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Abstract
We explore reinforcement learning methods for finding the optimal policy in the nearly linear-
quadratic control systems. In particular, we consider a dynamic system composed of the summa-
tion of a linear and a nonlinear components, which is governed by a policy with the same structure.
Assuming that the nonlinear part consists of kernels with small Lipschitz coefficients, we charac-
terize the optimization landscape of the cost function. While the resulting landscape is generally
nonconvex, we show local strong convexity and smoothness of the cost function around the global
optimizer. In addition, we design a policy gradient algorithm with a carefully chosen initialization
and prove that the algorithm is guaranteed to converge to the globally optimal policy with a linear
rate.

1. Introduction

Reinforcement learning (RL) is one of the three basic machine learning paradigms, alongside su-
pervised and unsupervised learning. RL is learning via trial and error, through interactions with an
environment and possibly with other agents. In RL, an agent takes an action and receives a rein-
forcement signal in terms of a numerical reward, which encodes the outcome of the chosen action.
In order to maximize the accumulated reward over time, the agent learns to select actions based
on past experiences (exploitation) and/or by making new choices (exploration). In recent years, we
have witnessed successful RL applications in many areas, including robotics control [16, 18], Al-
phaGo [27], Atari games [23], autonomous driving [17], and stock trading [7]. Despite its practical
successes, theoretical understanding of RL is still limited and at its primitive stage.

In an effort to better understand the theory of RL, there has been a surge of theoretical works
on the study of the Linear Quadratic Regulator (LQR) problem, which is a special class of control
problems with linear dynamics and quadratic cost functions [5, 9, 13, 21, 24]. In the seminal work
of [9], the authors studied an LQR problem with deterministic dynamics over an infinite horizon.
They proved that the simple policy gradient method converges to the global optimal solution with a
linear rate (despite nonconvexity of the objective). Their key idea is to utilize the Riccati equation
(an algebraic-equation characterization that only works for LQR problems) and show that the cost
function enjoys a gradient dominant property. Later on, this result has been extended to other
settings such as linear dynamics with additive or multiplicative Gaussian noise, finite-time horizon,
and modifications of policy-gradient methods [5, 13, 21, 24].

Despite the desirable theoretical properties of LQR, this setting is very limited in practice due to
nonlinear nature of many real-world dynamic systems. From a technical perspective, it is still not
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clear how much we can go beyond the linear setting and still maintain the desirable properties of
LQR. A preliminary attempt in this direction is to study learning-based methods for linear systems
perturbed by some nonlinear kernel functions of small magnitude, which is throughout denoted as
nearly linear-quadratic systems. The motivations for considering this setting are two-fold: (1) Many
nonlinear systems can be locally approximated by an LQR with a small nonlinear correction term
via local expansions. (2) Analyzing the nearly linear-quadratic system provides a natural perspective
to evaluate the stability of LQR systems. This could further address the question of how robust LQR
framework is with respect to model mis-specifications and, more broadly speaking, how reliable the
nearly linear-quadratic systems (including LQR problems as a special case) are.

Our Work and Contributions. In this work, we first study the optimization landscape of a special
class of nonlinear control systems and propose a policy-gradient-based algorithm to find the optimal
policy. Specifically, we consider nonlinear dynamics consisting of both a linear part and a nonlinear
part. The nonlinear part is modeled by a linear combination of differentiable kernels with small
Lipschitz coefficients. The kernel basis is known to the agent but the coefficients are not available
to the agent. In addition, we allow agents to apply nonlinear control policies in the form of a
sum of a linear and a nonlinear part where the nonlinear part lies in the same span of the kernel
basis for the dynamics. Our analysis shows that the cost function is locally strongly convex in a
small neighborhood containing both a carefully chosen initialization point and the globally optimal
solution. With these properties in hand, a zeroth-order policy-gradient method is proposed that is
guaranteed to converge to the globally optimal solution with a linear rate.

Related Work. Our work is related to three categories of prior work:
First, our framework and analysis tools are closely related to learning-based methods for LQR

problem and its variants, including the policy gradient methods in [5, 9, 12–14, 21, 24, 37] and actor-
critic methods in [15, 34, 38]. All these works focus on linear systems with a class of linear policies
and show the global convergence property. These works assume linearity in both the dynamics
and control policies. In contrast, we make a step into the nonlinear world by analyzing the policy
gradient method for nonlinear systems (that are “near-linear” in certain sense).

Second, our work is also related to the literature on nonlinear control systems. See [26] for
a comprehensive review of this topic and [28, 29, 31, 35] for some recent developments such as
feedback linearization and neural networks approximation. While our work is largely inspired by
[25], this one is different from it. [25] considers dynamics consisting of a linear part and a small
(and unknown) nonlinear part. However, the authors only consider linear policies, whereas the agent
in our framework is allowed to explore nonlinear control policies, which is more general and leads
to a better solution. To the best of our knowledge, this is the first theoretical work that shows global
convergence for a system with both nonlinear dynamics (with continuous state and action spaces)
and nonlinear control policies in the learning setting.

Finally, our work is related to the line of works on policy gradient. In addition to LQR, policy
gradient methods have also been applied to learn Markov decision processes (MDPs) with finite
state and action spaces. See [1, 4, 6, 8, 11, 19, 20, 30, 32, 33, 36, 38] for some recent developments
that provide global convergence guarantees of the policy gradient method and its variants.

Notation. In this work, ∥ · ∥ is always the 2-norm for vectors and matrices, and ∥ · ∥F is the
Frobenius norm. In addition, y1 ≲ y2, y1 ≍ y2 and y1 ≳ y2 mean y1 ≤ cy2, y1 = cy2 and y1 ≥ cy2
for some absolute constant c, respectively.
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2. Problem Setup

We consider a dynamical system with state xt ∈ Rn and control input ut ∈ Rp:

xt+1 = Axt + Cϕ(xt) +But, (1)

whereA ∈ Rn×n, C ∈ Rn×d,B ∈ Rn×p, and a kernel basis ϕ(x) = (ϕ1, · · · , ϕd)⊤(x) with ϕi(x) :
Rn → R (i = 1, 2, · · · , d) that satisfies certain Lipschitz conditions (specified in Assumption 4.1).

We focus on the class of stationary Markovian strategies which are linear combinations of the
current state and kernels of the current state

ut = −K1xt −K2ϕ(xt), (2)

with K1 ∈ Rp×n and K2 ∈ Rp×d. In addition, we consider the following domain Ω (i.e., the
admissible control set) for K:

Ω =
{
K :

∥∥(A−BK1)
t
∥∥ ≤ c1ρ

t
1, ∀t ≥ 1, ∥C −BK2∥ ≤ c2

}
, (3)

for some c1 > 1, ρ1 ∈ (0, 1), and c2 > 1 (to be specified later). It is easy to show that such a
controller is asymptotically stable, i.e., ∥xt∥ → 0 as t → ∞. Further, we consider the quadratic
cost function C : Rp×(n+d) → R with K = (K1,K2):

C(K) = Ex0∼D

[ ∞∑
t=0

x⊤t Qxt + u⊤t Rut

]
, (4)

where the expectation is taken with respect to x0 (drawn from a distribution D). The state trajectory
{xt}∞t=0 is generated via the control policyK defined in Equation (2). Here,Q andR are symmetric
positive-definite matrices. The objective is to find the optimal policy K that minimizes the cost
function C(K).

3. Algorithm

Let us now present our policy gradient algorithm to learn the optimal control for minimizing (4).
Using a zeroth-order optimization framework, Algorithm 1 provides an estimate ∇̂C(K) for the
policy gradient ∇C(K). This estimate can be used in the following policy gradient update rule:

Kn+1 = Kn − η∇̂C(Kn), K0 = K lin, (5)

where the initial policy K lin = (K lin
1 ,K lin

2 ) is chosen by solving/learning a linear approximation
of the original system (1)-(4). Specifically, K lin

1 is defined to be the optimal control policy for the
following problem:

min
K1

Ex0∼D

[ ∞∑
t=0

x⊤t Qxt + u⊤t Rut

]
subject to xt+1 = Axt +But, ut = −K1xt. (6)

3



POLICY GRADIENT FINDS GLOBAL OPTIMUM OF NEARLY LINEAR-QUADRATIC CONTROL SYSTEMS

It is known in optimal control literature [2, 3] that K lin
1 is uniquely determined when (A,B) is

controllable. Let the positive definite matrix P be a solution to the Algebraic Riccati Equation
(ARE),

P = A⊤PA+Q−A⊤PB(R+B⊤PB)−1B⊤PA. (7)

The optimal controller for the problem (6) is then given as:

K lin
1 = (R+B⊤PB)−1B⊤PA. (8)

Further, set K lin
2 = (R + B⊤PB)−1B⊤PC. It is easy to see that K lin

2 is well defined since the
matrix R+B⊤PB is positive definite thus invertible. In the next section, we will show that:

• The optimal solution to the nonlinear control problem (1)-(4) can only be attained in a small
neighborhood of the controller K lin.

