
Published as a conference paper at COLM 2025

MALT: Improving Reasoning with Multi-Agent LLM Training

Sumeet Ramesh Motwani1, Chandler Smith2, Rocktim Jyoti Das3, Rafael Rafailov4,
Ivan Laptev3, Philip Torr1, Fabio Pizzati3, Ronald Clark1, Christian Schroeder de Witt1

1University of Oxford 2Cooperative AI Foundation 3MBZUAI 4Stanford University

Correspondence: sumeet.motwani@eng.ox.ac.uk, cs@robots.ox.ac.uk
Project page: https://multiagentllmtraining.com/

Abstract

Large Language Models (LLMs) often produce answers with a single chain-
of-thought, which restricts their ability to explore reasoning paths or self-
correct flawed outputs in complex tasks. In this paper, we introduce MALT
(Multi-Agent LLM Training), a novel post-training strategy that divides
the reasoning process into generation, verification, and refinement steps
using a sequential pipeline of heterogeneous agents. During data genera-
tion, each agent is repeatedly sampled to form a multi-agent search tree,
where final outputs are graded against ground-truth data. We then apply
value iteration to propagate reward signals back to each role-conditioned
model, automatically producing multi-agent post-training data without
human or teacher-model supervision. Our off-policy approach allows each
agent to specialize by learning from correct and incorrect trajectories, ul-
timately improving the end-to-end reasoning chain. On MATH, GSM8K,
and CSQA, MALT surpasses the same baseline LLM with relative improve-
ments of 15.66%, 7.42%, and 9.40%. It also generalizes to more challenging
benchmarks, marking an early advance in multi-agent cooperative training.

1 Introduction

Reasoning with Large Language Models (LLMs) is inherently challenging, particularly
for tasks that require multi-step deductions, intermediate computations, or self-correction
(Xiang et al., 2025). Recent work on multi-agent approaches—such as debate frameworks
(Du et al., 2024) or orchestrated problem-solving (Fourney et al., 2024)—has shown promise
by assigning different parts of the reasoning process to separate models, allowing for
refinement and increased deliberation at inference time (Snell et al., 2024). However, the
underlying LLMs are typically the same base model pre-trained on data that lacks exposure
to the specialized roles or meta-strategies involved in solving complex problems, which
introduces a distribution shift while reasoning at test-time (Xiang et al., 2025; Han et al.,
2024). An open gap thus persists: How can we jointly train LLMs to specialize in a multi-agent
setting to improve reasoning? Such a gap persists due to several key obstacles: First, in an
end-to-end supervised training approach, it is difficult to propagate gradient signals through
multiple discrete token-outputs. Second, there is limited role-specific labeled training data.
Third, credit assignment is difficult in reinforcement learning with only sparse outcome
rewards (Tumer & Agogino, 2007). Finally, it is important to determine what type of multi-
agent setup is even useful to implement meta-strategies that can improve reasoning so that
more inference compute can be spent efficiently.

In this paper, we address these challenges by introducing an intuitive strategy to jointly
post-train specialized LLMs in a generate-verify-refine pipeline. This is analogous to how
humans tackle complex tasks—drafting an initial answer, thoroughly verifying and cri-
tiquing it, and refining the solution to match their specifications (Qian et al., 2024). We
propose a method that automatically generates large-scale, labeled data for each agent via
a multi-agent credit assignment approach. With this dataset, our post-training approach

1

Published as a conference paper at COLM 2025

enables role-conditioned models to learn from both positive and negative reasoning tra-
jectories—providing a path to improve reasoning performance across a range of problems
with trained multi-agent setups. We aim to address this critical gap with Multi-Agent LLM
Training (MALT), a new post-training method that we apply to three models (a generator,
verifier, and refiner) solving complex reasoning problems together.

MALT employs a sampling procedure that expands a search tree based on each model’s
outputs with an exponential branching factor, thereby producing large amounts of useful
synthetic data. Role-specific data, particularly when augmented with rationales, has been
shown in previous work to significantly improve performance (Zelikman et al., 2022).
However, this approach leads to a credit assignment problem where internal reasoning
branches may be correct or incorrect and must be labeled solely based on final outcome
rewards to post-train models. To address this, we propose a value-iteration-based attribution
strategy (Sutton & Barto, 2018). By analyzing only the outputs of the search tree, our
method identifies which model introduced an error, enabling credit assignment without
requiring additional multi-agent training data or an oracle policy. This eliminates the need
for intervention in selecting trajectories, generating role-specific data, or designing value
functions, and instead automatically produces reasoning traces from the search tree for post-
training via supervised fine-tuning and preference optimization (Rafailov et al., 2023). MALT
integrates all these steps into an intuitive joint-training procedure, providing performance
improvements and serving as an early step toward unifying search and learning for multi-
agent LLM systems. Our contributions are as follows:

• We are the first to introduce Multi-Agent LLM Training (MALT) to cooperatively
post-train a specialized generator, verifier, and refinement model on challenging
reasoning tasks by leveraging search and subsequent fine-tuning.

• We propose a search-tree expansion process and use a value iteration technique to
propagate outcome rewards to automatically attribute correct and incorrect reason-
ing traces to individual agents. This synthetic data can be utilized for supervised
fine-tuning and reinforcement learning in general multi-agent reasoning pipelines.

• We apply MALT to math and common sense reasoning questions from MATH,
CSQA, and GSM8K, obtaining a relative boost of 15.66%, 9.40%, and 7.42% over a
single-model baseline, also providing other comparisons and ablations.

• We show how MALT on the benchmarks discussed above generalizes to far more
challenging reasoning tasks such as GSM-Symbolic—where, MALT almost matches
the performance of an 8.75× size model from the same series.

2 Related Work

Advanced Reasoning and Inference Compute: Multi-agent architectures have emerged
as an effective way to handle complex reasoning by distributing problem-solving roles
among distinct models (Cobbe et al., 2021; Xiang et al., 2025). Frameworks such as AgentQ
(Putta et al., 2024) and AutoGen (Wu et al., 2024) produce solutions through guided search
and compositional dialogue, but rely on a single underlying model for multiple tasks or
omit a dedicated post-trained verification mechanism. Debate-style (Du et al., 2024) and
orchestrated (Fourney et al., 2024) multi-agent methods enable increased deliberation at
test-time with multiple interacting agents. However, the underlying models lack advanced
training for role specification, which may lead to suboptimal performance or distribution
shifts during test-time (Xiang et al., 2025). In contrast, single-agent approaches utilize
techniques such as introspection (Qu et al., 2024) and self-critique (Saunders et al., 2022;
Kumar et al., 2024) to detect their own errors, but they typically lack the mechanisms to
correct those errors in a single inference pass (Ye et al., 2024). Unlike others, we aim to learn
specialized agents with dedicated functions, thanks to our novel credit assignment strategy
and post-training procedure.

Training Data and Preference Optimization: Using synthetic data generation with
preference-based training has emerged as an important strategy for boosting LLM per-
formance (Zelikman et al., 2022). (Setlur et al., 2024) demonstrate that training on both
correct and incorrect synthetic solutions, optimized with Direct Preference Optimization

2

Published as a conference paper at COLM 2025

(Rafailov et al., 2023, DPO), significantly improves math reasoning performance. (Singh
et al., 2024) surpass purely human-based approaches on challenging math and coding
tasks by repeatedly generating, filtering, and fine-tuning with scalar feedback, while (Pang
et al., 2024) demonstrate how preference signals applied across entire chains-of-thought
refine intermediate reasoning steps. Our work unifies the aforementioned techniques to
create a multi-agent pipeline that orchestrates a generator, verifier, and refinement model,
leveraging search, synthetic data generation, and preference-based post-training to enable
robust multi-step reasoning. We discuss additional related work in Appendix A.7.

3 Preliminaries

Chain of Thought (CoT) An LLM’s output for a question q, with natural language rea-
soning steps (s1, . . . , sn) followed by an answer a, can be viewed as a CoT process sampled
from the distribution:

pd(a | q) ∝
∫

pd(a | s1:n, q)
n

∏
t=1

pd(st | s<t, q) dS.

More generally for complex problems, (Xiang et al., 2025) provide a meta-generalization
that describes the true solution-generating process involving extra latent steps (z1, . . . , zk):

pd(a, s1:n | q) ∝
∫

pd(a, s1:n | z1:k, q)
k

∏
t=1

pd(zt | z<t, q) dZ.

These meta-variables could capture iterative or corrective steps, unfolding a more adaptive,
multi-stage reasoning trajectory. In a multi-agent setup, we consider a process with three
specialized models: a Generator G, a Verifier V , and a Refinement model R producing g, v,
and r respectively. This can be mapped onto the meta-CoT setting, where

p(a | q) =
∫

pG(g | q) pV (v | g, q) pR(a | g, v, q) d(g, v).

Here, g and v, from the standpoint of standard ⟨q, a⟩ datasets, act like latent meta-steps
guiding more complex solution processes, akin to zt in meta-CoT. By explicitly modeling
these roles during joint post-training (see Section 4), the multi-agent sequential deliberation
process allows us to tackle problems beyond a single-pass CoT setting.

