
1

GP-select: Accelerating EM using adaptive
subspace preselection

Jacquelyn A. Shelton1, Jan Gasthaus2, 3, Zhenwen Dai3, 4, Jörg Lücke5,

and Arthur Gretton2

1 Technical University Berlin, Marchstrasse 23, 10587 Berlin, Germany.

2 University College London, Gatsby Unit, 25 Howland Street, London W1T 4JG, UK.

3 Amazon Development Center, Karl-Liebknecht-Str. 5, 10178 Berlin, Germany.∗

4 University of Sheffield, Western Bank, Sheffield, South Yorkshire S10 2TN, UK.

5 University of Oldenburg, Ammerländer Heerstr. 114, 26129 Oldenburg, Germany.

Keywords: Approximate inference, generative graphical models, latent variable mod-

els, Expectation Maximization, EM acceleration, variable preselection

Abstract

We propose a nonparametric procedure to achieve fast inference in generative graphical

models when the number of latent states is very large. The approach is based on iterative

∗This work was done prior to joining Amazon.

latent variable preselection, where we alternate between learning a ’selection function’

to reveal the relevant latent variables, and using this to obtain a compact approximation

of the posterior distribution for EM; this can make inference possible where the number

of possible latent states is e.g. exponential in the number of latent variables, whereas

an exact approach would be computationally infeasible. We learn the selection function

entirely from the observed data and current EM state via Gaussian process regression.

This is by contrast with earlier approaches, where selection functions were manually-

designed for each problem setting. We show that our approach performs as well as these

bespoke selection functions on a wide variety of inference problems: in particular, for

the challenging case of a hierarchical model for object localization with occlusion, we

achieve results that match a customized state-of-the-art selection method, at a far lower

computational cost.

1 Introduction

Inference in probabilistic graphical models can be challenging in situations where there

are a large number of hidden variables, each of which may take on one of several state

values. The Expectation Maximization (EM) algorithm is widely applied to learn model

parameters when hidden variables are present, however inference can quickly become

intractable as the dimensionality of hidden states increases. Consider, for instance, the

floor of a nursery populated with different toys, and images of this floor large enough

to contain a number of toys. A nursery easily contains a hundred different toys and

any subset of these hundred toys may appear in any image. For one hundred toys there

2

is therefore a combinatorics of 2100 different combinations of toys that can make up

an image. An inference task may now be to infer, for any given image, the toys it

contains. If we approached this task using a probabilistic graphical model, we would

define a basic such model using a set of one hundred hidden variables (one for each

toy). Given a specific image, inference would then take the form of computing the

posterior probability for any combination of toys, and from this, e.g., the probability

of each toy to be in the image can be computed. If done exactly, this process needs to

evaluate all the 2100 different toy combinations which easily exceeds currently available

computational resources.

While there are also many tasks for which graphical models with few latent vari-

ables are sufficient, the requirement for many hidden variables (as in the toy example)

is typical for visual, auditory and many other types of data with very rich structure.

Graphical models for such data are often a central building block for tasks such as de-

noising (Elad and Aharon, 2006; Titsias and Lázaro-Gredilla, 2011), inpainting (Mairal

et al., 2009b,a; Titsias and Lázaro-Gredilla, 2011), classification (Raina et al., 2007), or

collaborative filtering (Titsias and Lázaro-Gredilla, 2011). Typically, the performance

in these tasks improves with the number of latent variables that can be used (and which

is usually limited by computational demands).

Expectation truncation (ET) (Lücke and Eggert, 2010) is an approximate EM al-

gorithm for accelerating inference and learning in graphical models with many latent

variables. Its basic idea is to restrict the inference performed during the E-step to an

“interesting” subset of states of the latent variables, chosen per data point according to

a selection function. This subspace reduction can lead to a significant decrease in com-

3

putational demand with very little loss of accuracy (compared with the full model). To

provide an intuition: For the toy example, we could for instance first analyze the colors

contained in a given image. If the image did not contain the color ”red”, we could al-

ready assume red toys or partly red toys to be absent. Only in a second step would we

then consider the combinatorics of the remaining toys. More features and more refined

features would allow for a reduction to still smaller sets of toys until the combinatorics

of these selected toys becomes computationally tractable. The selection function of ex-

pectation truncation mathematically models the process of selecting the relevant hidden

variables (the relevant toys); while truncated posterior distributions then models their

remaining combinatorics (see further below).

In previous work, functions to select states of high posterior mass were derived indi-

vidually for each graphical model of interest, e.g., by taking upper bounds or noiseless

limits (Lücke and Eggert, 2010; Shelton et al., 2012; Bornschein et al., 2013; Henniges

et al., 2014; Sheikh et al., 2014). The crucial underlying assumption remains that when

EM has converged, the posterior mass is concentrated in small volumes of the latent

state space (see, e.g., Lücke and Eggert, 2010; Sheikh et al., 2014, for discussions). We

can expect the approximation to be accurate only if restricting the combinatorics (e.g.,

combinations of a restricted number of toys) does not miss large parts of posterior mass.

This property is observed to hold, however, for many types of data in the auditory, visual

or general pattern recognition domains.

The definition of appropriate selection functions for basic graphical models (such

as the nursery floor example) is already non-trivial. For models incorporating more de-

tailed data properties, the definition of selections functions becomes still more demand-

4

ing. For visual data, e.g., models that also capture mutual object occlusions (Henniges

et al., 2014) and/or the object position (Dai and Lücke, 2014), the design of suitable

selection functions is extremely challenging: it requires both expert knowledge on the

problem domain and considerable computational resources to implement (indeed, the

design of such functions for particular problems has been a major contribution in pre-

vious work on the topic).

In the present work, we propose a generalization of the ET approach, where we

completely avoid the challenge of problem-specific selection function design. Instead,

we learn selection functions adaptively and non-parametrically from the data, while

learning the model parameters simultaneously using EM. We emphasize that the selec-

tion function is used only to ”guide” the underlying base inference algorithm to regions

of high posterior probability, but is not itself used as an approximation to the posterior

distribution. As such, the learned function does not have to be a completely accurate

indication of latent variable predictivity, as long as the relative importance of the la-

tent states likely to contribute posterior probability mass is preserved. We use Gaussian

process regression (Rasmussen and Williams, 2005) to learn the selection function – by

regressing the expected values of the latent variables onto the observed data – though

other regression techniques could also be applied. The main advantage of GPs is that

they do not need to be re-trained when only the output changes, as long as the inputs

remain the same. This makes adaptive learning of a changing target function (given

fixed inputs) computationally trivial. We term this part of our approach GP-select. Our

nonparametric generalization of ET may be applied as a black-box meta algorithm for

accelerating inference in generative graphical models, with no expert knowledge re-

5

quired.

Our approach is the first to make ET a general purpose algorithm for discrete latent

variables, whereas previously, ET had to be modified by hand for each latent variable

model addressed. For instance, in Section 5.3 we will show that preselection is crucial

for efficient inference in complex models. Although ET has already been successful in

some models, this work shows that more complex models will crucially depend on an

improved selection step and focuses on automating this step.