• The cost function (4) is strongly convex and smooth in a neighborhood of K lin.

Utilizing these two facts, we can establish the convergence rate of Algorithm 1 to global optimality.

Algorithm 1 Policy Gradient Estimation
1: Input: Policy K = (K1,K2), number of trajectories J , smoothing parameter r, and episode

length T
2: for j = 1, 2, . . . , J do
3: Sample a policy K̂j = K+U j , where U j is drawn uniformly at random over matrices whose

Frobenius norm is r.
4: Sample x0 ∼ D.
5: for t = 0, 1, . . . , T do
6: Set ut = −K̂j

1xt − K̂j
2ϕ(xt)

7: Receive the cost ct and the next state xt+1 from the system.
8: end for
9: Calculate the estimated cost Ĉj =

∑T
t=0 ct

10: end for
11: return ∇̂C(K) = 1

J

∑J
j=0

D̂
r2
ĈjUj , where D̂ = p(n+ d).

4. Main Results

In this section, we characterize the optimization landscape of the cost function and establish con-
vergence analysis of Algorithm 1. Particularly, we first show a local strong convexity result of the
cost function around the global minimum. Then, we prove that the global minimum point is close
to our carefully chosen initialization. Finally, we prove the convergence of Algorithm 1. Before we
state our main results, we make the following assumptions for problem (1)-(4).

Assumption 4.1 We assume that ϕ is differentiable, ϕ(0) = 0 and ∥ϕ(x)− ϕ(x′)∥ ≤ ℓ ∥x− x′∥
for some ℓ > 0. Moreover, we assume that ∥∇ϕ(x)−∇ϕ(x′)∥ ≤ ℓ′ ∥x− x′∥ for some ℓ′ > 0.

Assumption 4.1 states that the kernel function ϕ is ℓ-Lipschitz and ℓ′-gradient Lipschitz. The
following assumption is on the matrices Q,R and is standard in the literature [22].
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Assumption 4.2 We assume that Q,R are positive definite matrices for which ∥Q∥ , ∥R∥ ≤ 1.
Further, R+B⊤QB ⪰ σI for some σ > 0.

The upper bound one (on the norms ofQ andR) in Assumption 4.2 is for the ease of presentation
and can be generalized to any arbitrary number by rescaling the cost function. The second part of
the assumption guarantees that the cost function has quadratic growth and makes the problem well-
defined [25]. Our next assumption concerns the initial distribution of the state dynamics.

Assumption 4.3 We assume that the initial distribution D is supported in a region with radius D0,
i.e., ∥x∥ ≤ D0 for x ∈ D with probability one. Also, E

[
ψ(x0)ψ(x0)

⊤] ⪰ σxI for some σx > 0,
where ψ(x) = (x⊤, ϕ(x)⊤)⊤.

Assumption 4.3 requires the state initial distribution to be bounded. This assumption simplifies
the proof in the latter sections and can be replaced by assuming a bound on the second and the third
moments [9]. Also, the covariance matrix E

[
ψ(x0)ψ(x0)

⊤] is assumed to be bounded below from
a positive constant matrix σxI . This “diverse covarate” assumption ensures that there is sufficient
exploration (in all directions of the state space) even with a greedy algorithm. Finally, we lay out
another regularity condition on the coefficient matrices (A,B) and the initializer K lin.

Assumption 4.4 The pair (A,B) is controllable. Let K lin = (K lin
1 ,K lin

2 ) be defined in Section
3. Also, let

∥∥(A−BK lin
1 )t

∥∥ ≤ clin1 (ρlin1 )t for all t ≥ 1, and
∥∥C −BK lin

2

∥∥ ≤ clin2 for some
ρlin1 ∈ (0, 1) and clin1 , clin2 > 0.

Assumption 4.4 states that the controller K lin enjoys stability property. The controllablity as-
sumption on the pair (A,B) is standard in the literature [5].

We now state to our results. The first theorem characterizes the landscape of the cost function.
It shows that the cost function is strongly convex and smooth in a neighborhood of the initialization
K lin when the Lipschitz constants ℓ and ℓ′ are sufficiently small. Further, we prove the optimal
controllerK∗ is inside this region. We defer the proof to Appendix A in the supplementary material.

Theorem 4.5 Denote Γ = max
{
∥A∥ , ∥B∥ , ∥C∥ ,

∥∥K lin
∥∥ , 1}. For any c1 ≥ 2clin1 , ρ1 ∈

[
ρlin1 +1

2 , 1
)
,

c2 ≥ clin2 , if ℓ ≲ (1−ρ1)7(σxσ)2
(c1+c2)c2c71(1+Γ)8D3

0
, ℓ′ ≲

(
(1−ρ1)8(σxσ)2

(c1+c2)2c22c
16
1 (1+Γ)6D4

0

)
, then

(a) there exists a region Λ(δ) =
{
K :

∥∥K −K lin
∥∥
F
≤ δ

}
⊂ Ω with δ ≍ (1−ρ1)4σxσ

(c1+c2)c61Γ
2D0

such that

C(K) is µ-strongly convex and h-smooth in Λ(δ) with µ = σxσ, h ≍ Γ4c41D
2
0

(1−ρ1)2 ;

(b) the global minimum of C(K) is achieved at a point K∗ ∈ Λ(δ/3).

Part (a) of Theorem 4.5 indicates that the cost function C(K) is strongly convex and smooth
within a δ-neighborhood of the initializer K lin. Part (b) shows that the optimal controller K∗ lies in
a δ/3-neighborhood of the initializer K lin. Consequently, the cost function is strongly convex and
smooth in a region that contains both the initialization K lin and the global optimizer K∗.

Given the landscape results, if ∇C(K) is assumed to be known, starting from the initialization
K lin, the policy gradient descent leads to finding the global minimum of the cost function C(K).
Hence, it is not surprising that Algorithm 1 converges to the globally optimal solution with one-
point gradient estimation in Algorithm 1. This result is formally stated in Theorem 4.6. The proof
of Theorem 4.6 can be found in Appendix B in the supplementary material.
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Theorem 4.6 Assume the conditions in Theorem 4.5 hold. Let ϵ > 0 and ν ∈ (0, 1) be given.

Suppose the step size η < 1
h and the number of gradient descent step M ≥ 1

ηµ log

(
δ
3

√
2h
ϵ

)
.

Further, assume the gradient estimator parameters in Algorithm 1 satisfy r ≤ min
{
δ
3 ,

1
3hegrad

}
,

J ≥ D̂2

e2gradr
2
log

4D̂M

ν
max

{
36

(
C(K∗) + 2hδ2

)2
, 144C2

max

}
, T ≥ 1

1− ρ1
log

6D̂Cmax

egradr
,

where D̂ = p(n + d) and Cmax =
24(1+Γ)2c21D

2
0

1−ρ1 , and egrad = min
{
δµ
3 , µ

√
ϵ
2h

}
. Then with

probability at least 1− ν, we have C(KM )− C(K∗) < ϵ.

This result shows that, despite the existence of nonlinear terms, finding the optimal control policy
is still tractable when nonlinear terms are “sufficiently small”.

5. Conclusions

We consider a nonlinear optimal control problem, characterize the local strong convexity of the cost
function, and prove that the globally optimal solution is close to the carefully chosen initialization.
In addition, we design a zeroth-order policy gradient algorithm and establish a convergence result
under a proposed policy initialization scheme of the nonlinear control problem. We hope these
results would shed light on the efficiency of policy gradient methods for nonlinear optimal control
problems when the underlying models are unknown to the decision maker. The future work is
to investigate the sample complexity of the algorithm and extend the analysis on quadratic cost
functions to more general cost functions.
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Appendix A. Proof of Theorem 4.5

Denote the value function and Q function conditioned on the initial position as

VK(x) = E

[ ∞∑
t=0

x⊤t Qxt + u⊤t Rut

∣∣∣∣∣x0 = x, ut = −K1xt −K2ϕ(xt)

]
, (9)

QK(x, u) = x⊤Qx+ u⊤Ru+ VK(Ax+ Cϕ(x) +Bu). (10)

First, we provide a characterization of the value function, which is shown in the next lemma.

Lemma A.1 (Value Function) The value function takes the form

VK(x) = x⊤PK1x+GK(x), (11)

where PK1 satisfies

(A−BK1)
⊤PK1(A−BK1)− PK1 +Q+K⊤

1 RK1 = 0, (12)

and GK(x) is defined as

GK(x) := Tr
((
K⊤

2 RK2 + (C −BK2)
⊤PK1(C −BK2)

) ∞∑
t=0

ϕ(xt)ϕ(xt)
⊤
)

+2Tr
((
K⊤

1 RK2 + (A−BK1)
⊤PK1(C −BK2)

) ∞∑
t=0

ϕ(xt)x
⊤
t

)
, (13)

and {xt}∞t=0 is the trajectory generated by the policyK = (K1,K2) starting with the initial position
x0 = x.