Supervised Finetuning (SFT) Given DSFT
train containing positive demonstrations (e.g. cor-

rect generator outputs or useful verifier critiques), we can carry out SFT:

LSFT(πθ) = −E(x,y)∼DSFT
train

T

∑
t=1

log πθ(yt|y<t, x).

which is a simple and relatively successful technique to improve reasoning performance.

Direct Preference Optimisation (DPO) In SFT, we can exclusively use positive samples in
order to improve our test set performance. However, using preference optimization also
allows us to leverage negative samples, y− ≺ y+, where ≺means that y+ is preferred over
y−. DPO (Rafailov et al., 2023) is one such method—a more efficient alternative to classical
RLHF (Christiano et al., 2017)—because instead of employing a full reinforcement learning
loop, it directly optimizes the following contrastive objective:

LDPO(πθ) = −E(x,y+ ,y−)∼DDPO
train

σ

(
β log

πθ(y+ | x)
πref(y+ | x)

− β log
πθ(y− | x)

πref(y− | x)

)
.

We assume πref is a reference policy, obtained through SFT. DDPO
train is a dataset of triplets

including both inputs and positive/negative outputs, and β is the hyperparameter scaling
reward signal strength. We provide a theoretical link between optimizing the DPO objective
and the optimal RL policy in Appendix A.6.1.

3

Published as a conference paper at COLM 2025

3/3
0/3

2/
31/30/3

1/
32/3

1/
3

2/3

5/92/95/
9

sampling

Generator answers

Verifier answers

Refiner answers

SFT

SFT+DPO

SFT+DPO

Generating reasoning trajectories Post-training Inference

Training question

Input question

Sa
m

pl
in

g
fr

om
 P

os
t-t

ra
in

ed
 m

od
el

s a
fte

r M
AL

T

MV

Answer

Post-training

Frozen

Figure 1: MALT Method Overview. Given an input, we consider a three-agent system composed of
a Generator for initial answer production, a Verifier providing a critique, and a Refinement Model
integrating all intermediate reasoning steps into a final output. For questions in the training set,
we introduce a tree search and credit assignment process (Left) to generate synthetic datasets with
reasoning trajectory preference pairs for each model. These are used to post-train individual models
(Center). During inference over the test-set, we perform three parallel sequential passes through the
multi-agent setup, and return the final answer obtained via majority voting (Right).

4 Method: Multi-Agent LLM Training

In reasoning tasks, a single LLM must handle all aspects of the solution generation process -
often leading to limited exploration, a lack of self-correction, and difficulty refining partial
steps (Ye et al., 2024). However, the reasoning process can be broken down into a system of
decentralized LLMs, where each model has differing objectives and/or partial observability.
As described in Section 3, this represents a meta-CoT (Xiang et al., 2025) setting where
intermediate outputs in the multi-agent setup can improve the overall reasoning process.
Although in fully observable and cooperative cases, systems of LLM agents could technically
be simulated by a single centralized LLM, a decomposition into separate heterogeneous
LLM agents offers various benefits analogous to those observed in decentralized multi-agent
learning (Boutilier, 1996; Schroeder de Witt et al., 2020). Decentralization factorizes large
joint action spaces, allowing each agent to focus on smaller sub-tasks under its own partial
observability, leading to more targeted exploration and clear credit assignment (Tan, 1993).
Here, we present our methodology for a multi-agent setting consisting of a sequential
heterogeneous process where agents can be trained based on joint rewards.

4.1 Multi-Agent Inference Setting

We formulate our multi-agent inference setting as a collaborative reasoning framework
designed to solve complex tasks. Let Q denote a dataset of natural language questions,
where each q ∈ Q represents a specific task instance. The objective is to generate a prediction
a ∈ A for a given input q, where A is the set of all possible answers. During training, there
exists a ground truth function f : Q → A, where f (q) = aGT serves as the ideal prediction
for evaluating a. Our framework consists of three specialized LLMs acting as distinct agents,
each defined as a function:

1. Generator (G : Q×PG → OG): Produces an initial response to the question.
2. Verifier (V : OG ×Q×PV → OV): Critiques the generated response for issues.
3. Refinement Model (R : OG×OV ×Q×PR → OR): Integrates feedback to improve

the final prediction.

Here, PG,PV ,PR denote the set of prompts for each model, and OG,OV , and OR are the
sets of possible outputs for the generator, verifier, and refiner respectively. A is the set of
possible answers extracted from the refiner’s output with a fixed deterministic function T.

4

Published as a conference paper at COLM 2025

Formally, we define the interaction between these agents as :

go = G(q, pg)∈OG; vo = V(q, pv, go)∈OV ; ro = R(q, pr, go, vo)∈OR; a = T(ro)∈A.

This setup is reminiscent of how LLMs are used in production, where they receive initial
prompts containing questions, feedback, and are then asked to refine answers (Wang
et al., 2024).We demonstrate in Section 5 that this inference setting enhances performance
compared to single-model approaches. The key insight, however, relies on leveraging
this multi-agent inference setting to generate synthetic data that scales exponentially with
respect to a branching factor. Below, we discuss out data generation and post-training setup.

4.2 Collecting Reasoning Trajectories

In standard single-LLM setups, a single model simply produces an answer a for each ques-
tion q. By contrast, our multi-agent framework uses three specialized agents—Generator,
Verifier, and Refiner—sequentially. To enable training of these agents, we need to capture
how each agent’s output contributes to the final prediction and whether the overall solu-
tion is correct or incorrect. A reasoning trace leading to a contains [go, vo, ro], where the
multi-agent answer generation process will be:

a = T
(

R
(
q, pr, G(q, pg), V

(
q, pv, G(q, pg)

)))
.

During data generation, G,V , and R all share the same base model parameters; in the
subsequent training phase (Section 4.3), each policy is updated independently to specialize
in its respective role. An outcome reward function R : A × A → {0, 1}, based on the
ground truth in the training set, evaluates a to mark the trajectory as either correct (1)
or incorrect (0). Specifically, for a predicted answer a and ground truth aGT, we define
R(a, aGT) = 1, if a = aGT, and 0 otherwise.

To collect role-specific post-training data, we use < q, aGT > pairs from an initial training
set Dtrain associated with each benchmark. Our solution is illustrated in Figure 1 (left).
The following sampling strategy is employed for all models, with a branching factor of
n. For each problem qi ∈ Dtrain in the training data, we sample n completions {gi,j ∼
G(qi)}j=1 from the generator. Then, for each G output gi,j, we produce n verifications
{vi,j,k ∼ V(gi,j, qi)}n

k=1. Finally, for each V output vi,j,k, we generate n refinements {ri,j,k,l ∼
R(gi,j, vi,j,k, qi)}n

l=1.

This process results in n3 trajectories for each training example, totaling |Dtrain| · n3 trajecto-
ries. We use the outcome reward modelR to label the refinement outputs as correct (✓) or
incorrect (×). The exponential branching factor is very useful to collect a large number of
diverse training samples (and inference can be parallelized for efficiency while post-training
will just rely on the fixed dataset collected).

To effectively utilize reward signals from the refinement model’s outputs, we adopt a value
iteration approach to propagate values backward through the reasoning chain. Specifically,
we compute the expected value of each intermediate output (i.e. generator and verifier
outputs) based on the values of downstream outputs from the refiner. This global pooling
approach is useful because an intermediate step’s utility depends on how it influences
downstream outputs and final correctness (see Figure 1, Left). Partial solutions can still
yield correct answers once refined, so simply providing binary labels is insufficient. By
assigning each output an expected value, we better capture the influence on the final reward.
This also allows MALT to be generalized to settings where intermediate steps may not carry
the same labels, and each intermediate output can now be credited in proportion to its
impact on the final solution.

Value Function Definitions We define the value of each refinement node ri,j,k,l by directly
comparing its final answer a to the ground truth:

V(ri,j,k,l) = R
(
T(ri,j,k,l), aGT) ∈ {0, 1}.

5

Published as a conference paper at COLM 2025

The value of a V output vi,j,k is then computed as the expected value of its child refinements:

V(vi,j,k) = El
[
V(ri,j,k,l)

]
≈ 1

n

n

∑
l=1

V(ri,j,k,l).

Similarly, the value of a G output gi,j is the expected value of its child verifier outputs:

V(gi,j) = Ek
[
V(vi,j,k)

]
≈ 1

n

n

∑
k=1

V(vi,j,k).

Each output state’s empirical mean is a Monte Carlo approximation (an unbiased sample
average) of its true expected correctness, indicated by “≈” for each q. This process prop-
agates reward signals from final outputs back through the tree to each intermediate state,
capturing each output’s overall utility.

Thresholding and Binarization To prepare the data for training (SFT and DPO), we
binarize values using a threshold of 0.5, aligning with majority voting principles. Nodes
with values greater than 0.5 are labeled as correct (✓), and those with values less than or
equal to 0.5 are labeled as incorrect (×). The intuition behind this strategy is discussed in
more detail in Appendix A.6.1, where we demonstrate that it ensures the policy’s expected
value monotonically increases. Formally, for each output state s (i.e. output from any model
in the multi-agent setup), we define its label ŝ as ✓if V(s) > 0.5, and × otherwise.

