the Gemini-2.x flash family (Team et al., [2023)); Proprietary Rea-
soning Models, architectures optimized for multi-step reasoning such as o4-mini (OpenAl, 2025b),
the GPT-5 family (chat/mini/nano/full) (OpenAl, [2025a), Claude-3.7-think (Anthropic, 2024)), and
Gemini-2.5-pro (Team et al., [2023)); Open-Source Models, community-developed VLMs including
the Gemma-3 family (4B-27B) (Team et al.l 2025b)), the InternVL3 series (2B—78B) (Zhu et al.,
2025)), and the Qwen2.5-vl series (3B-72B) (Bai et al., |2025); and Open-Source MoE Models,

"'We also tested several recent novel view-synthesis methods, but they performed poorly in robotic multi-
view settings, especially under narrow baselines, cluttered tabletops, and gripper-centric viewpoints.



Under review as a conference paper at ICLR 2026

namely Llama-4-Scout and Llama-4-Maverick (Meta Al |2025). Because all tasks are framed as
multiple-choice questions, the evaluation metric is accuracy. Human evaluations were conducted
separately with participants holding a computer science background to serve as a reference point.
Further implementation details are provided in Appendix [B]

3.2 MAIN RESULTS ON MV-ROBOBENCH

Table 2] reveals a clear progression from perception to reasoning. Proprietary models provide rel-
atively stronger perception-oriented baselines, with GPT-4.1 reaching 30.90%, while open-source
VLMs such as Qwen2.5-vI-72B (24.29%) and MoE variants like Llama-4-Maverick (26.11%) re-
main lower. The real improvements come from Proprietary Reasoning Models, where GPT-5
achieves 56.41%, with Gemini-2.5-pro (49.52%) and o4-mini (46.47%) also performing strongly.
Figure [ further contrasts the best model in each group with human performance, illustrating persis-
tent disparities across both spatial and robotic subtasks.

Task-level analysis highlights the gap between percep-

tion and reasoning: 3D Spatial Consistency is nearly un- Comsitvaney anning = sy
solved by non-reasoning models (< 12%) yetrisesto40-
82% with reasoning, largely because most models strug-

gle to connect natural-language coordinate descriptions Viewpaint /.
to 3D spatial relations. Robotic subtasks such as Ae- ™"~
tion Planning, Step Execution, and Trajectory Selec-
tion also show substantial gains; in particular, planning
benefits from the fact that more informative details are
available in multi-step options compared to single-step istance TS /7 rvaiectory
execution. Human evaluation nearly solves the bench- ™™ " ° ’ seleeter
mark, reaching 91.0%., underscoring both the progress
enabled by reasoning and the large remaining gap to-

ward human-level multi-view robotic intelligence. Fur- e Alorcenee
thermore, we validate the necessity of multi-view inputs ~ ---- e141 - err5 Quenz.5-ul-726
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in Appendix[G] showing that single-view baselines suffer

significant performance drops (e.g., ~19% drop in Dis- Figure 4: Best-per-group model perfor-
tance Judgement for GPT-5) due to unresolved depth am- mance across MV-RoboBench subtasks.
biguities.

N
\ \\ Step
\ . Execution

N i
\I /
20} Y40 ko

)
i
i
i
i
8 100
i
i
i
i
i
'
/

______________

3.3 EVALUATION OF COT-INSPIRED ENHANCEMENTS

As shown in Table [3] the impact of CoT-inspired enhancements varies by model. For Qwen2.5-
vl-7B, most add-ons bring negligible or even negative changes, with only depth showing a slight
gain. Gemma-3-12B benefits substantially from CoT, while textual and synthetic views generally
degrade performance. GPT-4.1, in contrast, gains most from depth priors, with textual augmentation
offering smaller improvements and CoT nearly neutral. Overall, synthetic views tend to degrade
performance, depth priors help only when the backbone can exploit them, and CoT is mainly useful
for mid-capacity open-source models. These mixed outcomes underscore the fundamental challenge
of multi-view robotic manipulation, suggesting that simple add-ons are insufficient and that progress
will require tighter integration of reasoning and geometric understanding in future VLMs. Detailed
implementation settings of the three enhancements are provided in Appendix [C]

4 FROM PERCEPTION TO ACTION: CORRELATION AND TRANSFER

4.1 INTERNAL CORRELATION: SPATIAL VS. ROBOTIC INTELLIGENCE

As shown in Figure [5] we find evidence of a positive correlation between spatial and robotic per-
formance in multi-view manipulation, though the strength of this relationship varies across model
families. Proprietary and reasoning-oriented models exhibit a consistent trend: higher spatial ac-
curacy tends to coincide with better robotic planning capabilities. In contrast, most open-source
models cluster near random choice, showing limited transfer from perception to action. Overall,
these findings indicate that spatial and robotic reasoning can align in sufficiently capable models,
whereas the link remains tenuous in less advanced ones.
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Table 3: Evaluation of CoT-inspired enhancements on MV-RoboBench. The table reports accuracy
for spatial and robotic subtasks, with changes relative to the origin baseline. We evaluate four
variants: w cot = textual CoT, w text = descriptive CoT, w vggt = visual CoT, and w depth =

structural CoT. Color highlights mark relative improvements and 'degradations

Cross-View Distance Viewpoint 3D Spatial Action Step Trajectory Affordance

Avg, Match Judge ID Consist. ¢ | Plan. Exec. Sel. Rec. Ar
Method | Spatial Tasks | | Robotic Tasks |
Qwen2.5-vl-7b
origin 20.84 20.50 20.40 20.70 8.82 0.00 | 22.55 26.07 24.50 22.49 0.00
w cot 20.49 (-0.35) 20.00 21.39 2227 8.82 +0.58 | 22.55 23.08 25.50 22.55 -1.30
wtext  20.90 (+0.06) 20.00 20.40 22.27 441 -0.70 | 25.98 28.21 24.50 20.10 +0.82
wvggt  20.02 (-0.82) 16.50 17.91 23.83 5.39 -1.40 | 21.08 25.64 23.50 24.40 -0.24
w depth 21.14 (+0.30) 22.89 22.89 21.09 12.75 +1.04| 19.12 27.35 23.50 23.44 -0.48
Gemma-3-12B
origin 20.49 18.00 26.37 20.31 9.80 0.00 | 22.55 20.94 25.50 20.57 0.00
w cot 24.19 (+3.70) 18.00 22.89 17.97 11.27 +0.93| 21.57 2735 27.50 25.84 +2.96
w text 18.43 (-2.06) 19.00 21.89 21.09 7.84 -0.94 | 20.10 21.79 18.50 20.10 -0.47
wvggt 1831 (-2.18) 17.50 18.41 21.48 8.33 -1.47 | 18.14 2222 19.00 24.40 +0.11
w depth  20.41 (-0.08) 18.00 26.37 21.09 7.84 -0.18 | 19.12  23.50 21.00 23.44 +0.19
GPT-4.1
origin 29.87 26.00 43.28 32.03 6.37 0.00 | 29.90 31.62 41.50 28.23 0.00
w cot 29.84 (-0.03) 28.50 40.30 29.69 6.37 -1.21 | 28.92 30.34 46.00 22.49 -0.25
wtext  31.66 (+1.79) 28.00 46.50 34.38 6.86 +1.73| 32.02 3248 45.50 28.99 +1.81
wvggt  28.02(-1.85) 29.80 38.69 31.50 4.50 -1.54 | 29.21 31.17 40.50 27.45 -1.58
w depth  33.12 (+3.25) 30.50 45.00 34.20 10.00 +3.15| 31.40 33.80 47.10 28.90 +2.71
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Figure 5: Comparison of spatial and robotic task accuracy across models on MV-RoboBench.

4.2 EXTERNAL TRANSFERABILITY: SINGLE-VIEW TO MULTI-VIEW

To assess whether spatial intelligence measured in single-view benchmarks carries over to multi-
view robotic manipulation, we use OmniSpatial (Jia et al.,|2025)) as a reference due to its comprehen-
sive coverage of spatial reasoning. Our reproduced OmniSpatial results are reported in Appendix [D]

Figure [6] shows that, except for Proprietary Reasoning Models, strong performance on single-view
spatial benchmarks does not reliably transfer to MV-RoboBench, where results often remain close
to random. Even among proprietary reasoning models, correlations are modest and multi-view
performance lags behind single-view results. This highlights that spatial intelligence acquired in
single-view settings does not seamlessly extend to the demands of multi-view robotic manipulation.
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Figure 6: Comparison of model accuracies on OmniSpatial versus MV-RoboBench, with the left
plot for spatial subtasks and the right plot for robotic subtasks.

5 RALATED WORKS

5.1 SPATIAL UNDERSTANDING AND REASONING IN MULTIMODAL LLM

Recent Multimodal Large Language Models (MLLMs) (OpenAl, Hurst et all 2024; [OpenAl
[2024}; [Anthropic, 2024}, [Team et al,[2023} [2025b; [Zhu et al.,[2025};Bai et al.,[2025; Meta Al 2025

have demonstrated remarkable progress across diverse tasks, including captioning (Lin et al., 2024
An et al.} 2024} [Luo et al.l 2024), retrieval (An et all, [2025)), planning (Zhou et al., 2024), and even
robotic tasks |Zitkovich et al.|(2023));/O’Neill et al.| (2024); Kim et al.| (2024); Li et al.[ (2024)); Black
let al.| (2024); [Intelligence et al.|(2025)). Despite these advances, their ability in spatial reasoning and
3D perception remains limited, particularly when it comes to accurately interpreting depth, under-
standing object relationships, and reasoning about multiple perspectives or spatial configurations

et al] [2024b} [Song et all, [2025b} [Yang et al, [20254}; [Cheng et all,[2024).

To address these challenges, several specialized approaches (Cheng et al 2024; Ma et al.| 2025;
Zhou et all, 2025} [Fan et all, 2025} [Liu et al., 2025} Cai et al., 2025} [Fu et al.| 2024a; Hong et al.
2023} [Chen et al., [2024) have been proposed to incorporate 3D information into MLLM. Yet, such
integration may disturb the pre-trained alignment between vision and language. Moreover, these
models exhibit limited instruction-following ability, rarely leveraging depth information effectively
when answering complex spatial reasoning (Zha et al.}, 2025}, [Li et al} 2025).

5.2 BENCHMARKING SPATIAL AND MULTI-VIEW UNDERSTANDING

Several benchmarks have been proposed to evaluate the spatial understanding capabilities of VLMs,
as summarized in Table[T} Early efforts such as EmbSpatial-Bench (2024), Visual Spa-
tial[Liu et al (20234), and RoboSpatial [Song et al.| (2025a) primarily relied on template-based ques-

tion answering to assess object relationships in static scenes. Later benchmarks, including Spatial-
MM (2024), VSI-Bench [Yang et al.| (2025b), and SpatialVLM [Chen et al| (2024), ex-
panded the scope to video and egocentric settings, but their evaluations remained inherently single-
view.

More recent benchmarks, such as All-Angles Bench (2025) and Ego3D-Bench
(2025)), explicitly incorporated multi-view evaluation, while OmniSpatial
further broadened the assessment to more complex reasoning dimensions. However, these efforts
primarily target general spatial understanding and fall short of addressing the embodiment and pre-
cision requirements critical for robotic manipulation. In contrast, our MV-RoboBench is the first
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benchmark to couple multi-view spatial reasoning with robotic execution tasks, providing a realistic
and comprehensive testbed for robotics.

