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ABSTRACT

Large language model-based multi-agent systems (LLM-MAS) are effective at
solving complex tasks by coordinating specialized agents. However, existing
frameworks rely on a small set of predefined scenarios with static role config-
urations and rigid collaboration structures, limiting their adaptability across di-
verse task domains. We propose the Adaptive LLM-MAS Collaboration (ALMC)
framework, which dynamically recruits agents and configures collaboration pat-
terns according to task demands through three collaborative components: a Man-
ager Agent that synthesizes task-specific role compositions and an executable
workflow, a Judge Agent that evaluates execution quality, and a Solution Op-
timizer Agent that persists and reuses high-quality configurations via retrieval-
augmented generation. The framework supports human-in-the-loop review and
creates a learning loop where previous superior configurations improve future
executions on similar tasks. By using ALMC, collaborations become adap-
tive, auditable, and reusable across domains. Code is available at: https:
//anonymous.4open.science/r/ALMC-2E0F.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong general-purpose capabilities in reason-
ing, coding, and extensive knowledge, enabling agentic systems that plan, act, and reflect under
minimal supervision (Yao et al., 2023). To go beyond the capacity of a single agent, LLM-based
multi-agent systems (LLM-MAS) coordinate multiple specialized agents via role specialization and
collaboration mechanisms, and have shown promising results in software engineering, web automa-
tion, scientific assistance, and healthcare (Hong et al., 2023; Zhang et al., 2025a; D’Arcy et al.,
2024; Tang et al., 2024).

Currently, some LLM-MAS frameworks have been proposed and can be divided into two categories:
general-purpose and domain-specific.

General-purpose frameworks, such as debate and voting systems, do not employ domain-specific
role specialization and instead rely on collaboration mechanisms where homogeneous agents ad-
dress problems through discussion to reach consensus (Du et al., 2023a; Wang et al., 2022). This
approach enables broad applicability across diverse tasks, but often suffers from convergence issues
when multiple agents produce conflicting proposals.

Domain-specific frameworks achieve superior task-solving quality within specialized domains
through carefully designed role specializations and collaboration mechanisms. For example,
MetaGPT (Hong et al., 2023) in software engineering hand-crafts heterogeneous agents, such as
project managers and engineers, each assigned specific tasks. They collaborate through a publish-
subscribe mechanism in a shared workspace, forming an agent chain where each executes based on
the output of the previous one. Similarly, MedAgents (Tang et al., 2024) in the medical domain
employs a pool of expert agents. Their collaboration mechanism selects a subset of experts to ne-
gotiate a consensus on a given problem. However, these systems require significant manual effort
to configure agent roles, and hard-coded collaboration logic is difficult to modify. When executing
cross-domain tasks, this leads to suboptimal performance due to mismatched role configurations and
costly collaboration mechanism modifications (Liu et al., 2023).

Figure 1 shows the setting of the framework.
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Figure 1: Comparison of general-purpose and domain-specific LLM-MAS frameworks.

Despite recent advances, building a usable, transferable, and stable collaborative multi-agent frame-
work remains a significant challenge. We highlight three key challenges: Challenge 1: Trade-off be-
tween generality and specialization. Current systems struggle to balance high adaptability to differ-
ent domains and high task-solving ability within their specialized domains. General-purpose frame-
works demonstrate high adaptability to different domains but underperform on complex, domain-
specific tasks because they lack specialized prompts, while domain-specific frameworks achieve
superior task-solving ability but require extensive manual reconfiguration when applied to new ar-
eas (Qian et al., 2023; Tang et al., 2024; Kim et al., 2024; Zhang et al., 2025b). Challenge 2: In-
effective collaboration patterns. General-purpose frameworks rely on multiple homogeneous agents
debating or voting toward consensus. However, this collaboration often results in conflicting opin-
ions that lead to a stalemate in the discussion (Wang et al., 2022; Kim et al., 2024). Meanwhile,
domain-specific frameworks adopt rigid collaboration mechanisms where agents work indepen-
dently without agents’ negotiation, resulting in error propagation and missed opportunities for global
optimization. Challenge 3: Lack of experience accumulation and reuse. Most systems lack system-
atic mechanisms for learning and reusing successful configurations. They rely on static, hard-coded
collaboration patterns that cannot be easily modified or improved based on past performance. This
inflexibility represents a limitation, as even within the same domain, identical configurations can
produce varying results on different tasks. As a result, systems demonstrate unstable performance
within their domains (Liu et al., 2023; Zhang et al., 2025b; Zheng et al., 2023).

