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MSTI-Plus: Introducing Non-Sarcasm Reference Materials to
Enhance Multimodal Sarcasm Target Identification

Anonymous Author(s)

ABSTRACT
Sarcasm is a subtle expression that indicates the incongruity be-
tween literal meanings and factual opinions. For multimodal posts
in social medias which consist of both images and texts, sarcasm
expressions are even more widespread. Recent works have paid at-
tentions to Multimodal Sarcasm Target Identification (MSTI), which
focuses on detecting aspect terms of mockery or ridicule as sarcasm
targets. However, the current MSTI benchmark only contains an-
notations on fine-grained sarcasm targets within sarcastic samples.
In practice, it will be featured by two major limitations. First, there
lack annotations on non-sarcasm aspects to inform deep models
to perceive the semantic difference between sarcasm targets and
non-sarcasm aspects. As a result, deep models will tend to incor-
rectly recognize non-sarcasm aspects as sarcasm targets. Second,
there lack non-sarcasm samples to inform deep models to perceive
the inherent semantics of sarcasm intentions. Due to the subtle
characteristic of sarcasm expressions, models trained with only
fine-grained supervision signals cannot thoroughly understand the
sarcasm semantics, making the fine-grained task of sarcasm target
identification restricted. Motivated by these limitations, this work
reconstructs a more comprehensive MSTI benchmark by introduc-
ing both fine-grained non-sarcasm aspect annotations for existing
sarcasm samples and non-sarcastic samples as non-sarcasm ref-
erences to enable deep models to clearly perceive the mentioned
information during training. Based on the multi-granularity (i.e.,
both aspect-level and sample-level) non-sarcasm information in-
troduced into this new benchmark, this work further proposes a
pluggable Semantics-aware Sarcasm Target Identification mech-
anism to enhance sarcasm target identification by modeling the
overall semantics of sarcasm intentions via an auxiliary sample-
level sarcasm recognition task. By modeling the overall semantics
of sarcasm intention, deep models can obtain a more comprehen-
sive understanding on sarcasm semantics, leading to improved
performance on fine-grained sarcasm target identification. Exten-
sive experiments are conducted to validate our contribution. Both
the dataset and implementation code will be released once the paper
is accepted.
Relevance Statement: This work aims to provide a solid foun-
dation for user sentiment analysis on social medias by reducing
the interference of subtle sentiment expressions which are widely
widespread in webs.

CCS CONCEPTS
• Information systems → Sentiment analysis; Multimedia
information systems.

KEYWORDS
Multimodal sarcasm target identification, social media analysis,
sentiment analysis, multimodal deep learning.

perfect weather for the eclipse
today here in kc. #eclipse2017

<user> oh good! i was wondering
when the next train was arriving!
you’ re always so helpful …, mta.

sarcasm target

non-sarcasm aspect

non-sarcasm aspect

sarcasm target

non-sarcasm aspect

Figure 1: Examples for sarcasm samples containing both sar-
casm aspects (shown in the green color) and non-sarcasm
aspects (shown in the red color). Left: the cloudy weather
within the image is contrary to the textual description “per-
fect weather”. Right: the negative information conveyed by
“blank train arrival schedule” within the image is contrary to
the positive sentiment conveyed by “the helpful work of the
transportation organization dubbed mta” within the text.

1 INTRODUCTION
Sarcasm is a subtle form of sentiment expression where the lit-
eral meanings contradict the factual opinions of people [9]. As
the sarcastic utterances frequently appear on social media plat-
forms, sarcasm detection receives considerable attentions and plays
a crucial role in various social media analysis applications such as
sentiment analysis [24] or public opinion mining [26]. With the
rapid development of social platforms, users tend to share mul-
timodal posts consisting of images and texts onto social medias
like Twitter or Facebook. Under this background, researchers begin
to focus on multimodal sarcasm detection [2, 4, 19, 21, 27, 37, 39],
which leverages both visual and textual modalities to determine
whether a post conveys the sarcastic sentiment. Compared with
textual sarcasm detection, multimodal sarcasm detection models
can further leverage the incongruity information between image
and text to mine the sarcasm intention and hence achieve enhanced
performance. Recently, researchers further pose the fine-grained
sarcasm detection task dubbed Multimodal Sarcasm Target Identifi-
cation (MSTI) [36], aiming at detecting aspect terms of mockery or
ridicule as sarcasm targets within sarcastic multimodal samples.

Sarcasm target identification is important for understanding sar-
casms in depth, as well as improving the interpretability for sarcasm
detection. Existing works implement multimodal sarcasm target
identification mainly based on theMSTI benchmark released in [36].
The MSTI benchmark consists of multimodal sarcasm samples with
fine-grained annotations for both visual and textual sarcasm tar-
gets. Based on the released MSTI benchmark, existing works train
multimodal deep models to identify sarcasm targets within sar-
castic samples. However, as shown in Figure 1, there usually exist
non-sarcasm aspects (shown in the red color) that do not convey
the sarcasm intention in sarcastic samples. As the current MSTI
benchmark does not contain the supervision signal of non-sarcasm
aspects, the trained models cannot explicitly perceive the semantic
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difference between sarcasm targets and non-sarcasm aspects. As
a result, the trained models may incorrectly treat sarcasm target
identification as a common aspect term extraction task [17, 18, 23]
and tend to incorrectly recognize non-sarcasm aspects as sarcasm
targets (as will be shown in Figure 6 of our experiments). Motivated
by the above observation, this work takes a further step to include
fine-grained annotations of non-sarcasm aspects into the bench-
mark. To this end, we manually annotate the non-sarcasm aspects
for samples of the current MSTI benchmark. Supervised by the
fine-grained information of both sarcasm targets and non-sarcasm
aspects, deep models can explicitly perceive the semantic differ-
ence between sarcasm targets and non-sarcasm aspects, leading to
clearly improved performance for sarcasm target identification.