6 DISCUSSION AND FUTURE WORK

Our study highlights three main takeaways. Our first finding is that multi-view robotic reasoning
requires more than perception: perception-oriented VLMs achieve only modest improvements, and
only reasoning-augmented systems approach human-level robustness. Another important observa-
tion is that spatial and robotic intelligence are closely related in multi-view manipulation, yet both
remain far below human performance, underscoring the absence of robust embodied 3D reasoning.
Finally, we find that competitive performance on single-view spatial benchmarks does not trans-
fer reliably, revealing a persistent gap between reasoning in single-view settings and reasoning in
multi-view robotic contexts.

Looking forward, progress will likely depend on (i) architectures that explicitly encode geometric
priors and enforce multi-view consistency, (ii) training pipelines that align perception with embodied
action, and (iii) larger-scale multi-camera datasets that capture the complexity of real-world manip-
ulation. We hope MV-RoboBench can serve as both a yardstick and a catalyst for developing the
next generation of spatially grounded VLMs and VLAs.

ETHICS STATEMENT

This work follows the ICLR Code of Ethics. MV-RoboBench is built entirely from publicly available
robotic datasets (AgiWorld and BridgeV2) and does not involve any personally identifiable or sen-
sitive information. All annotations were created by trained annotators under controlled conditions,
and we release the benchmark for research purposes only.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of dataset construction, evaluation setup, and experimental config-
urations in the main text and appendix. All curated data, task templates, and evaluation code will be
released in the supplementary material upon acceptance to ensure reproducibility, while maintaining
anonymity during the review process.
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A APPENDIX OVERVIEW

In these supplementary materials, we provide additional details to complement the main paper:

* Appendix B: Experimental setup details, including system prompts, inference configura-
tions, and hyperparameter settings for all evaluated models (see Appendix [B).

* Appendix C: Implementation details of CoT-inspired enhancements, including prompts
used for textual augmentation, pipelines for visual augmentation, and configuration for
depth priors (see Appendix [C).

» Appendix D: Complete evaluation setup and results on external benchmarks, covering both
OmniSpatial and ERQA experiments (see Appendix [D)).

» Appendix E: Preparations for building the benchmark, including dataset setup and annota-
tion tool design (see Appendix [E).

* Appendix F: Detailed process of benchmark construction, including task formulation
methodology and annotation workflow (see Appendix [F).

* Appendix G: Ablation study demonstrating the necessity of multi-view inputs by compar-
ing performance against single-view baselines (see Appendix [G).

* Appendix H: Analysis of model sensitivity to image orientation (see Appendix [H).

» Appendix I: Evaluation of model capability to determine "no correct choice” (see Ap-
pendix I).

» Appendix J: Qualitative error analysis of representative model failures on MV-RoboBench,
covering single-view bias, depth and occlusion confusion, frame-of-reference errors, and
affordance misunderstandings (see Appendix[J).

B EXPERIMENTAL SETUP

This appendix provides additional details of the experimental setup used in our evaluation.

B.1 MODEL ACCESS AND INFERENCE PROTOCOL

All models were evaluated in a zero-shot setting with a unified protocol across tasks. Proprietary
systems were accessed through their official APIs, while open-source models were run via Hugging-
Face implementations.

B.2 PROMPT TEMPLATES

For reproducibility, we report the exact system- and user-level instructions used across all experi-
ments.

SYSTEM PROMPT

We employed the following JSON-formatted system instruction:
{

"role": "system",
"content": "You are an AI assistant performing a harmless academic
robotics benchmark evaluation. All content is for research purposes.

You are an evaluator for a robotic vision benchmark.

You will be shown a multiple-choice question and a set of candidate
answers, sometimes with images.

Your task is to carefully read the question, consider the provided
information, and then select the SINGLE best option (A, B, C, D, or
E) .

Guidelines:
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- Always base your answer only on the question and the provided options/
images.

- Do not use external knowledge beyond what is shown.

— Output strictly one option letter (A/B/C/D/E).

— Do not explain your reasoning unless explicitly requested.

- If multiple answers seem plausible, choose the most consistent with
the given views.

Answer format:
Answer: <option letter>"

}

USER PROMPT

Each QA item was wrapped into the following template, where question denotes the natural-
language question and opts_str is the list of candidate options. The corresponding images
(base64-encoded) were attached alongside the prompt.

Question:
{question}

Options:
{opts_str}

Please output a single line of the form:
"Answer: X’ where X is one of A, B, C, D, E.

B.3 IMAGE ENCODING

All images were provided in base64-encoded format. We followed the OpenAl-style API conven-
tion:

def encode_image_to_base64 (image_path: Path) -> str:
with open (image_path, "rb") as f:
return base6c4d.b6dencode (f.read()) .decode ("utf-8")

Encoded images were attached to the user message under the "image™" field.

B.4 EVALUATION PROTOCOL

All tasks are framed as multiple-choice QA. Accuracy was computed as the fraction of correctly
predicted answers. Each model was evaluated over the entire benchmark without post-hoc filtering.
We ensured identical question order and random seeds across runs for fair comparison.

B.5 HUMAN EVALUATION

We recruited five participants with strong backgrounds in computer science, including PhD, mas-
ter’s, and senior undergraduate students, none of whom were involved in dataset annotation. All
participants completed the benchmark under the same interface without access to model outputs.
To ensure a fair comparison, we did not impose time limits or prohibit external references, since
state-of-the-art models also leverage extensive Internet-scale data. We report the average accuracy
of the participants as an approximate human upper bound.

C IMPLEMENTATION OF COT-INSPIRED ENHANCEMENTS

This appendix provides implementation details for the three CoT-inspired enhancement strategies
explored in Section
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C.1 CHAIN-OF-THOUGHT (COT) PROMPTING

We keep the system prompt unchanged and prepend a single sentence to the user prompt:

You are a careful, step-by-step reasoner. Think concisely.

The rest of the user template (question, options, and answer format) remains identical to the zero-
shot setting in Appendix [B]

C.2 TEXTUAL AUGMENTATION

To supply richer spatial context, we generated a holistic scene description from the multi-view im-
ages using GPT-4.1 (OpenAl, [2024). We prompted the model as:

These images provide multiple views of the same scene.
Based on all of them, provide a single, holistic paragraph
describing the entire scene and the spatial relationship
between the objects.

The generated paragraph was inserted verbatim into the user prompt under a Context : header,
immediately before the QA item.

C.3 VISUAL AUGMENTATION VIA NOVEL VIEW SYNTHESIS

To provide cross-view alignment signals, we generated synthetic intermediate views between ex-
isting camera perspectives. We experimented with several families of novel view synthesis (NVS)
methods:

* Object-centric synthesis. Methods such as InstantMesh (Xu et al., 2024) and Trellis (Xi-
ang et al., |2025) are designed for reconstructing individual objects from sparse views.
While effective for clean object-level inputs, they proved unsuitable for cluttered robotic
scenes, as selecting accurate masks is non-trivial and the outputs often failed to preserve
global scene layout (see Appendix Figure 7).

* Scene-level synthesis. LVSM (Jin et al.l 2024) attempts to interpolate between camera
poses with minimal 3D inductive bias. In our robotic setup (e.g., gripper and head-mounted
cameras), interpolated views were severely blurred and inconsistent, particularly under nar-
row baselines and cluttered tabletops (Appendix Figure [g).

* 3D reconstruction-based synthesis. Geometry-guided methods such as VGGT (Wang
et al.,2025a) and 113 (Wang et al., 2025c) leverage explicit multi-view consistency. Com-
pared to generative NVS pipelines, they provided more stable results in cluttered manip-
ulation scenes. Among them, VGGT offered the best trade-off between robustness and
efficiency, producing spatially consistent augmentations suitable for our benchmark (Ap-
pendix Figure[9).

In practice, we adopted VGGT to generate one interpolated frame between each camera pair, resized
to 224 x 224, and attached it as an additional input.

C.4 STRUCTURAL AUGMENTATION VIA DEPTH PRIORS

To provide models with explicit geometric constraints, we augmented each view with pre-
dicted depth maps. We considered recent monocular depth estimation approaches, including
UniDepthV2 (Piccinelli et al.| 2025), but ultimately adopted MoGe-2 (Wang et al. [2025b) as it
proved more robust in cluttered indoor manipulation scenes.

For each image, MoGe-2 produced a per-pixel depth map, which was then normalized to a fixed
scale range [0, 1] and smoothed with a Gaussian filter to reduce artifacts. During evaluation, depth
information was appended as additional input alongside RGB, provided in the following textual
form:
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Figure 7: Failure of object-centric synthesis (Trellis). Top: original inputs; Bottom: synthesized
views that fail to capture the full scene.

Figure 8: Failure of LVSM scene interpolation. Top: original inputs from left gripper, head, and
right gripper cameras; Bottom: blurry synthesized view from interpolated extrinsics.

"text": "Image context: Corresponding estimated depth map.
In this depth map, red areas indicate objects that are closer,
and blue areas indicate objects that are farther away."

This additional channel allowed the model to incorporate depth priors when reasoning about oc-
cluded or overlapping objects, thereby reducing spatial ambiguity.

D EVALUATION ON EXTERNAL SPATIAL BENCHMARKS

Our study focuses on spatial intelligence within robotic operation scenarios. To provide a broader
context, we include the OmniSpatial benchmark, which spans an unusually comprehensive range of
spatial intelligence tasks, from abstract reasoning to concrete domain understanding. Incorporating
OmniSpatial allows us to assess whether the spatial intelligence exhibited by models in general
cognitive benchmarks is consistent with their performance in robotics-specific tasks. Tabled]reports
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Figure 9: Successful geometry-guided synthesis with VGGT. Top: original inputs; Bottom: interpo-
lated novel view that preserves object layout and spatial relations.

Figure 10: Structural augmentation via depth priors. The top row shows the original RGB images;
the bottom row shows the corresponding MoGe-2 depth predictions (red indicates closer, blue indi-
cates farther).

these results, where asterisked entries (*) indicate our reproductions, and the remaining scores are
taken directly from the OmniSpatial paper to maintain fairness and comparability.

D.1 ADDITIONAL EVALUATION ON ERQA

Following the reviewers’ suggestions, we also evaluated our models on the ERQA benchmark to
investigate domain-specific transferability. ERQA focuses on embodied reasoning in simulated en-
vironments and includes categories such as Action Reasoning, State Estimation, and a subset of
Multi-view Reasoning.

Table [5] reports the detailed performance. While ERQA is domain-relevant, our analysis suggests
that it exhibits low discriminative power for comparing current SOTA models:

* Compressed Performance Range: The overall accuracy gap between smaller open-source
models (e.g., Qwen2.5-vl-7b at 43.11%) and SOTA proprietary models (e.g., GPT-40 at
46.00%) is marginally narrow (< 3%).