Proof By Bellman equation, the value function satisfies,

VK(x) = x⊤Qx+
(
K1x+K2ϕ(x)

)⊤
R
(
K1x+K2ϕ(x)

)
+VK

(
Ax−B(K1x+K2ϕ(x)) + Cϕ(x)

)
= x⊤(Q+K⊤

1 RK1)x+ ϕ(x)⊤K⊤
2 RK2ϕ(x) + 2x⊤K⊤

1 RK2ϕ(x)

+VK

(
(A−BK1)x+ (C −BK2)ϕ(x)

)
.

Define GK(x) = VK(x)− x⊤PK1x, we have

x⊤PK1x+GK(x)

= x⊤(Q+K⊤
1 RK1)x+ ϕ(x)⊤K⊤

2 RK2ϕ(x) + 2x⊤K⊤
1 RK2ϕ(x)

+
(
(A−BK1)x+ (C −BK2)ϕ(x)

)⊤
PK1

(
(A−BK1)x+ (C −BK2)ϕ(x)

)
+GK(x1),

with x1 = (A−BK1)x+ (C −BK2)ϕ(x). Since PK1 satisfies (12), we have

GK(x) = ϕ(x)⊤
(
K⊤

2 RK2 + (C −BK2)
⊤PK1(C −BK2)

)
ϕ(x)

10
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+2x⊤
(
K⊤

1 RK2 + (A−BK1)
⊤PK1(C −BK2)

)
ϕ(x) +GK(x1)

= Tr
((
K⊤

2 RK2 + (C −BK2)
⊤PK1(C −BK2)

)
ϕ(x)ϕ(x)⊤

)
+2Tr

((
K⊤

1 RK2 + (A−BK1)
⊤PK1(C −BK2)

)
ϕ(x)x⊤

)
+GK(x1)

= Tr
((
K⊤

2 RK2 + (C −BK2)
⊤PK1(C −BK2)

) ∞∑
t=0

ϕ(xt)ϕ(xt)
⊤
)

+2Tr
((
K⊤

1 RK2 + (A−BK1)
⊤PK1(C −BK2)

) ∞∑
t=0

ϕ(xt)x
⊤
t

)
.

Therefore (13) holds.

To proceed, define a coefficient matrix M = (A,C), and a feature map ψ(x) = (x⊤, ϕ(x)⊤)⊤.
Then the dynamics (1) can be written as

xt+1 = (A−BK1)xt + (C −BK2)ϕ(xt) = (M −BK)ψ(xt). (14)

Given Assumption 4.1, it is easy to see thatψ(x) is ℓψ-Lipschitz, i.e., ∥ψ(x)− ψ(x′)∥ ≤ ℓψ ∥x− x′∥
with ℓψ :=

√
1 + ℓ2. The following lemma gives us the gradient of the cost function C(K).

Lemma A.2 (Gradient of C(K)) The gradient of C(K) is

∇KC(K) = 2EKΣψψK −B⊤ΣGψK , (15)

where

EK = RK −B⊤PK1(M −BK),ΣψψK = E
∞∑
t=0

ψ(xt)ψ(xt)
⊤,ΣGψK = E

∞∑
t=0

∇GK(xt+1)ψ(xt)
⊤.

(16)

Proof Recall the Bellman equation

VK(x) = x⊤Qx+ (Kψ(x))⊤RKψ(x) + VK((M −BK)ψ(x)).

Taking gradient in K on both sides of the Bellman equation, we have

∇KVK(x) = 2RKψ(x)ψ(x)⊤ +∇KV (x1) +

(
∂x1
∂K

)⊤
∇xVK(x1),

where x1 = (M − BK)ψ(x). Note the directional derivative of x1 in K along the direction ∆ is
x′1 [∆] = −B∆ψ(x). Then we have

x′1 [∆]⊤∇xVK(x1) = −ψ(x)⊤∆⊤B⊤ (2PK1x1 +∇GK(x1))

= Tr∆⊤
(
−2B⊤PK1x1ψ(x)

⊤ −B⊤∇GK(x1)ψ(x)
⊤
)
.

This leads to

∇KVK(x) = 2RKψ(x)ψ(x)⊤ − 2B⊤PK1(M −BK)ψ(x)ψ(x)⊤ −B⊤∇GK(x1)ψ(x)
⊤ +∇KV (x1)

11
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=
(
2RK − 2B⊤PK1(M −BK)

)
ψ(x)ψ(x)⊤ −B⊤∇GK(x1)ψ(x)

⊤ +∇KV (x1)

= 2EK

∞∑
t=0

ψ(xt)ψ(xt)
⊤ −B⊤

∞∑
t=0

∇GK(xt+1)ψ(xt)
⊤.

Taking expectation over x0 and then we are done.

With Lemma A.1 and Lemma A.2, we provide a formula for C(K ′)−C(K), which is shown in
the following cost difference lemma.

Lemma A.3 (Cost difference lemma) For any K = (K1,K2) and K ′ = (K ′
1,K

′
2), we have

C(K ′)− C(K) = Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′ + 2Tr(K ′ −K)⊤EKΣψψK′

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
. (17)

Proof By [9, Lemma 10], we have

VK′(x)− VK(x) =

∞∑
t=0

AK(x′t, u
′
t),

where {x′t} is trajectory generated by x′0 = x and u′t = −K ′ψ(x′t), and AK(x, u) = QK(x, u) −
VK(x) is the advantage function.

For given u = −K ′ψ(x), we have

AK(x, u) = QK(x, u)− VK(x)

= x⊤Qx+ (K ′ψ(x))⊤R(K ′ψ(x)) + VK((M −BK ′)ψ(x))− VK(x)

= (K ′ψ(x))⊤R(K ′ψ(x))− (Kψ(x))⊤R(Kψ(x))

+ VK((M −BK ′)ψ(x))− VK((M −BK)ψ(x))

= ψ(x)⊤(K ′ −K)⊤R(K ′ −K)ψ(x) + 2ψ(x)⊤(K ′ −K)⊤RKψ(x)

+ VK((M −BK ′)ψ(x))− VK((M −BK)ψ(x)).

We next compute the last two terms

VK((M −BK ′)ψ(x))− VK((M −BK)ψ(x))

=
(
(M −BK ′)ψ(x)

)⊤
PK1

(
(M −BK ′)ψ(x)

)
− ((M −BK)ψ(x))⊤ PK1 ((M −BK)ψ(x))

+GK
(
(M −BK ′)ψ(x)

)
−GK ((M −BK)ψ(x))

= ψ(x)⊤(K ′ −K)⊤B⊤PK1B(K ′ −K)ψ(x) + 2ψ(x)⊤(K −K ′)⊤B⊤PK1(M −BK)ψ(x)

+GK
(
(M −BK ′)ψ(x)

)
−GK ((M −BK)ψ(x)) .

Substitution back, we have

AK(x, u) = ψ(x)⊤(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ψ(x)

+ 2ψ(x)⊤(K ′ −K)⊤(RK −B⊤PK1(M −BK))ψ(x)

12
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+GK
(
(M −BK ′)ψ(x)

)
−GK ((M −BK)ψ(x)) .

In consequence, we have

C(K ′)− C(K) = E
∞∑
t=0

AK(x′t, u
′
t)

= Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)E
∞∑
t=0

ψ(x′t)ψ(x
′
t)
⊤

+ 2Tr(K ′ −K)⊤(RK −B⊤PK1(M −BK))
∞∑
t=0

ψ(x′t)ψ(x
′
t)
⊤

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
.

Next, we show that the state trajectory has an exponential decay property regardless of the initial
state. In consequence, the cost function C(·) is bounded.

Lemma A.4 (Stability of the trajectory {xt}) Assume that K ∈ Ω and ℓ ≤ 1−ρ1
4c1c2

. Then we have
the following holds.

(a) For any x0 ∈ Rn, ∥xt∥ ≤ cρt ∥x0∥, where c = 2c1 and ρ = ρ1+1
2 .

(b) Let {xt} and {x′t} be the state trajectories starting from x0 and x′0, respectively. Then ∥xt − x′t∥ ≤
cρt ∥x0 − x′0∥. In consequence,

∥∥∥ ∂xt∂x0

∥∥∥ ≤ cρt.

(c) Let {xt} and {x′t} be defined as above. Then
∥∥∥ ∂xt∂x0

− ∂x′t
∂x′0

∥∥∥ ≤ c2ℓ′c3

1−ρ ρ
t−1 ∥x0 − x′0∥.