Moreover, in practice, sarcasm is a comprehensive sentiment
expression which should be understood by considering the overall
semantics of samples. Only fine-grained supervision within sarcasm
samples cannot effectively guide deep models to thoroughly under-
stand the sarcasm semantics, which in turn restricts deep models’
ability in the fine-grained sarcasm target identification task. Hence,
we consider integrating the sample-level supervision of sarcasms as
a higher-level guidance to lead deepmodels to better understand the
inherent semantics of sarcasm intentions. With this consideration,
our work further introduces non-sarcastic samples as the sample-
level non-sarcasm references. To this end, non-sarcastic multimodal
samples with fine-grained annotations on non-sarcasm aspects re-
organized from the existing Grounded Multimodal Named Entity
Recognition (GMNER) benchmark [41] are incorporated into the
current MSTI benchmark. We have manually checked that all the
incorporated samples do not convey the sarcasm intention. With
both extra fine-grained annotations on non-sarcasm aspects of ex-
isting sarcasm samples and the newly incorporated non-sarcasm
samples, we coin the reconstructed benchmark as MSTI-Plus.

Based on themulti-granularity (i.e., both aspect-level and sample-
level) non-sarcasm information introduced in the reconstructed
MSTI-Plus benchmark, we further propose a pluggable Semantics-
aware Sarcasm Target Identification (SaSTI) mechanism, which can
be flexibly attached on top of existing multimodal sarcasm target
identification models. As motivated by the above discussion, the
core idea of the proposed SaSTI mechanism mainly focuses on im-
plementing fine-grained sarcasm target identification under the
guidance of the overall understanding for sarcasm expressions. To
this end, a sample-level sarcasm identification task is introduced
on top of sample features to inform the overall understanding for
sarcastic expressions. Specifically, to model the overall semantics of
sarcasm intentions, a semantic memory is dynamically maintained
during training by performing moving average on sample-level
features of sarcasm expressions. Afterwards, the semantic memory
will be utilized to inform specific sarcasm targets of textual tokens
or visual objects, making the fine-grained sarcasm target identifi-
cation performed with the guidance of the overall understanding
for sarcasm intentions. By introducing both the new benchmark
and new method, this work has the following advantages compared
to existing works [20, 36]. First, with fine-grained supervision sig-
nals of both sarcasm targets and non-sarcasm aspects, deep models
can explicitly perceive the semantic difference between them, pre-
venting from incorrectly treating sarcasm target identification as
a common aspect term extraction task. Second, by modeling the

overall semantics of sarcasm intentions with the aid of sample-level
non-sarcasm references, deep models can obtain a more comprehen-
sive understanding for sarcasm expressions, leading to improved
performance on the fine-grained target identification task. Exten-
sive experiments have been conducted to validate the contribution
of this work.

To sum up, the main contributions of this work are listed as
follows:

• This work draws the first attention on the limitation of the
current MSTI benchmark, including: 1) lacking annotations
on non-sarcasm aspects to inform deep models to perceive
the semantic difference between sarcasm targets and non-
sarcasm aspects; 2) lacking non-sarcasm samples to inform
deep models to perceive the inherent semantics of sarcasm
intentions.

• This work proposes a more comprehensive benchmark by
introducing both fine-grained non-sarcasm aspect annota-
tions for existing sarcastic samples and non-sarcastic sam-
ples, which enables deep models to more clearly perceive
the inherent semantics of sarcasms with the aid of supervi-
sion signals provided by the introduced non-sarcasm refer-
ences.

• Based on the multi-granularity non-sarcasm references in-
troduced in our reconstructed benchmark, this work further
proposes the pluggable SaSTI mechanism to enhance multi-
modal sarcasm target identification based on the guidance
of the overall understanding for sarcasm intentions.

• Extensive experiments are conducted based on our pro-
posed benchmark. The experimental results clearly demon-
strate the advantages brought by this work.

2 RELATEDWORKS
Sarcasm Detection. Sarcasm detection leverages the incongruity
of sentiment within contexts to mine sarcastic intentions. Initially,
researchers primarily focus on the text modality, applying a vari-
ety of techniques ranging from feature engineering to deep neural
networks to detect incongruity information in texts [8, 10, 16, 33,
34, 38, 42]. For example, Tay et al. [34] and Xiong et al. [38] model
incongruous interactions between individual words for sarcasm
detection by using attention-based neural networks. Babanejad et
al. [1] conduct sarcasm detection by extending the architecture of
BERT to mine sarcastic intentions. With the rapid development of
social platforms, multimodal posts consisting of text and images are
widely shared on social medias. Under this background, multimodal
sarcasm detection has received increasing attentions and a series of
valuable works have emerged [14, 27, 30, 35, 37, 39]. In particular,
Liang et al. [19] introduce the cross-modal graph to shape the sar-
castic relations across the image and text modalities. Wen et al. [37]
propose a dual perceiving architecture to model the incongruity
between texts and images from the factual and sentiment views.
Qin et al. [30] leverage CLIP [31] to mine sarcasm cues from the
text, image, and text-image interaction views.
Sarcasm Target Identification. To further understand sarcasms
in depth, researchers have recently introduced the task of fine-
grained sarcasm detection. Early works mainly focus on detecting
sarcasm targets in texts [15, 28, 29]. With the growing number
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of multimodal posts on social media platforms, models that rely
solely on the text modality face challenges in detecting sarcastic
targets within multimodal posts. To this end, researchers begin
to explore fine-grained multimodal sarcasm detection [7, 36]. In
particular, Wang et al. [36] propose the Multimodal Sarcasm Target
Identification (MSTI) task and release a benchmark consisting of
multimodal sarcasm samples with fine-grained annotations on both
textual and visual sarcasm targets. Their proposed approach utilizes
a cross-modal attention mechanism to detect sarcasm targets within
texts and images. Lin et al. [20] further propose to enhance sarcasm
target identification by generating explanations for sarcasms as
contextual information.