For empirical evaluation, we have applied GP-select in a number of experimental

settings. First, we considered the case of sparse coding models (binary sparse coding,

spike-and-slab, nonlinear spike-and-slab), where the relationship between the observed

and latent variables is known to be complex and nonlinear.† We show that GP-select

can produce results with equal performance to the respective manually-derived selection

functions. Interestingly, we find it can be essential to use nonlinear GP regression in

the spike-and-slab case, and that simple linear regression is not sufficiently flexible in

modeling the posterior shape. Second, we illustrate GP-select on a simple Gaussian

mixture model, where we can provide intuition and explicitly visualize the form of the

learned regression function. We find that even for a simple model, it can be be essential

to learn a nonlinear mapping. Finally, we present results for a recent hierarchical model

for translation invariant occlusive components analysis (Dai and Lücke, 2014). The

performance of our inference algorithm matches that of the complex hand-engineered

selection function of the previous work, while being straightforward to implement and

having a far lower computational cost.

†Note that even when linear relations exist between the latents and outputs, a nonlinear regression
may still be necessary in finding relevant variables, as a result of explaining away.

6

2 Related work

The general idea of aiding inference in graphical models by learning a function that

maps from the observed data to a property of the latent variables is quite old. Early

work includes the Helmholtz machine (Dayan et al., 1995) and its bottom-up connec-

tions trained using the wake-sleep algorithm (Hinton et al., 1995). More recently, the

idea has surfaced in the context of learning variational distributions with neural net-

works (Kingma and Welling, 2014). A two-stage inference procedure has been dis-

cussed in the context of computer vision (Yuille and Kersten, 2006) and neural inference

(Körner et al., 1999). Recently, researchers (Mnih and Gregor, 2014) have generalized

this idea to learning in arbitrary graphical models by training an “inference network”

that efficiently implements sampling from the posterior distribution.

GPs have recently been widely used to ”learn” the results of complicated mod-

els in order to accelerate inference and parameter selection. GP approximations have

been used in lieu of solving complex partial differential equations (Sacks et al., 1989;

Currin et al., 1991), to learn data-driven kernel functions for recommendation systems

(Schwaighofer et al., 2004), and recently for quantum chemistry (Rupp et al., 2012).

Other work has used GPs to simplify computations in approximate Bayesian computa-

tion (ABC) methods: namely to model the likelihood function for inference (Wilkin-

son, 2014), to aid in making Metropolis-Hastings (MH) decisions (Meeds and Welling,

2014), and to model the discrepancies between simulated/observed data in parameter

space simplification (Gutmann and Corander, 2015). Recently, instead of the typical

choice of GPs for large scale Bayesian optimization, neural networks have been used

to learn an adaptive set of basis functions for Bayesian linear regression (Snoek et al.,

7

2015).

Our work follows the same high level philosophy in that we use GPs to approxi-

mate complex/intractable probabilistic models. None of the cited prior work address

our problem setting, namely the selection of relevant latent variables by learning a non-

parametric relevance function, for use in expectation truncation (ET).

3 Variable selection for accelerated inference

Notation. We denote the observed data by the D × N matrix Y = (y(1), . . . ,y(N)),

where each vector y(n) = (y
(n)
1 , . . . , y

(n)
D)T is the nth observation in a D-dimensional

space. Similarly we define corresponding binary latent variables by the matrix S =

(s(1), . . . , s(N)) ∈ {0, 1}H×N where each s(n) = (s
(n)
1 . . . , s

(n)
H)T ∈ {0, 1}H is the nth

vector in the H-dimensional latent space, and for each individual hidden variable h =

1, . . . , H , the vector sh = (s
(1)
h . . . , s

(N)
h) ∈ {0, 1}N . The number of dimensions in the

reduced latent space is denoted by H ′, where H ′ � H . Note that although we restrict

ourselves to binary latent variables here, the procedure could in principle be generalized

to variables with higher cardinality (e.g. see (Exarchakis et al., 2012)). We denote the

prior distribution over the latent variables as p(s|θ) and the likelihood of the data as

p(y|s, θ). Using these expressions, the posterior distribution over latent variables is

p(s(n)|y(n),Θ) =
p(s(n)|Θ) p(y(n)|s(n),Θ)∑
s ′

p(s ′ |Θ) p(y(n)|s ′,Θ)
. (1)

8

3.1 Selection via Expectation Truncation in EM

Expectation Maximization (EM) is an iterative algorithm to optimize the model param-

eters of a given graphical model (see e.g. (Dempster et al., 1977; Neal and Hinton,

1998)). EM iteratively optimizes a lower bound on the data likelihood by inferring the

posterior distribution over hidden variables given the current parameters (the E-step),

and then adjusting the parameters to maximize the likelihood of the data averaged over

this posterior (the M-step). When the number of latent states to consider is large (e.g.

exponential in the number of latent variables), the computation of the posterior distri-

bution in the E-step becomes intractable and approximations are required.

Expectation truncation (ET) is a meta algorithm, which improves convergence of

the expectation maximization (EM) algorithm (Lücke and Eggert, 2010). The main

idea underlying ET is that the posterior probability mass is concentrated in a small

subspace of the full latent space. This is the case, for instance, if for a given data point

y(n) only a subset of the H latent variables s(n)1 , s
(n)
2 , . . . , s

(n)
H are relevant. Even when

the probability mass is supported everywhere, it may still be largely concentrated on a

small number of the latents.

A selection function can be used to identify a subset I ⊆ {1, 2, . . . , H} of size H ′

(H ′ � H) of salient variables, which in turn is used to define a subset Kn = {s | s ∈

2H ∧ ∀h /∈ I : sh = 0} ⊆ {0, 1}H of the possible state configurations of the latent

variables s(n) for each data point. This subset contains only state configurations where

the values of the variables not identified to be relevant by the selection function are fixed

to 0. The posterior distribution in Equation (1) can then be approximated by a truncated

posterior distribution, computed on the reduced support,

9

p(s(n)|y(n),Θ)

≈ qn(s(n); Θ) =
p(s(n),y(n)|Θ) I(s(n) ∈ Kn)∑

s ′∈Kn

p(s ′,y(n)|Θ)
, (2)

where I(s ∈ Kn) = 1 if s ∈ Kn is true, and 0 otherwise. In other words, Equation (2) is

proportional to Equation (1) if s(n) ∈ Kn (and zero otherwise), so that the approximate

posterior qn(s(n); Θ) assigns zero mass to states s(n) /∈ Kn. The set Kn contains only

states for which sh = 0 for all h that are not selected, i.e. all states where sh = 1

for some non-selected h are assigned zero probability. This means that there are fewer

terms in the denominator of Equation (2) compared with Equation (1), thus reducing

the computational complexity. Equation (2) still remains proportional to Equation (1)

for the remaining states s ∈ Kn, however. As there are only 2H′ terms in the sum over

Kn, computing this posterior approximation is much more efficient than computing the

exact normalizing constant for the full posterior (containing 2H terms). The number of

latent dimensions to select, H ′, is chosen based on the compute resources available: i.e.

as large as resources allow in order to be closer to true EM, although empirically it has

been shown that much smaller values suffice (see e.g. Sheikh et al., 2014, App. B on

complexity-accuracy trade-offs).