Proof Let f(x) = (C −BK2)ϕ(x). Then we have∥∥f(x)− f(x′)
∥∥ =

∥∥(C −BK2)(ϕ(x)− ϕ(x′))
∥∥ ≤ ∥C −BK2∥

∥∥ϕ(x)− ϕ(x′)
∥∥ ≤ c2ℓ

∥∥x− x′
∥∥ ,∥∥∇f(x)−∇f(x′)

∥∥ =
∥∥(C −BK2)(∇ϕ(x)−∇ϕ(x′))

∥∥ = ∥C −BK2∥
∥∥∇ϕ(x)−∇ϕ(x′)

∥∥ ≤ c2ℓ
′ ∥∥x− x′

∥∥ .
Note that we have xt+1 = (A−BK1)xt+f(xt). Applying Lemma 4 in [25] and then we are done.

We provide an auxiliary lemma that will be used in the rest of the proof.

Lemma A.5 When
∥∥K −K lin

∥∥
F
≤ δ ≤ 1, we have

∥PK1∥ ≤ CP :=
2c21(1 + Γ)2

1− ρ1
, (18)

where PK1 is the solution of Lyapunov equation,

(A−BK1)
⊤PK1(A−BK1)− PK1 +Q+K⊤

1 RK1 = 0.

13
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Proof Note that

PK1 =

∞∑
t=0

(
(A−BK1)

⊤
)t

(Q+K⊤
1 RK1)(A−BK1)

t.

Then we have

∥PK1∥ ≤ c21
1− ρ21

∥∥∥Q+K⊤
1 RK1

∥∥∥ ≤ c21
1− ρ21

(1 + ∥K∥2) < c21(1 + (1 + Γ)2)

1− ρ1
<

2c21(1 + Γ)2

1− ρ1
=: CP ,

where we used the inequality ∥K∥ ≤
∥∥K −K lin

∥∥+
∥∥K lin

∥∥ ≤ δ + Γ ≤ 1 + Γ.

We show the last result before the proof of local strong convexity property. The next lemma
yields the local Lipschitzness of GK(x).

Lemma A.6 (Local Lipschitzness of GK(x)) When
∥∥K −K lin

∥∥
F

≤ δ, and when ∥x∥ , ∥x′∥ ≤
(c1 + c2)cD0, we have ∥∥∇GK(x)−∇GK(x′)

∥∥ ≤ L
∥∥x− x′

∥∥ , (19)

where L = 5c2c5(1+Γ)4

16(1−ρ)2 ℓ+
3Dc22c

6(1+Γ)2

16(1−ρ)3 ℓ′ with D = (c1 + c2)c
2D0.

Proof We first compute the gradient of GK(x) as follows

[∇GK(x)]⊤ = 2
∞∑
t=0

[
ϕ(xt)

⊤(F 12
K )⊤ + x⊤t F

12
K

∂ϕ(xt)

∂xt

]
∂xt
∂x

+ 2
∞∑
t=0

ϕ(xt)
⊤F 22

K

∂ϕ(xt)

∂xt

∂xt
∂x

= 2

∞∑
t=0

[
ϕ(xt)

⊤F 21
K − πK(xt)

⊤RK2
∂ϕ(xt)

∂xt
+ x⊤t+1PK1(C −BK2)

∂ϕ(xt)

∂xt

]
∂xt
∂x

,

where we define πK(xt) = −K1xt −K2ϕ(xt) and

F 12
K =

(
F 21
K

)⊤
= K⊤

1 RK2 + (A−BK1)
⊤PK1(C −BK2),

F 22
K = K⊤

2 RK2 + (C −BK2)
⊤PK1(C −BK2).

For x, x′, we have∥∥∇GK(x)−∇GK(x′)
∥∥

≤ 2

∞∑
t=0

∥∥∥∥[ϕ(xt)− ϕ(x′t)
]⊤
F 21
K −

[
πK(xt)

⊤RK2
∂ϕ(xt)

∂xt
− πK(x′t)

⊤RK2
∂ϕ(x′t)

∂x′t

]
+x⊤t+1PK1(C −BK2)

∂ϕ(xt)

∂xt
− (x′t+1)

⊤PK1(C −BK2)
∂ϕ(x′t)

∂x′t

∥∥∥∥∥∥∥∥∂xt∂x

∥∥∥∥
+ 2

∞∑
t=0

∥∥∥∥ϕ(x′t)⊤F 21
K − πK(x′t)

⊤RK2
∂ϕ(x′t)

∂x′t
+ (x′t+1)

⊤PK1(C −BK2)
∂ϕ(x′t)

∂x′t

∥∥∥∥∥∥∥∥∂xt∂x
− ∂x′t
∂x′

∥∥∥∥ .
We compute bounds term by term. Firstly, we have∥∥∥[ϕ(xt)− ϕ(x′t)

]⊤
F 21
K

∥∥∥ ≤ ℓ
∥∥xt − x′t

∥∥∥∥F 21
K

∥∥ ≤ ℓc
∥∥x− x′

∥∥∥∥F 21
K

∥∥ .
14
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We have the following bound on
∥∥F 21

K

∥∥
∥∥F 21

K

∥∥ =
∥∥∥K⊤

2 RK1 + (C −BK2)
⊤PK1(A−BK1)

∥∥∥
≤ ∥K1∥ ∥R∥ ∥K2∥+ ∥C −BK2∥ ∥PK1∥ ∥A−BK1∥
≤ ∥K1∥F ∥K2∥F + c1c2CP

≤ 1

2
∥K∥2F + c1c2CP

≤ 1

2
(1 + Γ)2 + c1c2CP

≤ 5c2c
3
1(1 + Γ)2

2(1− ρ1)
=: C21

F ,

where we use the assumption ∥R∥ ≤ 1, the bound on ∥PK1∥ ≤ CP as in Lemma 6 [25] and the
bound on ∥K∥F ≤ 1 + Γ. It follows∥∥∥[ϕ(xt)− ϕ(x′t)

]⊤
F 21
K

∥∥∥ ≤ 5ℓc2c
4
1(1 + Γ)2

1− ρ1

∥∥x− x′
∥∥ .

Next, almost surely, we have∥∥∥∥π⊤KRK2
∂ϕ(xt)

∂xt
− πK(x′t)

⊤RK2
∂ϕ(x′t)

∂x′t

∥∥∥∥
≤

∥∥πK(xt)− πK(x′t)
∥∥ ∥R∥ ∥K2∥

∥∥∥∥∂ϕ(xt)∂xt

∥∥∥∥+
∥∥π(x′t)∥∥ ∥R∥ ∥K2∥

∥∥∥∥∂ϕ(xt)∂xt
− ∂ϕ(x′t)

∂x′t

∥∥∥∥
≤ ℓ(∥K1∥+ ℓ ∥K2∥) ∥K2∥

∥∥xt − x′t
∥∥+ ℓ′(∥K1∥+ ℓ ∥K2∥) ∥xt∥ ∥K2∥

∥∥xt − x′t
∥∥

≤ (ℓ/2 + ℓ2) ∥K∥2F c
∥∥x− x′

∥∥+ (ℓ′/2 + ℓℓ′) ∥K∥2F Dc
∥∥x− x′

∥∥
≤ (ℓ/2 + ℓ2 +Dℓ′/2 +Dℓℓ′)(1 + Γ)2c

∥∥x− x′
∥∥

= (1/2 + ℓ)(ℓ+Dℓ′)(1 + Γ)2c
∥∥x− x′

∥∥
≤ 2(ℓ+Dℓ′)(1 + Γ)2c1

∥∥x− x′
∥∥ ,

where we use the bound on ∥xt∥ ≤ c ∥x0∥ ≤ (c1 + c2)c
2D0 =: D and the fact ℓ ≤ 1/2. Further,

we have∥∥∥∥x⊤t+1PK1(C −BK2)
∂ϕ(xt)

∂xt
− (x′t+1)

⊤PK1(C −BK2)
∂ϕ(x′t)

∂x′t

∥∥∥∥
≤

∥∥∥∥(xt+1 − x′t+1)
⊤PK1(C −BK2)

∂ϕ(xt)

∂xt

∥∥∥∥+

∥∥∥∥(x′t+1)
⊤PK1(C −BK2)

(
∂ϕ(xt)

∂xt
− ∂ϕ(x′t)

∂x′t

)∥∥∥∥
≤

∥∥xt+1 − x′t+1

∥∥ ∥PK1∥ ∥C −BK2∥
∥∥∥∥∂ϕ(xt)∂xt

∥∥∥∥+
∥∥x′t+1

∥∥ ∥PK1∥ ∥C −BK2∥
∥∥∥∥∂ϕ(xt)∂xt

− ∂ϕ(x′t)

∂x′t

∥∥∥∥
≤ CP c2ℓ

∥∥xt+1 − x′t+1

∥∥+DCP c2ℓ
′ ∥∥xt − x′t

∥∥
≤ cc2CP (ℓ+Dℓ′)

∥∥x− x′
∥∥

≤ 3c2c
3
1(1 + Γ)2

1− ρ1
(ℓ+Dℓ′)

∥∥x− x′
∥∥ .