However, existing works on multimodal sarcasm target identifi-
cation are primarily based on the MSTI benchmark released in [36],
which only involves annotations on sarcasm targets of sarcastic sam-
ples. Due to the lack of fine-grained annotations on non-sarcasm
aspects, it is hard to perceive the semantic difference between sar-
casm targets and non-sarcasm aspects. As a result, models based
on the MSTI benchmark may incorrectly treat sarcasm target iden-
tification as a common aspect term extraction task and tend to in-
correctly recognize normal non-sarcasm aspects as sarcasm targets.
On the other hand, only fine-grained supervision within sarcasm
samples cannot inform deep models to thoroughly perceive the
inherent semantics of sarcasm intentions, making the fine-grained
task of sarcasm target identification restricted. Motivated by this
limitation, this work constructs the MSTI-Plus benchmark by fur-
ther introducing both aspect-level and sample-level non-sarcasm
references into the dataset. With the newly introduced annotations
on non-sarcasm aspects, deep models trained on the MSTI-Plus
benchmark can more explicitly perceive the semantic difference
between sarcasm targets and non-sarcasm aspects. Moreover, with
the introduced non-sarcasm samples as sample-level non-sarcasm
references, deep models can be trained to perceive the overall se-
mantics of sarcasm intentions, which can be utilized to provide
positive supports for fine-grained sarcasm target identification.

3 THE MSTI-PLUS BENCHMARK
In order to enable deep models to focus on perceiving the seman-
tic difference between sarcasm targets and normal non-sarcasm
aspects, this work introduces a more comprehensive multimodal
sarcasm target identification benchmark dubbed MSTI-Plus, which
involves fine-grained annotations on both sarcasm targets and nor-
mal non-sarcasm aspects. In general, multimodal sarcasm target
identification mainly involves two major subtasks, i.e., textual sar-
casm target identification and visual sarcasm target identification.
For the visual sarcasm target identification subtask, the current
MSTI benchmark treats it as an object detection task, which focuses
on detecting the bounding boxes of sarcasm targets from images.
However, based on our empirical experiments, we find that end-to-
end object detectors are usually hard to train for this identification
task which involves subtle and complex human sentiments. More-
over, the main focus for visual sarcasm target identification lies in
detecting visual sarcasm targets to provide interpretabilities for ex-
isting sarcasm detection systems [19, 21, 35], rather than accurately
detecting their bounding boxes as a precision-demanding visual
task such as instance segmentation or object detection in automatic
drive. Hence, this work advocates to perform the visual sarcasm

Text
this
guy

definitely
deserves

$
15
an

hour
!
#

minimumwage

wthis guy definitely de-
serves $15 an hour! #
minimumwage

Sarcasm

Non-Sarcasm

Object Detection

AnnotationImage

Multimodal Sarcasm sample

Non-Sarcasm

Annotation
B-Sarcasm
I-Sarcasm

O
O
O
O

B-Normal
I-Normal

O
O
O

Figure 2: Example for multimodal data with fine-grained an-
notations on both sarcasm targets and non-sarcasm aspects.

target identification subtask as a classification problem based on
visual targets extracted from external object detectors, i.e., identify
whether a visual target conveys the sarcasm intention. Details for
the MSTI-Plus dataset construction are as follows.

3.1 Data Collection
We collect available multimodal posts from the MSTI dataset [36]
and the MNER dataset [41] to construct the MSTI-Plus dataset.
Specifically, we collect 2,500 sarcastic image-text pairs from the
MSTI dataset, which involve fine-grained labels for both textual
and visual sarcasm targets annotated by Wang et al. [36]. In order
to balance the number of different types of samples, we also collect
2,500 non-sarcastic multimodal posts from the MNER dataset as
sample-level non-sarcasm references. For the 5,000 multimodal
samples collected in our dataset, we further annotate fine-grained
non-sarcastic aspects for both text and image modalities as aspect-
level non-sarcasm references. For the image modality, we first adopt
VinVL [43] which is a commonly-used object detection model to
extract visual targets from images, and then annotate whether
they are sarcasm targets. In this work, our annotators focus on
manually checking the existing labels and annotating fine-grained
non-sarcasm aspects for both texts and images.

3.2 Fine-grained Annotation
Our annotations focus on whether the textual aspects and visual
objects of multimodal samples express the sarcastic intention or
not. To this end, each textual and visual target is annotated with
either a sarcastic or non-sarcastic label. As shown in Figure 2, we
can see a lazy man within the image lying on the chair. This sample
mainly conveys the negative sentiment for the man by using the
sarcastic utterance. Hence, we annotate the phrase “this guy” as the
sarcasm target according to the BIO (Beginning, Inside, Outside)
regulation [32]. On the other hand, the phrase “an hour” that does
not convey the sarcastic sentiment is annotated as a non-sarcasm
aspect. For the image modality, the first visual region shown in the

3
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the fine-grained annatation process 

sarcastic 
intention?

semantics 
judgement

<user> oh good! i was wondering when the
next train was arriving! you’ re always so
helpful and reliable, mta.

Object
Dectection

target annotation

Multimodal samples with
fine-grained annotations. 

YES

NO

  mta: B-Sarcasm
  train: B-Normal

Non-Sarcasm Sarcasm

Figure 3: The annotation process in which annotators perform the fine-grained annotation for a multimodal sample post. First,
the raw text and image, as well as visual targets detected by external object detectors, are allocated to annotators. Second, the
annotators check whether a sample conveys the sarcasm intention based on its semantic content. Afterwards, the annotators
will label textual aspects and visual targets as sarcasm targets or normal non-sarcasm aspects according to their understanding.

blue box will also be annotated as a sarcasm target. In contrast, the
remaining visual regions will be annotated as non-sarcasm aspects.

Formally, the labels used to annotate targets in texts and images
are as follows: 1) B-Sarcasm: indicates the beginning of a sarcasm
target consisting of a word or a phrase; 2) I-Sarcasm: denotes
an inside part of a sarcasm target consisting of a phrase; 3) B-
Normal: indicates the beginning of a normal non-sarcasm aspect,
representing that the word does not convey the sarcastic intention;
4) I-Normal: denotes an inside part of a normal non-sarcasm aspect
consisting of a phrase; 5)O: indicates that the word does not belong
to an aspect term; 6) Sarcasm: indicates that a detected visual target
conveys the sarcastic intention; 7) Non-Sarcasm: denotes that an
extracted visual target does not carry the sarcastic meaning. Among
the above labels, B-Sarcasm, I-Sarcasm, B-Normal, I-Normal, and
O are used to annotate the textual modality, while Sarcasm and
Non-Sarcasm are used to annotate the image modality.