3.2 ET with affinity

One way of constructing a selection function is by first ranking the latent variables

according to an affinity function fh(y(n)) : RD 7→ R which directly reflects the rele-

vance of the latent variable s(n)h . A natural choice for such a function is the one that

10

Figure 1: Illustration of the affinity function for selection. The affinity approximates

the marginal posterior probability of each h = 1, . . . , H latent variable (top), which

corresponds to the most relevant variables for a given data point y(n) (bottom). Here,

the variables s1 and s3 yield high affinity and would thus be considered relevant for

y(n).

approximates the marginal posterior probability of each variable, e.g. we try to learn f

as follows:

fh(y(n)) = p̂
(n)
h ≈ p

(n)
h ≡ p(s

(n)
h = 1|y(n),Θ), (3)

meaning that the relevant variables will have greater marginal posterior probability p(n)h .

See Figure 1 for a simplified illustration. When the latent variables s(n)h=1, . . . , s
(n)
H in

the marginal posterior probability p̂(n) = p̂
(n)
h=1, . . . , p̂

(n)
H are conditionally independent

given a data point y(n), this affinity function correctly isolates the most relevant vari-

ables in the posterior. To see this, consider the full joint p(s1, ...sh |y,Θ) in the case

when a subset of latents has values clamped to zero, i.e., sh = 0 for all h 6∈ I (compare

Equation (2)). We can then ask what the overall joint posterior mass is in this case. If

we suppose the latents to be conditionally independent, this total mass is given by a

11

product of marginals as follows:

∑
s with sh=0 for all h6∈I

p(s1, ...sH |y,Θ) = 1−
∏
h6∈I

p(sh = 1 |y,Θ). (4)

We want this mass to be as large as possible as its complement is the posterior mass

that we discard with our approximation. If the affinity function correctly estimates

the marginals p(sh = 1 |y,Θ), then discarding those (H − H ′) marginal with lowest

values is equivalent to discarding the space with the least posterior mass (compared to

discarding w.r.t. all alternative choices with the same number of latents). Even when

this strong assumption does not hold in practice (which is often the case), however, the

affinity can still correctly highlight relevant variables, and has been empirically shown

to be quite effective when dependencies exist (see e.g. the source separation tasks in

(Sheikh et al., 2014)).

Next, using all p̂(n)h=1, . . . , p̂
(n)
H from the affinity function f(y(n)) = (f1(y

(n)), . . . , fH(y(n))),

we define γ (p̂(n)) to simultaneously sort the indices of the latent variables in descend-

ing order [of probability p̂(n)] and reduce the sorted set to theH ′ highest (most relevant)

variables’ indices. γ(p̂(n)) thus returns the H ′ selected variable indices I chosen by the

affinity to be relevant to the nth data point. To ensure that there is a non-zero probability

of selecting each variable per EM iteration, 10% of the H ′ indices are uniformly chosen

from H at random. This prevents the possible propagation of errors from q(n) continu-

ously assigning small probabilities to a variable sh in early EM iterations. The rationale

for this is that the optimization of q(n) in early iterations of EM starts from randomly

initialized sh. If the affinity function itself is based on the posterior approximation (as

12

it will be in the algorithm described in Section 4), it has a tendency to not select in-

dices that were previously not selected. Thus in order for selection-based EM to not

“get stuck”, it is important to select a few extra hidden indices randomly, to give the

algorithm an opportunity to evaluate possibly unused variables which might be relevant

for y(n).

Finally, using the indices I from γ, we define I(I) to return an H ′-dimensional

subset of selected relevant latent states Kn for each data point y(n). All ’non-relevant’

variable states sh for all variables h 6∈ I are effectively set to 0 in Equation (2) by not

being present in the state set Kn. For example, let’s say that there are five sh, where

h ∈ {1, ..., 5}. We consider the case where only s1 and s2 are selected. The I function

will then return zeros for s3, s4, and s5, but will return both allowed possibilities 0 or

1 for s1 and s2. Thus a valid setting for the entire vector s can be s = [01000], but not

s = [01100].

Using f , I, and γ, we can define a selection function S : RD 7→ 2{1,...,H} to select

subsets Kn per data point y(n). Again, the goal is for the states Kn to contain most of

the probability mass p(s |y) and to be significantly smaller than the entire latent space.

The affinity based selection function to obtain the set of states Kn can be expressed as

S(y(n)) = I
[
γ
[
f(y(n))

]]
= Kn. (5)

To summarize, the main task is to formulate a general data-driven function to identify

relevant latent variables and to select the corresponding set of states Kn. This is per-

formed using GP regression in order to compute the truncated posterior Equation (2)

13

on the reduced support Kn. With the combined effort of the above utility functions, we

have concisely defined the function S(y(n)) in Equation (5) to perform this selection.

3.3 Inference in EM with selection

In each iteration of EM, the following occurs: prior to the E-step, the selection function

S(y(n)) in (5) is computed to select the most relevant states Kn, which are then used to

compute the truncated posterior distribution qn(s) in (2). The truncated posterior can be

computed using any standard inference method, such as exact inference or e.g. Gibbs

sampling from q(s) if inference is still intractable or further computational acceleration

is desired. The result of the E-step is then used to update the model parameters with

maximum likelihood in the M-step.

4 GP-Select

In previous work, the selection function S(y(n)) was a deterministic function derived

individually for each model (see e.g. Shelton et al., 2011, 2012; Dai and Lücke, 2012a,b;

Bornschein et al., 2013; Sheikh et al., 2014; Shelton et al., 2015), specific examples of

which will be shown in Section 5.1. We now generalize the selection approach: instead

of predefining the form of S for variable selection, we want to learn it in a black-box and

model-free way based on the data. We learn S using Gaussian process (GP) regression

(e.g. Rasmussen and Williams, 2005), which is a flexible nonparametric model and

scales cubicly‡ with the number of data points N but linearly with the number of latent

‡If the scaling with N is still too expensive, an incomplete Cholesky approximation is used, with cost
linear in N and quadratic in the rank Q of the approximation (see Section 5.3 for details).

14

variables H . We define the affinity function fh as being drawn from a Gaussian process

model: fh(y(n)) ∼ GP (0, k(·, ·)), where k(·, ·) is the covariance kernel, which can be

flexibly parameterized to represent the relationship between variables. Again, we use

fh to approximate the marginal posterior probability ph that s(n)h = 1. A nice property

of Gaussian processes is that the kernel matrixK need only be computed once (until the

kernel function hyperparameters are updated) to approximate p(n)h for the entire H ×N

set of latent variables S.

Thus, prior to each E-step in each EM iteration, within each calculation of the

selection function, we calculate the affinity using a GP to regress the expected val-

ues of the latent variables 〈S〉 from the observed data Y. Specifically, we train on

ph from the previous EM iteration (where ph is equal to 〈sh〉), for training data of

D = {(y(n), 〈s(n)〉qn(s(n))|n = 1, . . . , N}, where we recall that qn(s(n)) is the approxi-

mate posterior distribution for s(n) in Equation (2). Note that we do not use a sigmoid

link, hence this is clearly not a correct estimate of a probability (it can be negative, or

greater than one). From the selection perspective, however, it is not necessary to avoid

these pathologies, as we only want an ordering of the variables. A correct GP clas-

sification approach with a properly defined likelihood will no longer have a marginal

Gaussian distribution, and we would no longer be able to trivially express the posterior

means of different functions with the same inputs, without considerable extra computa-

tion.