15
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Also, notice that∥∥∥∥ϕ(x′t)⊤F 21
K − πK(x′t)

⊤RK2
∂ϕ(x′t)

∂x′t
+ (x′t+1)

⊤PK1(C −BK2)
∂ϕ(x′t)

∂x′t

∥∥∥∥
≤ ℓ

∥∥x′t∥∥C21
F + ℓ(∥K1∥+ ℓ ∥K2∥)

∥∥x′t∥∥ ∥K2∥+ CP c2ℓ
∥∥x′t+1

∥∥
≤ ℓDC21

F + (ℓ/2 + ℓ2) ∥K∥2F D + c2ℓCPD

≤ ℓDC21
F + (3/2)ℓ(1 + Γ)2D + c2ℓCPD

≤ 11ℓDc2c
3
1(1 + Γ)2

2(1− ρ1)
.

Plugging in all these results, and using
∥∥∂xt
∂x

∥∥ ≤ cρt and
∥∥∥∂xt∂x − ∂x′t

∂x′

∥∥∥ ≤ c2ℓ′c3

1−ρ ρ
t−1 ∥x− x′∥, we

have∥∥∇GK(x)−∇GK(x′)
∥∥

≤ 2
∞∑
t=0

[
5ℓc2c

4
1(1 + Γ)2

1− ρ1
+ 2(ℓ+Dℓ′)(1 + Γ)2c1 +

3c2c
3
1(1 + Γ)2

1− ρ1
(ℓ+Dℓ′)

] ∥∥x− x′
∥∥∥∥∥∥∂xt∂x

∥∥∥∥
+ 2

∞∑
t=1

11ℓDc2c
3
1(1 + Γ)2

2(1− ρ1)

∥∥∥∥∂xt∂x
− ∂x′t
∂x′

∥∥∥∥
≤ 2c

1− ρ

(
10c2c

4
1(1 + Γ)2

1− ρ1
ℓ+

5c2c
3
1(1 + Γ)2D

1− ρ1
ℓ′
)∥∥x− x′

∥∥+ 2
11ℓDc2c

3
1(1 + Γ)2

2(1− ρ1)

c2ℓ
′c3

(1− ρ)2
∥∥x− x′

∥∥
≤

(
40c2c

5
1(1 + Γ)4

(1− ρ1)2
ℓ+

176Dc22c
6
1(1 + Γ)2

(1− ρ1)3
ℓ′
)∥∥x− x′

∥∥
=

(
5c2c

5(1 + Γ)4

16(1− ρ)2
ℓ+

3Dc22c
6(1 + Γ)2

16(1− ρ)3
ℓ′
)∥∥x− x′

∥∥ ,
which shows that ∇GK(x) is L-Lipschitz in x.

With these preparations, we proceed the property of local strong convexity of the cost function
C(K), which is stated in the following lemma.

Lemma A.7 (Local strong convexity) For any c1 ≥ 2clin1 , ρ1 ∈
[
ρlin1 +1

2 , 1
)
, c2 ≥ clin2 , if δ, ℓ, ℓ′

satisfy

δ ≤ (1− ρ)4σxσ

144(c1 + c2)c6Γ2D0
, ℓ ≤ (1− ρ)4σxσ

45c2c8(1 + Γ)6D2
0

, and ℓ′ ≤ (1− ρ)5σxσ

27(c1 + c2)c22c
11(1 + Γ)4D3

0

. (20)

Then there exists a region Λ(δ) =
{
K :

∥∥K −K lin
∥∥
F
≤ δ

}
⊂ Ω with µ = σxσ such that for

K,K ′ ∈ Λ(δ), we have

C(K ′)− C(K) ≥ Tr
(
(K ′ −K)⊤∇C(K)

)
+
µ

2

∥∥K ′ −K
∥∥2
F
. (21)

Proof We first show that Λ(δ) ⊂ Ω for any δ ≤ min
{

1−ρ1
2Γclin1

,
clin2
Γ

}
. Consider the following

dynamics

xt+1 = (A−BK1)xt = (A−BK lin
1 )xt +B(K lin

1 −K1)xt.

16



POLICY GRADIENT FINDS GLOBAL OPTIMUM OF NEARLY LINEAR-QUADRATIC CONTROL SYSTEMS

Set f(x) = B(K lin
1 − K1)x. Simple computation shows f has Lipschitz constant ℓf = Γδ. Fol-

lowing the same argument in [25, Lemma 4(a)], together with the conditions, we have

∥xt∥ ≤ 2clin1 (ρlin1 + 2clin1 ℓf )
t ∥x0∥ ≤ c1(ρ

lin
1 + (1− ρ1))

t ∥x0∥ ≤ c1ρ
t
1 ∥x0∥ .

Hence, we obtain ∥∥(A−BK1)
t
∥∥ = sup

x0

∥∥(A−BK1)
tx0

∥∥
∥x0∥

≤ c1ρ
t
1.

which is desirable. Similarly, we have

∥C −BK2∥ ≤
∥∥∥C −BK lin

2

∥∥∥+ ∥B∥
∥∥∥Blin

2 −K2

∥∥∥ ≤ clin2 + Γδ ≤ 2clin2 ≤ c2.

which follows K ∈ Ω.
Next, we prove the local strong convexity property of C(K). By Lemma A.3, we have

C(K ′)− C(K)

= Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′ + 2Tr(K ′ −K)⊤EKΣψψK′

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
= 2Tr(K ′ −K)⊤EKΣψψK + 2Tr(K ′ −K)⊤EK(ΣψψK′ − ΣψψK )

+ Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
≥ Tr(K ′ −K)⊤(2EKΣψψK −B⊤ΣGψK ) + 2Tr(K ′ −K)⊤EK(ΣψψK′ − ΣψψK )

+ Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

+Tr(K ′ −K)⊤B⊤

[
E

∞∑
t=0

∇GK(xt+1)ψ(xt)
⊤ − E

∞∑
t=0

∇GK(x′t+1)ψ(x
′
t)
⊤

]

− L

2
E

∞∑
t=0

∥∥B(K ′ −K)ψ(x′t)
∥∥2

≥ Tr(K ′ −K)⊤∇C(K) + Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

− 2
∥∥K ′ −K

∥∥
F
∥EK∥

∥∥∥ΣψψK′ − ΣψψK

∥∥∥
F

−
∥∥K ′ −K

∥∥
F
∥B∥

∥∥∥∥∥E
∞∑
t=0

∇GK(xt+1)ψ(xt)
⊤ − E

∞∑
t=0

∇GK(x′t+1)ψ(x
′
t)
⊤

∥∥∥∥∥
F

− L

2
E

∞∑
t=0

∥B∥2
∥∥K ′ −K

∥∥2
F

∥∥ψ(x′t)∥∥2 ,
where we have applied the descent lemma over GK by the Lipchitz property in Lemma A.6. To
check the conditions of the lemma, since ℓ ≤ 1, we note that∥∥(M −BK ′)ψ(xt′)

∥∥ =
∥∥x′t+1

∥∥ ≤ cD0,

17
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∥∥(M −BK)ψ(x′t)
∥∥ ≤

∥∥(A−BK1)x
′
t

∥∥+
∥∥(C −BK2)ϕ(x

′
t)
∥∥ ≤ (c1 + ℓc2)cD0 ≤ (c1 + c2)cC0.

To proceed, we need the following lemma.

Lemma A.8 For K,K ′ ∈ Λ(δ), there exits constants CE = 3(c1 + c2)
Γ4c3

(1−ρ)2 , C1 =
4c3ΓD2

0
(1−ρ)2 ,

C2 = LC1/2 such that

∥EK∥ ≤ CE

∥∥∥K −K lin
∥∥∥ , ∥ΣK′ − ΣK∥F ≤ C1

∥∥K ′ −K
∥∥
F
,∥∥∥∥∥E

∞∑
t=0

∇GK(xt+1)(xt)
⊤ − E

∞∑
t=0

∇GK(x′t+1)(x
′
t)
⊤

∥∥∥∥∥
F

≤ C2

∥∥K ′ −K
∥∥
F
.