» Lack of Gradient: Most models cluster tightly between 40% and 50% across most sub-

tasks. This "flat” distribution makes it difficult to observe meaningful statistical correlations
between model capability and downstream robotic performance.
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Table 4: Comparison of model performance on OmniSpatial, covering four categories: dynamic
reasoning, spatial interaction, complex logic, and perspective taking. Results are reported as average

accuracy (%), with asterisked rows (*) denoting our reproduced results.

| Dynamic Reasoning | Spatial Interaction | Complex Logic | Perspective Taking

. . Motion | Traffic Locali Geospatial | Pattern ~ Geom. Ego Allo .
Method Avg. | Manipulation Analysis | Analysis Zation Strategy | Recog. Reasoning | Centric Centric Hypothetical
Blind Evaluation
Random Choice 24.98 24.86 26.30 25.88 2343 27.27 21.44 24.77 2255 24.84 25.78
GPT-3.5-turbo 30.67 38.38 29.19 3835  28.76 36.91 0.82 24.00 42.16  33.67 35.90
GPT-4-turbo 34.06 42.97 37.40 41.18 2895 40.00 22.27 26.32 31.37  33.99 35.42
Proprietary Models
GPT-40-mini 42.64 55.95 50.29 5459 4343 4491 22.47 29.42 61.57  36.76 34.22
GPT-40 47.81 65.54 57.23 5647 5238 54.09 26.29 25.48 7598  39.49 39.76
GPT-4.1-nano 42.62 50.90 53.85 5490  40.95 42.42 24.40 30.11 5359 3723 33.73
GPT-4.1-mini 48.87 64.32 56.53 59.06  60.19 56.36 29.28 30.19 72.55  39.57 39.28
GPT-4.1 51.78 66.22 64.74 60.00  65.33 60.18 31.75 30.06 70.98  40.64 39.04
Claude-3.5 46.86 54.05 54.57 58.12 6838 53.09 26.60 31.74 70.00 3479 39.52
Claude-3.7 47.53 57.57 55.95 56.71  63.81 59.09 29.48 28.39 72.16  36.06 36.63
*Gemini-2.0-flash ~ 48.27 62.16 55.49 50.59  60.00 54.55 22.68 34.19 7451  39.10 45.78
*Gemini-2.5-flash ~ 47.55 67.57 52.89 63.53  55.24 57.27 29.90 23.87 7941 3644 44.58
Proprietary Reasoning Models
04-mini 52.77 72.97 59.83 60.00  73.33 61.82 34.02 36.77 73.53  40.69 40.96
*GPT-5-chat 46.51 59.46 46.82 56.47  59.05 53.64 34.02 25.16 70.59 4149 45.78
*GPT-5-nano 49.25 63.51 58.09 51.76  65.71 50.00 32.99 26.45 70.59  42.29 42.17
*GPT-5-mini 57.21 74.32 61.56 67.06  79.05 72.73 35.05 36.13 81.37  47.07 46.99
*GPT-5 58.51 64.86 68.79 67.06  76.19 70.00 35.05 38.06 7941 4894 46.99
Claude-3.7-thinking  48.62 57.21 59.73 5373 67.94 57.27 30.24 28.17 68.63  37.94 36.95
Gemini-2.5-pro 55.19 67.57 71.39 6235 7524 64.55 43.30 34.84 7451  38.03 37.35
Open-Source Models
Gemma-3-4b 39.79 41.89 49.71 56.47  27.62 36.36 23.71 24.52 59.80 36.17 38.55
Gemma-3-12b 43.71 54.05 5491 5412 47.62 45.45 16.49 30.32 63.73  36.70 33.73
Gemma-3-27b 44.75 56.76 55.78 57.65  50.48 52.73 27.84 29.03 64.71 3351 3253
InternVL3-2B 37.98 50.00 40.58 4329  40.00 40.55 21.86 28.52 5549  35.11 33.01
InternVL3-8B 41.60 5243 40.87 48.94  51.05 44.77 24.95 28.63 6420 38.62 40.96
InternVL3-14B 45.94 54.32 60.17 5035  51.81 51.45 28.04 28.26 68.04  35.37 34.46
InternVL3-38B 48.48 63.42 63.58 5459  58.29 50.55 29.90 28.52 72.16  36.76 33.49
InternVL3-78B 49.33 63.78 63.12 56.24  59.24 51.45 27.63 30.19 7451  38.46 35.90
Qwen2.5-vl-3b 40.30 55.41 47.51 46.12 4229 44.73 32.16 23.87 59.41  33.30 30.84
Qwen2.5-vl-7b 39.18 58.38 35.09 50.12 4533 44.00 31.13 29.42 64.51  33.19 37.35
Qwen2.5-v1-32b 47.36 63.06 55.09 51.76  66.29 56.91 26.39 27.48 68.04  37.50 40.24
Qwen2.5-vl-72b 47.85 58.38 60.12 50.12  59.81 53.64 26.19 33.03 71.37  36.81 36.39
Open-Source MoE Models
*LLama-4-Scout 38.36 51.35 39.02 51.76  34.29 42.73 20.62 22.58 5294  39.89 34.94
*LLama-4-Maverick 41.42 56.76 43.64 5647  37.14 49.09 26.80 29.68 60.78  37.23 3253
Human Evaluation
Human 92.63 | 96.53 9730 | 92.94 97.14 9455 | 91.30 87.63 | 99.02 9574 93.98

Consequently, we retain OmniSpatial as the primary reference for the correlation analysis in the
main text (Figure 6), as its wider performance spread provides a clearer signal for measuring general

spatial intelligence.

E PREPARATIONS OF BENCHMARK CONSTRUCTION

E.1 ANNOTATION TOOL AND INTERFACE

To construct and annotate our dataset, we developed a custom graphical annotation tool based on
the Ot library, running under the Windows environment. The interface is designed to be clear and
lightweight, enabling annotators to efficiently load synchronized multi-view images, draw bounding
boxes, trajectories, and affordance lines, and directly export QA items in JSON format that is fully
compatible with our evaluation pipeline. Figures [[1]illustrate the interfaces used for the AgiWorld

and BridgeV?2 datasets.

We plan to release this tool as an open-source resource, providing the community with a simple yet
powerful interface to facilitate further dataset construction and annotation research.
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Table 5: Evaluation results on the ERQA benchmark. Results are reported as accuracy (%). Note
the relatively narrow performance gap between open-source and proprietary models compared to
MV-RoboBench or OmniSpatial.

Action Multi-view Spatial State Task

Method Avg. Reasoning Reasoning Other  Pointing Reasoning Estimation Reasoning

Proprietary Reasoning Models

GPT-5 59.34 65.71 33.33 33.33 82.35 58.33 69.81 60.53
GPT-5-mini 54.00 54.17 3243 42.86 55.88 58.33 61.82 65.79
GPT-5-chat 49.50 50.00 35.14 28.57 61.76 52.38 60.00 55.26
GPT-5-nano 44.00 45.83 21.62 21.43 52.94 50.00 49.09 50.00
Proprietary Models

GPT-4.1 49.00 56.94 40.54 21.43 55.88 46.43 56.36 57.89
GPT-40 46.00 41.67 27.03 28.57 61.76 48.81 54.55 47.37
GPT-4.1-mini 46.00 37.50 40.54 28.57 50.00 45.24 56.36 60.53
GPT-4.1-nano 38.25 37.50 21.62 14.29 32.35 38.10 50.91 60.53
Open-Source Models

Qwen2.5-vl-72b  44.61 41.67 16.67 21.43 52.94 63.10 49.09 50.00
Qwen2.5-vl-32b  44.75 38.89 3243 21.43 58.82 52.38 54.55 47.37
Qwen2.5-vl-7b  43.11 37.50 20.00 18.18 55.88 43.37 56.36 55.56

T
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Figure 11: Annotation interface of the AgiWorld label tool, implemented with Qt on Windows. The
design emphasizes clarity and ease of use for multi-view annotation.

E.2 PRE-GENERATION OF IMAGE PAIRS

Before QA construction, we first pre-generated candidate image pairs from both datasets. For the
AgiWorld dataset, we randomly sampled image pairs with the constraint that the interval between
two selected frames was at least ten frames. For the BridgeV2 dataset, we only considered videos
with four available perspectives and similarly enforced a minimum interval of ten frames between
sampled images. To ensure diversity, sampling was performed as evenly as possible across videos
and tasks.

After this automatic step, each image pair was manually inspected by human annotators, and only
those judged suitable for QA were retained. At this stage, we obtained more than 3,000 high-
quality image pairs, which served as the foundation for constructing the benchmark. The perspective
identification task required a different setup, and its details are described separately in Appendix [C]
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E.3 DEFINITION OF THE COORDINATE SYSTEM

To ensure a consistent interpretation of spatial relations across different camera views, we define a
standardized right-handed orthogonal coordinate system tied to each camera frame. The construc-
tion proceeds as follows:

1. z-axis (vertical). Let g denote the gravity vector,

pointing downward. We define w
g z
Z=—7— 3
Igll’ N’
. . . . forward
so that the +z direction points upward (opposite to grav- s
ity) and —z points downward.
. left X a— g X right
2. y-axis (forward/backward). Let ¢ denote the camera £
optical axis. Project c onto the plane orthogonal to z: o
-y |
c, =c— (C . 2)2 backward \
Normalizing gives -z
R cy down
Y=
lleLll

Figure 12: Illustration of the right-
with orientation chosen so that the angle between y and ¢ handed coordinate system defined rela-
is strictly less than 90°. By convention, 4+ corresponds tive to each camera.

to forward, while —y corresponds to backward.

3. z-axis (left/right). Finally, the z-axis is determined by the right-hand rule:
X=y X 2.
This ensures +x points to the right side of the camera’s perspective and —x to the left.

Directional convention. In summary, +z = upward, —z = downward; +y = forward, —y = back-
ward; +x = right, —z = left. Figure[T2] provides an illustration of this definition.

E.4 ToOL FOR SPATIAL CUBE REASONING

To construct the spatial cube reasoning task, we developed an interactive visualization tool that
renders a standardized 5 x 5 x 5 cube grid aligned with the camera coordinate system, where the
z-, Y-, and z-axes correspond to the right, forward, and up directions. Annotators can place col-
ored unit cubes at integer grid coordinates, assign labels, and interactively edit or regenerate cube
configurations.

This design enables rapid prototyping of spatial arrangements and provides a consistent interface
for generating QA items that require reasoning about relative positions and geometric relationships
in 3D space. The tool also supports keyboard-based coordinate input for efficient and reproducible
annotation.

E.5 HUMAN ANNOTATION PROTOCOL AND QUALITY ASSURANCE

To ensure transparency in benchmark construction, we provide detailed information about the an-
notators, training procedures, human effort, and the quality-control pipeline adopted throughout the
multi-stage annotation process.