In the first EM iteration, the expectations 〈s(n)〉q are initialized randomly; in each

subsequent EM iteration, the expectations w.r.t. the Kn-truncated posterior q(s) are

used. The EM algorithm is run for T iterations and the hyperparameters of the kernel

15

are optimized by maximum likelihood every T ∗ EM iterations.

For each data point n and latent variable sh we compute the predicted mean of the

GP by leaving this data point out of the training set and considering all others, which

is called leave-one-out (LOO) prediction. It can be shown that this can be implemented

efficiently (see Section 5.4.2 in Rasmussen and Williams, 2005), and we use this result

to update the predicted affinity as follows:

p̂
(n)
h ← 〈s

(n)
h 〉qn −

[K−1〈sh〉qn]nn
[K−1]nn

. (6)

Equation (6) can be efficiently implemented for all latent variables h = 1, . . . , H and

all data points n = 1, . . . , N using matrix operations, thereby requiring only one kernel

matrix inversion for the entire dataset.

Substituting Equation (6) for f in the affinity based selection function (5) ,

S(y(n)) = I
[
γ

[
〈s(n)h 〉qn −

[K−1〈sh〉qn]nn
[K−1]nn

]]
= I

[
γ
[
f(y(n))

]]
= Kn

we call the entire process GP-select. An outline is shown in Algorithm 1.

Algorithm 1 GP-Select to accelerate inference in Expectation Maximization
for EM iterations t = 1, . . . , T do

initialize all latent variables expectations 〈s(n)h 〉qn,t

for data point n = 1, . . . , N do
compute affinity of all latent variables p̂(n)

t : Eq. (6)
compute subset of relevant states S: Eq. (5)
compute truncated posterior qn,t(s(n)) in E-step: Eq. (2)
update model parameters in M-step, e.g. as in Sec. 5.1
store 〈s(n)h 〉qn,t for p(n) in EM iteration t+ 1

end for
optimize kernel hyperparams every T∗ EM iterations

end for

16

5 Experiments

We apply our GP-select inference approach to five different probabilistic generative

models. First, we considered three sparse coding models (binary sparse coding, spike-

and-slab, nonlinear spike-and-slab), where the relationship between the observed and

latent variables is known to be complex and nonlinear. Second, we apply GP-select to

a simple Gaussian mixture model, to both provide functional intuition of approach and

to explicitly visualize the form of the learned regression function. Finally, we apply our

approach to a recent hierarchical model for translation invariant occlusive components

analysis (Dai and Lücke, 2012a; Dai et al., 2013; Dai and Lücke, 2014).

5.1 Sparse coding models

Many types of natural data are composed of potentially many component types, but

any data point often only contains a very small number of this potentially large set of

components. For the introductory example of toys on the nursery floor, for instance,

there are many different toys that can potentially be in a given image but there is typi-

cally only a relatively small number of toys actually appearing in any one image. An-

other example is a sound played by a piano at a given time t. While the sound can

contain waveforms generated by pressing any of the 88 piano keys, there are only rel-

atively few keys (typically much smaller than ten) that actually generated the sound.

Sparse Coding algorithms model such data properties by providing a large number of

hidden variables (potential data components) but assigning non-zero (or significantly

different from zero) values only to a small subset of components (those actually ap-

pearing). Sparse coding algorithms are typically used for tasks such as denoising (Elad

17

and Aharon, 2006; Mairal et al., 2009b), inpainting (Mairal et al., 2009b,a; Titsias and

Lázaro-Gredilla, 2011), classification (LeCun, NEC; Titsias and Lázaro-Gredilla, 2011;

Raina et al., 2007, e.g. MNIST dataset http://yann.lecun.com/exdb/mnist/, the flowers

dataset http://www.robots.ox.ac.uk/∼vgg/data/flowers/), transfer learning (Raina et al.,

2007), collaborative filtering (Titsias and Lázaro-Gredilla, 2011) and are important

models for neuro-sensory processing (Olshausen and Field, 1997; Zylberberg et al.,

2011; Bornschein et al., 2013; Sheikh et al., 2014, and many more). A variety of sparse

coding models have been successfully scaled to high-dimensional latent spaces with

the use of selection (Henniges et al., 2010; Bornschein et al., 2013; Sheikh et al., 2014)

or selection combined with Gibbs sampling (Shelton et al., 2011, 2012, 2015) infer-

ence approaches. Latent variables were selected in these earlier works using selection

functions that were individually defined for each model. In order to demonstrate our

method of autonomously learned selection functions, we consider three of these sparse

generative models, and perform inference in EM with our GP-select approach instead

of a hand-crafted selection function. The models are relevant for different tasks such

as classification (e.g., binary sparse coding), source separations and denoising (linear

spike-and-slab sparse coding) or sparse encoding and extraction of interpretable image

components (nonlinear sparse coding). Note that when it is obvious from context, we

drop the notation referring to each data point n in order to make the equations more

concise.

The models and their parameters are:

A. Binary sparse coding:

18

latents: s ∼ Bern(s|π) =
∏H

h=1 π
sh
(
1− π

)1−sh
observations: y ∼ N (y;W s, σ2I)

parameters: W =
(N∑

n=1

y(n) 〈s 〉Tqn
) (N∑

n=1

〈
s sT

〉
qn

)−1
σ2 =

1

ND

∑
n

〈∣∣∣∣y(n) −W s
∣∣∣∣2〉

qn

π =
1

N

∑
n

|
〈
s
〉
qn
|, where |x| = 1

H

∑
h

xh

where W ∈ RD×H denotes the components / dictionary elements and π parame-

terizes the sparsity (see e.g. (Henniges et al., 2010)).

B. Spike-and-slab sparse coding:

latents: s = b� z where b ∼ Bern(b|π) and z ∼ N (z; µ,Σh)

observations: y ∼ N (y;W s, σ2I)

parameters: W =

∑N
n=1 y

(n) 〈s� z〉Tn∑N
n=1 〈(s� z)(s� z)T〉n

π =
1

N

N∑
n=1

〈s〉n

σ2 =
N∑

n=1

[〈
(s� z)(s� z)T

〉
n
−
〈
s sT

〉
n
� µµT

]
�
(N∑

n=1

[〈
s sT

〉
n

])−1
µpr =

∑N
n=1 〈s� z〉n∑N

n=1 〈s〉n

σ2
pr =

1

N

N∑
n=1

[
y (n)(y (n))T −W

[
〈(s� z)〉n 〈(s� z)〉Tn

]
WT

]

where the point-wise multiplication of the two latent vectors, i.e., (s�z)h = sh zh

generates a ‘spike-and-slab’ distributed variable (s�z), that has either continuous

values or exact zero entries (e.g. (Titsias and Lázaro-Gredilla, 2011; Goodfellow

19

et al., 2013; Sheikh et al., 2014)).