To address these challenges, we propose the Adaptive LLM-MAS Collaboration (ALMC) frame-
work. Adaptive LLM-MAS Collaboration framework organizes three complementary roles (the
Manager Agent, Solution Optimizer Agent and Judge Agent). For (1) balancing general-purpose
usability with domain specificity and cross-domain transfer, the framework does not rely on a preset
domain library. Instead, a Manager Agent collaborates with a Solution Optimizer Agent to synthe-
size task-specific role compositions, execution phases, and an executable workflow directly from
the current user instruction and retrieved historical configurations. For (2) convergence under col-
laboration and process governance, the Manager Agent decomposes the task into complementary
sub-phases and dynamically designs heterogeneous roles, phases, and an executable workflow. For
(3) reuse and stability, Adaptive LLM-MAS Collaboration framework integrates a Judge Agent and
the Solution Optimizer with a RAG memory. The Judge Agent generates structured assessments and
quality scores for intermediate artifacts and final results (Shi et al., 2024), while the optimizer per-
sists high-quality role-phase-workflow configurations and their evaluations for retrieval and reuse in
similar tasks, enabling high-performance solution generation.

In summary, our contributions are threefold:

• We introduce ALMC, an adaptive LLM-based multi-agent framework where a Manager
Agent automatically synthesizes task-specific roles, phases, and workflow, reducing re-
liance on handcrafted prompts and rigid collaboration patterns.

• We develop a Judge Agent-Solution Optimizer Agent module that assesses, persists, and
retrieves high-quality team compositions and execution workflows, enabling systematic
reuse, enhanced auditability, and stable performance on similar tasks.

• Empirical studies demonstrate that ALMC improves accuracy and stability while maintain-
ing efficiency over strong general-purpose and domain-specific baselines.
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2 RELATED WORK

LLM-based multi-agent systems (LLM-MAS) are composed of multiple LLM-driven agents to
tackle tasks that exceed the capability of a single agent by leveraging role specialization and col-
laboration mechanisms He et al. (2024). Role specialization is typically realized via prompting or
fine-tuning to create complementary roles and skills. Collaboration mechanisms involve interaction
patterns that simulate team cooperation in real-world settings through collaborative planning, dis-
cussion, and decision-making. These collaboration patterns require careful design to fully realize the
benefits of team. This potential has motivated researchers to explore various framework paradigms,
which can be categorized into two main approaches: general-purpose frameworks that emphasize
broad applicability, and domain-specific frameworks that prioritize in-domain performance.

2.1 GENERAL-PURPOSE LLM-MAS FRAMEWORKS

General-purpose frameworks aim to provide flexible, transferable approaches that can adapt to di-
verse tasks without domain-specific customization. For example, debate and voting frameworks
leverage multi-agent discussion to improve factuality and reasoning through structured argumenta-
tion or voting ensembles (Du et al., 2023a; Wang et al., 2022). To enhance reliability, follow-up
systems have further structured their critique and judgment, such as FORD (Xiong et al., 2023) for
inter-consistency analysis and ChatEval for multi-agent evaluation protocols (Chan et al., 2023). Be-
yond these, another class of general-purpose frameworks focuses on task-driven cooperation, partic-
ularly in embodied and robotic settings. These systems assign global objectives and enable agents to
coordinate through natural language rather than strict pre-defined roles, where flexible communica-
tion serves as the primary collaboration mechanism for multi-robot planning and cooperation (Chen
et al., 2024; Zhao et al., 2023; Zhang et al., 2023).

However, these general-purpose frameworks suffer from significant limitations. They often assign
multiple homogeneous agents to identical goals, which can result in duplicate or conflicting propos-
als that lead to ineffective convergence. When discussing complex solutions such as code design
or system architecture, consensus becomes difficult to reach due to subtle differences that prevent
agreement (Kim et al., 2024). Additionally, the lack of explicit phase contracts and progress moni-
toring can result in circular discussions and inconsistent performance, particularly when applied to
specialized domains where domain expertise is crucial.