4.3 MALT Post-training

With each output assigned a value, the goal is to now use these for post-training the models
(see Figure 1, Center). We first detail how training data for each model is generated: Each
refinement output ri,j,k,l has an associated value V(ri,j,k,l) ∈ {0, 1}. We create preference
pairs (r+, r−) where r+ is a correct refinement (V(r+) = 1) and r− is an incorrect refinement
(V(r−) = 0) for the same verifier input vi,j,k. Formally:

DR =
{
(r+, r−)

∣∣ r+, r− ∈ {ri,j,k,l}n
l=1, V(r+) = 1, V(r−) = 0

}
,

DV =
{
(v+, v−)

∣∣ v+, v− ∈ {vi,j,k}n
k=1, v̂+ = ✓, v̂− = ×

}
.

For each verifier output vi,j,k, we compute its value V(vi,j,k) and binarize it as v̂i,j,k =
✓if V(vi,j,k) > 0.5, and 0 otherwise. Preference pairs for the verifier model are created by
comparing outputs under the same generator output gi,j: A similar process applies to the
generator model, where generator outputs gi,j are binarized based on their values V(gi,j),
and preference pairs DG are created by comparing outputs under the same query qi. This
tree-expansion process leads to a sufficiently large (see Sec. 5) and diverse dataset.

Refinement and Verifier Model Training Following the data generation process outlined above
and the training setups in Section 3, we first perform SFT on the G, V, R models with the
questions and positive samples in DG, DV , and DR respectively, updating each model’s
policy separately. For G, this is analogous to standard STaR post-training (Zelikman et al.,
2022) with a specialized dataset. Next, on only the SFT updated V and R models, we apply
DPO with question and chosen-rejected pairs in DV and DR respectively. For the Generator,
we opt for SFT-only because DPO does not improve performance (primarily because the
base LLM - Llama 3.1 8B is already extensively post-trained on preferences as a generator
(Grattafiori et al., 2024) and Sec. 5.3). By combining SFT with preference-based updates,
we capture both “ideal” behaviors (through correct samples) and “relative” preferences
(through correct-vs-incorrect pairs). This allows us to not only bootstrap reasoning based on
positive traces but also learn generalizable knowledge about useful reasoning trajectories
(Chu et al., 2025). We depict our method in Figure 1 and algorithm in Appendix A.1.

6

Published as a conference paper at COLM 2025

5 Experiments

Here, we outline the experimental details, including a description of the model, the bench-
marks used for evaluation, and the training pipeline. We then present our main experimental
results, followed by an empirical analysis and baseline comparisons, along with ablations.

5.1 Experimental Details

Benchmarks and Models We use Llama-3.1-8B-Instruct (Grattafiori et al., 2024), chosen
for its open-source nature and balance between competitive baseline performance and
size fitting in a limited compute budget. We evaluate MALT and all baselines on three
widely-used benchmarks: GSM8K (Cobbe et al., 2021), with 7.47k training examples and
1.32k test questions, focused on diverse grade school math problems. For more challenging
mathematical reasoning questions, we use MATH (Hendrycks et al., 2021), with 7.5k training
and 5k test problems. MATH has proven to be consistently difficult for smaller language
models, with Llama 3.1 8B performing around 49.50% test-accuracy.

Lastly, to extend the scope beyond mathematical tasks, we evaluate on CommonsenseQA
(CSQA) (Talmor et al., 2019) with 9.74k training examples and 1.22k dev-set questions.
CSQA is a multiple-choice question answering dataset around commonsense reasoning
problems and has been used similarly by prior work (Zelikman et al., 2022; 2024; Wei et al.,
2023).

Baselines We compare MALT against eight baselines in 2 primary settings, all using
Llama-3.1-8B. First, we implement the inference-only setting with (1) a single-agent (SA)
naive setting in which a single model is used as a generator to provide an outupt, (2) a
multi-agent (MA) setting, where the pre-trained baseline model operates in a sequential
way as a generator, verifier, and refinement agent with the same prompts given to MALT
post-trained models. Our second setting (equal training compute STaR baseline) is with SFT
on all three models with the positive synthetic data. We also compare against an equal
inference compute multi-agent debate baseline (Du et al., 2024) with 3 agents over 3 rounds.

MALT Procedure For MALT, we generate synthetic data for each benchmark separately
using the tree-based approach (Algorithm 1) with a branching factor of n = 3, yielding
27 trajectories per question and approximately 2k–6k labeled pairs per model/benchmark.
Each final answer is compared against the ground truth in the training set to assign a binary
reward, which is then propagated to label the G, V, and R outputs. During this, each model
has a fixed role conditioning prompt template that is also used for baselines and for the post-
trained models. We first train each role-specific Llama-3.1-8B-Instruct model on positive
labels with LoRA-based SFT and then with DPO to incorporate reasoning preference data
for reinforcement learning (discussed in Section 4.3. We use LoRA adapter-based fine-tuning
(Hu et al., 2021), reducing the computational load for post-training (see Appendix A.9 for
more details). At inference, MALT follows a simple sequential inference pass through the
three heterogeneous models reasoning over questions in the test set. Training small models
on long sequences of text can lead to instability/hallucinations (Park et al., 2024), and thus
MALT and baselines employ a three-vote self-consistency mechanism to mitigate this.

5.2 Experimental Results

Our experimental results along with all the baselines are presented in Table 1, along with
Ablations in Tables 4 and 5. Our results are averaged over four runs on random subsets of
the large test-sets across seeds, and we report the standard deviation for all our core results.

Baselines comparison We present baseline results in Table 1. Baseline single agent scores
on MATH, CSQA, and GSM8K are 49.50%, 74.50%, and 84.25%, approximately in line with
scores reported in Llama-3.1-8B-Instruct’s release (Grattafiori et al., 2024). These scores go
up to 52.50%, 75.75%, 86.75% and 53.50%, 79.00%, 87.00% with single model majority voting
and multi-agent majority voting respectively. Additionally, after applying STaR (SFT on

7

Published as a conference paper at COLM 2025

Test Accuracy (%) over 4 seeds ↑

Benchmark
Inference-only STaR Training MALT

MALT
SA SA+MV MA MA+MV SA SA+MV MA MA+MV (w/o MV)

Llama-3.1-8B-Instruct

GSM8K 84.25 ± 2.28 86.75 ± 2.38 84.75 ± 2.86 87.00 ± 4.00 81.75 ± 0.83 84.75 ± 2.68 80.00 ± 1.58 86.75 ± 2.28 83.50 ± 2.18 90.50 ± 2.06

CSQA 74.50 ± 3.35 75.75 ± 5.49 77.50 ± 5.17 79.00 ± 2.55 76.25 ± 4.32 78.75 ± 4.26 75.50 ± 2.69 76.00 ± 1.73 77.50 ± 1.12 81.50 ± 2.29

MATH 49.50 ± 2.06 52.50 ± 2.50 51.75 ± 3.56 53.50 ± 2.87 52.25 ± 1.48 54.00 ± 2.73 52.50 ± 3.20 53.75 ± 2.68 52.25 ± 1.79 57.25 ± 1.48

Qwen-2.5-1.5B-Base

GSM8K 61.75 ± 4.72 65.0 ± 3.56 60.50 ± 2.89 62.25 ± 2.22 63.50 ± 1.73 64.25 ± 2.06 62.50 ± 4.20 64.25 ± 2.87 71.00 ± 3.56 74.50 ± 2.65

Table 1: Benchmark results. We compare MALT with baselines on three different benchmarks using
Llama-3.1-8B-Instruct, and also evaluate GSM8K performance on Qwen-2.5-1.5B-Base. For baselines,
we include different setups such as single agent (SA) and multi-agent (MA), both with and without
equal inference compute based majority voting (MV). MALT outperforms all baselines across both models.

Method MATH CSQA GSM8K

Inference-only SA 49.50 74.50 84.25
Inference-only SA 49.50 74.50 84.25
Multi-Agent Debate 52.00 71.25 86.75
MALT 57.25 81.50 90.50

Table 2: Debate Baseline. MALT significantly
outperforms an equal-inference spend multi-
agent debate baseline (3 models debating for 3
rounds) across MATH, CSQA, and GSM8K.

Method Accuracy (%)

Base Model (Llama 3.1 8B Instruct) 71.75± 2.17
Base Model + MV 73.75± 2.38
Multi-agent + MV 75.25± 2.38
STaR + MV 76.75± 4.60
MALT (Llama 3.1 8B Instruct) 84.75± 3.30
Llama 3.1 70B Instruct 88.25± 2.95

Table 3: Generalization. MALT generalizes from
GSM8K to GSM-Symbolic P1 (GSM-SP1).

positive synthetic CoTs), single-agent baselines achieve around 52.25%, 76.25%, and 81.75%
on MATH, CSQA, and GSM8K, while the multi-agent STaR variant remains around 52.50%,
75.50%, and 80.00%. Self consistency results for STaR variants surpass untrained baselines
but still underperform improvements obtained with MALT. We also evaluate Qwen-2.5-
1.5B-Base (Qwen et al., 2025) for a more diverse analysis. We observe that STaR training
does not improve performance significantly beyond inference only baselines. However,
DPO training for only the generator achieves a 68.75% accuracy and works much better on
non-instruction tuned (base) models. This allows MALT to offer even higher improvements.