C. Nonlinear Spike-and-slab sparse coding:

latents: s = b� z where b ∼ Bern(b|π)

and z ∼ N (z; µpr, σ
2)

observations: y ∼ N (y; max
h
{shWh}, σ2I)

parameters: Ŵhd =
〈shyd〉∗

〈s2d〉∗
π̂ = 〈I(s)〉

σ̂2 =
〈
Wdhsh − y(n)d

〉∗
µ̂pr = 〈sh〉∗ σ̂2

pr = 〈(sh − µ̂pr)
2〉∗

Where expectations 〈 . 〉∗ mean:

〈f(s)〉∗ =
∑
n

∫
s
p(s|y(n),Θ) f(s) I(h is max) ds∫
s
p(s|y(n),Θ) I(h is max) ds

where I is the indicator function denoting the domain to integrate over, namely

where h is the maximum. Using 〈f(s)〉∗ allows for the condensed expression

of the update equations shown above. The mean of the Gaussian for each y(n)

is centered at maxh{shWh}, where maxh is a nonlinearity that considers all H

latent components and takes the h yielding the maximum value for shWh (Lücke

and Sahani, 2008; Shelton et al., 2012; Bornschein et al., 2013; Shelton et al.,

2015), instead of centering the data at the linear combination of
∑

h shWh = W s.

In the above models, inference with the truncated posterior of Equation (2) us-

ing hand-crafted selection functions Sh(y(n)) to obtain the subset of states Kn [of se-

lected relevant variables s(y(n))], shown in Equation (5), has yielded results as good

20

or more robust performance than exact inference (converging less frequently to local

optima than exact inference; see earlier references for details). For models A and C,

the hand-constructed function approximating f(y(n)), for substitution in Equation (5),

was the cosine similarity between the weights Wh (e.g. dictionary elements, compo-

nents, etc.) associated with each latent variable sh and each data point y(n): f(y(n))

= (WT
h / ||Wh||)y(n). For model B, the constructed affinity function was the data

likelihood given a singleton state: f(y(n)) = p(y(n)|s = sh,Θ), where sh represents a

singleton state in which only the entry h is non-zero. The goal of these experiments

is to demonstrate the performance of GP-select and the effects/benefits of using dif-

ferent selection functions. To do this, we consider artificial data generated according

to each sparse coding model, and thus with known ground-truth parameters. As dis-

cussed above, we could also apply the sparse coding models using GP-select to other

application domains listed, but that is not the focus of these experiments. We generate

N = 2, 000 data points consisting ofD = 5×5 = 25 observed dimensions andH = 10

latent components according to each of the models A-C:N images of randomly selected

overlapping ’bars’ with varying intensities for models B and C, and additive Gaussian

noise parameterized by ground-truth σ2 = 2 and we choose H ′ = 5, (e.g. following

the spike-and-slab prior). On average, each data point contains 2 bars, i.e. ground-truth

is πH = 2, and we choose H ′ = 5. With this choice, we can select sufficiently many

latents for virtually all data points.

For each of the models considered, we run 10 repetitions of each of the following

set of experiments: (1) selection using the respective hand-crafted selection function,

(2) GP-select using a linear covariance kernel, (3) GP-select using an RBF covariance

21

kernel, and (4) GP-select using a kernel composed by adding the following kernels:

RBF, linear, bias and white noise kernels, which we will term the composition kernel.

As hyperparameters of kernels are learned, the composition kernel (4) can adapt itself

to the data and only use the kernel components required. See Rasmussen and Williams

(2005, Chapter 4, Section 4.2.4) for a discussion on kernel adaptation. Kernel param-

eters were model-selected via maximum marginal likelihood every 10 EM iterations.

For models A and B, inference was performed exactly using the truncated posterior (2),

but as exact inference is analytically intractable in model C, inference was performed

by drawing Gibbs samples from the truncated space (Shelton et al., 2011, 2012, 2015).

We run all models until convergence.

Results are shown in Figure 2. In all experiments, the GP-select approach was able

to infer ground-truth parameters as well as the hand-crafted function. For models where

the cosine similarity was used (in A and C), GP regression with a linear kernel quickly

learned the ground-truth parameters, and hence fewer iterations of EM were necessary.

In other words, even without providing GP-select explicit weights W as required for

the hand-crafted function, its affinity function using GP regression (6) learned a similar

enough function to quickly yield identical results. Furthermore, in the model with a

less straight-forward hand-crafted function (in the spike-and-slab model of B), only GP

regression with an RBF kernel was able to recover ground-truth parameters. In this case

(model B), GP-select using an RBF kernel recovered the ground-truth ’bars’ in 7 out

of 10 repetitions, whereas the hand-crafted function recovered the bases in 8 instances.

For the remaining models, GP-select converged to the ground-truth parameters with the

same average frequency as the hand-crafted functions.

22

Figure 2: Sparse coding models results comparing GP-select with a successful hand-

derived selection function. Results are shown on artificial ground-truth data with

H = 10 latent variables and H ′ = 5 preselected variables for: A Binary sparse cod-

ing, B Spike-and-slab sparse coding, and C Nonlinear spike-and-slab sparse coding.

First column: Example data points y(n) generated by each of the models. Middle col-

umn: Converged dictionary elements W learned by the hand-crafted selection func-

tions. Third column: Converged dictionary elements W learned by GP-select with

H ′ = 5 using the kernel with best performance (matching that of inference with hand-

crafted selection function). In all cases, the model using the GP-select function con-

verged to the ground-truth solution, just as the hand-crafted selection functions did.

Finally, we have observed empirically that the composition kernel is flexible enough

to subsume all other kernels: the variance of the irrelevant kernels dropped to zero in

simulations. This suggests the composition kernel is a good choice for general use.

5.2 Gaussian mixture model

Next, we apply GP-select to a simple example, a Gaussian mixture model, where the

flexibility of the approach can be easily and intuitively visualized. Furthermore, the

23

GMMs flexibility allows us to explicitly visualize the effect of different selection func-

tions. A demonstration and code for the GMM application is provided in (Dai, 2016).

The model of the data likelihood is

p(y(n)|µc, σc, π) =
C∑
c=1

N (y(n);µc, σc) πc, (7)

where C is the number of mixture components; the task is to assign each data point to

its latent cluster.

The training data used for GP regression was D = {(y(n), 〈s(n)h 〉qn)|n = 1, . . . , N},

where the targets were the expected cluster responsibilities (posterior probability dis-

tribution for each cluster) for all data points, 〈sh〉q, and we use one-hot encoding for

cluster identity. With this, we apply our GP-select approach to this model, computing

the selection function according to Equation (5) with affinity f defined by GP regres-

sion (6) and following the approximate EM approach as in the previous experiments. In

these experiments we consider two scenarios for EM learning of the data likelihood in

Equation (7): GP-select with an RBF covariance kernel and a linear covariance kernel.

We do not include the composition kernel suggested (based on experiments) in Section

4.1, as the goal of the current experiments is to show the effects of using the ’wrong’

kernel. These effects would further support the use of the flexible composition kernel

in general, as it can subsume both kernels considered in the current experiments (RBF

and linear).