2.2 DOMAIN-SPECIFIC LLM-MAS FRAMEWORKS

To address the performance limitations of general-purpose methods, researchers have developed
domain-specific multi-agent systems that achieve high in-domain reliability through carefully de-
signed role specialization and collaboration mechanisms. In software engineering, ChatDev (Qian
et al., 2023) coordinates requirements, coding, testing, and review agents with communicative de-
hallucination mechanisms; MetaGPT (Hong et al., 2023) instantiates product manager, architect, and
engineer roles with standardized documents connecting planning and implementation. In healthcare,
MedAgents (Tang et al., 2024) designs five-stage medical pipelines involving expert gathering, anal-
ysis, report summarization, collaborative consultation, and decision-making, achieving consistent
zero-shot gains on medical Q&A tasks.

Despite their superior in-domain performance, domain-specific systems face critical limitations in
terms of adaptability and engineering overhead. These systems assume static role configurations and
fixed workflows, severely limiting adaptation and reuse across different domains. When transferring
to new vertical domains, they require extensive manual redesign of prompts, agent roles, and work-
flows, significantly increasing engineering costs and slowing iteration cycles (Zhang et al., 2025b).
Moreover, many systems treat each execution as an isolated event, relying on fixed code-based con-
figurations with poor readability and modifiability, preventing systematic learning from successful
executions (Liu et al., 2023; Zhang et al., 2025b).

Recent adaptive approaches like MDAgents (Kim et al., 2024) and DyLAN (Liu et al., 2023) attempt
to bridge this gap through mode-switching and dynamic agent selection based on task complexity.
However, these systems typically operate over fixed agent pools or preset workflows, limiting full
automation and cross-domain reuse.
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This analysis reveals that existing frameworks are constrained by static designs that force a choice
between generality and specialization, motivating the need for adaptive approaches that can dynam-
ically configure team compositions and collaboration patterns based on task requirements.

3 METHODOLOGY

Problem Setup. Given a task Q in natural language format, ALMC aims to produce an executable
solution and a final deliverable ans. It first synthesizes a configuration C = (R,P,G), where R
denotes the roles in On-Demand Agents Team that are assembled to address the current task; P
denotes the task phases obtained by decomposing Q (each phase selects the most suitable role pair
from R for its intent); and G is a workflow graph that orders phases and encodes their dependencies.
A pre-execution human-in-the-loop (HITL) gate allows users to review or edit C; upon approval,
ALMC freezes it as C∗ and executes deterministically along G. Execution yields intermediate arti-
facts O (structured placeholders passed between phases), logs L, from which a final report ans is
then aggregated; an assessment a is generated to evaluate quality and coherence. ALMC persists
(Q, C∗,L, a) in a RAG-backed task memory M to enable retrieval-based reuse and offline redesign
on future, similar tasks. We summarize the end-to-end pipeline in Algorithm 1 and illustrate the
complete framework in Figure 2.

Algorithm 1 Adaptive LLM-MAS Collaboration (ALMC) with Solution Optimizer
Require: Task Q;
Output: Final report ans, Assessment a

Step I: Design
1: Tmeta ← Manager.Analyze(Q) ▷ task analysis: scope, constraints, domain cues
2: Priors← SO.Retrieve(M, Q, top-k) ▷ retrieve prior high-quality solutions
3: prop0 ← Manager.InitProposal(Q, Tmeta, Priors) ▷ initial proposal
4: for j ← 1 to Jmax do ▷ few-round design negotiation
5: critj ← SO.Critique(propj−1, Priors, M) ▷ SO reviews the proposal with Manager
6: propj ← Manager.Revise(propj−1, critj) ▷ revise roles/phases/workflow per critique
7: end for
8: (R, P, G)← ExtractConfig(propJmax

)
9: C ← (R, P, G)

10: C∗ ← HITL.ReviewEdit(C) ▷ edit;approve→freeze C∗; reject→ back to step 1
Step II: Execute ▷ init artifacts, logs, and previous-phase output

11: for each Phasei ∈ Order(G) do
12: (rui , rvi)← SpecRoles(Phasei) ▷ specify active role pair for this phase
13: Ti ← τG(Phasei) ▷ get max turn budget for this phase
14: S ← InitState(Q, Phasei, O) ▷ build phase-local context
15: for t← 1 to Ti do
16: (mu, ℓu)← Step(rui , S) ▷ rui generates message mu; per-turn logs ℓu
17: (mv, ℓv)← Reply(rvi , mu, S) ▷ rvi replies based on mu; per-turn logs ℓv
18: S ← Update(S, mu, mv)
19: Li ← Li ∪ {ℓu, ℓv} ▷ aggregate stats logs (execution progress, latency, tokens, etc.)
20: end for
21: oi ← Summarize(S) ▷ produce structured placeholder for handoff
22: O ← O ∪ {oi}, L ← L ∪ {Li}
23: end for