3.3 Annotation Process
Given a multimodal post, the participated annotators apply the
corresponding labels mentioned above to annotate the textual and
visual modality, respectively. The annotation process is shown in
Figure 3. The annotators first check whether a sample post conveys
the sarcastic intention based on its semantic information. After-
wards, the annotators label textual aspects and visual targets as
sarcasm targets or normal non-sarcasm aspects. To ensure the anno-
tation quality, each multimodal post is labeled by three annotators.
In the annotation process, we face two major challenges, including
1) the limited contents of sample posts: solely depending on
the sample content, the annotators have limitations in accurately
understanding the sarcastic intention without extra background
knowledge; 2) the annotation discrepancy due to the subjec-
tive judgement for sarcasm contents: as the sarcasm targets
usually subtly exist in multimodal posts, the annotations will show
understanding discrepancies across annotators. To address the first
problem, each annotator will explore the background contents cor-
responding to the sample to be annotated, which enables the an-
notators to conduct a more reasonable annotation. For the second
challenge, we establish a two-round annotation agreement to mini-
mize the subjectivity of annotators. Specifically, in the first-round,
if at least two annotators agree the annotation for a textual word
or visual target, the corresponding fine-grained annotation will be
accepted. Samples having rejected fine-grained annotations will be
re-labeled by other three annotators via a second-round annotation

Table 1: The statistics of the MSTI-Plus benchmark.

Split #Tweet #Textual aspect #Visual target

Sarcasm Non-sarcasm Sarcasm Non-sarcasm
Train 3,062 1,490 4,158 897 7,243
Dev 612 285 854 165 1,426
Test 614 297 830 225 1,433
Total 4,288 2,072 5,842 1,287 10,102

(a)  Text Modality (b)  Image Modality

Both

Both

Only the
Sarcasm Target

Only the
Sarcasm Target

Others

Others

Figure 4: Proportions of different sarcastic sample types
based on the presence of sarcasm targets and normal non-
sarcasm aspects. The notation “Both” indicates the propor-
tion of sarcastic samples containing both sarcasm targets
and normal non-sarcasm aspects within the corresponding
modality, “Only the Sarcasm Target” indicates the propor-
tion of sarcastic samples containing only sarcasm targets
within the corresponding modality, and “Others” indicates
the proportion of sarcastic samples containing no sarcasm
targets within the corresponding modality.
agreement process. Only the sample that passes the above annota-
tion agreement process can be placed into our dataset, otherwise it
will be discarded. We perform the quality control work to ensure
the effectiveness of data (shown in Section A of supplementary).

3.4 Dataset Analysis
In Table 1, we show the statistics of our dataset. After the above
annotation agreement process, 4,288 samples are remained in our
dataset. In this work, 3,062/612/614 tweets are respectively utilized
as Train/Dev/Test samples in the experiments. Table 1 also shows
the statistics for fine-grained text aspects and visual targets. It
can be observed that both the text and image modalities contain
a large amount of non-sarcasm aspects. Moreover, as shown in
Figure 4, we also respectively visualize the proportions of different
sarcastic sample types based on the presence of sarcasm targets
and normal non-sarcasm aspects. Taking the text modality (shown
in Figure 4 (a)) as an example, there include three cases: sarcastic
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Figure 5: Our proposed SaSTI mechanism attached on top of deep models. Specifically, our approach introduces a sample-level
sarcasm identification task on top of sample features to inform comprehensive semantics of sarcasm expressions. Besides,
a semantic memory is introduced to inform the textual token or the visual token with close distance to it. Afterwards, the
semantic memory will be utilized to inform specific sarcasm targets of textual tokens or visual objects, which enables the
fine-grained sarcasm target identification to perform with the guidance of the overall understanding for sarcasm intentions.

samples containing both sarcasm targets and normal non-sarcasm
aspects within the text modality, sarcastic samples containing only
sarcasm targets within the text modality, and sarcastic samples
containing no sarcasm targets within the text modality. The image
modality (shown in Figure 4 (b)) is featured by similar cases. We can
see that sarcasm targets and non-sarcasm aspects coexist within
a large number of sarcastic samples, which shows the necessity
of exploring the semantic difference across them. Hence, based on
the above analysis, compared to solely leveraging sarcasm targets
for training, models that consider non-sarcasm aspects during the
training stage can be explicitly informed to perceive the semantic
difference between sarcasm targets and non-sarcasm aspects, which
can prevent from incorrectly recognizing non-sarcasm aspects as
sarcasm targets.

4 SARCASM TARGET IDENTIFICATION WITH
NON-SARCASM REFERENCES

4.1 Problem Statement
This work focuses on multimodal sarcasm target identification in-
volving both sarcastic and non-sarcastic samples. Specifically, each
sample contains a textual description𝑊𝑖 , an image 𝐼𝑖 , and visual
targets 𝑃𝑖 = {𝑝𝑖,1, 𝑝𝑖,2, · · · , 𝑝𝑖, 𝑗 } ( 𝑗 denotes the number of visual
targets within a sample) extracted by an external object detecton
model. The main purpose of multimodal sarcasm target identifica-
tion is to learn an identification model F (𝑊𝑖 , 𝐼𝑖 , 𝑃𝑖 ) by leveraging
the fine-grained supervision information about sarcasm targets.
After training, the identification model F (𝑊𝑖 , 𝐼𝑖 , 𝑃𝑖 ) is expected to
recognize fine-grained sarcastic labels for multimodal samples, i.e.,
𝑌𝑇
𝑖,𝑗

∈ {B-Sarcasm, I-Sarcasm, B-Normal, I-Normal, O} for textual
words and 𝑌 𝐼

𝑖, 𝑗
∈ {0, 1} for visual targets, where 1 represents that

𝑝𝑖, 𝑗 is a sarcastic target and vice versa.