To easily visualize the output, we generate 2-dimensional observed data (y(n) ∈

RD=2) from C = 3 clusters – first with randomly assigned cluster means, and second

such that the means of the clusters lie roughly on a line. In the GP-select experiments,

24

Figure 3: Gaussian mixture model results using GP-select (selection of C ′ = 2 in a

C = 3 class scenario) for inference. Progress of the inference is shown using (row

one) an RBF covariance kernel in the regression, and (row two) a linear covariance

kernel. For each iteration shown, we see (1) the observed data and their inferred cluster

assignments and (2) the C corresponding GP regression functions learned/used for GP-

select in that iteration. Different iterations are pictured due to different convergence

rates. As shown, inference with GP-select using a linear kernel is unable to assign the

data points to the appropriate clusters, whereas GP-select with an RBF kernel succeeds.

we select C ′ = 2 clusters from the full set, and run 40 EM iterations for both kernel

choices (linear and RBF). Note that for mixture models, the notation of C ′ selected

clusters of the C set is analogous to the H ′ selected latent variables from the H full set,

as described in the non-mixture model setting, and the GP-select algorithm proceeds

unchanged. We randomly initialize the variance of the clusters σc and initialize the

cluster means µc at randomly selected data points. Results are shown in Figure 3.

on these data, the linear GP regression prediction cannot correctly assign the data to

their clusters (as seen in Figure 3B), but the nonlinear approach successfully and easily

finds the ground-truth clusters (Figure 3A). Furthermore, even when both approaches

25

were initialized in the optimal solution, the cluster assignments from GP-select with

a linear kernel quickly wandered away from the optimal solution and were identical to

random initialization, converging to the same result shown in iteration 20 of Figure 3B).

The RBF kernel cluster assignments remained at the optimal solution even with number

of selected clusters set to C ′ = 1.

These experiments demonstrate that the selection function needs to be flexible even

for very simple models, and that nonlinear selection functions are an essential tool even

in such apparently straightforward cases.

5.3 Translation Invariant Occlusive models

Now that we have verified that GP-select can be applied to various generative graphical

models and converge to ground-truth parameters, we consider a more challenging model

that addresses a problem in computer vision: translations of objects in a scene.

Model. Translation invariant models address the problem that, e.g., visual objects

can appear in any location of an image. Probabilistic models for translation invariance

are particularly appealing as they allow to separately infer object positions and object

type, making them very interpretable and powerful tools for image processing.

Translation invariant models are particularly difficult to optimize, however, because

they must consider a massive latent variable space: evaluating multiple objects and

locations in a scene leads a latent space complexity of the number of locations expo-

nentiated by the number of objects. Inference in such a massive latent space heavily

relies on the idea of variable selection to reduce the number of candidate objects and

locations. In particular, hand-engineered selection functions that consider translational

26

invariance have been successfully applied to this type of model (Dai and Lücke, 2012b,

2014; Dai et al., 2013). The selection function used so far for reducing latent space

complexity in this model has been constructed as follows. First, the candidate locations

of all the objects in the model are predicted. Then a subset of candidate objects that

might appear in the image are selected according to those predicted locations. Next,

the subset of states Kn is constructed according to the combinations of the possible lo-

cations and numbers of candidate objects. The posterior distribution is then computed

following Equation (2).

This selection system is very costly: the selection function has parameters which

need to be hand-tuned, e.g., the number of representative features, and it needs to scan

through the entire image, considering all possible locations, which becomes computa-

tionally demanding for large-scale experiments. To maximally exploit the capabilities

of the GP-selection function, we directly use the GP regression model to predict the

possible locations of a component without introducing any knowledge of translation in-

variance into the selection function. In this work, a GP regression model is fitted from

the input image to marginal posterior probabilities of individual components appearing

at all possible locations. Therefore, the input to the GP-selection function is the image

to be inferred and the output is a score for each possible location of each component

in the model. For example, when learning 10 components in a D = 30 × 30 pixel im-

age patch, the output dimensionality of GP-select is 9000. This task is computationally

feasible, since GP models scale linearly with output dimensionality. The inference of

components’ locations with GP-select is significantly faster than the selection function

in the original work, as it avoids explicitly scanning through the image.

27

Figure 4: COIL Dataset (Nene et al., 1996): A handful of data points used in experi-

ments with the Translation Invariant Occlusive (InvECA) model, showing the occluding

objects to be learned.

Although there are additional computations necessary for an automatic selection

function like GP-select, for instance due to the adjustment of its parameters, there are

many options to reduce computational costs. First, we may approximate the full N×N

Gram matrix by an incomplete Cholesky approximation (Fine and Scheinberg, 2001)

resulting in a cost of O(N × Q), where Q << N is the rank of the Cholesky approxi-

mation. Second, we may reduce the update frequency of the kernel hyperparameters to

be computed only every T∗ EM iterations, where a T∗ > 1 represents a corresponding

computation reduction. The combination of the Cholesky approximation plus infre-

quent updates will have the following benefits: a factor of five speedup for infrequent

updates, and a factor of (N − Q)2 speedup from incomplete Cholesky, where Q is the

rank of the Cholesky approximation and N is the number of original data points.

COIL Dataset. We apply our GP-selection function to the Invariant Exclusive

Component Analysis (InvECA) model (Dai and Lücke, 2012b; Dai et al., 2013). For

our experiments, we consider an image dataset used in previous work: data were gen-

erated using objects from the COIL-100 image dataset (Nene et al., 1996), taking 16

different objects, downscaled to D = 10× 10 pixels and segmented out from the black

28

background. A given image was generated by randomly selecting a subset of the 16

objects, where each object has a probability of 0.2 of appearing. The appearing objects

were placed at random positions on a 30 × 30 black image. When the objects overlap,

they occlude each other with a different random depth order for each image. In total,

N = 2000 images were generated in the dataset (examples shown in Figure 4). The

task of the InvECA model is to discover the visual components (i.e. the images of 16

objects) from the image set without any label information. We compare the visual com-

ponents learned by using four different selection functions in the InvECA model: the

hand-crafted selection function used in the original work by Dai and Lücke (2012b),

GP-select updated every iteration, GP-select updated every T∗ = 5 iterations, and GP-

select with incomplete Cholesky decomposition updated every iteration, or T∗ = 1 (in

this manner we isolate the improvements due to Cholesky from those due to infrequent

updates). In these experiments, the parameters of GP-select are optimized at the end

of each T∗ EM iteration(s), using a maximum of 20 gradient updates. The number

of objects to be learned is H = 20 and the algorithm pre-selects H ′ = 5 objects for

each data point. The kernel used was the composition kernel, as suggested in Section

4.1, although after fitting the hyperparameters only the RBF kernel remained with large

variance (i.e. a linear kernel alone would not have produced good variable selection,

thus the flexible composition kernel was further shown to be a good choice).

Results. All four versions of the InvECA model using each of the selection func-

tions considered successfully recover each individual objects in our modified COIL

image set. The learned object representations with GP-select are shown in Figure 5.

Four additional components developed into representations, however these all had very

29

Figure 5: Image components and their masks learned by GP-select with the Translation

Invariant model. GP-select learned all objects in the dataset. The first row shows the

mask of each component, the second row shows the learned image components, and the

third row shows only the area of the learned components that had a mask > 0.5. For the

second three-row block of images, the same titles of the first three-row block hold.

low mask values, allowing them to easily be distinguished from other true components.

Next, we compare the accuracy of the four selection functions. For this, we collected

the object locations (pixels) indicated by each selection function after all EM iterations,

applied the selection functions (for the GP selection functions, this was using the final

function learned after all EM iterations) to the entire image dataset again, then com-

pared these results with the ground-truth location of all of the objects in the dataset.