MALT core results MALT with Llama-3.1-8B-Instruct (Table 1, right) achieves an accuracy
of 57.25%, 81.50%, and 90.50% on MATH, CSQA, and GSM8K. Overall, MALT significantly
outperforms all baselines, including all settings with supervised fine-tuned models. Over the
untrained model’s performance as a generator, MALT achieves relative improvements of 15.66%,
9.40%, and 7.42% on MATH, CSQA, and GSM8K. This shows the efficacy of our search and
attribution based data generation, post-training, and inference pipeline in MALT across
benchmarks of varying difficulty. MALT on Qwen-2.5-1.5B-Base, when evaluated using
GSM8K, achieves an accuracy of 74.50% and offers a relative improvement of 20.65% over
the single agent baseline. We also compare MALT with an equal inference multi-agent
debate baseline in Table 2, where it significantly outperforms across all three benchmarks.

Generalization to more difficult benchmarks To understand whether MALT on a small
open model generalizes to challenging reasoning tasks, we evaluate the Llama-3.1-8B model
trained with MALT across a similar setup with increased complexity. We test our GSM8K-
based MALT setup on GSM-Symbolic-P1 (Mirzadeh et al., 2024), a complex and much more
challenging reasoning benchmark. From results in Table 3, MALT on Llama-3.1-8B achieves
an 84.75± 3.30% accuracy, outperforming all baselines. Interestingly, MALT also yields
performance comparable to the significantly larger Llama-3.1-70B, which results in 88.25± 2.95%.

8

Published as a conference paper at COLM 2025

Incorrect Correct
Correct Correct

Incorrect Incorrect
Correct Incorrect

0 20 40 60 80 100
Percentage

MATH

CSQA

GSM8K

14.2
11.2

9.5

43.0

70.2
81.0

36.2

14.2
5.8

6.5
4.2

3.8

Figure 2: Self-correction. MALT consistently
increases the number of correct answers by cor-
recting previously incorrect answers at a much
higher rate than introducing new mistakes
compared to a single-model baseline (MV@3).

G V R
MALT Turn-wise Accuracy

84

86

88

90

92

Ac
cu

ra
cy

 (%
)

Baseline

MV Baseline

GSM8K

G V R
MALT Turn-wise Accuracy

74

76

78

80

82

Baseline

MV Baseline

CSQA

G V R
MALT Turn-wise Accuracy

50

52

54

56

58

Baseline

MV Baseline

MATH

Figure 3: Improvement over turns. MALT demon-
strates consistent improvements at each turn. Test
accuracy at each turn from a sequential pass through
the post-trained Generator, Verifier, and Refinement
models (All with MV@3).

Self-consistency From the Llama 3.1 results in Table 1, MALT shows improved reasoning
with majority-voting for self-consistency (Wang et al., 2022), but its performance without MV
remained close to that of the multi-agent inference-only setting. Qualitatively, MALT solves
questions unsolved by any baseline but suffers occasional hallucinations without voting.
Thus, we use a small majority voting factor of 3 and observe that self-consistency reliably
yields a higher relative improvement for MALT over baselines. For instance, on MATH,
self-consistency resulted in a relative improvement of 9.57%, exceeding the 3− 6% gains in
other baselines. In Figure 2, we measure how often MALT flips an incorrect solution into a
correct one versus the opposite. We show that our post-trained generator-verifier-refiner
process results in strong self-improvement with a low rate of mistakes introduced.

Improvement over turns We use GPT-4 to rate the correctness of each step produced
by MALT (on Llama 3.1-8B-Instruct) on the test sets to analyze its performance at each
turn. Figure 3 shows how performance evolves. For e.g., the untrained baseline on MATH
improves from 49.50% to 52.50% with majority voting. MALT, over its 3 reasoning and multi-
agent deliberation turns, increases performance to 53.50% (turn 1 - Generator), 55.75% (turn
2 - Verifier), and 57.25% (turn 3 - Refiner). We observe similar increases across GSM8K and
CSQA. This turn-wise improvement highlights how sequential verification and refinement
are both very important for improving reasoning performance. We provide ablations to
understand why generate-verify-refine is the most appropriate paradigm in Section 5.3.

Overall performance Across all benchmarks, MALT outperforms both zero-shot and
fine-tuned baselines, closing gaps on problems previously unsolved by any baseline. Its
multi-agent approach not only achieves higher average scores but also corrects systematic
errors. For example, the verifier often successfully locates errors by redoing calculations
and providing a precise critique, with the behaviors learnt automatically from synthetic
data generated via our search process. Similarly, for CSQA, the verifier implicitly learns to
focus on aspects of the problem overlooked by the generator, with examples of reasoning
interactions provided in Appendix A.4. Additionally, MALT can be used on any frontier
model since it does not rely on the presence of an oracle model for supervision.

5.3 Ablation studies

Untrained model ablations We test the usefulness of training each individual agent
(Llama MALT setup) by replacing one with an untrained baseline and keeping the other
two MALT agents. As seen in Table 4, this degrades performance on all benchmarks. For
instance, using an untrained generator yields mean accuracies of 54.25% (MATH), 87.00%
(GSM8K), and 78.75% (CSQA), notably lower than our trained system, showing how all
agents benefit from the MALT pipeline.

Importance of generate-verify-refine Next, we measure the impact of ablating one role
from our three-agent pipeline (Llama MALT setup) for simpler two-agent systems. We
compare (i) generate-refine (G + R, skipping the verifier) and (ii) generate-verify (G + V,
skipping the refiner). As shown in Table 5, both setups underperform the full pipeline:

9

Published as a conference paper at COLM 2025

MALT Post-training GSM8K CSQA MATHG V R

✗ ✓ ✓ 87.00 78.75 54.25
✓ ✗ ✓ 85.75 76.75 54.50
✓ ✓ ✗ 86.25 75.50 55.25

✓ ✓ ✓ 90.50 81.50 57.25

Table 4: Ablations with untrained models
(MV@3). Combining untrained agents with
trained ones shows that all LLMs perform best
when cooperating with MALT agents.

Configuration GSM8K CSQA MATH

G only 84.75 78.75 54.00
G + V 88.75 78.00 55.75
G + R 84.75 76.25 54.75

G + V + R (Ours) 90.50 81.50 57.25

Table 5: Performance of ablated multi-agent se-
tups (MV@3). Our experiments show that all
agents in the MALT pipeline are necessary to
achieve the best results.

G + R yields mean accuracies of 54.75% (MATH), 84.75% (GSM8K), and 76.25% (CSQA),
while G + V yields 55.75% (MATH), 88.75% (GSM8K), and 78.00% (CSQA), showing that
our specific multi-agent setup yields stronger results by spending inference for improved
sequential reasoning. Importantly, we note that our three-model pipeline does not rigidly
fix MALT’s usability. It is, instead, a modular and flexible entry-point for multi-agent
training. MALT subsumes the utility of a single model learning from more data, while
providing an opportunity to better use specialized models for improved reasoning. With
our search and credit assignment strategy, MALT reduces the risk of reinforcing a model’s
existing biases, providing diverse training signal for system-level improvement that allows
for generalization across difficult problems.

Effectiveness of DPO over only SFT As shown in Table 1, DPO improves performance
beyond SFT alone (STaR) by using negative data—as observed in (Putta et al., 2024; Setlur
et al., 2024). In particular, purely positive “rationales” can introduce spurious correlations
and degrade SFT performance, which does indeed occur in our empirical and qualitative
results; the contrastive training approach that DPO provides instead helps the model identify
high-advantage reasoning steps to improve with higher sample-efficiency (Rafailov et al.,
2024). For reasoning problems, SFT tends to memorize the data and rules, which is useful to
bootstrap reasoning to a certain extent (Zelikman et al., 2022). However, our results indicate
that this could degrade performance sometimes, and preference optimization methods
(see Appendix A.6.2 for a theoretical analysis and A.9 for possible issues) exhibit better
performance at learning generalizable knowledge for reasoning steps (Chu et al., 2025).

6 Discussion and Conclusion

We presented MALT, a novel post-training strategy dividing CoT reasoning among three
specialized LLMs to tackle complex problems. MALT bridges the gap between prior multi-
agent inference methods and fully-trained multi-agent systems by generating role-specific
data using a tree-based sampling and credit assignment mechanism. Crucially, MALT
utilizes the negative synthetic data to identify and correct flawed reasoning steps with
LLM post-training, improving role-specific reasoning capabilities. Unlike standard single-
LLM setups, our design closely mirrors how humans solve complex tasks or even use
LLMs—attempting a solution, critiquing errors, and finally refining the result. While
we were unable to expand experiments to significantly larger models due to compute
limitations, we have evaluated against a comprehensive set of challenging datasets and
benchmarks. Our generator-verifier-refinement setup focuses on improving meta-strategies
such as self-correction or chaining inference steps, but it can be extended to automatically
learnt roles obtained via search. We discuss this, along with future work such as repeated
rounds of refinement, online RL settings, and scaling the branching factor in Section A.8.