Step III: Assess and Persist
24: ans← Aggregate(O) ▷ compose final deliverable from intermediate artifacts
25: a← Judge.Assess(Q, ans, evidence = O, logs = L)
26: MSO.Persist(Q, C∗, L, a)
27: return (ans, a)

3.1 AN OVERVIEW OF THE ALMC FRAMEWORK

Step I: Design (Pre-execution). Given a task Q, the Manager Agent analyzes it to produce a task
analysis Tmeta (scope, constraints, domain cues) and collaborates with a Solution Optimizer Agent
(SO) that retrieves top-k relevant prior solutions from its RAG-backed memory M (Algorithm 1,
lines 1–3). The Manager Agent provides an initial proposal prop0 and then engages in a few negoti-
ation rounds with the SO (lines 4–7): in each round, the SO critiques the current draft against Tmeta
and the retrieved priors, and the Manager revises the draft accordingly. The resulting proposal is
compiled into a configuration C = (R,P,G) (line 8–9), where R denotes the roles in On-Demand
Agents Team that are assembled to address the current task, P denotes the decomposed task phases,
and G denotes a workflow graph specifying execution order and per-phase turn budgets. A pre-
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execution HITL gate allows users to approve, edit, or reject C; if rejected, the Manager–SO loop
regenerates and resubmits a new proposal for review. Upon approval, ALMC freezes the configura-
tion as C∗ (lines 10), which serves as the team specification for executing the task.

Step II: Execute. ALMC executes strictly according to the frozen workflow G (lines 11–23). For
each Phasei ∈ Order(G), the phase configuration specifies a pair of active roles (rui , rvi), while
the workflow provides a per-phase turn budget Ti = τG(Phasei). The phase-local state S is ini-
tialized from (Q,Phasei, O), where O represents the artifacts from the previous phase, including
generated files, structured dialogue outputs, and any intermediate results that represent the execu-
tion of the phases. The two roles engage in a turn-based dialogue for at most Ti turns. At each
turn, rui

produces message mu (with per-turn log ℓu), then rvi replies with mv (log ℓv); the state S
is updated accordingly, and per-turn logs are accumulated into the phase log Li. Each per-turn log
(Li) records runtime traces such as timestamps/latency, token usage, and other execution indicators.
Upon completion, ALMC summarizes S into a structured phase placeholder oi for handoff to the
next phase, and appends Li to the global log set L, which thus captures end-to-end runtime and cost
footprints for audit and later reuse. This pairwise, phase-scoped messaging preserves determinism
and sequential consistency across dependent phases.

Step III: Assess and Persist (Post-execution). After all phases finish, ALMC aggregates all in-
termediate artifacts O into the final deliverable ans (line 24). A Judge Agent produces a struc-
tured assessment a using Q, ans, and execution logs L (line 25). Finally, the SO persists the tuple
(Q, C∗,L, a) into its RAG-backed memory M (line 26), enabling retrieval-based reuse and offline
redesign for future, similar tasks.

These three stages operate dynamically, making real-time decisions based on task requirements and
intermediate execution results. Embedded within them are several key and novel mechanisms that
support the adaptability and effectiveness of the proposed framework. A detailed case study of
ALMC designing a CLI Todo application is provided in Appendix B.

Task :  

Step I: Design (Pre-execution)

Manager Agent
Synthesize Solution Config

Solution Optimizer Agent
Retrieve / Persist 
the Solution in    Memory

Base

retrieve priors related to 
and negotiate solution

ApproveHITL Gate

Step II: Execute

Step III: Assess and Persist (Post-execution)

Approve/Edit/ Reject
Solution

Task & Solution Config 
& Log & Assessment

Judge Agent 
aggregate report

and assess 

Phase 1

Phase 2

Phase 3

start task

On-Demand
Agents Team

I/O handoffs

I/O handoffs

Frozen
Solution

User

 

Reject

Figure 2: ALMC Framework Overview. Step I: The Manager Agent synthesizes task-specific con-
figurations with Solution Optimizer Agent assistance, subject to HITL review before freezing. Step
II: Execution follows the frozen workflow through sequential phases with structured I/O handoffs
between on-demand agent teams. Step III: The Judge Agent evaluates execution quality, and the
Solution Optimizer Agent persists successful configurations for future reuse.