4.2 Model Overview
Based on the multi-granularity (i.e., both aspect-level and sample-
level) non-sarcasm references introduced in the reconstructedMSTI-
Plus benchmark, this work further proposes an effective multi-task

framework which involves sarcastic supervision information of
different levels to fully utilize the non-sarcasm reference materials.
Figure 5 depicts the overall architecture of our training frame-
work. First, we introduce fine-grained supervision of non-sarcasm
aspects to train deep models, which enables deep models to ex-
plicitly perceive the semantic difference between sarcasm targets
and normal non-sarcasm aspects. On the other hand, we introduce
sample-level supervision of sarcasms as a higher-level guidance
to encourage deep models to perceive the overall semantics of
sarcasm expressions, which is then utilized to enhance the fine-
grained multimodal sarcasm target identification task. To this end,
we design a pluggable Semantics-aware Sarcasm Target Identifi-
cation (SaSTI) mechanism, which can be flexibly appended on top
of existing multimodal sarcasm target identification models (i.e.,
the “Multimodal Transformer Network” in Figure 5). Specifically,
a sample-level sarcasm identification task is introduced on top of
sample features to inform the overall understanding of sarcasms
for MSTI enhancement. To model the overall semantics of sarcasm
intentions, a semantic memory is dynamically maintained during
training by performing moving average on sample-level features
of sarcastic sample posts. Afterwards, the modeled semantic mem-
ory will be utilized to inform specific sarcasm targets respectively
within the text and image modality, which enables the fine-grained
sarcasm target identification task implemented based on the overall
understanding for sarcasm semantics.

4.3 Multimodal Sample Processing
This work utilizes BERT [5] to process the textual description
𝑃𝑖 into textual features M = [m[𝐶𝐿𝑆 ],m1, · · · ,m𝑛] ∈ R(𝑛+1)×𝑑 ,
where 𝑛 and 𝑑 respectively represents the number of word tokens
and the feature dimension. For the image modality, we utilize Vi-
sion Transformer (ViT) [6] to extract features respectively from
each visual target, and then concatenate their [CLS] tokens as
R = [r1[𝐶𝐿𝑆 ], r

2
[𝐶𝐿𝑆 ], · · · , r

𝑗
[𝐶𝐿𝑆 ]] ∈ R𝑗×𝑑 , where 𝑗 represents the

number of visual targets within 𝑃𝑖 . Moreover, in order to provide
the image context for these fine-grained visual targets, we also
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utilize ViT to extract visual features from the whole image 𝐼𝑖 , result-
ing in: V = [v[𝐶𝐿𝑆 ], v1, v2, · · · , v𝑎] ∈ R(𝑎+1)×𝑑 , where 𝑎 represents
the number of image tokens. Afterwards, visual features of both
the whole image V and the fine-grained visual targets R will be
concatenated to establish the final visual modality feature, which
is denoted as N = [V,R] ∈ R(𝑎+𝑗+1)×𝑑 .

Afterwards, for each multimodal sample, its textual modality
featureM and visual modality feature𝑁 will be input into a followed
multimodal transformer network to undergo a thorough cross-
modal interactive process, resulting in mutually reinforced textual
features H ∈ R(𝑛+1)×𝑑 and visual features O ∈ R(𝑎+𝑗+1)×𝑑 . The
mentioned multimodal transformer network can be implemented
flexibly. In our work, we utilize the existing architecture of either
UMT [40] or MSTI [36] to implement it.

4.4 Semantics-aware Sarcasm Target
Identification

The main idea of the SaSTI mechanism focuses on enhancing fine-
grained sarcasm target identification based on the overall semantics
of sarcasms informed by the introduced sample-level non-sarcasm
references.
Modeling Overall Semantics of Sarcasms. Given the textual
feature H ∈ R(𝑛+1)×𝑑 and visual feature O ∈ R(𝑎+𝑗+1)×𝑑 output
by the multimodal transformer network mentioned above, SaSTI
introduces a sample-level sarcasm identification task on top of them
to inform the overall semantics of sarcastic expressions. Specifically,
the [CLS] tokens of H and O (i.e., H[𝐶𝐿𝑆 ] and O[𝐶𝐿𝑆 ] respectively
corresponds to m[𝐶𝐿𝑆 ] within𝑀 and v[𝐶𝐿𝑆 ] within 𝑁 ) are first con-
catenated to obtain sample-level multimodal features: 𝑆 ∈ R1×2𝑑 .
Afterwards, S will be fed into a Sample-level Sarcasm Identifier for
predicting sample-level sarcastic labels. Supervised by sample-level
information of sarcasms, S will be trained to model the overall
semantics of sarcasms:

𝑦𝑠 = Sigmoid(MLP(S)),
L𝑠 = −[𝑦𝑠 log(𝑦𝑠 ) + (1−𝑠 ) log(1 − 𝑦𝑠 )], (1)

where MLP consists of one linear layer, 𝑦𝑠 represents the sample-
level prediction, and 𝑦𝑠 represents the sample-level sarcastic label.

During training, a semantic memory implying the inherent un-
derstanding for sarcasm expressions will be dynamically main-
tained to guide the identification of fine-grained sarcasm targets.
Within each training mini-batch, we add sample-level features of
sarcastic samples (i.e., S∗

𝑖
) into a memory buffer Z = [S∗1, S

∗
2, · · · , S

∗
𝑏
],

where 𝑏 denotes the number of sarcastic samples and the notion
∗ is used to mark sarcastic samples. Afterwards, a mean-pooling
operation will be applied to the memory buffer and generate the
semantic memory F ∈ R1×2𝑑 , which can be dynamically updated
during training by performing the moving average mechanism:

F𝑡 = (1 − 𝛽) · F𝑡−1 + 𝛽 · F̃𝑡 , (2)

where 𝛽 is the hyper-parameter for controlling the update degree, F̃𝑡
indicates the semantic memory calculated at the t-th iteration, F𝑡−1
and F𝑡 respectively indicates the dynamically maintained semantic
memory updated after 𝑡-1 and 𝑡 iterations.