By assumption, Eψ(x0)ψ(x0)⊤ ⪰ σxI , and R +B⊤QB ⪰ σI . Following the same argument
in [25], we have

Tr
(
(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)Σψψ

K′

)
= Tr

((
(K ′ −K)(ΣψψK′ )

1/2
)⊤

(R+B⊤PK1B)(K ′ −K)(ΣψψK′ )
1/2

)
≥ Tr

((
(K ′ −K)(ΣψψK′ )

1/2
)⊤

(R+B⊤QB)(K ′ −K)(ΣψψK′ )
1/2

)
≥ σTr

((
(K ′ −K)(ΣψψK′ )

1/2
)⊤

(K ′ −K)(ΣψψK′ )
1/2

)
= σTr(K ′ −K)⊤(ΣψψK′ )(K

′ −K)

≥ σxσ
∥∥K ′ −K

∥∥2
F
.

Combining Lemma A.8 and the above lower bound, we have

C(K ′)− C(K) ≥ Tr(K ′ −K)⊤∇C(K) + µ
∥∥K ′ −K

∥∥2
F

−

[
2C1CE + ΓLC1 +

L

2

Γ2ℓ2ψc
2D2

0

1− ρ

]∥∥K ′ −K
∥∥2
F
,

where µ = σxσ. It remains to show that

2C1CEδ + ΓLC1 +
L

2

Γ2ℓ2ψc
2D2

0

1− ρ
≤ µ

2
.

Write Lipschitz constant L = ℓCℓ + ℓ′Cℓ′ , where Cℓ =
5c2c5(1+Γ)4

16(1−ρ)2 and Cℓ′ =
3Dc22c

6(1+Γ)2

16(1−ρ)3 . Then
we have

2C1CEδ + ΓLC1 +
L

2

Γ2ℓ2ψc
2D2

0

1− ρ
≤ 2C1CEδ + ΓLC1 +

L

2
ΓC1

= 2C1CEδ +
3

2
ΓC1(ℓCℓ + ℓ′Cℓ′) ≤

µ

2
,

18
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as long as

δ ≤ µ

12C1CE
=

(1− ρ)4σxσ

144(c1 + c2)c6Γ2D0
,

ℓ ≤ µ

9ΓC1Cℓ
=

(1− ρ)4σxσ

45c2c8(1 + Γ)6D2
0

,

ℓ′ ≤ µ

9ΓC1Cℓ′
=

(1− ρ)5σxσ

27(c1 + c2)c22c
11(1 + Γ)4D3

0

.

To prove Lemma A.8, we first need the following result, a bound on the directional derivative
of the state.

Lemma A.9 The directional derivative of xt w.r.t. K = (K1,K2) along the direction ∆ =
(∆1,∆2) satisfies,

∥∥x′t[∆]
∥∥ ≤ 2c2Γ

1− ρ
∥x0∥ ∥∆∥ . (22)

Proof The dynamics are

xt+1 = (A−BK1)xt + (C −BK2)ϕ(xt).

We compute the directional derivative w.r.t K = (K1,K2) along the direction ∆ = (∆1,∆2):

x′t+1[∆] = (A−BK1)x
′
t[∆]−B∆1xt + (C −BK2)

∂ϕ(xt)

∂xt
x′t[∆]−B∆2ϕ(xt)

=

t∑
k=0

(A−BK1)
t−k

(
−B∆1xk + (C −BK2)

∂ϕ(xk)

∂xk
x′k[∆]−B∆ϕ(xk)

)
.

Taking the norm and applying the Lipschitz smoothness, we have

∥∥x′t+1[∆]
∥∥ ≤

t∑
k=0

c1ρ
t−k
1

(
∥B∥ ∥∆1∥ ∥xk∥+ c2ℓ

∥∥x′k[∆]
∥∥+ ∥B∥ ∥∆2∥ ℓ ∥xk∥

)
≤

t∑
k=0

c1c2ℓρ
t−k
1

∥∥x′k[∆]
∥∥+

t∑
k=0

c1ρ
t−k ∥B∥ (∥∆1∥+ ℓ ∥∆2∥)cρk ∥x0∥

=
t∑

k=0

c1c2ℓρ
t−k
1

∥∥x′k[∆]
∥∥+ c1ρ1 ∥B∥ (∥∆1∥+ ℓ ∥∆2∥) ∥x0∥

ρt+1 − ρt+1
1

ρ− ρ1
.

We assume that x′t[∆] ≤ αρt,where α = (2c1c ∥x0∥ ∥B∥ (∥∆1∥+ ℓ ∥∆2∥)) /(ρ − ρ1). Then we
have, ∥∥x′t+1[∆]

∥∥
αρt+1

≤
t∑

k=0

c1c2ℓρ
t−k
1

αρk

αρt+1
+

1

2

19
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=
c1c2ℓ

ρ

(ρ1/ρ)
t+1 − 1

ρ1/ρ− 1
+

1

2

≤ c1c2ℓ

ρ− ρ1
+

1

2
≤ 1.

By induction, we conclude that

∥∥x′t[∆]
∥∥ ≤ 2c1c ∥B∥ ∥x0∥ (∥∆1∥+ ℓ ∥∆2∥)

ρt

ρ− ρ1
≤

√
2c2Γ

1− ρ
ρt ∥x0∥ ∥∆∥ .

where in the last step we use the assumption that ℓ ≤ 1 and the basic inequality a+b ≤
√

2(a2 + b2).

With Lemma A.9, we prove the perturbation analysis on the covariance matrix ΣψψK .
Proof [Proof of Lemma A.8] Note that the directional derivative of ΣψψK w.r.t. K along the direction
∆ is

(ΣψψK )′[∆] = E
∞∑
t=0

∂ψ(xt)

∂xt
x′t[∆]ψ(xt)

⊤ + ψ(xt)
∂ψ(xt)

∂xt
x′t[∆]⊤.

Then we have ∥∥∥(ΣψψK )′[∆]
∥∥∥
F
≤ E

∞∑
t=0

2ℓψ
∥∥x′t[∆]

∥∥ ∥ψ(xt)∥
≤ E

∞∑
t=0

2ℓψ

√
2c2Γ

1− ρ
∥x0∥ ∥∆∥ ℓψcρt ∥x0∥

≤ 4c3ΓD2
0

(1− ρ)2
∥∆∥F .

Now, set g(t) = ΣψψK+t(K′−K). Since the above result holds for any K, it follows∥∥∥ΣψψK′ − ΣψψK

∥∥∥
F
= ∥g(1)− g(0)∥F

=

∥∥∥∥∫ 1

0
g′(t)dt

∥∥∥∥
F

≤
∫ 1

0

∥∥g′(t)∥∥
F
dt

≤ 4c3ΓD2
0

(1− ρ)2
∥∥K ′ −K

∥∥
F
.

To prove the second inequality, we first notice that∥∥∥∇GK(xt+1)(xt)
⊤ −∇GK(x′t+1)(x

′
t)
⊤
∥∥∥
F

≤
∥∥∇GK(xt+1)−∇GK(x′t+1)

∥∥ ∥xt∥+ ∥∥∇GK(x′t+1)
∥∥∥∥xt − x′t

∥∥
≤ L

∥∥xt+1 − x′t+1

∥∥ ∥xt∥+ L
∥∥x′t+1

∥∥∥∥xt − x′t
∥∥
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≤ L

√
2c3ΓD2

0

1− ρ
ρt

∥∥K ′ −K
∥∥ ,

which follows ∥∥∥∥∥E
∞∑
t=0

∇GK(xt+1)(xt)
⊤ − E

∞∑
t=0

∇GK(x′t+1)(x
′
t)
⊤

∥∥∥∥∥
F

≤ E
∞∑
t=0

∥∥∥∇GK(xt+1)(xt)
⊤ −∇GK(x′t+1)(x

′
t)
⊤
∥∥∥
F

≤ E
∞∑
t=0

L

√
2c3ΓD2

0

1− ρ
ρt

∥∥K ′ −K
∥∥

≤ LC1

2

∥∥K ′ −K
∥∥

≤ LC1

2

∥∥K ′ −K
∥∥
F
.

Finally, we bound ∥EK∥. Note EKlin = 0. Indeed, by assumption, PKlin
1

= P and it follows

(R+B⊤PKlin
1
B)K lin

1 = B⊤PKlin
1
A,

(R+B⊤PKlin
1
B)K lin

2 = B⊤PKlin
1
C,

which gives us EKlin = RK lin −B⊤PKlin
1
(M −BK lin) = 0. Then we have

∥EK∥ = ∥EK − EKlin∥

≤
∥∥∥R(K −K lin)

∥∥∥+
∥∥∥B⊤(PK1 − PKlin

1
)(M −BK)

∥∥∥+
∥∥∥B⊤PKlin

1
B(K −K lin)

∥∥∥
≤ (1 + Γ2CP )

∥∥∥K −K lin
∥∥∥+ Γ

√
c21 + c22

∥∥∥PK1 − PKlin
1

∥∥∥
≤ (1 + Γ2CP )

∥∥∥K −K lin
∥∥∥+ Γ(c1 + c2)

2Γ3c3

(1− ρ)2

∥∥∥K −K lin
∥∥∥

≤ 3(c1 + c2)
Γ4c3

(1− ρ)2

∥∥∥K −K lin
∥∥∥ .

where we used the result in [25, Lemma 12].