The accuracy of the predicted locations was then computed by comparing the distance

of all ground-truth object location to the location of the top candidate locations from

each selection function. See Figure 6 for a histogram of these distances and the corre-

sponding accuracy for all selection functions. Note that the percentages in the histogram

are plotted in log scale. Also, as a baseline verification, we computed and compared the

30

Figure 6: Prediction accuracy of the four selection functions in the InvECA model.

Functions depicted in the figures: GP-select with no modifications (GP, red), the incom-

plete Cholesky decomposition (GP IChol, blue), with updated kernel hyperparameters

every 5 EM iterations (GP every5, green), and with hand-crafted selection (hand-craft,

cyan). Shown: the log-scale histogram of the prediction accuracy for the four selection

functions, measured by the distance each function’s predicted object location was to

the ground-truth object location. All bars of the selection functions show very similar

accuracy for the various distances.

pseudo log likelihood (Dai et al., 2013) of the original selection function to the three

GP-select based ones. The pseudo log likelihood for all selection functions is shown in

Figure 7. Figures 6-7 show that all four selection functions can very accurately predict

the locations of all the objects in the dataset – the GP-select selection functions yields no

loss in inference performance in comparison to the original hand-engineered selection

function. Even those using speed-considerate approximations (incomplete Cholesky

decomposition of the kernel matrix (GP IChol) and updating kernel hyperparameters

only every 5 EM iterations (GP every5)) have indistinguishable prediction accuracy on

the task.

31

Figure 7: Baseline comparison of the four selection functions in the InvECA model.

Functions depicted in the figures are identical to those in Figure 6. Shown: the con-

vergence of the pseudo log marginal likelihood [of the model parameters learned at

each EM iteration] for the four selection functions over all EM iterations. After about

40 EM iterations, all selection function versions of the algorithm converge to the same

likelihood solution. Simultaneously, the GP-select approaches exhibit no loss of accu-

racy compared to the hand-crafted function, and ’GP IChol’ represents a factor of 100

speedup vs. ’GP’, and ’GP every5’ represents a factor of 5 speedup.

An analysis of the benefits indicate that, as GP-select avoids explicitly scanning

through the image, the time to infer the location of an object is significantly reduced

compared to the hand-crafted function. GP-select requires 22.1 seconds on a single

CPU core to infer the locations of objects across the whole image set, while the hand-

crafted function requires 1830.9 seconds. In the original work, the selection function

was implemented with GPU acceleration and parallelization. Although we must com-

pute the kernel hyperparameters for GP-select, it is important to note that the hyperpa-

rameters need not be fit perfectly each iteration – for the purposes of our approach, a

32

decent approximation suffices for excellent variable selection. In this experiment, up-

dating the parameters of GP-select with 10 gradient steps took about 390 seconds for

the full-rank kernel matrix. When we compute the incomplete Cholesky decomposi-

tion while inverting the covariance matrix, compute time was reduced to 194 seconds

(corresponding to the (N −Q)2 speedup, where Q is the rank of the Cholesky approx-

imation), with minimal loss in accuracy. Furthermore, when updating the GP-select

hyperparameters only every 5 iterations, average compute time was reduced by another

one fifth, again without loss in accuracy.

6 Discussion

We have proposed a means of achieving fast EM inference in Bayesian generative mod-

els, by learning an approximate selection function to determine relevant latent variables

for each observed variable. The process of learning the relevance functions is inter-

leaved with the EM steps, and these functions are used in obtaining an approximate

posterior distribution in the subsequent EM iteration. The functions themselves are

learned via Gaussian process regression, and do not require domain-specific engineer-

ing, unlike previous selection functions. In experiments on mixtures and sparse coding

models with interpretable output, the learned selection functions behaved in accordance

with our expectations for the posterior distribution over the latents.

The significant benefit we show empirically is that by learning the selection function

in a general and flexible nonparametric way, we can avoid using potentially expensive

hand-engineered selection functions. Cost reduction is both in terms of required ex-

33

pertise in the problem domain, and computation time in identifying the relevant latent

variables. Inference using our approach required 22.1 seconds on a single CPU core,

versus 1830.9 seconds with the original hand-crafted function for the complex hierar-

chical model of (Dai et al., 2013).

A major area where further performance gains might be expected is in improving

computational performance, since we expect the greatest advantages of GP-select to

occur for complex models at large scale. For instance, kernel ridge regression may

be parallelized (Zhang et al., 2014), or the problem may be solved in the primal via

random Fourier features (Le et al., 2013). Furthermore, there are many recent devel-

opments regarding the scaling up of GP inference to large-scale problems, e.g., sparse

GP approximation (Lawrence et al., 2002), stochastic variational inference (Hensman

et al., 2013, 2012), using parallelization techniques and GPU acceleration (Dai et al.,

2014), or in combination with stochastic gradient descent (Bottou and Bousquet, 2008).

For instance, for very large datasets where the main model is typically trained with

mini-batch learning, stochastic variational inference can be used for GP fitting as in

(Hensman et al., 2013) and the kernel parameters can be efficiently updated each (or

only every T∗ few) iteration with respect to a mini-batch.

Acknowledgments

We acknowledge funding by the German Research Foundation (DFG) under grants LU

1196/4-2 (JS), LU 1196/5-1 (JL), by the Cluster of Excellence EXC 1077/1 ”Hear-

ing4all” (JL), and by the RADIANT and WYSIWYD (EU FP7-ICT) projects (ZD).

34

References

Bornschein, J., Henniges, M., and Lücke, J. (2013). Are V1 simple cells opti-

mized for visual occlusions? A comparative study. PLoS Computational Biology,

9(6):e1003062.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Platt, J. C.,

Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in Neural Information

Processing Systems 20 (NIPS), Vancouver, British Columbia, Canada, pages 161–

168. MIT Press.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). Bayesian prediction

of deterministic functions, with applications to the design and analysis of computer

experiments. J. American Statistical Association, 86(416):953–963.

Dai, Z. (2016). GP-select Demo on Gaussian mixture models.

https://github.com/fatflake/GP-select-Code/GMM demo.ipynb.

Dai, Z., Damianou, A., Hensman, J., and Lawrence, N. (2014). Gaussian process mod-

els with parallelization and gpu acceleration. NIPS 2014, Workshop on Modern non-

parametrics: automating the learning pipeline. In NIPS Workshop on Modern non-

parametrics: automating the learning pipeline.

Dai, Z., Exarchakis, G., and Lücke, J. (2013). What are the invariant occlusive compo-

nents of image patches? a probabilistic generative approach. In Burges, C., Bottou,

L., Welling, M., Ghahramani, Z., and Weinberger., K., editors, Advances in Neural

Information Processing Systems, pages 243–251.

35

Dai, Z. and Lücke, J. (2012a). Autonomous cleaning of corrupted scanned documents

– a generative modeling approach. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 3338–3345.

Dai, Z. and Lücke, J. (2012b). Unsupervised learning of translation invariant occlu-

sive components. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 2400–2407.

Dai, Z. and Lücke, J. (2014). Autonomous document cleaning – a generative approach

to reconstruct strongly corrupted scanned texts. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 36(10):1950–1962.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The helmholtz machine.

Neural Computation, 7:889–904.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm (with discussion). Journal of the Royal Statis-

tical Society B, 39:1–38.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant represen-

tations over learned dictionaries. Trans. Img. Proc., 15(12):3736–3745.