E.5.1 ANNOTATOR TRAINING AND TASK UNDERSTANDING

All annotators participating in the construction of MV-RoboBench were senior undergraduate stu-
dents or Ph.D. candidates in computer science or closely related fields. Before large-scale annotation
began, we conducted a structured multi-stage training process to ensure that annotators had a rig-
orous understanding of the purpose and design philosophy of each subtask. First, for each subtask,
we provided a conceptual overview explaining why the subtask was designed and what specific
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Figure 13: Screenshot of the spatial cube reasoning tool. Annotators can add, label, and manipulate
colored cubes within a standardized 5 x 5 x 5 grid to construct 3D reasoning problems.

aspect of multi-view robotic reasoning it aims to evaluate. For example, some subtasks target cross-
view correspondence, others highlight 3D spatial understanding, action feasibility, or multi-step
execution consistency. This high-level motivation helped annotators internalize the intended reason-
ing challenge behind each category rather than focusing solely on the mechanics of QA creation.
Second, we supplied a curated set of high-quality QA examples for each subtask, including both
well-constructed samples and typical failure cases. These examples illustrated desirable properties
such as clear problem formulation, meaningful distractor design, and unambiguous ground-truth
answers. Annotators were instructed to study these examples closely to understand how a robust
QA item should be structured. Finally, annotators completed a trial stage in which they produced
small batches of QA items. All trial results were reviewed individually by the authors, and detailed
feedback was provided for every ambiguous, incorrect, or poorly structured item. Annotators re-
vised their samples accordingly, and only after completing this iterative refinement stage were they
allowed to contribute to the full annotation pipeline.

E.5.2 HUMAN EFFORT ESTIMATION

The construction of MV-RoboBench required substantial human effort across several stages of data
preparation, annotation, and verification. We provide an estimate of the total annotation effort be-
low. Collection and Filtering of Image Pairs (~200 hours). This stage involved selecting suitable
datasets, writing scripts to automatically pre-filter candidate image pairs, and manually examining
the automatically retrieved pairs to determine whether they exhibited clear multi-view correspon-
dences appropriate for downstream QA construction. Annotators carefully removed pairs containing
occlusions, poor synchronization, or ambiguous spatial relationships to ensure that only high-quality
candidates entered the QA generation stage. QA Construction and Iterative Refinement (~600
hours). This stage accounted for the largest portion of the human effort. The workload included
multiple rounds of internal discussion to finalize subtask definitions and question formats, training
annotators on the annotation protocol, and iterative communication between authors and annotators
to refine how each subtask should be expressed. The actual annotation time—spanning bounding-
box drawing, spatial-cube configuration, distractor design, and multi-view reasoning checks—was
intentionally left flexible to allow annotators to focus on ensuring that each QA item was both cor-
rect and diverse. Cross-Checking and Validation (~400 hours). After QA items were generated,
multiple annotators independently reviewed all samples to identify ambiguous phrasing, weak dis-
tractors, or incorrect reasoning chains. Items flagged during this stage were either revised through
further discussion or discarded entirely. This iterative multi-annotator cross-validation stage was
critical for improving the reliability and robustness of the final benchmark.
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E.5.3 QUALITY-CONTROL PROCEDURES

Our benchmark follows the construction flow illustrated in Figure 2] but in this section we focus
specifically on the quality-control mechanisms incorporated into each stage rather than the pipeline
itself. The goal is to ensure that every QA item in MV-RoboBench is unambiguous, visually
grounded, and aligned with the intended reasoning challenge of its corresponding subtask. Ini-
tial Image-Pair Screening. Before any annotation begins, we employ a two-stage filtering process
to guarantee that only high-quality visual inputs enter the QA construction pipeline. First, we use
GPT-based filtering to select image-pair candidates that satisfy the definition of each subtask. Sec-
ond, trained annotators manually verify these candidates by checking whether the images exhibit
stable multi-view correspondences, sufficient visual clarity, and the absence of severe motion blur
or occlusion. Only pairs judged to be suitable for at least one subtask proceed to the annotation
stage. Annotation with Structured Distractor Design. After subtask definitions are finalized, an-
notators—who have undergone dedicated training (Section [E.5.T)—construct QA items following
standardized guidelines. A critical aspect of our quality control is the design of distractors: each
question contains one correct answer and four distractors, among which annotators deliberately
create one or two hard distractors that closely resemble the correct answer, while the remaining
distractors are intentionally more distinct. This structure ensures both a meaningful level of dif-
ficulty and a clear separation between high-level reasoning errors and trivial misunderstandings.
During annotation, annotators also verify that the correct answer is uniquely supported by the vi-
sual evidence and that no distractor inadvertently becomes correct under alternative interpretations.
Multi-Annotator Verification and Iterative Revision. Once QA items are created, they are added
to a shared VQA pool and undergo multi-round cross-checking. Multiple annotators independently
review each sample. If any reviewer finds a QA item ambiguous, poorly structured, or misaligned
with the intended subtask, the item is immediately flagged. Flagged items are either revised through
further discussion—during which annotators and authors jointly inspect the visual evidence and rea-
soning steps—or discarded entirely. Revised items re-enter the VQA pool for additional rounds
of validation. This iterative process continues until all items satisfy strict correctness, clarity, and
reasoning requirements. Through this combination of automated pre-filtering, human verification,
structured annotation protocols, and multi-round cross-validation, MV-RoboBench achieves a high
degree of reliability and robustness across all subtasks.

F DETAILS OF BENCHMARK CONSTRUCTION

In this appendix, we describe the construction details of each subtask included in our benchmark.
As introduced in Appendix [E:2] we first obtained a large collection of high-quality image pairs
from AgiWorld and BridgeV?2 through automatic sampling and manual filtering. These image pairs
serve as the common starting point for constructing the majority of subtasks, while the perspective
identification task required a different setup and is discussed separately later in this section.

For clarity, we organize this appendix by task category. We first present the four spatial subtasks,
which focus on multi-view scene understanding: Cross-View Object Matching, Distance Judgement,
Viewpoint Identification, and 3D Spatial Consistency. We then describe the four robotic subtasks,
which extend spatial reasoning to manipulation scenarios: Action Planning, Step Execution, Trajec-
tory Selection, and Affordance Recognition. Finally, we conclude with a summary that highlights
the complementarity of these subtasks and provides an overview table (Table 6).

F.1 CROSS-VIEW OBJECT MATCHING

This subtask belongs to the spatial category and evaluates whether a model can recognize the same
object across different camera viewpoints. In the construction process, one reference view is se-
lected, where the target object is highlighted with a red bounding box. In the remaining synchro-
nized views, candidate objects are marked with bounding boxes of different colors. The model is
then asked to identify which candidate corresponds to the same object as the red box in the reference
view.

To avoid trivial solutions based only on object category or color cues, distractor candidates are
carefully chosen to be visually plausible. These include objects of the same category, those in
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@Tampla*re Cross-View Matching

In the right-gripper camera view, the item is outlined with a red
bounding box. Which colored bounding box encloses that same item
in the left-gripper camera view and the head camera view?

Rules
* You can replace the orange nouns with labeled objects, or
you can just use item instead.
* You can replace the right-gripper with left-gripper or head
+ The blue text is a template description, which can be copied
directly.

Sample of Cross-View Matching

|\ Bt
-

left gripper view hea view right gripper view

Question: In the right-gripper camera view, the item is outlined with a
red bounding box. Which colored bounding box encloses that same item
in the left-gripper camera view and the head camera view?

OptionA: The OptionB: The OptionC: The
blue bounding green purple
box. bounding box. bounding box.

OptionD: The OptionE: The
yellow pink bounding
bounding box. box.

Figure 14: Example of Cross-View Object Matching constructed from the AgiWorld dataset. The
reference view marks the target with a red bounding box; other views contain color-coded candidate
boxes, one of which corresponds to the ground-truth object.

close proximity, or partially overlapping instances, making the task a genuine test of cross-view
association.

Figures[T4]and[T3]show representative examples of this subtask, constructed from the AgiWorld and
BridgeV2 datasets, respectively.

F.2 DISTANCE JUDGEMENT

This subtask belongs to the spatial category and evaluates a model’s ability to reason about relative
distances using synchronized multi-view observations. In each problem, one selected view presents
several candidate objects, each marked with a colored bounding box. The model is asked to deter-
mine which candidate corresponds to the shortest (or, alternatively, the longest) grasping distance
relative to the specified gripper. Other synchronized views provide additional context, requiring the
model to integrate information across perspectives to resolve depth ambiguities.
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@Template for Cross-View Matching

In the viewl, the item is outlined with a red bounding box. Which colored bounding box
encloses that same bottle in other views.

Rules
» You can replace the view!l with other views, i.e. view2, view3, view4
* The interference options need to be somewhat confusing and not too simple.
* The blue text is a template description, which can be copied directly.

Sample of Cross-View Matching

viewl i view3 view4

Question: In the viewl, the item is outlined with a red bounding box. Which colored
bounding box encloses that same bottle in other views.

OptionA: The OptionB: The OptionC: The ~ OptionD: The OptionE: The
green blue bounding pink bounding  purple yellow
bounding box. box. box. bounding box. bounding box.

Figure 15: Example of Cross-View Object Matching constructed from the BridgeV2 dataset. The
target is highlighted in viewl, and the model must select the corresponding bounding box in the
other synchronized views.

To ensure non-triviality, distractor options are manually verified so that objects with similar 2D
appearances may differ in their actual 3D distances. Accurate solutions therefore demand reasoning
that goes beyond single-view perception.

Figures[T6|and[T7)illustrate both representative instances and the annotation templates employed for
constructing the Distance Judgement subtask in AgiWorld and BridgeV2.

F.3 VIEWPOINT IDENTIFICATION

This subtask belongs to the spatial category and evaluates a model’s ability to recognize and reason
across different viewpoints. It is constructed exclusively from the AgiWorld dataset, where the
reference image is always taken from the head camera. The question asks the model to determine
which candidate image corresponds to the correct left- or right-gripper view at the same time step,
given the head camera observation. Solving the task requires a form of perspective transformation,
testing whether the model can imagine how the scene would appear from another viewpoint—a core
component of spatial intelligence.

To construct distractor options, we adopt a multi-stage design. For each ground truth gripper image,
we first include the image from the opposite gripper at the same time step. We then add distractors
from the same episode but different time steps, ensuring a non-trivial temporal gap in the gripper
poses so that the distractor cannot be rejected trivially. Additional distractors are sampled from other
episodes within the same or closely related tasks, providing visually plausible but incorrect gripper
views. This strategy prevents the model from exploiting majority-vote heuristics across options. All
instances are manually verified to guarantee that a human annotator can reliably identify the correct
correspondence based on spatial details.

Figure[T8]illustrates both the template and an example instance of this subtask.
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LIIUTempIaTe for Distance Judgement

You are given three synchronized views—the left-gripper camera,
the head camera, and the right-gripper camera. Only the head
camera image contains colored bounding boxes. Which option
corresponds to the shortest grasping distance?

Rules
+ The orange box is a good interference option because there
is depth ambiguity in the head camera view.
* You can replace the shortest with longest.
+ The blue text is a template description, which can be copied
directly.

Sample of Distance Judgement

left gripper view head view right gripper view

Question: You are given three synchronized views—the left-gripper
camera, the head camera, and the right-gripper camera. Only the head
camera image contains a colored bounding box. Which option
corresponds to the shortest grasping distance?

OptionA: OptionB: Grab OptionC: 6rab | OptionD: Grab | OptionE:
6rab the item the itemin  the itemin the| the item in Grab the item
in the green  the yellow yellow the yellow in the yellow

bounding box
using the
right gripper.

bounding box bounding box bounding box
using the left using the left using the right

gripper. gripper. gripper.

bounding box
using the
right gripper.

Figure 16: Example of Distance Comparison constructed from the AgiWorld dataset. The head
camera image contains candidate bounding boxes, and the model must select the one corresponding
to the shortest grasping distance.