Table 2: The hyper-parameter settings applied inmultimodal
models (i.e., UMT [40], MSTI [36] and CofiPara-MSTI [20]).
The SSI indicates the sample-level sarcasm identifier.
Setting SaSTI𝑈𝑀𝑇 SaSTI𝑀𝑆𝑇𝐼 SaSTI𝐶𝑜𝑓 𝑖𝑃𝑎𝑟𝑎−𝑀𝑆𝑇𝐼

Batch size 16 16 2
Epoch number 40 40 10
Loss scale 𝛼 within SSI 0.438 0.577 0.460
Memory update parameter 𝛽 0.911 0.243 0.841

MSTI Enhanced by Overall Sarcastic Semantics. The modeled
semantic memory will be utilized to inform specific sarcasm tar-
gets respectively within the text and image modality, enabling the
fine-grained sarcasm target identification task performed with the
guidance of the overall semantics of sarcasms. To this end, F𝑡 will
be respectively projected into the textual and visual space:

Fℎ𝑡 = Tanh(F𝑡𝑊1 + 𝑏1),
F𝑜𝑡 = Tanh(F𝑡𝑊2 + 𝑏2), (3)

where𝑊1,𝑊2 ∈ R2𝑑×𝑑 represent weight parameters, 𝑏1, 𝑏2 ∈ R1×𝑑

represent bias parameters, Fℎ𝑡 ∈ R1×𝑑 and F𝑜𝑡 ∈ R1×𝑑 represent
transformations of the semantic memory F𝑡 for corresponding
modalities. Afterwards, we utilize Fℎ𝑡 and F𝑜𝑡 to respectively inform
textual tokens and visual tokens with close semantic distances
towards them. The informed tokens will be then utilized to enhance
fine-grained textual and visual features as follows:

H𝑓 = H + Sim(H, Fℎ𝑡 ) ·MLP(H),
O𝑓 = O + Sim(O, F𝑜𝑡 ) ·MLP(O), (4)

where Sim represents the cosine similarity function. H𝑓 and O𝑓

will be used to implement the final sarcasm target identification.
Training. The training objective is mainly two-fold: 1) two ma-
jor objectives L𝑇 and L𝐼 focusing on fined-grained sarcasm tar-
get identification respectively for the text and image modality;
2) one auxiliary objective L𝑠 focusing on sample-level sarcasm
identification. Specifically, for the textual sarcasm target identifi-
cation subtask, the Condition Random Field (CRF) loss between
ground-truth labels 𝑌𝑇

𝑖,𝑗
and predicted labels ˆ

𝑌𝑇
𝑖,𝑗

will be utilized:

L𝑇 = CRF(𝑌𝑇
𝑖,𝑗
,
ˆ

𝑌𝑇
𝑖,𝑗
), where ˆ

𝑌𝑇
𝑖,𝑗

is generated by applying a linear
prediction layer on top of textual features 𝐻𝑓 . For the visual sar-
casm target identification subtask, the Cross-Entropy loss between
ground-truth labels 𝑌 𝐼

𝑖, 𝑗
and predicted labels ˆ

𝑌 𝐼
𝑖, 𝑗

will be utilized:

LI = CE(𝑌 𝐼
𝑖, 𝑗
,
ˆ

𝑌 𝐼
𝑖, 𝑗
), where ˆ

𝑌 𝐼
𝑖, 𝑗

is generated by applying a linear
prediction layer on top of visual features 𝑂 𝑓 . Finally, the auxiliary
objective L𝑠 is implemented as shown in Eq. 1. To sum up, the over-
all training objective is L = L𝑡 + L𝐼 + 𝛼 · L𝑠 , where 𝛼 represents
the trade-off hyper-parameter for controlling the contribution of
the auxiliary loss.

5 EXPERIMENTS
In order to validate the main contributions of this work, we conduct
comprehensive performance comparison on both the current MSTI
benchmark and the reconstructed MSTI-Plus benchmark.
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Table 3: Performance comparison of the UMT model and the MSTI model trained on different datasets. The results marked
with ∗, †, and ‡ are obtained by training in the MSTI benchmark, the sarcasm-only subset of MSTI-Plus benchmark, and the
MSTI-Plus benchmark, respectively. All models are tested in the MSTI-Plus benchmark.

Model Textual Sarcasm Target Identification Task Visual Sarcasm Target Identification Task

Micro-F1(%) Macro-F1(%) Weighted-F1(%) Micro-F1(%) Macro-F1(%) Weighted-F1(%)
MSTI∗ [36] 26.27 29.81 29.81 13.57 11.95 3.24
MSTI† [36] 35.38 34.95 37.56 84.26 72.99 85.70
MSTI‡ [36] 60.33 54.92 60.77 89.08 76.95 89.13
UMT∗ [40] 26.58 30.09 30.09 13.57 11.95 3.24
UMT† [40] 35.02 35.52 37.16 86.67 72.75 86.94
UMT‡ [40] 60.66 55.81 61.35 89.39 75.53 88.95

Table 4: Performance comparison of different approaches based on the MSTI-Plus benchmark.

Modality Model
Multimodal Sarcasm Target Identification

Textual Sarcasm Target Identification Task Visual Sarcasm Target Identification Task

Micro-F1(%) Macro-F1(%) Weighted-F1(%) Micro-F1(%) Macro-F1(%) Weighted-F1(%)

Text BiLSTM [11] 25.45 22.64 26.47 - - -
BERT [5] 59.18 54.59 59.90 - - -

Image ViT [6] - - - 86.61 74.92 87.40
ResNet [12] - - - 86.73 76.23 87.74

Multimodal

TPM-MI [13] 60.76 56.03 61.46 87.15 73.65 87.39
MMIB [3] 60.98 55.28 61.32 89.08 77.44 89.25

MSTI [36] 60.33 54.92 60.77 89.08 76.95 89.13
SaSTI𝑀𝑆𝑇𝐼 (ours) 63.46 59.14 64.28 90.53 79.07 90.35
UMT [40] 60.66 55.81 61.35 89.39 75.53 88.95
SaSTI𝑈𝑀𝑇 (ours) 61.72 57.06 62.42 90.11 78.74 90.06
CofiPara-MSTI [20] 63.64 59.46 63.90 91.50 83.20 91.80
SaSTI𝐶𝑜𝑓 𝑖𝑃𝑎𝑟𝑎−𝑀𝑆𝑇𝐼 (ours) 64.55 60.35 64.48 91.80 83.55 92.04

5.1 Implementation Details
To extract textual features, we adopt the pre-trained BERT-base-
uncased model [5] to process texts. For visual modality, the pre-
trained ViT-base model [6] is used to process images. The hyper-
parameters used in models are shown in Table 2. The learning
rate of the models is set to 5e-5. We use the AdamW optimizer
to train the model. The models are trained on a 3090 GPU. In the
experiments, we use the Micro-F1, Macro-F1 and Weighted-F1 as
the evaluation metrics for the textual sarcasm target identification
and the visual sarcasm target identification.