Safety Our approach can be used not just to enhance the reasoning capabilities of LLM
systems, but also address crucial open problems in the safety of multi-agent systems. Impor-
tantly, MALT-trained systems of trusted small models could attain better task performance
while retaining high degrees of trust, producing more powerful overseers within the AI
control setting (Greenblatt et al., 2024). Another prominent application of our approach
would be to train verifiers as safety critics. This could scale up the settings such as OpenAI
CriticGPT (McAleese et al., 2024) to any number of models, resulting in more powerful
safety critics and allowing for the legibility of solutions to be improved.

10

Published as a conference paper at COLM 2025

References
Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In

TARK, volume 96, pp. 195–210. Citeseer, 1996.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher
Ré, and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with
repeated sampling. arXiv preprint arXiv:2407.21787, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep Reinforcement Learning from Human Preferences. In NeurIPS. Curran Associates,
Inc., 2017.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study
of foundation model post-training. arXiv, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and
John Schulman. Training verifiers to solve math word problems. arXiv, 2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, and Ziyi Gao. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning, 2025. URL https://arxiv.org/
abs/2501.12948.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In NAACL, 2019.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. In ICML,
2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike
Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one:
A generalist multi-agent system for solving complex tasks. arXiv, 2024.

Mor Geva, Yoav Goldberg, and Jonathan Berant. Are we modeling the task or the annotator?
an investigation of annotator bias in natural language understanding datasets. In EMNLP,
2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
and Llama Team. The llama 3 herd of models. arXiv, 2024.

Ryan Greenblatt, Buck Shlegeris, Kshitij Sachan, and Fabien Roger. AI Control: Improving
Safety Despite Intentional Subversion. In ICML, 2024.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He.
Llm multi-agent systems: Challenges and open problems. arXiv, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the
math dataset. In NeurIPS, 2021.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text
classification. In ACL, 2018.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In
ICLR, 2021.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu Wu, Valentina Pyatkin, Nathan Lam-
bert, Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. Unpacking dpo and ppo:
Disentangling best practices for learning from preference feedback. In NeurIPS, 2024.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Published as a conference paper at COLM 2025

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and
Aleksandra Faust. Training language models to self-correct via reinforcement learning,
2024. URL https://arxiv.org/abs/2409.12917.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via
search in cooperative partially observable games. In AAAI, 2020.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja
Trebacz, and Jan Leike. LLM Critics Help Catch LLM Bugs. arXiv, 2024.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical
reasoning in large language models, 2024. URL https://arxiv.org/abs/2410.05229.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and
Jason Weston. Iterative reasoning preference optimization, 2024.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from
quality in direct preference optimization. In ACL Findings, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg,
and Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents.
arXiv, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun.
ChatDev: Communicative Agents for Software Development. In ACL, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection:
Teaching language model agents how to self-improve. In NeurIPS, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong
Tu, Jianwei Zhang, Jianxin Yang, and Jiaxi Yang. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In NeurIPS, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language
model is secretly a q-function. In COLM, 2024.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and
Jan Leike. Self-critiquing models for assisting human evaluators. arXiv, 2022.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip
H. S. Torr, Mingfei Sun, and Shimon Whiteson. Is Independent Learning All You Need in
the StarCraft Multi-Agent Challenge? arXiv, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv, 2017.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral
Kumar. Rl on incorrect synthetic data scales the efficiency of llm math reasoning by
eight-fold. In NeurIPS, 2024.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu Wang, Ping Yu, Ram Pasunuru,
Mrinmaya Sachan, Jason Weston, and Asli Celikyilmaz. The art of llm refinement: Ask,
refine, and trust, 2023. URL https://arxiv.org/abs/2311.07961.

12

https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.07961

Published as a conference paper at COLM 2025

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia,
Peter J. Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex
Alemi, Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed,
Hanie Sedghi, Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey
Pennington, Jiri Hron, Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp,
Lechao Xiao, Maxwell L. Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris
Warkentin, Yundi Qian, Yamini Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-
Dickstein, and Noah Fiedel. Beyond human data: Scaling self-training for problem-solving
with language models. TMLR, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters. arXiv, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: an introduction, 2nd edn.
adaptive computation and machine learning, 2018.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In NAACL, 2019.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pp. 330–337, 1993.

Kagan Tumer and Adrian Agogino. Distributed agent-based air traffic flow management.
In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’07, New York, NY, USA, 2007. Association for Computing Machinery.
ISBN 9788190426275.

Jiayin Wang, Weizhi Ma, Peijie Sun, Min Zhang, and Jian-Yun Nie. Understanding user
experience in large language model interactions. arXiv, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
lms, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large lan-
guage models. In NeurIPS, 2023.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin
Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications
via multi-agent conversation framework. In COLM, 2024.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden,
Duy Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp
Franken, Nick Haber, and Chelsea Finn. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv, 2025.

Guangtong Yang, Chen Li, Yudong Yao, Ge Wang, and Yueyang Teng. Quasi-supervised
learning for super-resolution pet. Computerized Medical Imaging and Graphics, 2024.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part
2.2, how to learn from mistakes on grade-school math problems. arXiv, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning
with reasoning. In NeurIPS, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Good-
man. Quiet-star: Language models can teach themselves to think before speaking. In
COLM, 2024.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/
2402.19446.

13

https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446

Published as a conference paper at COLM 2025

A Appendix

A.1 Algorithm

MALT orchestrates a three-agent system—comprising a Generator for initial answers, a
Verifier for critiques, and a Refiner that integrates these steps into a final response. Dur-
ing training, we expand a multi-agent search tree for each question, labeling correct and
incorrect branches via a value iteration based credit assignment mechanism. This generates
role-specific preference pairs for post-training each agent via supervised fine-tuning and
preference optimization. Algorithm 1 provides a complete description of the data collection
and training pipeline for MALT.

Algorithm 1 Multi-Agent LLM Training and Synthetic Data Generation (MALT)

Require: Initial Dataset D, Models G, V, R, Branching factor n
GOAL: Trained models G′, V′, R′

1: Initialize datasets SG, SV , SR as empty sets
2: for q ∈ D do
3: AG ← {gj = G(q)}n

j=1 ▷ Generate n outputs from G
4: for each gj ∈ AG do

5: A
gj
V ← {vj,k = V(q, gj)}n

k=1 ▷ Generate n outputs from V

6: for each vj,k ∈ A
gj
V do

7: A
gj ,vj,k
R ← {rj,k,l = R(q, gj, vj,k)}n

l=1 ▷ Generate n outputs from R

8: for each rj,k,l ∈ A
gj ,vj,k
R do

9: Compute V(rj,k,l) = R(rj,k,l , aGT) ▷ Reward for R output
10: Add (q, gj, vj,k, rj,k,l ,V(rj,k,l)) to SR
11: end for
12: Compute V(vj,k) =

1
n ∑n

l=1 V(rj,k,l) ▷ Value V for V output

13: Binarize v̂j,k = I[V(vj,k) > 0.5]
14: Add (q, gj, vj,k, v̂j,k) to SV
15: end for
16: Compute V(gj) =

1
n ∑n

k=1 V(vj,k) ▷ Value V for G output

17: Binarize ĝj = I[V(gj) > 0.5]
18: Add (q, gj, ĝj) to SG
19: end for
20: end for
21: Training the Models
22: G′ ← SFT(G,SG) ▷ Fine-tune G with supervised data

23: VSFT ← SFT
(

V,
{
(q, gj, vj,k) | (q, gj, vj,k, v̂j,k) ∈ SV , v̂j,k = 1

})
▷ Fine-tune V on positive

samples
24: V′ ← DPO(VSFT,SV) ▷ Train V with DPO using preferences

25: RSFT ← SFT
(

R,
{
(q, gj, vj,k, rj,k,l) | V(rj,k,l) = 1

})
▷ Fine-tune R on positive samples

26: R′ ← DPO(RSFT,SR) ▷ Train R with DPO using preferences
27: return G′, V′, R′

A.2 Experiments with GSM-Symbolic

GSM-Symbolic (Mirzadeh et al., 2024) is a synthetic extension of GSM8K that uses symbolic
templates to produce varied instances (e.g., altering names, numerical values, or adding
clauses). The “P1” variant adds an extra clause per question, making the problems more
challenging and exposing whether a model relies on shallow memorization or can genuinely
handle additional reasoning steps. Testing MALT (Llama 3.1 8B Instruct model trained on

14

Published as a conference paper at COLM 2025

the GSM8K training set) on GSM-Symbolic P1 allows us to understand whether the multi-
agent setup allows for robust multi-step reasoning beyond the original data distribution. In
such cases, even though the base model is much smaller compared to Llama 3.1 70B, it can
find mistakes in subsequent iterations. Given that GSM-Symbolic tests for reasoning and
penalizes memorization, we see MALT achieving a performance comparable to Llama-3.1-
70B Instruct.