F.4 3D SPATIAL CONSISTENCY

This subtask is part of the spatial category and evaluates a model’s ability to reason about object
locations within a structured 3D coordinate system. The key challenge is to assess whether the
model can treat the scene as a three-dimensional space rather than a flat image, and correctly place
the highlighted objects into the standardized coordinate grid such that their relative positions remain
coherent across views.

We adopt a right-handed orthogonal coordinate system anchored to a designated reference view (the
head camera in AgiWorld, or any of the four views in BridgeV?2). In the reference image, several
target objects are highlighted with colored bounding boxes. The question then asks the model:
“Which of the following sets of coordinate triplets best describes the positions of the highlighted
objects?” Coordinates are normalized into a 5 X 5 x 5 cubic grid, with integer values from 1 to
5 along each axis. This abstraction allows spatial relations to be expressed consistently without
requiring precise metric depth.
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LA/"] Template for Distance Judgement

You are given four synchronized views, only the view2 contains colored bounding boxes.
Which option corresponds to the shortest grasping distance?

Rules
» You can replace the view? with other views, i.e. viewl, view3, view4
* You can replace the shortest with longest.
The blue text is a template description, which can be copied directly.

Sample of Distance Judgement

Question: You are given four synchronized views, only the viewl contains colored bounding
boxes. Which option corresponds to the shortest grasping distance?

OptionA: 6rab the OptionB: Grab the OptionC: Grab OptionD: 6rab the | OptionE: Grab the
item in the green  item in the yellow the item inthe  item in the pink item in the blue
bounding box. bounding box. red bounding box. bounding box. bounding box.

Figure 17: Example of Distance Comparison constructed from the BridgeV2 dataset. One view
contains candidate bounding boxes, and the model must identify the option that corresponds to the
shortest grasping distance when integrating evidence across all four views.

To construct the tasks, we leverage the interactive cube visualization tool described in Appendix [E.4]
This tool enables annotators to map each object to a unit cube in the grid, adjust placements, and
generate candidate coordinate sets. Distractor options are created by perturbing object coordinates
to introduce plausible but incorrect spatial configurations. Accurate solutions therefore require inte-
grating multi-view cues rather than relying on a single perspective.

Figures[T9]and 20| show representative templates and examples constructed from the AgiWorld and
BridgeV2 datasets, respectively.

F.5 ACTION PLANNING

This subtask belongs to the robotic category and evaluates whether a model can correctly identify
the valid high-level action sequence from multiple candidates in order to accomplish a manipulation
goal. Each instance provides synchronized multi-view observations together with a task description
in natural language. The problem is defined with respect to a designated reference view, within
which we establish the standardized right-handed coordinate system described in Appendix [E.3]
Accordingly, all candidate action sequences are expressed as sequences of normalized directional
terms (i.e., spatial adverbs such as leftward, forward, downward), which follow directly from the
axis conventions defined in Appendix[E.3] The model must then integrate information across views
and select the sequence most likely to achieve the goal.

To ensure non-triviality, distractor options are carefully constructed. Only one option corresponds to
a valid sequence that completes the task while minimizing collisions, whereas the distractors follow
plausible but incorrect paths. In addition, we enumerate and sort the directional terms within each
option, ensuring that no two candidates share the same ordered sequence of actions. This design
prevents ambiguity and forces the model to reason jointly about spatial relations and manipulation
feasibility.

Figures[2T]and 22]illustrate representative templates and examples from the AgiWorld and BridgeV2
datasets, respectively.
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@Templafe for Viewpoint Identification

Given the image captured by the head camera, which of the
following images shows the right-gripper camera's view at that
exact moment?

Rules
* You can replace the right-gripper with left-gripper.
* The blue text is a template description, which can be copied
directly.

Sample for Viewpoint Identification

Question: Given the image captured
by the head camera, which of the
following images shows the left
gripper camera's view at that exact
moment?

OptionC: Option C
picture.

OptionA: Option A OptionB: Option B
picture. picture.

OptionD: Option D OptionE: Option E
picture. picture.

Figure 18: Example of Perspective Identification constructed from the AgiWorld dataset. The head
camera view is used as the reference, and the model must infer the correct corresponding perspective
among the candidate gripper views.

F.6 STEP EXECUTION

This subtask belongs to the robotic category and focuses on low-level action execution in manipu-
lation tasks. Each instance provides synchronized multi-view observations together with a natural
language description of the goal. Unlike the Action Planning task, which evaluates multi-step tra-
jectories, Step Execution concentrates on primitive actions such as picking or placing, which can
be described as short sequences of directional terms (e.g., up, left, down). The coordinate system
is defined with respect to a designated reference view, following the conventions introduced in Ap-
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pendix [E.3] All candidate options are then expressed in these normalized directional terms, and the
model must select the sequence that correctly achieves the task.

Distractor options are constructed to appear plausible but correspond to incorrect motions that would
fail the manipulation. To eliminate redundancy, we further enumerate and sort the directional terms
within each option, ensuring that no two candidates reduce to the same ordered sequence. This
design requires the model to interpret spatial cues accurately across multiple views and to ground its
decision in the standardized coordinate system. For the AgiWorld dataset, the template is based on
synchronized left-gripper, head, and right-gripper views, while in BridgeV2 any of the four available
views may serve as the reference.

Figures [23| and [24] show representative templates and examples from the AgiWorld and BridgeV?2
datasets, respectively.

F.7 TRAJECTORY SELECTION

This subtask belongs to the robotic category and evaluates a model’s ability to reason about com-
plete motion trajectories in multi-view settings. Each instance provides synchronized observations,
where candidate trajectories are overlaid in different colors on one or more reference views. The
model is asked to determine which trajectory is most likely to accomplish the described manipula-
tion.

A key challenge is that trajectories drawn in a single view may be ambiguous due to occlusions,
perspective distortion, or motion along the camera’s optical axis. By providing multiple synchro-
nized viewpoints, the task requires the model to integrate cross-view evidence to correctly identify
the feasible trajectory.

All distractor trajectories are manually curated to be distinct from the ground truth yet visually plau-
sible, so that they may appear confusing at first glance but remain distinguishable through careful
multi-view reasoning. We ensure that exactly one candidate is feasible across views and can com-
plete the task without collisions; every instance is human-validated to confirm that the correct choice
is uniquely identifiable.

For the AgiWorld dataset, each problem is presented with synchronized left-gripper, head, and right-
gripper views. For BridgeV2, all four camera perspectives are available, and candidate trajectories
are described relative to these views. Figures [25|and [26] provide representative templates and exam-
ples from both datasets.

F.8 AFFORDANCE RECOGNITION

This subtask belongs to the robotic category and evaluates a model’s ability to recognize feasible
grasp candidates in multi-view scenes. In real manipulation, a single viewpoint may be insufficient
for identifying good grasp locations due to occlusions by objects or grippers, or because certain
camera angles (e.g., top-down) obscure critical contact geometry. By incorporating synchronized
multi-view observations, especially from gripper-mounted cameras, this task provides complemen-
tary perspectives that make the final grasp point more reliably observable.

Each instance presents five candidate grasps illustrated with color-coded lines (red, yellow, green,
blue, and pink). Each color appears exactly once across the available views, and the two endpoints of
a line specify the intended positions of the gripper fingers. The model is asked: “Which color-coded
line represents the grasp candidate most likely to succeed?”

All distractors are carefully designed: while they may appear physically plausible at first glance, they
are infeasible in practice due to orientation, collision risk, or instability. This ensures that success
requires genuine spatial reasoning and affordance understanding rather than superficial cues. For
the AgiWorld dataset, three views (left-gripper, head, right-gripper) are used, whereas in BridgeV2
the template extends naturally to four synchronized views. Figures[27)and 28] provide representative
templates and examples from both datasets.
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Table 6: Overview of the eight subtasks in our benchmark. Spatial tasks focus on multi-view scene
understanding, while robotic tasks extend this foundation to manipulation planning and execution.

Category  Subtask Core Ability Assessed
Cross-View Object Matching  Identify the same object across different viewpoints despite distractors.
Spatis Distance Judgement Compare relative distances to a specified gripper using multi-view cues.
patial . X . . 2 . .
Viewpoint Identification Infer the correct camera perspective given a head-view reference.
3D Spatial Consistency Place highlighted objects into a structured 3D coordinate system with
coherent relative positions.
Action Planning Select the valid high-level action sequence in normalized directional
Robotic ) terms to accomplish a tgs}(. i ]
Step Execution Choose the correct primitive low-level action sequence (e.g., pick/place)
grounded in the coordinate system.
Trajectory Selection Distinguish feasible from infeasible motion trajectories by integrating
evidence across views.
Affordance Recognition Identify the grasp candidate most likely to succeed among visually plau-

sible alternatives.

F.9 ANSWER BALANCING AND RANDOMIZATION

After generating QA instances and completing manual verification, we apply an additional balancing
step to ensure that answer distributions are statistically uniform. Specifically, correct answers are
randomized across different option indices and color assignments, preventing systematic biases that
could allow models to exploit position- or color-based heuristics. This balancing guarantees that
success on the benchmark requires genuine spatial reasoning and affordance understanding rather
than relying on superficial answer patterns.

F.10 SUMMARY OF BENCHMARK CONSTRUCTION

Taken together, the eight subtasks provide a comprehensive evaluation of spatial and robotic reason-
ing in multi-view environments.

The four robotic subtasks (Action Planning, Step Execution, Trajectory Selection, and Affordance
Recognition) extend this foundation to manipulation scenarios. They examine whether models can
ground spatial understanding into action decisions, ranging from high-level planning to low-level ex-
ecution, and from trajectory-level reasoning to grasp affordance prediction. Together, they highlight
the importance of combining multi-view perception with physical feasibility in order to succeed in
robotic tasks.

An overview of all subtasks, their categories, and the specific reasoning abilities they target is pro-
vided in Table[6]

G ABLATION STUDY ON MULTI-VIEW NECESSITY

In this section, we address the fundamental question of whether multi-view inputs are truly necessary
for the proposed robotic reasoning tasks, or if a single-view input would suffice. To investigate this,
we conducted a systematic ablation study comparing the performance of representative models under
a Single-View baseline versus the standard Multi-View setting.

G.1 TASK SELECTION AND EXPERIMENTAL SETUP

Our benchmark consists of eight subtasks. However, not all tasks are suitable for single-view eval-
uation due to their inherent reliance on cross-view information. We applied the following selection
criteria:

* Excluded Tasks (Inherently Multi-View): For subtasks including Cross-View Object
Matching, Viewpoint Identification, Trajectory Selection, and Affordance Recognition, the
question semantics inherently depend on multiple synchronized views. Many answer can-
didates exist only in specific views, so removing views would yield ill-posed questions
(e.g., some candidates become invisible). Therefore, these tasks were excluded from the
ablation.
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* Selected Tasks (Degradable to Single-View): We focused our ablation on the remaining
four subtasks: Distance Judgement, 3D Spatial Consistency, Action Planning, and Step
Execution. These tasks are typically formulated relative to a reference coordinate system
or a primary scene description. While multi-view information provides critical depth cues
and occlusion handling, these questions remain logically valid even when restricted to a
single input image. This allows us to rigorously measure the “performance drop” caused
by the loss of multi-view context.