5.2 Baselines
In this paper, we compare our approach with text-modality meth-
ods, image-modality methods and multimodal methods, which are
detailed as follows.

Text-Modality Methods. These models identify sarcasm targets
by leveraging the sarcastic information from the text modality.
We compare with existing text-modality methods, including BiL-
STM [11] and BERT [5].

Image-Modality Methods. These models focus on mining the
sarcasm intention based on the image content to identify whether
each visual target is sarcastic. We adopt ResNet [12] and ViT [6] as
image-modality baselines.

Multimodal Methods. These models mine sarcasm intention by
leveraging the semantic information of multimodal samples to
identify sarcasm targets and non-sarcasm aspects within texts and
images. Our approach compares with existing multimodal sarcasm
target identification baselines, including MSTI [36] and CofiPara-
MSTI [20]. Moreover, in order to implement the visual sarcasm

target identification, we use the classification head to replace the
architecture of object detection within MSTI and CofiPara-MSTI.
Besides, due to the similarity between the textual sarcasm target
identification task and the named entity recognition task, we also
add named entity recognitionmodels (including UnifiedMultimodal
Transformer (UMT) [40], Temporal Prompt Model with Multiple
Images (TPM-MI) [13], and MultiModal representation learning
with Information Bottleneck (MMIB) [3]) as multimodal baselines.

5.3 Results
In this work, we design two sets of experiments to answer two
research questions, through which we progressively study the value
of MSTI-Plus benchmark and the effectiveness of SaSTI approach:

• RQ1: Can non-sarcasm references enhance deep models’
ability to identify sarcasm targets and non-sarcasm aspects?

• RQ2: Does the proposed approach achieve the superior
performance compared to existing baselines?

Next, we detail the answer to each question and discuss experimen-
tal results.
Answer to RQ1. For RQ1, we conduct experiments on the MSTI-
Plus benchmark and theMSTI benchmark. For in-depth analysis, we
obtain a subset of MSTI-Plus by removing all non-sarcasm samples
in the training set. The subset involves sarcasm samples with fine-
grained annotations of sarcasm targets and non-sarcasm aspects. In
order to examine whether the non-sarcasm reference enhances the
deep models’ ability to identify sarcasm targets and non-sarcasm
aspects, we train Unified Multimodal Transformer (UMT) [40] and
Multimodal Sarcasm Target Identification (MSTI) [36] on three
datasets (i.e., the MSTI-Plus, the sarcasm-only subset of MSTI-Plus,
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and the MSTI) and then test the UMT model and the MSTI model
on the MSTI-Plus. Table 3 shows the performance of UMT model
and MSTI model trained on different datasets.

In general, we can draw following observations from Table 3.
First, the UMT mdoel and the MSTI mdoel trained on the MSTI
benchmark show the poor performances. These results demonstrate
that existing models trained on the MSTI benchmark cannot cor-
rectly identify sarcasm targets and non-sarcasm aspects. Second,
when including the fine-grained supervision of sarcasm targets and
non-sarcasm aspects, the UMT model and the MSTI model both ob-
tain clearly improved performances. These results demonstrate that
deep models trained on the sarcasm-only subset of MSTI-Plus can
perceive the difference between sarcasm targets and non-sarcasm
aspects, preventing from incorrectly treating the sarcasm target
identification as a common aspect term extraction task. Finally, the
UMT model and the MSTI model trained on the MSTI-Plus bench-
mark can achieve better performances than those trained on the
MSTI benchmark and the sarcasm-only subset of MSTI-Plus on all
the metrics. These results demonstrate that deep models can better
understand the inherent semantics of sarcasms by modeling overall
semantics of sarcasm intentions. The above observations clearly
show that the MSTI-Plus benchmark enhances deep models’
ability to identify sarcasm targets and non-sarcasm aspects
by introducing the non-sarcasm reference.
Answer to RQ2. For RQ2, we compare our SaSTI approach with
different baselines, including BiLSTM [11], BERT [5], ResNet [12],
ViT [6], TPM-MI [13], MMIB [3], UMT [40], MSTI [36] and CofiPara-
MSTI [20]. The corresponding results are shown in Table 4. In
general, the following observations are made. First, multimodal
methods generally perform better than unimodal methods. The
observation demonstrates the necessity of studying multimodal
sarcasm target identification. Second, SaSTI attached on top of dif-
ferent multimodal sarcasm target identification models (i.e., MSTI
and CofiPara-MSTI) can outperform all baselines. The observation
indicates that the SaSTI approach can inform the overall under-
standing for sarcastic expressions and make the fine-grained
sarcasm target identification well performed with the guid-
ance of the overall understanding for sarcasm intentions.

5.4 Analysis
Ablation Study. To further verify the effectiveness of each mod-
ule within the SaSTI mechanism, we conduct the ablation study
for our approach on the MSTI-Plus benchmark and report results
in Table 5. The first row of Textual Sarcasm Target Identification
(TSTI) task and Visual Sarcasm Target Identification (VSTI) task
show the performance of the full model. In the second row of TSTI
task and VSTI task, we remove the sample-level sarcasm identi-
fier (SSI) module. We can observe the performance clearly drops,
which demonstrates the necessity of using sample-level supervi-
sion as guidance to inform the overall understanding for sarcastic
expressions. The observation also demonstrates that only using
fine-grained supervision signals cannot effectively guide deep mod-
els to thoroughly understand the sarcasm semantics, which in turn
restricts deep models’ ability in the fine-grained sarcasm target
identification task. For the last row of the TSTI task and the VSTI

Table 5: Ablation study results on our constructed benchmark
for SaSTI mechanism. The notation “SSI” and “SM” denote
sample-level sarcasm identifier and semantic memory.