Similarly, we show the cost function C(K) is h-smooth. The formal statement is as in the
following.

Lemma A.10 Under the same conditions in Lemma A.7, with h = 9
Γ4c4D2

0
(1−ρ)2 , for anyK,K ′ ∈ Λ(δ),

we have

C(K ′)− C(K) ≤ Tr
(
(K ′ −K)⊤∇C(K)

)
+
h

2

∥∥K ′ −K
∥∥2
F
. (23)

To prove the lemma, we need the following bound on ΣψψK .
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Lemma A.11 Under the same conditions in Lemma A.4, we have∥∥∥ΣψψK ∥∥∥ ≤ 2c2D2
0

1− ρ
.

Proof By Lemma A.4, we have ∥∥∥ΣψψK ∥∥∥ ≤ E
∞∑
t=0

∥ψ(xt)∥2

≤ ℓ2ψ E
∞∑
t=0

∥xt∥2

≤
ℓ2ψc

2

1− ρ2
E ∥x0∥2

≤ 2c2D2
0

1− ρ
.

Proof [Proof of Lemma A.10] By Lemma A.3

C(K ′)− C(K)

= Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′ + 2Tr(K ′ −K)⊤EKΣψψK′

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
= 2Tr(K ′ −K)⊤EKΣψψK + 2Tr(K ′ −K)⊤EK(ΣψψK′ − ΣψψK )

+ Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

+ E
∞∑
t=0

[
GK((M −BK ′)ψ(x′t))−GK((M −BK)ψ(x′t))

]
≤ 2Tr(K ′ −K)⊤EKΣψψK + 2Tr(K ′ −K)⊤EK(ΣψψK′ − ΣψψK )

+ Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

+ E
∞∑
t=0

−Tr

(
(K ′ −K)⊤B⊤∇GK(x′t+1)ψ(x

′
t)
⊤ +

L

2

∥∥B(K ′ −K)ψ(x′t)
∥∥2)

= Tr(K ′ −K)⊤∇C(K) + 2Tr(K ′ −K)⊤EK(ΣψψK′ − ΣψψK )

+ Tr(K ′ −K)⊤(R+B⊤PK1B)(K ′ −K)ΣψψK′

+ E
∞∑
t=0

Tr(K ′ −K)⊤B⊤
[
∇GK(xt+1)ψ(xt)

⊤ −∇GK(x′t+1)ψ(x
′
t)
⊤
]

+ E
∞∑
t=0

L

2

∥∥B(K ′ −K)ψ(x′t)
∥∥2

≤ Tr(K ′ −K)⊤∇C(K) + 2
∥∥K ′ −K

∥∥
F
∥EK∥

∥∥∥ΣψψK′ − ΣψψK

∥∥∥
F
+
∥∥K ′ −K

∥∥2
F

∥∥∥R+B⊤PK1B
∥∥∥∥∥∥ΣψψK′

∥∥∥
22
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+
∥∥K ′ −K

∥∥
F
∥B∥

∥∥∥∥∥E
∞∑
t=0

∇GK(xt+1)ψ(xt)
⊤ − E

∞∑
t=0

∇GK(x′t+1)ψ(x
′
t)
⊤

∥∥∥∥∥
F

+ E
∞∑
t=0

L

2
∥B∥2

∥∥K ′ −K
∥∥2
F

∥∥ψ(x′t)∥∥2
≤ Tr(K ′ −K)⊤∇C(K) +

(µ
2
+
∥∥∥R+B⊤PK1B

∥∥∥∥∥∥ΣψψK′

∥∥∥)∥∥K ′ −K
∥∥2
F
.

Using upper bound on ∥PK1∥ and
∥∥∥ΣψψK′

∥∥∥, we get

µ+ 2
∥∥∥R+B⊤PK1B

∥∥∥∥∥∥ΣψψK′

∥∥∥ ≤ µ+ 2

(
1 + Γ2 c

2Γ2

1− ρ

)
2c2D2

0

1− ρ
≤ 9

Γ4c4D2
0

(1− ρ)2
=: h.

Finally, we characterize the global optimality of C(K) as in the next lemma.

Lemma A.12 (Global Optimality) Under the conditions in Lemma A.7 and if further ℓ, ℓ′ satisfy

ℓ ≤ δ
2(1− ρ)3σxσ

9c2c7Γ6D2
0

, and ℓ′ ≤ δ
2(1− ρ)4σxσ

9(c1 + c2)c22c
10Γ4D3

0

. (24)

For K ∈ Ω \ Λ(δ/3), we have
C(K) > C(K lin).

Proof Note that EKlin = RK lin −B⊤PKlin
1
(M −BK lin) = 0. Then we have

C(K)− C(K lin) = 2Tr(K −K lin)⊤EKlinΣ
ψψ
K +Tr(K −K lin)⊤(R+B⊤PKlin

1
B)(K −K lin)ΣψψK

+ E
∞∑
t=0

[
GKlin((M −BK))ψ(xt)−GKlin((M −BK lin))ψ(xt)

]
= Tr(K −K lin)⊤(R+B⊤PKlin

1
B)(K −K lin)ΣψψK

+ E
∞∑
t=0

[
GKlin((M −BK))ψ(xt)−GKlin((M −BK lin))ψ(xt)

]
.

With the same argument as in Lemma A.7, we can show that

Tr(K −K lin)⊤(R+B⊤PKlin
1
B)(K −K lin)ΣψψK ≥ σxσ

∥∥∥K −K lin
∥∥∥2
F
= µ

∥∥∥K −K lin
∥∥∥2
F
.

Also, apply the descent lemma on −GKlin , we obtain

GKlin((M −BK))ψ(xt)−GKlin((M −BK lin))ψ(xt)

≥ −Tr(B(K −K lin)ψ(xt))
⊤∇GKlin((M −BK)ψ(xt))−

L

2

∥∥∥B(K −K lin)ψ(xt)
∥∥∥2

≥ −∥B∥
∥∥∥K −K lin

∥∥∥
F
∥ψ(xt)∥L ∥xt+1∥ −

L

2
∥B∥2

∥∥∥K −K lin
∥∥∥2
F
∥ψ(xt)∥2
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≥ −LΓℓψc2ρ2t+1D2
0

∥∥∥K −K lin
∥∥∥
F
− L

2
Γ2ℓ2ψc

2ρ2tD2
0

∥∥∥K −K lin
∥∥∥2
F

≥ −LΓℓψc2ρ2tD2
0

∥∥∥K −K lin
∥∥∥
F
− L

2
Γ2ℓ2ψc

2ρ2tD2
0

∥∥∥K −K lin
∥∥∥2
F
.

Indeed, the conditions are satisfied since

∥(M −BK)ψ(xt)∥ = ∥xt+1∥ ≤ c ∥x0∥ ≤ cD0,∥∥∥(M −BK lin)ψ(xt)
∥∥∥ =

∥∥∥(A−BK lin
1 )xt + (C −BK lin

2 )ϕ(xt)
∥∥∥ ≤ (c1 + ℓc2)cD0 ≤ (c1 + c2)cD0.

Then we have

C(K)− C(K lin) ≥

[
µ− L

2

Γ2ℓ2ψc
2D2

0

1− ρ

]∥∥∥K −K lin
∥∥∥2
F
−
LΓℓψc

2D2
0

1− ρ

∥∥∥K −K lin
∥∥∥
F
.

Since
∥∥K −K lin

∥∥
F
> δ/3, it suffices to show that[
µ− L

2

Γ2ℓ2ψc
2D2

0

1− ρ

]∥∥∥K −K lin
∥∥∥
F
−
LΓℓψc

2D2
0

1− ρ
≥ 0.

This condition is indeed satisfied since

L

2

Γ2ℓ2ψc
2D2

0

1− ρ
≤ µ

2
,

LΓℓψc
2D2

0

1− ρ
≤ µδ

6
,

as long as

ℓ ≤ δ
2(1− ρ)3σxσ

9c2c7(1 + Γ)6D2
0

,

ℓ′ ≤ δ
2(1− ρ)4σxσ

9(c1 + c2)c22c
10(1 + Γ)4D3

0

.

Combining Lemma A.7 and A.10, we prove part (a) of Theorem 4.5. Further, by substituting δ
chosen in Lemma A.7 into Lemma A.12, we finish the proof of part (b) of Theorem 4.5.

Appendix B. Proof of Theorem 4.6

We first characterize the gradient estimation as in the following lemma.