For the Single-View setting, we retained only the most informative third-person perspective to en-
sure a strong baseline:
* For the AgiWorld dataset, we used the head camera view.

* For the BridgeV2 dataset, we used view/ (a fixed third-person camera).

G.2 RESULTS AND ANALYSIS

Table[7]presents the comparative results. We report the full multi-view accuracy and the performance
gap (A) relative to the single-view baseline.

Table 7: Comparison of Single-View vs. Multi-View performance on selected subtasks. The values
represent Multi-View accuracy, and values in parentheses indicate the change (A) compared to the
Single-View baseline. Positive A indicates that multi-view inputs improve performance. Bold indi-
cates the best performance in each category.

Model Avg. Distance Judge. 3D Spatial Cons. Action Plan. Step Exec.
Proprietary Reasoning Models

GPT-5 64.65 (+6.69)  36.32 (+18.90) 78.43 (+3.92) 76.96 (+2.45) 66.24 (+2.14)
GPT-5-chat 28.11 (+3.05)  29.35 (+13.44) 10.29 (-5.39) 35.29 (+1.47) 36.32 (+3.85)
Proprietary Models

GPT-4.1 24.20 (+3.59)  32.84 (+10.44) 4.90 (+1.47) 30.39 (-0.49) 28.21 (+3.41)
GPT-40 26.81 (+0.88) 31.84 (+5.47) 5.39 (+0.98) 33.82 (-0.49)  35.04 (-1.28)
Open-Source Models

Qwen2.5-vl-72b  23.01 (+0.87) 30.85 (+3.98) 3.92 (+0.98) 30.88 (-2.45)  26.07 (+1.28)
Qwen2.5-vl-32b  20.28 (-0.07) 24.38 (+1.49) 8.33 (+2.45) 25.49 (-1.98)  22.65 (-2.99)
Qwen2.5-vl-7b  17.91 (+1.55) 20.40 (0.00) 4.90 (+3.92) 21.08 (+1.47) 24.36 (+1.71)

Our analysis yields three key findings regarding the necessity of multi-view perception:

1. Multi-view is critical for resolving spatial ambiguity. The most significant impact is
observed in the Distance Judgement task. Powerful reasoning models like GPT-5 and GPT-
4.1 achieve substantial gains (+18.90% and +10.44%, respectively) when provided with
multi-view inputs. This confirms that single-view observations suffer from inherent depth
ambiguity and occlusion—common issues in robotic manipulation—which are effectively
mitigated by integrating complementary viewpoints.

2. Stronger reasoning capabilities unlock multi-view potential. We observe a positive cor-
relation between model capability and the benefit derived from multi-view information.
State-of-the-art models consistently improve with additional views, whereas smaller mod-
els (e.g., Qwen2.5-vl-32b, Qwen2.5-vl-7b) show negligible or even negative changes. This
suggests that effectively fusing discordant visual information requires strong spatial rea-
soning capabilities; without this, smaller models may be distracted by the increased visual
context rather than aided by it.

3. Performance gap remains significant. Even with the advantage of multi-view inputs,
the performance on robotic planning tasks generally lags behind human proficiency. This
highlights that while multi-view input is a necessary condition for robust perception, it
is not sufficient on its own. Future models must develop stronger embodied reasoning
capabilities to fully leverage the rich 3D information provided by MV-RoboBench.
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H IMPACT OF IMAGE ORIENTATION ON SPATIAL REASONING

To evaluate the generalization capabilities of VLMs regarding image orientation, we conducted
an additional stress test. In this experiment, we vertically flipped all camera views except for
the gripper-mounted ones (e.g., the head camera in AgiWorld and all static third-person views in
BridgeV2) upside down. This setup disrupts the canonical spatial structure (e.g., visual “up” no
longer aligns with gravity) without altering the intrinsic object relationships.

Crucially, this manipulation does not affect the correctness of the ground truth answers. As
defined in Appendix[E]3, our coordinate systems are established based on the physical gravity vector
(g) and the camera’s optical axis (c), rather than the 2D image pixel axes. Since the physical scene
configuration and sensor properties remain unchanged, the logical spatial relationships (e.g., “left”,
“up”, “forward”) remain valid. Therefore, any performance drop can be attributed solely to the
models’ inability to generalize to non-canonical visual orientations.

Table[§]reports the detailed performance under this upside-down setting across all subtasks.

Table 8: Detailed performance under Upside-Down image orientation. “Avg” represents the average
accuracy in the upside-down setting. “A” denotes the performance drop compared to the original
setting. The remaining columns show the specific accuracy for each subtask under the upside-down
condition.

Spatial Tasks Robotic Tasks
Model Avg A Cross Dist. View. 3D Cons. | Plan Step Traj. Afford.
Proprietary Reasoning Models
GPT-5 37.68 -18.73 | 33.50 30.35 25.00 26.47 47.55 40.60 5350 4450
GPT-5-mini 30.79  -7.49 | 31.50 23.88 21.88 17.16 46.57 38.89 4250 2392
GPT-5-nano 2242 -10.33 | 17.00 1841 22.66 11.76 2843 2521 3050 25.36
GPT-5-chat 28.50 -3.13 | 31.00 3532 27.34 6.37 3333 3376 3550 2536
Proprietary Models
GPT-4.1 2672 -4.18 | 26.50 33.33 33.59 4.90 27.94 2949 37.00 21.05
GPT-40 25.10 -2.49 | 2550 31.84 2344 4.90 30.39 31.20 33.00 20.57

GPT-4.1-mini 2394 -0.04 | 2250 2637 27.73 6.37 2598 2521 3250 24.88
GPT-4.1-nano 20.08 -0.77 | 17.50 1642 18.36 12.25 2598 2521 20.00 24.88

Open-Source Models
Qwen2.5-vl-72b 2333  -0.96 | 23.50 23.88 22.27 3.92 28.92 27.35 2950 @ 27.27
Qwen2.5-vl-32b 2241 -0.07 | 24.50 28.86 23.05 3.92 25.00 2393 2850 21.53
Qwen2.5-vl-7b  19.71 -1.13 | 22.00 20.90 20.31 5.39 23.04 2650 19.00  20.57

‘We observe distinct behaviors across model families:

1. Strong models exhibit strong orientation bias. The most capable model, GPT-5, suffers
the largest performance drop (A = -18.73%). Comparing this to its baseline performance
in Table 2] we see a dramatic decline in 3D Spatial Consistency (from 82.35% to 26.47%)
and Distance Judgement (from 55.22% to 30.35%). This indicates that its superior spatial
reasoning capabilities rely heavily on the canonical “upright” orientation learned during
pre-training. When the visual reference frame is inverted, the model struggles to maintain
coherent 3D spatial relations.

2. Weaker models show a floor effect. In contrast, smaller models (e.g., GPT-4.1-mini,
Qwen2.5-v1-7b) show negligible performance changes (A ~ 0). As shown in Table[2] these
models already perform poorly on spatial tasks in the standard setting (e.g., ~7-9% on 3D
Spatial Consistency). This confirms that their original performance was likely dominated
by pattern matching or random guessing rather than genuine spatial understanding, making
them insensitive to orientation flips.

3. Implications for deployment. While this result highlights a limitation in zero-shot gener-
alization, we note that in real-world robotic deployment, camera mounting poses are strictly
controlled, and input images are typically inspected or rectified to ensure a canonical ori-
entation. Therefore, while VLMs lack rotation invariance, this sensitivity is a manageable
characteristic in engineered systems.
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I EVALUATION OF MODEL CAPABILITY TO REJECT INCORRECT OPTIONS

The ability to determine when no correct answer exists is critical for safe robotic deployment. As
pointed out by the reviewers, evaluating this “rejection” capability is a vital aspect of spatial reason-
ing.

In our original benchmark design, we partially incorporated this dimension. Specifically, in the
Cross-View Object Matching task, approximately 25% of the questions explicitly include a ground-
truth option of "None of the bounding boxes is correct.” This was designed to prevent models from
relying solely on elimination.

However, to provide a more comprehensive and extreme evaluation of this capability across the
entire benchmark, we conducted a controlled stress test on 7 out of the 8 subtasks.

1.1 EXPERIMENTAL SETUP

We modified the dataset by replacing the original ground-truth option with ”None of the above” for
every question in the selected subtasks. The original correct answer was removed, making "None
of the above” the only valid choice. To avoid positional bias, we ensured this option appeared as
option E.

Exclusion of Distance Judgement: We excluded the Distance Judgement task from this specific
ablation. In this task, questions ask for the “shortest” or “longest” distance among candidates.
Removing the absolute shortest candidate would logically make the second shortest candidate the
new correct answer, creating ambiguity rather than a clear "None of the above” scenario. All other
7 subtasks allow for a binary valid/invalid distinction, making them suitable for this test.

1.2 RESULTS AND ANALYSIS

Table 9] presents the results. We report the accuracy when the correct answer is “None of the above”
(Reject. Avg.) and the performance drop compared to the standard setting.

Table 9: Model performance on the "None of the above” rejection test. “Reject.” denotes the
accuracy on the modified dataset where the correct answer is "None of the above”. “Drop” indicates
the performance decline relative to the original benchmark accuracy. A significant drop implies high
model over-compliance.

Model Reject. Drop . Spa.tial Tzrsks ) . Robotig Tasks
Avg Cross-View Viewpoint 3D Spatial | Action Step Trajectory Affordance

g Match ID Consist. Plan.  Exec. Sel. Rec.
Proprietary Reasoning Models
GPT-5 1343 4329 29.00 6.64 6.37 23.04  20.09 6.00 2.87
GPT-5-mini 9.57  -34.71 26.00 0.39 9.80 8.33  20.09 0.50 1.91
GPT-5-chat 1.05 -28.84 1.50 1.95 1.47 0.98 0.43 1.00 0.00
GPT-5-nano 8.61 -24.02 21.00 5.08 16.18 2.94 7.26 3.50 431
Proprietary Models
GPT-4.1 0.60  -27.35 1.50 0.78 0.98 0.49 043 0.00 0.00
GPT-4.1-mini 374 -19.09 3.00 1.95 1.47 3.92 15.81 0.00 0.00
GPT-4.1-nano 0.78  -18.21 0.00 0.00 0.00 0.00 2.56 0.50 2.39
GPT-40 092  -2351 1.50 3.12 0.49 0.00 0.85 0.50 0.00
Open-Source Models
Qwen2.5-vl-72b  3.39  -19.81 9.00 0.78 8.82 1.96 1.71 1.00 0.48
Qwen2.5-vl-7b 049  -20.31 2.00 0.00 0.98 0.00 0.00 0.00 0.48
Qwen2.5-vl-32b  0.28  -21.70 1.00 0.00 0.49 0.00 0.00 0.00 0.48

The results reveal a severe "Over-Compliance” phenomenon across all models:

1. Universal collapse in rejection capability. Even the strongest model, GPT-5, drops from
56% accuracy to 13% when forced to reject incorrect options. Most other models collapse
to near 0%, indicating they almost always hallucinate a relationship or force a selection
from the visual candidates rather than acknowledging the absence of a correct answer.