Textual Sarcasm Target Identification Task
Micro-F1(%) Macro-F1(%) Weighted-F1(%)

SaSTI (full model) 62.69 59.03 63.64
w/o SSI 60.26 56.49 61.40
w/o SM 59.13 53.66 59.87

Visual Sarcasm Target Identification Task
Micro-F1(%) Macro-F1(%) Weighted-F1(%)

SaSTI (full model) 90.71 79.74 90.60
w/o SSI 89.63 77.55 89.55
w/o SM 89.87 78.80 89.96

non-sarcasm aspectnon-sarcasm aspect

non-sarcasm aspect
non-sarcasm aspect

Road looks great. #holdmybeer [Donald Trump Jr]. Trolls Democrats
After They Lose In [Georgia]

Figure 6: The prediction results of examples. The model
trained on the MSTI benchmark identify non-sarcasm as-
pects (shown in red color) as sarcasm targets.

task, we remove the semantic memory used to enhance textual fea-
tures and visual features. The performance degradation observed
in the last row clearly validates the effectiveness of semantic mem-
ory. By removing the semantic memory, deep models cannot well
model the overall semantics of sarcasm intentions and thus show
the poor performance for implementing the fine-grained sarcasm
target identification.
Sample Cases. As shown in Figure 6, there lists prediction results
of the model based on the MSTI benchmark. As mentioned in the
previous paragraph, the model trained on the MSTI benchmark
treats the sarcasm target identification as a common aspect term
extraction task and tends to incorrectly recognize non-sarcasm
aspects as sarcasm targets.

6 CONCLUSION
In this work, we are the first to observe the limitation only con-
taining the fine-grained supervision of sarcasm targets within texts
or images in the current MSTI benchmark. Hence, we proposed
a more comprehensive benchmark dubbed MSTI-Plus. The main
characteristic of MSTI-Plus is to include fine-grained annotations of
non-sarcasm aspects into the benchmark. Moreover, we introduce
non-sarcasm samples into the MSTI-Plus, aiming to enable the deep
model to perceive clear semantics of sarcastic expression. To this
end, we proposed a pluggable Semantics-aware Sarcasm Target
Identification (SaSTI) mechanism which can be flexibly attached
on top of existing multimodal sarcasm target identification models,
which can guide the model to clearly perceive the semantic differ-
ence between sarcasm targets and non-sarcasm aspects. Extensive
experiments demonstrate the effectiveness of the proposed bench-
mark and SaSTI for identifying sarcasm targets and non-sarcasm
aspects.
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A QUALITY CONTROL
In order to minimize the annotation bias due to the subjectivity
of annotators, every annotator needs to participate in annotation
meetings to discuss how to label sarcasm targets and non-sarcasm
aspects within texts and images. Furthermore, to make annotators
clearly understand the annotation principle, we allocate each an-
notator 100 pieces of data consisting of both sarcastic samples and
non-sarcastic samples for annotation. Then, we discuss the reason
of annotation bias and rectify annotators’ misunderstanding for the
definition of sarcasm targets and normal aspects. In the annotation
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Figure 7: Attention visualization comparison for the MSTI and our approach. The red region represents where the model
focuses.

Table 6: Performance of the SaSTI mechanism on the twitter-
15/17 benchmark. The notation “SSI” and “SM” denote
sample-level sarcasm identifier and semantic memory.

Aspect-based Sentiment Analysis Task
Micro-F1(%) Macro-F1(%) Weighted-F1(%)

SaSTI (full model) 56.49 53.94 56.61
w/o SSI 55.79 52.93 56.06
w/o SM 54.64 51.56 54.92

process, each sample is labelled by three annotators. If the annota-
tion for one certain sample shows a bias, it will be allocated to other
three persons for a second-round annotation agreement process. If
the annotation of the re-labeled sample still exists a bias, it will be
removed. Finally, we calculate the Cohen’s Kappa [25] to measure
annotation congruity across annotators. For our annotation process,
the kappa score results in 0.806, indicating that our constructed
dataset is featured by high-quality annotations.

B SCALABILITY WITH THE TASK RELATED
TO THE ASPECT-BASED SENTIMENT
ANALYSIS.

In order to validate the scalability of our proposed SaSTI on other
task (i.e., the aspect-based sentiment analysis task), we conduct
experiments on the Twitter-15/17 benchmark [22, 44] focusing on
identifying the sentiment polarity of the textual aspect. Samples
within this dataset have the sample-level sentiment polarity and
the fine-grained sentiment polarity for textual tokens. The labels
of sentiment polarity have three categories (i.e., positive, negative
and neutral). We report results in Table 6. It can be see that our
approach demonstrates excellent performance and generalization
on other benchmark.

C ATTENTION VISUALIZATION
COMPARISON

Figure 7 displays attention visualizations for our approach and the
MSTI by observing the crossmodal interaction between texts and
images. The red region represents where the deep model focuses.
We can observe that the deep model armed with the SaSTI can
effectively perceive the visual region (i.e., “canned kola”) which
contraries to the textual content (i.e., “no product placement”) and
the woman that does not convey sarcasm information. However, the

Distance

Distance

Textual Modality

Distance

Semantic memory Sarcasm target feature Non-Sarcasm aspect feature

Distance

Di
sta

nc
e

Visual Modality

Figure 8: The t-SNE visualization for the semantic memory,
textual aspect features and visual target features.

baseline badly focuses on the visual region “thewoman”, rather than
the visual region “canned kola” conveying the sarcastic intention.
The observation demonstrates our proposed SaSTI helps the model
clearly perceives the semantic difference between sarcasm targets
and non-sarcasm aspects, which can accurately identify sarcastic
and non-sarcastic visual regions.

D THE T-SNE VISUALIZATION.
In order to measure whether the semantic memory inform specific
sarcasm targets of textual tokens or visual object, we show the t-SNE
visualization for the semantic memory, textual aspect features and
visual target features in Figure 8. We can observe that the distance
between the semantic memory and visual or textual sarcasm targets
features is close, while the distance to non-sarcasm target features
is far. The observation demonstrates the semantic memory can
be well inform specific sarcasm targets of textual tokens or visual
objects.
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