Exarchakis, G., Henniges, M., Eggert, J., and Lücke, J. (2012). Ternary sparse coding.

In LVA/ICA, Lecture Notes in Computer Science, pages 204–212. Springer.

Fine, S. and Scheinberg, K. (2001). Efficient SVM training using low-rank kernel

representations. Journal of Machine Learning Research, 2:243–264.

36

Goodfellow, I. J., Courville, A., and Bengio, Y. (2013). Scaling up spike-and-slab

models for unsupervised feature learning. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(8):1902–1914.

Gutmann, M. U. and Corander, J. (2015). Bayesian Optimization for Likelihood-Free

Inference of Simulator-Based Statistical Models. Technical report, University of

Helsinki. http://arxiv.org/abs/1501.03291.

Henniges, M., Puertas, G., Bornschein, J., Eggert, J., and Lücke, J. (2010). Binary

Sparse Coding. In Proceedings LVA/ICA, LNCS 6365, pages 450–57. Springer.

Henniges, M., Turner, R. E., Sahani, M., Eggert, J., and Lücke, J. (2014). Efficient

occlusive components analysis. JMLR, 15:2689–2722.

Hensman, J., Fusi, N., and Lawrence, N. (2013). Gaussian processes for big data. In

Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,

UAI 2013, Bellevue, WA, USA, August 11-15, 2013.

Hensman, J., Rattray, M., and Lawrence, N. D. (2012). Fast Variational Inference in the

Conjugate Exponential Family. In Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C.,

Bottou, L., and Weinberger, K. Q., editors, Advances in Neural Information Process-

ing Systems 25 (NIPS), Lake Tahoe, Nevada, United States, pages 2897–2905.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The ‘wake-sleep’ algo-

rithm for unsupervised neural networks. Science, 268:1158 – 1161.

Kingma, D. P. and Welling, M. (2014). Efficient gradient-based inference through trans-

formations between bayes nets and neural nets. In Proceedings of the 31th Interna-

37

tional Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June

2014, pages 1782–1790.

Körner, E., Gewaltig, M. O., Körner, U., Richter, A., and Rodemann, T. (1999). A

model of computation in neocortical architecture. Neural Networks, 12:989 – 1005.

Lawrence, N., Seeger, M., and Herbrich, R. (2002). Fast sparse gaussian process meth-

ods: The informative vector machine. In Advances in Neural Information Process-

ing Systems 15 (NIPS), Vancouver, British Columbia, Canada, pages 609–616. MIT

Press.

Le, Q., Sarlos, T., and Smola, A. J. (2013). Fastfood — computing hilbert space ex-

pansions in loglinear time. In Proceedings of the 30th International Conference on

Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 244–252.

LeCun, Y. (NEC). MNIST database of handwritten digits.

http://yann.lecun.com/exdb/mnist/.

Lücke, J. and Eggert, J. (2010). Expectation truncation and the benefits of preselection

in training generative models. Journal of Machine Learning Research, 11:2855–900.

Lücke, J. and Sahani, M. (2008). Maximal causes for non-linear component extraction.

Journal of Machine Learning Research, 9:1227–67.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009a). Online dictionary learning

for sparse coding. In Proceedings of the 26th Annual International Conference on

Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009, vol-

ume 25, pages 689–696.

38

Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2009b). Non-local sparse

models for image restoration. In IEEE 12th International Conference on Computer

Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009, volume 25, pages

2272–2279.

Meeds, E. and Welling, M. (2014). GPS-ABC: gaussian process surrogate approximate

bayesian computation. In Proceedings of the Thirtieth Conference on Uncertainty in

Artificial Intelligence (UAI), Quebec City, Quebec, Canada, July 23-27, 2014, pages

593–602.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief

networks. In Proceedings of the 31th International Conference on Machine Learning,

ICML 2014, Beijing, China, 21-26 June 2014, pages 1791–1799.

Neal, R. and Hinton, G. (1998). A view of the EM algorithm that justifies incremental,

sparse, and other variants. In Jordan, M. I., editor, Learning in Graphical Models.

Kluwer.

Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library

(coil-100). Technical report, CUCS-006-96.

Olshausen, B. and Field, D. (1997). Sparse coding with an overcomplete basis set: A

strategy employed by V1? Vision Research, 37(23):3311–3325.

Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). Self-taught learn-

ing: Transfer learning from unlabeled data. In Proceedings of the 24th International

39

Conference on Machine Learning, ICML ’07, pages 759–766, New York, NY, USA.

ACM.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press.

Rupp, M., Tkatchenko, A., Müller, K.-R., and von Lilienfeld, O. A. (2012). Fast and

accurate modeling of molecular atomization energies with machine learning. Phys.

Rev. Lett., 108:058301.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and analysis of

computer experiments. Statist. Sci., 4(4):433–435.

Schwaighofer, A., Tresp, V., and Yu, K. (2004). Learning gaussian process kernels

via hierarchical bayes. In Advances in Neural Information Processing Systems 17

(NIPS), Vancouver, British Columbia, Canada, pages 1209–1216. MIT Press.

Sheikh, A.-S., Shelton, J., and Lücke, J. (2014). A truncated EM approach for spike-

and-slab sparse coding. Journal of Machine Learning Research, 15:2653–2687.

Shelton, J., Bornschein, J., Sheikh, A.-S., Berkes, P., and Lücke, J. (2011). Select and

sample - A model of efficient neural inference and learning. In Advances in Neural

Information Processing Systems 24 (NIPS), Granada, Spain., pages 2618–2626.

Shelton, J., Sterne, P., Bornschein, J., Sheikh, A.-S., and Lücke, J. (2012). Why MCA?

nonlinear sparse coding with spike-and-slab prior for neurally plausible image encod-

ing. In Advances in Neural Information Processing Systems 25 (NIPS), Lake Tahoe,

Nevada, United States, pages 2285–2293.

40

Shelton, J. A., Sheikh, A.-S., Bornschein, J., Sterne, P., and Lücke, J. (2015). Nonlinear

spike-and-slab sparse coding for interpretable image encoding. PLoS ONE, 10(5):1–

25.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Narayanan Sundaram,

M., Ali, M., Patwary, P., and Adams, R. (2015). Scalable bayesian opti-

mization using deep neural networks. Technical report, Harvard University.

http://arxiv.org/abs/1502.05700.

Titsias, M. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for

multi-task and multiple kernel learning. In Advances in Neural Information Process-

ing Systems 24 (NIPS), Granada, Spain, pages 2510–2518.

Wilkinson, R. D. (2014). Accelerating ABC methods using gaussian processes. Tech-

nical report, University of Sheffield. http://arxiv.org/abs/1401.1436.

Yuille, A. and Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis?

Trends in Cognitive Sciences, 10(7):301–308.

Zhang, Y., Duchi, J. C., and Wainwright, M. J. (2014). Divide and conquer kernel ridge

regression: A distributed algorithm with minimax optimal rates. Technical report,

University of California, Berkeley. http://arxiv.org/abs/1305.5029.

Zylberberg, J., Murphy, J., and Deweese, M. (2011). A Sparse Coding Model

with Synaptically Local Plasticity and Spiking Neurons Can Account for the Di-

verse Shapes of V1 Simple Cell Receptive Fields. PLoS Computational Biology,

7(10):e1002250.

41