Lemma B.1 Under conditions in Theorem 4.5, when K ∈ Λ(2δ/3), then given egrad > 0, for any
ν ∈ (0, 1), when r ≤ min

{
δ
3 ,

1
3hegrad

}
,

J ≥ D̂2

e2gradr
2
log

4D̂

ν
max

{
36

(
C(K∗) + 2hδ2

)2
, 144C2

max

}
, T ≥ 1

1− ρ1
log

6D̂Cmax

egradr
,

where D̂ = p(n+ d) and Cmax =
24(1+Γ)2c21D

2
0

1−ρ1 , then with probability at least 1− ν,∥∥∥∇̂C(K)−∇C(K)
∥∥∥
F
≤ egrad.
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Proof Denote Cr(K) = EU∼Ball(r) C(K + U), where Ball(r) is the ball with radius r in Frobenius
norm centered at the origin. Then by [10, Lemma 1], we have

∇Cr(K) =
D̂

r2
EU∼Sphere(r) C(K + U)U.

Further, define Cj = C(K +Uj), where Uj ∼ Sphere(r). Then, the error in gradient estimation can
be decomposed into three parts,∥∥∥∇̂C(K)− C(K)

∥∥∥
F

≤ ∥∇Cr(K)−∇C(K)∥F︸ ︷︷ ︸
:=e1

+

∥∥∥∥∥∥ 1J
J∑
j=1

D̂

r2
CjUj −∇Cr(K)

∥∥∥∥∥∥
F︸ ︷︷ ︸

:=e2

+

∥∥∥∥∥∥ 1J
J∑
j=1

D̂

r2
ĈjUj −

1

J

J∑
j=1

D̂

r2
CjUj

∥∥∥∥∥∥
F︸ ︷︷ ︸

:=e3

.

Firstly, by definition, ∇Cr(K) = EU∼Ball(r)∇C(K + U). Since r ≤ δ
3 , K + U ∈ Λ(δ), in

which the cost function C(·) is µ-strongly convex and h-smooth. Then we have

e1 ≤ EU∼Ball(r) ∥∇C(K + U)−∇C(K)∥F ≤ hr ≤ 1

e
egrad,

where we have used r ≤ 1
3hegrad.

Next, notice that
{
D̂
r2
CjUj

}J
j=1

are i.i.d. with expectation ∇Cr(K). Again, by h-smoothness,∥∥∥∥∥ D̂r2CjUj
∥∥∥∥∥
F

≤ D̂

r
Cj ≤

D̂

r

(
C(K∗) +

h

2
∥K + Uj −K∗∥2F

)
≤ D̂

r

(
C(K∗) + 2hδ2

)
.

Then, by matrix Bernstein inequality, we have

P
(
e2 ≤

egrad

3

)
≥ 1− 2D̂ exp

−
(egradJ/3)

2

4J
(
(D̂/r)(C(K∗) + 2hδ2)

)2

 ≥ 1− ν/2,

where we have used J ≥ 36D̂2

e2gradr
2

(
C(K∗) + 2hδ2

)2
log 4D̂

ν .

Finally, to bound e3, we further decompose it into two parts. Define C̃j = E
∑T

t=0

[
x⊤t Qxt + u⊤t Rut

]
,

where ut = −(K + Uj)ψ(xt). Then, we have

e3 ≤

∥∥∥∥∥∥ 1J
J∑
j=1

D̂

r2
ĈjUj −

1

J

J∑
j=1

D̂

r2
C̃jUj

∥∥∥∥∥∥
F︸ ︷︷ ︸

:=e4

+

∥∥∥∥∥∥ 1J
J∑
j=1

D̂

r2
C̃jUj −

1

J

J∑
j=1

D̂

r2
CjUj

∥∥∥∥∥∥
F︸ ︷︷ ︸

:=e5

.

Note that ∣∣∣Ĉj∣∣∣ = ∞∑
t=0

[
x⊤t Qxt + u⊤t Rut

]
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≤
∞∑
t=0

∥xt∥2 ∥Q∥+ ∥ψ(xt)∥2
∥∥∥(K + Uj)

⊤R(K + Uj)
∥∥∥

≤
(
∥Q∥+ ℓ2ψ

∥∥∥(K + Uj)
⊤R(K + Uj)

∥∥∥) ∞∑
t=0

∥xt∥2

≤ (1 + 2(2Γ)2)
∞∑
t=0

c2ρ2tD2
0

≤ 3(1 + Γ)2c2D2
0

1− ρ
=: Cmax,

where we have used the factK+Uj ∈ Λ(δ) and thus ∥K + Uj∥ ≤ 1+Γ. Since, E
[
ĈjUj − C̃jUj

∣∣∣Uj] =
0, by matrix Bernstein inequality, with probability at least 1− ν/2,

P
(
e4 ≤

egrad

6

)
≥ 1− 2D̂ exp

(
−
(egradJ/6)

2

4JC2
max

)
≥ 1− ν

2
,

where we have used J ≥ 144D̂2C2
max

e2gradr
2 log 4D̂

ν . Also, we have

∥∥∥C̃j − Cj
∥∥∥ =

∣∣∣∣∣E
∞∑

t=T+1

[
x⊤t Qxt + u⊤t Rut

]∣∣∣∣∣
≤

(
∥Q∥+ ℓ2ψ

∥∥∥(K + Uj)
⊤R(K + Uj)

∥∥∥) ∞∑
t=T+1

∥xt∥2

≤ Cmaxρ
2(T+1).

As such, we have

e5 ≤
D̂

r
Cmaxρ

2(T+1) ≤ 1

6
egrad,

where we have used T ≥ 1
1−ρ1 log

6D̂Cmax
egradr

. Hence, e3 ≤ 1
3egrad with probability at least 1 − ν

2 ,
which completes the proof.

With Lemma B.1, we prove convergence rate of Algorithm 1.

Proof [Proof of Theorem 4.6] Let Fm be the filtration generated by
{
∇̂C(Km′

)
}m−1

m′=0
. Define the

following event:

Em =
{
Km′ ∈ Ball(K∗, δ/3),m′ = 0, . . . ,m

}
∩
{∥∥∥∇̂C(Km′

)−∇C(Km′
)
∥∥∥
F
≤ egrad,m

′ = 0, . . . ,m− 1
}
,

where Ball(K∗, δ/3) = {K : ∥K −K∗∥F ≤ δ/3}. It is easy to see that both Km and the event Em
are Fm-measurable. We want to show the following inequality:

E [1(Em+1)|Fm] 1(Em) ≥
(
1− ν

M

)
1(Em), (25)

26



POLICY GRADIENT FINDS GLOBAL OPTIMUM OF NEARLY LINEAR-QUADRATIC CONTROL SYSTEMS

i.e., if event Em is true, conditioned on Fm, the event Em+1 happens with high probability. Note that
on event Em, we have

∥∥Km −K lin
∥∥
F
≤ ∥Km −K∗∥F +

∥∥K lin −K∗∥∥
F
≤ 2δ/3, which follows

that Km ∈ Λ(δ). Under our selection of parameters, with probability at least 1 − ν/M , we have∥∥∥∇̂C(Km)−∇C(Km)
∥∥∥
F

≤ egrad. It follows that Km+1 ∈ Ball(K∗, δ/3). Indeed, by µ-strong
convexity and h-smoothness,∥∥Km+1 −K∗∥∥

F
≤ ∥Km − η∇C(Km)−K∗∥F + η

∥∥∥∇̂C(Km)−∇C(Km)
∥∥∥
F

≤ (1− ηµ) ∥Km −K∗∥F + ηegrad

≤ (1− ηµ)
δ

3
+ ηegrad ≤ δ

3
,

where we have used egrad ≤ δµ
3 in the last inequality. As such, taking the expectation of (25) on

both sides, we have

P(Em+1) = P(Em+1 ∩ Em) = E [[1(Em+1)|Fm] 1(Em)] ≥
(
1− ν

M

)
P(Em).

Unrolling this recursive relation, we obtain P(Em) ≥
(
1− ν

M

)M P(E0) =
(
1− ν

M

)M ≥ 1 − ν.
Now, on event Em, we also have

∥∥KM −K∗∥∥
F
≤ (1− ηµ)M

∥∥K0 −K∗∥∥
F
+ ηegrad

M−1∑
m=0

(1− ηµ)m

≤ (1− ηµ)M
δ

3
+
egrad

µ

≤
√

2ϵ

h
,

where we have used M ≥ 1
ηµ log

(
δ
3

√
2h
ϵ

)
and egrad ≤ µ

√
ϵ
2h . Finally, by h-smoothness, we have

C(KM ) ≤ C(K∗) +
h

2

∥∥KM −K∗∥∥2
F
≤ C(K∗) + ϵ,

which is desirable.
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