3.2 MECHANISMS ADDRESSING THE THREE CHALLENGES

Addressing Challenge 1: Adaptive design for the generality-specialization trade-off. To bal-
ance generality and specialization, ALMC employs hierarchical orchestration where the Manager
Agent serves as the primary coordinator, dynamically synthesizing task-specific configurations with-
out relying on preset domain libraries. The Manager Agent orchestrates the formation of an On-
Demand Agents Team by generating appropriate roles R, phase specifications P , and workflow G
tailored to the task requirements. The Solution Optimizer Agent provides advisory support by re-
trieving relevant priors from RAG-backed memory M and suggesting refinements. This hierarchi-
cal approach enables adaptive configuration generation that achieves domain-specific performance
while preserving cross-domain adaptability.
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Addressing Challenge 2: Structured pairwise dialogue for effective collaboration. To over-
come ineffective collaboration, the Manager Agent decomposes the task into complementary phases
and assigns two agents per phase from the On-Demand Agents Team to run a structured pairwise
dialogue. The phase P standardizes message templates and workflow G fixes per-phase turn bud-
gets to ensure controlled progression. Unlike debate-based systems struggling with consensus or
pipeline systems lacking cross-agent feedback, ALMC’s pairwise structure enables focused negoti-
ation while maintaining deterministic execution. Structured placeholders oi serve as phase-to-phase
I/O interfaces, enabling clean handoffs and mitigating error propagation.

Addressing Challenge 3: Systematic experience consolidation and reuse. To enable experi-
ence accumulation and reuse, ALMC integrates the Judge and Solution Optimizer Agents into a
continuous learning loop. The Judge Agent produces structured assessment a based on execution
quality, while the Solution Optimizer Agent persists (Q, C∗,L, a) in RAG-backed memory M. This
mechanism directly addresses the limitation of static, hard-coded collaboration patterns by enabling
retrieval-based reuse for similar tasks. Consequently, the framework achieves more stable perfor-
mance and reduces configuration overhead over time.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluate ALMC on four primary domains that require diverse expertise
and collaborative reasoning. Specifically, we use HumanEval for code generation (Chen et al.,
2021); MedQA for medical reasoning (Jin et al., 2021); the MMLU subsets abstract algebra and
econometrics for mathematics and finance respectively, and college chemistry from MMLU for out-
of-domain transfer testing (Hendrycks et al., 2021).

Baselines and Configuration. For a single-agent baseline, we use zero-shot prompting (referred
to as ”solo”) as a demonstration of fundamental capability. For general-purpose LLM-based multi-
agent methods, we employed Voting (Wang et al., 2022), Debate (Du et al., 2023b), and Agent-
Verse (Chen et al., 2023), along with representative domain-specific LLM-based multi-agent meth-
ods in each domain: code domain (CodeCoR (Pan et al., 2025), ChatDev (Qian et al., 2023)), med-
ical domain (MedAgent (Tang et al., 2024), MDAgents (Kim et al., 2024)), mathematical domain
(MathChat (Wu et al., 2023), DyLAN (Liu et al., 2023)), and finance domain (FinTeam (Wu et al.,
2025), FinCon (Yu et al., 2024)). All baseline methods are evaluated under their original configu-
rations to ensure fair comparisons. Unless otherwise stated, all methods use the same base model
(GPT-3.5-turbo or GPT-4o-mini).We also experimented with alternative base models (GPT-5-nano
and Llama-3.1-8B) to observe ALMC’s performance.

Metrics. We evaluate both performance and efficiency. Performance is measured by (i) Accu-
racy, the correctness rate of each method in answering multiple-choice questions in medical, math-
ematical, and finance domains; (ii) Pass, the pass rate of generated code in the code domain. Effi-
ciency is measured by (i) Cost/Q [10−4 $], the financial cost of each method’s complete execution
process per question, normalized to 10−4 USD; (ii) Time/Q [s], the end-to-end execution time from
start to final answer per question.