Method Accuracy (%)

Base Model (Llama 3.1 8B Instruct) 71.75± 2.17
Base Model + MV 73.75± 2.38
Multi-agent + MV 75.25± 2.38
STaR + MV 76.75± 4.60
MALT (Llama 3.1 8B Instruct) 84.75± 3.30
Llama 3.1 70B Instruct 88.25± 2.95

Table 6: Comparison with a larger model. MALT on Llama 3.1 8B Instruct outperforms a significantly
larger model (Llama 3.1 70B Instruct) on GSM-Symbolic P1, demonstrating an important jump in
reasoning performance on challenging benchmarks. Results are over 4 seeds for a random subset of
the GSM-Symbolic P1.

A.3 Multi-Agent Debate Baseline

Based on (Du et al., 2024), we provide results for a multi-agent debate baseline. In order
to ensure a fair comparison between MALT and the multi-agent debate baseline in terms
of inference spend, we used a baseline with 3 agents debating over 3 rounds. We present
our results in Table 7 and note that MALT clearly outperforms an equal inference compute
multi-agent debate baseline across all three benchmarks.

Benchmarks MATH CSQA GSM8K

Base Model 49.50 74.50 84.25
Multi-Agent Debate 52.00 71.25 86.75
MALT 57.25 81.50 90.50

Table 7: Debate. MALT significantly outperforms an equal-inference spend multi-agent debate
baseline.

A.4 Qualitative Examples

In this section, we present three key qualitative examples: a synthetic training example for
SFT and DPO, a qualitative performance comparison between an untrained and a trained
verifier, and a complete MALT setup demonstrating a backtracking and improvement
reasoning cycle that generates a correct answer.

GSM8K Synthetic Dataset Sample for the Refinement Model (GT Answer = 25)

System prompt
You are an expert problem solver that refines math solutions based on feedback.

Input
Question: Marco loves trading cards. He has a total of 500 cards on hand, and a fourth of
them are duplicates. Marco decides to trade one-fifth of these duplicates for completely new
cards to his friend Josh. How many new cards did Marco get?
Initial Answer: I’d be happy to help you solve this problem step by step.
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates.

15

Published as a conference paper at COLM 2025

Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading
one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
* First, we need to find the number of duplicates Marco has. Since a fourth of his
cards are duplicates, we can find the number of duplicates by multiplying 500 by
1/4. * Then, we need to find one-fifth of the number of duplicates to find out how
many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards
traded from the total number of duplicates to find the remaining duplicates.
Step 4: Execute our plan
* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates =
125 x 1/5 = 25 * Marco traded 25 cards with Josh.
Step 5: State our conclusion and double-check our answer
* Marco got 25 new cards from trading with Josh.
Final Answer: 25

Rejected Output
Based on the initial answer and the verification feedback, I refine the solution as follows:
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates.
Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading
one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
* First, we need to find the number of duplicates Marco has. Since a fourth of his
cards are duplicates, we can find the number of duplicates by multiplying 500 by
1/4. * Then, we need to find one-fifth of the number of duplicates to find out how
many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards
traded from the total number of duplicates to find the remaining duplicates.
Step 4: Execute our plan
* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates
= 125 x 1/5 = 25 * Marco traded 25 cards with Josh. Since he traded one-fifth of
his duplicates, we can find the total number of duplicates he has left by adding the
number of cards traded back to the number of duplicates: 125 + 25 = 150 * To find
the number of new cards Marco got, we subtract the number of duplicates he traded
from the total number of duplicates: 150 - 25 = 125
Step 5: State our conclusion and double-check our answer
* Marco got 125 new cards from trading with Josh.
Final Answer: Final Answer: 125

Accepted Output
Refined Solution:
Step 1: Identify the key information given in the question
* Marco has a total of 500 cards. * A fourth of them are duplicates. * Marco trades
one-fifth of his duplicates with Josh.
Step 2: Determine what the question is asking us to find
* The question is asking us to find how many new cards Marco got from trading
one-fifth of his duplicates with Josh.
Step 3: Plan our approach to solving the problem
* First, we need to find the number of duplicates Marco has. Since a fourth of his
cards are duplicates, we can find the number of duplicates by multiplying 500 by
1/4. * Then, we need to find one-fifth of the number of duplicates to find out how
many cards Marco traded with Josh. * Finally, we’ll subtract the number of cards
traded from the total number of duplicates to find the remaining duplicates.
Step 4: Execute our plan

16

Published as a conference paper at COLM 2025

* Number of duplicates = 500 x 1/4 = 125 * One-fifth of the number of duplicates =
125 x 1/5 = 25 * Marco traded 25 cards with Josh. * Remaining duplicates = 125 - 25
= 100
Step 5: State our conclusion and double-check our answer
* Marco got 25 new cards from trading with Josh.
Final Answer: 25

Qualitative Example of an Untrained VS Trained Verifier

Question
Billy buys a 12-pack of soda from the store. If he has twice as many brothers as sisters, and he
has 2 sisters, how many sodas can he give to each of his siblings if he wants to give out the
entire 12-pack while giving each the same number?

Initial Answer
I’d be happy to help you solve this problem step by step.
Step 1: Identify the key information given in the question.
* Billy buys a 12-pack of soda. * He has twice as many brothers as sisters. * He has 2
sisters.
Step 2: Determine what the question is asking us to find.
The question is asking us to find out how many sodas Billy can give to each of his
siblings if he wants to give out the entire 12-pack while giving each the same number.
Step 3: Plan our approach to solving the problem.
Let’s let x be the number of siblings (brothers and sisters). We know that Billy has 2
sisters, so the number of brothers is 2 times the number of sisters, which is 2x. The
total number of siblings is the sum of the number of sisters and brothers, which is x +
2x = 3x. We are given that Billy has a 12-pack of soda, so we can set up the equation:
12 = x + 2x
Step 4: Execute our plan, showing all work clearly.
To solve for x, we can combine like terms:
12 = 3x
Divide both sides by 3:
4 = x
So, Billy has 4 siblings in total (2 sisters and 2 brothers).
Step 5: State our conclusion and double-check our answer.
Since Billy has 12 sodas and 4 siblings, he can give:
12 ÷ 4 = 3
sodas to each of his siblings.
Final Answer: 3

Untrained Verifier
As a verifier, I will critically evaluate the initial answer provided above.
The initial answer states that Billy can give 3 sodas to each of his siblings. Let’s verify
the answer by performing the calculations.
Verification:
1. We are given that Billy has 12 sodas and 4 siblings (2 sisters and 2 brothers). 2. To
find out how many sodas each sibling can get, we can divide the total number of
sodas (12) by the number of siblings (4):
12 ÷ 4 = 3
The initial answer is correct! Billy can indeed give 3 sodas to each of his siblings.
Feedback:
The initial answer is mathematically correct. The calculations are accurate, and the
solution is well-explained. The answer is also logically consistent with the given
information. Well done!

17

Published as a conference paper at COLM 2025

However, it’s always a good idea to double-check the calculations to ensure accuracy.
In this case, the verification step confirms that the initial answer is correct.

Trained Verifier
As a verifier, I will carefully evaluate the initial answer provided above.
The initial answer states that Billy can give 3 sodas to each of his siblings. Let’s
double-check the calculations to ensure the answer is mathematically correct.
The initial answer claims that Billy has 4 siblings (2 sisters and 2 brothers). However,
the question states that Billy has twice as many brothers as sisters, and he has 2
sisters. This implies that the number of brothers is 2 times the number of sisters,
which is 2 x 2 = 4 brothers. Therefore, Billy actually has 2 sisters and 4 brothers,
making a total of 6 siblings.
The initial answer also claims that Billy can give 12 sodas to 4 siblings, resulting in 3
sodas per sibling. However, dividing 12 sodas among 6 siblings would actually give
2 sodas per sibling, not 3.
Conclusion:
The initial answer contains a calculation error. The correct number of siblings is 6,
not 4. Therefore, Billy can give 2 sodas to each of his siblings, not 3.
As a verifier, I recommend that the initial answer be corrected to reflect the correct
calculation. The correct answer is 2 sodas per sibling.

A Complete Reasoning and Improvement Sequence Example with MALT on
CommonsenseQA

Question
He looked at the field of pumps, all slowly churning oil out of the what?

Choices
A: manual
B: street
C: restaurant
D: ground
E: service station

Initial Answer (Generator)
Reasoning steps: 1. The context of the question is about pumps churning oil, which
suggests a location where oil is being dispensed or extracted. 2. A ”manual” (A)
does not typically relate to a location where oil is churning. 3. A ”street” (B) is a
general location, but it’s not specific to oil churning. 4. A ”restaurant” (C) is not
associated with oil churning. 5. The ”ground” (D) could be a possible location, but
it’s not the most specific or common location for oil churning. 6. A ”service station”
(E) is a common location where oil is churning, as it’s where cars are serviced and oil
is dispensed.
Final Answer: E

Verifier
The initial answer is E: service station.
This answer seems to be the most logical choice given the context of the question.
The phrase ”field of pumps” suggests a location where multiple pumps are present,
and a service station is a common place where multiple pumps are used to dispense
oil and other fuels.