2. Selection bias dominates validity judgement. The experiment demonstrates that current
models exhibit a strong tendency to select a ”visually approximate” option rather than re-
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jecting all options. Choosing “None of the above” imposes a higher cognitive requirement:
the model must distinguish between “relative similarity” and “absolute correctness,” and
possess an internal standard of rationality to invalidate all candidates. The results con-
firm that even advanced reasoning models currently struggle with this rigorous verification,
preferring to conform to the prompt by picking a plausible-looking but incorrect answer.

3. Implication. This experiment highlights a critical safety gap in current VLM technology.
While models can reason about what is present, they struggle significantly to verify cor-
rectness by rejecting invalid options. MV-RoboBench effectively exposes this limitation,
serving as a testbed for future work on uncertainty estimation and refusal.

J ERROR ANALYSIS OF MODEL FAILURES

To better understand how current models fail on MV-RoboBench, we conduct a qualitative error
analysis on three representative models: a strong proprietary model (GPT-5), a strong open model
(Qwen2.5-VL-72B-Instruct), and a weaker open model (Qwen2.5-VL-7B-Instruct). For each model,
we sample 10-20 erroneous cases from several core subtask families, and manually inspect their
predictions and explanations. Below we summarize the main recurring failure modes and highlight
representative examples.

Single-view bias and weak multi-view fusion. Across all three models, a prominent failure mode
is an over-reliance on a single camera view while largely ignoring contradictory evidence from
other views. GPT-5, for instance, often selects the option that looks most natural in the head view
but becomes inconsistent once the gripper views are taken into account. Qwen2.5-VL-7B shows
an even stronger single-view bias in cross-view matching and distance judgment tasks, where it
tends to align 2D screen positions across cameras (e.g., “bottom-right” to “bottom-right”) instead of
reasoning in a shared 3D frame. Qwen2.5-VL-72B behaves similarly in viewpoint identification and
cross-view tasks, effectively treating them as single-image retrieval problems rather than enforcing
multi-view geometric consistency.

Depth, occlusion, and 3D geometry confusion. A second common failure mode involves incor-
rect reasoning about depth, occlusion, and 3D layout. In GPT-5, distance judgment and 3D spatial
consistency errors show that the model frequently substitutes 2D heuristics (apparent size, 2D po-
sition) for true 3D reasoning: it chooses objects that appear more salient or closer in a single pro-
jection, even when other views clearly indicate that another object is nearer in 3D. Qwen2.5-VL-7B
exhibits even stronger depth confusion, sometimes inverting near—far or front-back relations, and
occasionally treating objects on the tabletop and objects below the table (e.g., cabinet handles) as
comparable candidates. Qwen2.5-VL-72B shows similar issues in fine-grained 3D spatial consis-
tency, where it misassigns grid coordinates along the depth axis or swaps two neighboring objects
that are close in distance. These patterns suggest that current models lack robust internal 3D scene
representations and often rely on weak perspective cues.

Frame-of-reference errors and instance-level correspondence. Even with an explicitly defined
camera-centric coordinate system (Appendix [E-3)), models often mishandle frame-of-reference de-
tails and instance-level matching. For GPT-5, viewpoint identification and cross-view matching
failures indicate that the model sometimes implicitly assumes that the same set of objects must
be visible in all views, and treats changes in visibility due to field-of-view or occlusion as evi-
dence that the views are asynchronous or unrelated. For Qwen2.5-VL-7B, we frequently observe
instance-level confusion in scenes with multiple objects of the same category (e.g., several yellow
peppers): the model correctly recognizes the category but fails to track which specific instance
is highlighted across views, effectively performing category-level rather than instance-level corre-
spondence. Qwen2.5-VL-72B exhibits similar behavior in multi-object setups, where it matches
“any object of the correct type” instead of the exact instance indicated by the bounding box. These
errors highlight the difficulty of precise, instance-level multi-view alignment even for large models.

Affordance and physical-feasibility misunderstandings. In affordance recognition and trajec-
tory selection tasks, models must reason about which grasps or motion paths are more likely to
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succeed physically. GPT-5 often prefers grasp lines or trajectories that look visually neat (e.g., cen-
tered on the visible surface) but would be unstable or collision-prone for a parallel gripper in 3D; it
rarely reasons explicitly about approach direction, object thickness, or nearby obstacles. Qwen2.5-
VL-7B sometimes mislocalizes the grasp line to the wrong object altogether and then optimizes
within this incorrect frame, leading to explanations that sound plausible but are grounded in the
wrong spatial reference. Qwen2.5-VL-72B exhibits related issues: it often treats “passing through
the middle” as a universal heuristic for good paths, even when the task requires side grasps on thin
objects or collision-aware trajectories that avoid table edges and surrounding clutter. Overall, these
failures indicate that current VLMs still lack robust modeling of robotic affordances and physical
constraints, especially when such reasoning must be carried out jointly with multi-view geometric
alignment.

Summary. Importantly, these failure modes appear not only in weaker models but also in GPT-
5, which still exhibits systematic errors in multi-view fusion, depth reasoning, frame-of-reference
handling, and affordance understanding. This suggests that MV-RoboBench does not merely lower
raw accuracy; it exposes non-trivial limitations in current vision—language models’ spatial reasoning,
and can serve as a diagnostic tool for guiding future architectural and training improvements.
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@ Template for 3D Spatial Consistency

You are given three synchronized views—the left-gripper camera,
the head camera, and the right-gripper camera. Only the head
camera image contains colored bounding boxes. Then assuming the
workspace is divided into a5 x 5 x 5 cubic grid, with coordinates
(x,y,2) running from 1 to 5. Which of the following sets of
coordinate triplets best describes the locations of the objects
circled by the bounding boxes in the image above? The following
options are based on the head camera view. + <Description of
coordinate system definition>

Rules
+ The blue text is a femplate description, which can be copied
directly.

Sample of 3D Spatial Consistency

left gripper view head view right gripper view

Question: As shown above

2
x 3

Xags, 3 “axis
S gy 4 (Righey

OptionA: (Red box, 2, OptionB: (Red box, 2, OptionC: (Red box, 1,

4,4), (Yellow box, 5, 4,4), (Yellow box, 4, 4,4), (Yellow box, 5,
3, 4), (6reen box, 1, 4,4), (6reenbox, 1, 3,4), (6reen box, 2,
4,1), (Blue box, 4, 3, 4,1), (Blue box, 4, 3, 4,1), (Blue box, 4, 3,
4), (Pink box, 4, 3, 2) 4), (Pink box, 4, 3, 2) 4), (Pink box, 4, 3, 2)

B

Zeaxis (Up)

Xa) 3
" Rigpy 4

3
i
Mighyy 4

OptionD: (Red box, 2, 4, 4), OptionE: (Red box, 1, 4, 4),
(Yellow box, 4, 4, 4), (6reen (Yellow box, 5, 3, 4), (6reen
box, 3, 4, 1), (Blue box, 1, 2, box, 2, 4, 1), (Blue box, 4, 3,
3), (Pink box, 4, 3, 2) 2), (Pink box, 4, 3, 4)

Figure 19: Example of Spatial Cube Reasoning from the AgiWorld dataset. Objects are localized
inab x 5 x 5 cubic grid, and the model must select the correct coordinate triplets from the given
options.
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@Template for 3D Spatial Consistency

You are given four synchronized views, only the viewl contains colored bounding boxes.
Then assuming the workspace is divided into a 5 x 5 x 5 cubic grid, with coordinates (x,y, z)
running from 1 to 5. Which of the following sets of coordinate triplets best describes the
locations of the objects circled by the bounding boxes in the image above? The following
options are based on the viewl. <Description of coordinate system definition>

Rules
* You can replace the viewl with other views, i.e. view2, view3, view4

+ The blue text is a template description, which can be copied directly.

Sample of 3D Spatial Consistency

view3 view4

Zaxis (Up)
Zaxis (Up)

2
Ko g2
Mighy 4

OptionC: (Red box, 1, 4, 3),
(Yellow box, 1, 4, 2), (Green
box, 4, 1, 2), (Blue box, 3, 3,
2), (Pink box, 5, 5, 2)

OptionA: (Red box, 1, 4, 3), OptionB: (Red box, 5, 4, 2),
(Yellow box, 3, 3, 2), (6reen (Yellow box, 3, 3, 2), (Green
box, 5, 1, 2), (Blue box, 1, 4, box, 1,1, 3), (Blue box, 1, 4, 2),
2), (Pink box, 4,5, 1) (Pink box, 4,5, 1)

Zaaxis (Up)

Xaxs gy, 3
gy 4

50

OptionE: (Red box, 1, 4, 3), (Yellow box,
1,4,2), (6reen box, 4, 5, 2), (Blue box,
3, 3, 2), (Pink box, 5, 1, 2)

OptionD: (Red box, 1, 4, 3), (Yellow
box, 1, 4, 2), (6reen box, 5, 1, 2),
(Blue box, 3, 3, 2), (Pink box, 4,5, 1)

Figure 20: Example of Spatial Cube Reasoning from the BridgeV?2 dataset. One reference view
(here, viewl) contains bounding boxes, and the model must infer the correct 3D coordinates of the

objects across the synchronized views.
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Template for Action Planning

<Task> Which of the following operations is most likely o complete
the task with the least collision? The following options are based
on the head camera view. <Description of coordinate system
definition>

Rules
+ You can replace the head with left-gripper or right-gripper.
+ The blue text is a template description, which can be copied
directly.

Sample of Action Planning

left gripper view head view right gripper view

Question: If I want to pour water from the kettle on the table into
the water cup. <Template which shown as above>

OptionA: Move the left gripper leftward, then forward, then downward to
grasp the handle of the kettle. Then lift the kettle, move it upward, and then
rightward to pour water into the cup.

OptionB: Move the left gripper rightward, then backward, then upward to grasp
the handle of the kettle. Then lower the kettle, move it downward, and then
leftward to pour water into the cup.

OptionC: Move the left gripper downward, then rightward, then forward to
grasp the handle of the kettle. Then lift the kettle, move it forward, and then
leftward to pour water into the cup.

OptionD: Move the left gripper forward, then leftward, then upward to grasp
the handle of the kettle. Then lift the kettle, move it rightward, and then
downward to pour water into the cup.

OptionE: Move the left gripper backward, then upward, then leftward to grasp
the handle of the kettle. Then lift the kettle, move it downward, and then
forward to pour water into the cup.

Figure 21: Example of Planning from the AgiWorld dataset. The model must select the correct
sequence of normalized directional actions to accomplish the described task with minimal collisions.
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Template for Action Planning

<Task> Which of the following operations is most likely to complete the task with the

least collision? The following options are based on the view2. <Description of coordinate
system definition>

Rules

* You can replace the view? with other views, i.e. viewl, view3, view4
* The blue text is a femplate description, which can be copied directly.

Sample of Action Planning

view2 view3 view4

Question: T want to put the carrot from the stove into the sink. Which of the following
operations is most likely to complete the task with the least collision? The following options
are based on the view2.<Template which shown as above>

OptionA: Move the gripper to the left, then upward, then backward to grab, then left, then backward,
then right, and finally upward to put the carrot into the sink to complete the operation.

OptionB: Move the gripper to the left, then forward, then downward to grab, then upward, then
backward, then right, and finally downward to put the carrot into the sink to complete the operation.

OptionC: Move the gripper to the left, then forward, then downward to grab, then forward, then
backward, then right, and finally upward to put the carrot into the sink to complete the operation.