18

Published as a conference paper at COLM 2025

However, the question asks what the pumps are churning oil out of, not where the
pumps are located. This changes the interpretation of the question.
Considering the phrase ”churning oil out of,” it implies that the pumps are extracting
or pumping oil from a source. In this case, the most likely source of oil would be the
ground, as oil is often extracted from the ground.
Therefore, the correct answer is D: ground.

Refined Answer
Reasoning steps: 1. The context of the question is about pumps churning oil, which
suggests a location where oil is being extracted or dispensed. 2. The phrase ”churning
oil out of” implies that the pumps are extracting or pumping oil from a source. 3.
The most common source of oil is the ground, as it is often extracted from the earth.
4. Therefore, the pumps are churning oil out of the ground.
Final Answer: D

Ground Truth (not provided to any model)
D

A.5 Detailed Discussion

We now discuss key design choices. Simplicity with theoretical grounding—particularly
the assurance of a trained policy with a monotonically increasing value—was a primary
consideration. We opted for DPO over PPO-based methods due to our focus on a straight-
forward offline data generation process, treating our approach as an independent learning
problem in a centralized setting (Lerer et al., 2020) with a single iteration (the key difference
being that our agent policies post-training differ). In this setting, DPO is more stable than
PPO and requires less overhead. While PPO could use the value computed at each branch
as a reward for post-training nodes (a promising future direction), it introduces significant
computational complexity. Moving from offline to online RL with additional computational
overhead might indeed improve performance.

Our value iteration method, when binarized, resembles global majority-based pooling: for a
given node and branch, the binary reward of the leaf nodes in the subtree determines the
usefulness of the branch, analogous to binarizing values propagated through the tree. In
contrast, local pooling computes the binary value of a branch based only on the majority
outcomes of its direct children, propagating this process to the leaf nodes. We also leave the
choice between MCTS and an expansive tree-based sampling strategy as an open problem.
Given our limited tree depth, tree-based sampling proved efficient, supported synthetic
data generation with an exponential branching factor, and produces explainable outputs.
Our dataset is collected offline, and individual models are trained on this synthetic data.
While this approach works empirically, handling any new, out-of-distribution data would
require iterative rollout and post-training methods.

Based on our empirical results and the modularity of our algorithmic approach, it is highly
plausible that our method will scale to larger models and scenarios with many agents, thus
laying the foundations for new state-of-the-art AI agents based on systems of cooperative
frontier models. Overall, our multi-agent system is currently composed of a sequence of
agents that start out with the same parameters and different prompts. MALT performs joint
training to transform this into a heterogeneous agent setting, where agents with different
parameters operate cooperatively. Exploring other multi-agent settings is an important
direction for subsequent work.

19

Published as a conference paper at COLM 2025

A.6 Theoretical Justification for MALT

A.6.1 Credit Assignment Strategy

Here, we provide a theoretical justification for why our framework, when updating the
agent policies based on binarized pooled rewards with a threshold at θ = 0.5, leads to policy
improvements. We formalize MALT as a three-step MDP, define the pooling operation
through value iteration, and demonstrate how off-policy updates increase the expected
reward.

The reasoning process in MALT is modeled as a three-step MDP over a set of M questions
{qi}M

i=1 drawn from a distribution Q. For each question qi, the process begins at the initial
state s0 = qi, where an initial answer gi,j is sampled from the generator policy πG(· | s0)
for j = 1, . . . , n. The state then transitions to s1 = (qi, gi,j). At this second state, a critique
vi,j,k is sampled from the verifier policy πV(· | s1) for k = 1, . . . , n, leading to the state
s2 = (qi, gi,j, vi,j,k). Finally, at this state, a refined answer ri,j,k,l is sampled from the refiner
policy πR(· | s2) for l = 1, . . . , n, and a reward R(s2, ri,j,k,l) is assigned: 1 if ri,j,k,l is correct, 0
otherwise. The joint policy is defined as π = (πG, πV , πR), and the objective can now be
expressed as:

J(π) = Eq∼Q

[
Eg∼πG(·|s0)

Ev∼πV(·|s1)
Er∼πR(·|s2)

[
R(s2, r)

]]
.

Reasoning trajectories are collected offline under an initial policy π(0) = (π
(0)
G , π

(0)
V , π

(0)
R),

yielding M · n3 total samples. Through this tree-sampling method, values propagate
backward using value iteration: Leaf nodes have V(ri,j,k,l) = R(ri,j,k,l) ∈ {0, 1}, veri-
fier nodes compute V(vi,j,k) = 1

n ∑n
l=1 V(ri,j,k,l), and generator nodes estimate V(gi,j) =

1
n2 ∑n

k=1 ∑n
l=1 V(ri,j,k,l). The true value V∗(ν) = Eπ(0) [R | ν] is approximated by these Monte

Carlo estimates.

We note that our analysis rests on the coverage assumption, where for any relevant action
(e.g., g with V∗(g) > E[V∗(g)]) over π

(0)
G , the initial policy satisfies π

(0)
G (g | q) ≥ α > 0,

with analogous conditions for π
(0)
V and π

(0)
R .

Independence holds across levels: refinements ri,j,k,l are i.i.d. given (gi,j, vi,j,k), critiques vi,j,k
are conditionally independent given gi,j, answers gi,j are i.i.d. given qi, and questions qi are
from Q. Moreover, our exponential branching factor n allows for sufficient sampling.

This allows us to show that our value estimates are within a certain ϵ bound of their true
values with high probability. For a node ν with m downstream refinements (e.g., m = n2 for
gi,j), the value estimate V(ν) = 1

m ∑m
l=1 Rl , where each Rl ∼ Bernoulli(V∗(ν)) provides an

unbiased estimator of V∗(ν). Hoeffding’s inequality bounds the estimation error:

P
(
|V(ν)− V∗(ν)| ≥ ϵ

)
≤ 2 exp(−2mϵ2).

For generator nodes (m = n2), this becomes:

P
(
|V(gi,j)− V∗(gi,j)| ≥ ϵ

)
≤ 2 exp(−2n2ϵ2).

Thus, applying a union bound over all Mn generator nodes, we find that with probability at
least 1− δ, the estimation error for any given generator node for all questions satisfies

|V(gi,j)− V∗(gi,j)| ≤ ϵ, where ϵ =

√√√√ ln
(

2Mn
δ

)
2n2 .

MALT binarizes node values using a threshold of 0.5: V̂(ν) = 1 if V(ν) > 0.5, and 0
otherwise. This is analogous to majority-voting, where V(ν) > 0.5 indicates that most
refinements are correct, aligns with the Bernoulli decision boundary for binary rewards,

20

Published as a conference paper at COLM 2025

and balances misclassification costs for conservative updates. The updated policy π(1)
shifts probability mass toward these “high-value” nodes using Supervised Finetuning (SFT)
and Direct Preference Optimization (DPO). For the refiner, SFT is applied for nodes where
V̂(ri,j,k,l) = 1 followed by DPO using preference pairs (r+, r−).

Similarly for the verifier, SFT is followed by DPO on its credit assigned preference pairs. For
the generator, SFT is performed using answers where V̂(gi,j) = 1. These updates improve
the joint policy by prioritizing actions that yield higher expected rewards under π(0). In
Section A.6.2, we discuss why policy optimizing our DPO objective based on data collected
offline under π(0) is identical to the optimal RL policy.

Finally, we provide an intuitive explanation of our threshold θ used for credit assignment.
In iterative settings, θ should be an adaptive factor increasing from 0.5 to 1. However, in our
offline setting, 0.5 is a balanced threshold to use for the following reasons:

• Lower Thresholds (θ < 0.5): This allows for greater sample-efficiency as more
branches labeled as correct are used as part of training. However, it might introduce
noise into the training process with samples that have low values being chosen as
correct.

• Higher Thresholds (θ > 0.5): This would allow for a focus on actions leading to
higher-value nodes, reducing variance. However, having θ too high would reduce
sample efficiency.

Using θ = 0.5 provides a balance suitable for a single iteration based on an offline generated
dataset. By formalizing our value iteration approach and policy updates, we have shown
how MALT increases the probability of selecting outputs leading to higher expected return
from the system, and thus increases overall multi-agent performance.

A.6.2 Policy optimizing the DPO objective is identical to Optimal RL Policy

To support our claims in Appendix A.6.1, we leverage Theorem 1 from (Putta et al., 2024)
and Theorem 6.1 from (Setlur et al., 2024), adjusted for our binarization setting:

Theorem. Consider a policy π that optimizes our objective over trajectories generated by
a reference policy πref. At each node (state) ht, preferences between actions during DPO are
generated according to:

p(aw
t ≻ al

t | ht) ∝ σ
(

Q̂(ht, aw
t)− Q̂(ht, al

t)
)

, (1)

where:

• aw
t and al

t are two win/loss actions at node ht,

• Q̂(ht, a) ∈ {0, 1} is the binarized value function, representing the expected reward
of action a at state ht,

Then, the policy that optimizes the Direct Preference Optimization (DPO) objective is
identical to the optimal RL policy:

π∗(a | ht) ∝ πref(a | ht) exp

(
Q̂(ht, a)

β

)
, (2)

where β is the DPO hyperparameter.

The proof for Theorem 1 in (Putta et al., 2024) shows that the policy π∗ approximates
the optimal RL policy. That is, we can approximate the optimal RL policy if we generate
preferences under the optimal value function (or an approximation thereof, i.e. our binarized
version as shown below).

In our setting, since Q̂(ht, a) ∈ {0, 1}, the exponential term simplifies to:

21

Published as a conference paper at COLM 2025

• exp
(

1
β

)
when Q̂(ht, a) = 1,

• 1 when Q̂(ht, a) = 0.

Therefore, the optimized policy becomes:

π∗(a | ht) ∝

πref(a | ht) exp
(

1
β

)
, if Q̂(ht, a) = 1,

πref(a | ht), if Q̂(ht, a) = 0.
(3)

This means that the policy π∗ increases the probability of selecting actions with Q̂(ht, a) = 1
by a constant factor relative to the reference policy πref. By optimizing the DPO objective
with these binarized preferences, we ensure that the policy increasingly favors actions
leading to higher expected rewards, aligning with our credit assignment strategy described
in Appendix A.6.1. This supports our claim of (approximate) monotonic improvement, as
the policy updates move us closer to the optimal policy by consistently selecting actions
associated with higher binarized values.

A.7 Additional Related Work

Inference Time Compute: Strategic use of inference-time compute can also boost accuracy.
(Brown et al., 2024) demonstrates that repeated sampling from a single model improves
coverage, while (Snell et al., 2024) shows that iterative refinement can outperform naive
scaling in certain tasks. Meanwhile, supervised fine-tuning (SFT) remains the backbone
of LLM adaptation (Devlin et al., 2019; Howard & Ruder, 2018), but can demand large
volumes of human-labeled data. Quasi-supervised methods (Yang et al., 2024) address data
scarcity by providing supervision for intermediate steps. Finally, (Zelikman et al., 2022) and
(Xiang et al., 2025) underscore the effectiveness of structured chain-of-thought prompting for
complex tasks, while (Cobbe et al., 2021) confirm that an explicit verifier stage reduces errors
on GSM8K. Our work unifies the aforementioned techniques to create a multi-agent pipeline
that orchestrates a generator, verifier, and refinement model, leveraging search, synthetic
data generation, and preference-based training to enable robust multi-step reasoning.

Multi-Turn RL Strategies: Recent work on multi-turn RL (Zhou et al., 2024) focuses on live
model interactions over long horizons. MALT instead presents an offline training scheme,
where models are post-trained on a preference dataset. Works such as (Shridhar et al., 2023)
focus on allowing base LLMs to improve their answers with refinement strategies, and (Qu
et al., 2024) further extend such work by allowing for repeated self-improvement turns with
the same model. In contrast, MALT focuses on developing a framework where multiple
models can reason together to improve overall system performance, and is focused on
post-training each model in the system for its specialized role.

A.8 Future Directions

A.8.1 Improving Multi-Agent Systems

Our findings showcase the potential of multi-agent LLM systems optimized with fine-tuning
and collaborative inference techniques. There are several future directions from this line
of work: Using PPO (Schulman et al., 2017) and the exact value propogated backward for
each trajectory to update model weights, possibly in an online RL fashion, might produce
strong results with additional computational overhead (Ivison et al., 2024). Moreover, we
provide several levers around the number of models (where the three model setup can be
used iteratively), controlling the branching factor for data generation, examining the effect
of majority voting on more samples, changing the attribution threshold, or treating the
attribution threshold as an adaptive parameter when iteratively training and rolling out
from the multi-agent system (see Appendix A.9). Moreover, prompt-tuning strategies and
different roles can be considered or distillation techniques. We note that these are all specific
and interesting directions. However, they lie beyond the scope of this paper, where our

22

Published as a conference paper at COLM 2025

goal is to introduce a new multi-agent post-training methodology and demonstrate strong
empirical performance.

As for expanding beyond the Generate-Verify-Refine paradigm, it is possible for an orches-
trator (human or automated) to either specify different roles or the number of rounds of
interaction required. In case repeated interactions are required, the search tree can just be
expanded in terms of its depth, and instead of an exponential production of steps, an MCTS
process can be used to more efficiently prune our tree to collect synthetic data at each step.
Roles can also be decided by a search process, where several proposed roles collaborate and
are pruned until a good combination is found for post-training. However, these steps remain
beyond the scope of our work, where our goal was to introduce a multi-agent post-training
framework that can be conveniently expanded in the near future.

A.8.2 Relation to DeepSeek R1 and LLM Mid-training

With the concurrent release of (DeepSeek-AI et al., 2025, DeepSeek R1) and similar reasoning
models, an open gap remains: How do we generate cold-start data to enable better exploration of
meta-strategies with reinforcement learning based training of LLMs? MALT is not a competing,
but a complementary framework to such advances in single-model reasoning. Importantly,
it can be used in two specific ways: MALT can provide search trajectories that could be
distilled into reasoning paths that can be used for instruction tuning so as to prime the
LLM for reinforcement learning (i.e. providing the LLM a baseline level of exploration/self
correction/self refinement capabilities so that RL can be significantly more efficient). An
alternative approach is to use PPO style online RL methods for multi-agent training with the
same credit assignment strategy we have described, instead of collecting offline preferences.
This is a viable direction in the presence of more computational resources for training and
inference.

A.9 Additional Information

For SFT, we used LoRA with a learning rate multiplier of 0.1 and a batch size of 8 to avoid
overfitting. For preference optimization, we used Direct Preference Optimization (DPO)
with a preference tuning learning rate multiplier to 0.1, training beta parameter of 0.2,
and adapter weight configured to 0.2. We varied the number of epochs between 1 to 10
based on the size of the synthetic dataset for each model and leave a deeper exploration
of hyperparameter configurations that could require a significant amount of compute to
future work. SFT training was often until convergence. DPO training did not necessarily
converge by the end of all iterations. For the Generator, we find that SFT+DPO actually
lowers performance (for e.g. 52.25% on MATH with SFT and 51.25% with SFT+DPO)—likely
because Llama 3.1 8B-Instruct already underwent post-training with DPO on a very similar
generator data distribution for benchmarks (Grattafiori et al., 2024), making DPO on a
similar distribution prone to overfitting, consistent with observations in (Setlur et al., 2024).

We keep our prompts the same for every baseline and trained model on a given benchmark.
Our prompts use CoT and zero-shot prompting. We use a temperature of 0.3 for Llama 3.1
8B Instruct since it was qualitatively good enough to prevent hallucinations and still led to
diverse enough samples. MALT requires the presence of an initial training set containing
question-answer pairs, which led to the use of MATH, CSQA, and GSM8K.

During inference for the data collection strategy, using an exponential branching factor does
not add significant compute overhead because inference calls can be parallelized when
sampling from a model with the exact same input. Moreover, during training, we obtain a
fixed dataset upon which LoRA fine-tuning can be conducted. LoRA adapters ensure that
the model weights themselves aren’t duplicated, thus requiring only minimal additional
memory for the adapters themselves while the base models remain the same. For our
ablation with only the Generator and Refinement model, we specify an empty verification
to the Refinement model, requiring it to directly refine and improve the generated answer.

23

Published as a conference paper at COLM 2025

A.10 Limitations and Ethics Statement

We note that even at low temperatures, model performance on benchmarks often exhibits
high variance. To address this within our computational constraints, we conducted evalua-
tions on random subsets of test-sets across four seeds. While CommonsenseQA is known to
contain many biased or incorrectly labelled questions (Geva et al., 2019), we utilized it in a
manner consistent with prior work.

A.11 Acknowledgments

We thank Aleks Petrov, Dulhan Jayalath, Xingyi Yang, Tala Aljaafari, Markian Rybchuk,
Kalyan R, Milind Maiti, Divyansh Garg, and Lewis Hammond for their time and insightful
discussions. SM dedicates this work to the memory of his grandmother, Mohini Motwani.

24

	Introduction
	Related Work
	Preliminaries
	Method: Multi-Agent LLM Training
	Multi-Agent Inference Setting
	Collecting Reasoning Trajectories
	MALT Post-training

	Experiments
	Experimental Details
	Experimental Results
	Ablation studies

	Discussion and Conclusion
	Appendix
	Algorithm
	Experiments with GSM-Symbolic
	Multi-Agent Debate Baseline
	Qualitative Examples
	Detailed Discussion
	Theoretical Justification for MALT
	Credit Assignment Strategy
	Policy optimizing the DPO objective is identical to Optimal RL Policy

	Additional Related Work
	Future Directions
	Improving Multi-Agent Systems
	Relation to DeepSeek R1 and LLM Mid-training

	Additional Information
	Limitations and Ethics Statement
	Acknowledgments