OptionD: Move the gripper to the left, then forward, then downward to grab, then left, then
backward, then right, and finally upward to put the carrot into the sink to complete the operation.

OptionE: Move the gripper to the left, then backward, then downward fo grab, then left, then
backward, then right, and finally upward to put the carrot into the sink to complete the operation.

Figure 22: Example of Planning from the BridgeV2 dataset. One reference view (here, view?2) is

used to describe the options, and the model must infer the correct high-level sequence to achieve the
task while avoiding collisions.
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Template for Step Execution

<Task>, which of the following actions is most likely to accomplish
this task? The following options are based on the head camera view.
<Description of coordinate system definition>

Rules
* You can replace the head with left-gripper or right gripper.
+ The blue text is a template description, which can be copied
directly.

Sample for Step Execution

left gripper view head view ~ right gripper view

Question: Suppose I want to use the right gripper to grab the spoon
in the bowl. <Template which shown as above>

OptionA: Move OptionB: Move OptionC: Move
the right gripper the right gripper the right gripper
down and then to up and then to forward and then
the left, then the left, then to the right, then
forward to grab. forward to grab. down to grab.

OptionD: Move OptionE: Move

the right gripper the right gripper

down and then to down and then to

the right, then the left, then

forward to grab. backward to grab.

Figure 23: Example of Execution from the AgiWorld dataset. The model must select the correct
primitive action, expressed in normalized directional terms, to complete the manipulation goal.
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©)
Templa're for Step Execution

<Task>, which of the following actions is most likely to accomplish this task? The
following options are based on the view2. <Description of coordinate system definition>

Rules

* You can replace the view?2 with other views, i.e. viewl, view3, view4
+ The blue text is a template description, which can be copied directly.

Sample for Step Execution

viewl view2 view3 view4

Question: If T want fo grab the blue cup on the table, which of the following actions is
most likely to accomplish this task? The following options are based on the view3.
<Description of coordinate system definition>

OptionA: Move the gripper  OptionB: Move the gripper  OptionC: Move the gripper
upward, then to the right,  upward, then to the forward, upward, then to the forward,

then backward, and then then backward, and then then backward, and then upward
upward to grab the cup. downward fo grab the cup.  to grab the cup.

OptionD: Move the gripper OptionE: Move the gripper

upward, then fo the forward, upward, then to the left, then

then left, and then downward backward, and then downward

to grab the cup. to grab the cup.

Figure 24: Example of Execution from the BridgeV2 dataset. One reference view (here, view3) is
used to describe the options, and the model must identify the correct low-level action sequence to
accomplish the given task.
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Q
Q‘S Template for Trajectory Selection

You are given three synchronized views—the left-gripper camera, the
head camera, and the right-gripper camera. <Task>, which color track
is most likely to complete the task?

Rules

+ The blue text is a femplate description, which can be copied
directly.

Sample of Trajectory Selection

TR
' [
left gripper view head view right gripper view

Question: You are given three synchronized views—the left gripper
camera, the head camera, and the right gripper camera. If I want to
place the pink wet wipes into the plastic bag, which color trajectory is
most likely to accomplish this task?

OptionA: The blue OptionB: The green | OptionC: The pink
line. line. line.

OptionD: The red line. OptionE: The yellow line.

Figure 25: Example of Trajectory Evaluation from the AgiWorld dataset. The model must select the
correct colored trajectory that successfully completes the described manipulation task.
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9
Q;Templm‘e for Trajectory Selection

You are given four synchronized views. <Task>, which color track is most likely to complete
the task?

Rules

* The blue text is a template description, which can be copied directly.

Sample of Trajectory Selection

viewl view2

view3 view4

Question: You are given four synchronized views. If I want to open the cabinet, which color
track is most likely to complete the task?

OptionA: The blue OptionB: The  OptionC: The pink  OptionD: The | OptionE: The
line. green line. line. red line. yellow line.

Figure 26: Example of Trajectory Evaluation from the BridgeV?2 dataset. The model is given four

synchronized views and must select the correct colored trajectory (here, the green line) that com-
pletes the described task.
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You are given three synchronized views—the left-gripper camera, the
head camera, and the right-gripper camera. Across these images,
five grasp candidates are illustrated with color-coded lines—red,
yellow, green, blue, and pink—such that each color appears exactly
once, on one view only. The two endpoints of every line mark the
intended positions of the gripper fingers. Which colour-coded line
represents the grasp candidate most likely to succeed?

Rules
* The blue text is a template description, which can be copied
directly.

Question: As shown above

OptionA: Blue line.  OptionB: Green line. |Op‘rionC: Pink line.

OptionD: Red line. OptionE: Yellow line.

Figure 27: Example of Affordance Recognition from the AgiWorld dataset. Five color-coded grasp
candidates are illustrated, and the model must select the one most likely to succeed.
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You are given four synchronized views. Across these images, five grasp candidates are
illustrated with color-coded lines—red, yellow, green, blue, and pink—such that each color
appears exactly once, on one view only. The two endpoints of every line mark the intended
positions of the gripper fingers. Which color-coded line represents the grasp candidate
most likely to succeed?

Rules
+ The blue text is a template description, which can be copied directly.

viewl view2 view3 view4

Question: As shown above

| OptionA: Blue line. I OptionB: Green line. OptionC: Pink line.

OptionD: Red line. OptionE: Yellow line.

Figure 28: Example of Affordance Recognition from the BridgeV?2 dataset. Grasp candidates are
distributed across four synchronized views, with the model required to select the most feasible op-
tion.
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Perceptual Hallucination / Grounding

"question": "You are given four synchronized views, only the view3 contains colored
bounding boxes. Which option corresponds to the shortest grasping distance?

"A": "Grab the item in the red bounding box."  (Model answer)
“D": "6rab the item in the yellow bounding box." (Correct)

Model response: To determine the shortest grasping distance, we need to consider the
relative positions of the objects in the views. The view3 contains colored bounding boxes,
which likely indicate the objects of interest for grasping.\n\nl. **Red bounding box**:
This box is around the yellow bottle.\n2. **Pink bounding box**: This box is around the
purple cloth.\n3. **Green bounding box**: This box is around the blue bottle.\n4.
**Yellow bounding box**: This box is around the yellow bottle.\n5. **Blue bounding box**:
This box is around the blue bottle.\n\nFrom the images, the yellow bottle is the same
object in all views. The red bounding box in view3 is the closest to the yellow bottle in
view4, indicating the shortest grasping distance.\n\nAnswer: A

Analyze: Tt mistook the red soup can for a "yellow bottle" and the green bell pepper for a
"blue bottle." This is the most obvious "hallucination," directly proving that the small
model failed at the Perception level.

Figure 29: Case Study 1: Perceptual Hallucination (Qwen2.5-VL-7B). The model fails at basic
visual grounding. As shown in the response, it explicitly misidentifies the red bounding box (a soup
can) as a “yellow bottle” and the green box (a pepper) as a “blue bottle.” This hallucination leads to
a baseless conclusion, illustrating the perception bottleneck in smaller models.
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Instance-level Correspondence

“question": "In the right-gripper camera view, the item is outlined with a red bounding box.
Which colored bounding box encloses that same item in the left-gripper camera view and
the head camera view?"

"B": "The yellow bounding box." (Model answer)  "E": "The blue bounding box. (Correct)

Model response: To determine which colored bounding box encloses the same item in both
the left-gripper camera view and the head camera view as the red bounding box in the
right-gripper camera view, let's follow these steps:\n\nl. Identify the item within the
red bounding box in the right-gripper camera view. It appears to be a yellow bell
pepper.\n2. Locate the yellow bell pepper in the left-gripper camera view. It is enclosed
by the pink bounding box.\n3. Confirm the location of the yellow bell pepper in the head
camera view. It is enclosed by the yellow bounding box.\n\nGiven this analysis, the item
outlined by the red bounding box in the right-gripper camera view corresponds to the
pink bounding box in the left-gripper camera view and the yellow bounding box in the
head camera view.\n\nSince the question asks for the color of the bounding box that
encloses the same item in both the left-gripper camera view and the head camera view,
we need to identify the common item and its corresponding bounding box colors. The
yellow bell pepper is consistently identified by the yellow bounding box in the head
camera view.\n\nTherefore, the correct answer is:\n\nAnswer: B

Analyze: The main problem here is that the model first identifies what the object is
when making its judgment. However, in this scene, there are many identical objects. The
model must correctly identify the correct object based on spatial location and multi-view
consistency. This furns it into a simple object recognition problem.

Figure 30: Case Study 2: Instance-Level Correspondence Failure (Qwen2.5-VL-72B). The
scene contains multiple instances of the same class (yellow peppers). The model correctly iden-
tifies the category but fails to perform geometric alignment. It selects Option B solely because it
contains a “yellow bell pepper,” effectively reducing the multi-view consistency task to a simple
object recognition problem.

48



Under review as a conference paper at ICLR 2026

Frame-of-reference / Single-view Bias

s

", w

“question”: "If I want o pour water into the cup, which of the following operations is most
likely to complete the task with the least collision? The following options are based on the
left gripper camera view. <The definition of Coordinate>

“A": "Move the left gripper forward, then left, and then downward to grasp the handle of
the kettle. Then move upward, and then forward to pour water into the cup.”, (Model Answer)

"E": "Move the left gripper backward, then left, and then downward to grasp the handle of
the kettle. Then move upward, and then forward to pour water into the cup.” (Correct)

Model response: Step 1: Reasoning\n- Goal: Grasp the kettle handle with the left gripper
and then pour into the cup with minimal collision.\n- From the head view, the kettle is on the
left side with its handle on the far-left; the cup is near the center. From the left-gripper
view, the right gripper/arm is ahead and slightly to the right, so moving right increases
collision risk, while moving left avoids it.\n- Safe approach to the handle:\n - Move forward
(+y) tfoward the kettle.\n - Then move left (-x) fo align with the handle on the kettle's left
side, steering away from the right arm.\n - Then move downward (-z) to grasp the handle
near the table surface.\n- After grasping, lifting upward (+z) and moving forward (+y)
toward the cup positions the kettle to pour.\n\nWhy others are less suitable:\n- B: Moving
right heads toward the right gripper and tissue box; “"upward to grasp” is incorrect since
the handle is lower.\n- C: Downward then upward before grasping is unnecessary and risky
near the table; lacks lateral alignment with the handle.\n- D: Moving right first increases
collision risk with the right gripper; the right-then-left path is inefficient.\n- E: Moving
backward moves away from the kettle, not tfoward it; adds unnecessary motion.\n\nStep 2:
Best option\nAnswer: A

Analyze: GPT-5 interprets "moving forward" as reaching for the cup (based on the intuition
of the Head View), but in the Left Gripper coordinate system, "moving forward" actually
means passing over the cup, and going any further down would make it impossible o grab it.
This perfectly explains "reference frame confusion" and "single-view offset".

Figure 31: Case Study 3: Frame-of-Reference Error (GPT-5). The task requires planning in the
Left-Gripper frame. The model’s reasoning (“Move forward ... toward the kettle’) reveals a reliance
on the global Head View intuition. In the specific local frame of the left gripper, “Forward” actually
leads to a collision with the cup, while the correct action is to move “Backward” (Option E).
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