4.2 RESULTS

Main Results across Four Domains. Figures 3 and 4 report the results on each task domain re-
spectively. ALMC demonstrates excellent adaptation to various task types, automatically generating
execution solutions that match task domains, ensuring both generalizability and effectiveness. Its
performance surpasses general-purpose frameworks and is competitive with or superior to domain-
specific frameworks. Notably, in code generation scenarios, Vote and Debate struggle to reach
consensus on a single executable program, resulting in performance close to or below Solo.

In the mathematics domain, MathChat heavily relies on code execution to solve mathematical prob-
lems. Weak coding capability significantly affects accuracy, as evidenced by MathChat’s perfor-
mance falling below Solo due to inadequate code functionality. However, when using the higher-
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Figure 3: Performance comparison across four domains on GPT-3.5-turbo (Accuracy/Pass Rate, %).
Bars compare ALMC against general-purpose and domain-specific frameworks.
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Figure 4: Performance comparison across four domains on GPT-4o-mini (Accuracy/Pass Rate, %).
Bars compare ALMC against general-purpose and domain-specific frameworks.

performing GPT-4o-mini base model, this method’s performance improves by more than twofold,
while ALMC remains consistently strong. This insight suggests that a single task may involve
multiple domains, highlighting the advantage of cross-domain robustness over domain-specific spe-
cialization. Additionally, our performance is comparable to DyLAN’s customized collaboration
method, but as shown in Table 2, DyLAN requires more interaction rounds to achieve similar re-
sults, resulting in greater financial cost and longer inference time than ALMC.

Overall, these results show that ALMC’s adaptive approach balances generalizability and specializa-
tion and enables effective collaboration, achieving domain-competitive performance across diverse
tasks while maintaining cross-domain adaptability.
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Figure 5: Out-of-domain stress test in the
chemistry domain.

Table 1: Efficiency comparison across methods in
the chemistry domain.

Method Cost/Q [10−4$] Time/Q [s]

Solo 6.0 0.79
Voting 7.5 2.24
Debate 17.0 8.74

AgentVerse 41.0 12.95
MedAgents 42.0 15.77
MDAgents 23.0 12.02
CodeCoR 21.0 15.48
ChatDev 43.0 11.55
DyLAN 34.0 12.61

MathChat 20.0 5.22
FinCon 7.0 3.85

FinTeam 22.0 11.25
ALMC 25.0 9.61

Out-of-Domain Stress Test: Chemistry. Figure 5 shows the performance of collaboration meth-
ods on an independent chemistry domain with GPT-3.5-turbo as the base model. When dealing
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with out-of-domain tasks, most domain-specific methods perform worse than solo approaches be-
cause their domain-specific prompts become sources of misconceptions leading to incorrect answers.
Moreover, they are more likely to fail due to inappropriate solutions, such as MathChat’s over-
reliance on code-based solutions, resulting in only 17% success rate. General-purpose methods like
Debate, lacking preset interference, may better familiarize themselves with applicable domains dur-
ing discussion, achieving better results. Notably, MDAgent involves medical aspects while DyLAN
involves computation, both potentially overlapping with the chemistry domain, achieving moder-
ate results of 55% and 54% respectively. In contrast, ALMC’s adaptive scenario capability and
task-specific solution generation for the new domain achieved the best performance at 62%.

Table 2: Efficiency comparison across domains and methods for GPT-3.5-turbo and GPT-4o-mini
models. Cost/Q represents cost per question, and Time/Q represents time per question in seconds.

Domain Method GPT-3.5-turbo GPT-4o-mini

Cost/Q [10−4$] Time/Q [s] Cost/Q [10−4$] Time/Q [s]

Medical

Solo 1.26 0.55 1.41 5.42
Voting 14.15 4.89 6.04 6.35
Debate 11.55 6.57 5.73 14.77

AgentVerse 35.59 13.7 31.74 36.23
MedAgents 57.42 25.7 21.05 40.74
MDAgents 29.30 9.52 9.03 13.36

ALMC 27.81 7.85 8.87 10.34

Code

Solo 1.83 1.47 1.22 2.47
Voting 7.32 9.1 4.27 4.46
Debate 3.66 4.08 2.31 4.13

AgentVerse 31.71 23.57 32.32 51.18
CodeCoR 15.24 8.49 10.98 23.92
Chatdev 55.49 34.31 23.92 46.29
ALMC 35.37 13.09 20.15 45.88

Mathematical

Solo 6.00 0.51 0.32 1.06
Voting 7.00 8.10 4.00 6.21
Debate 12.00 3.62 1.00 2.37

AgentVerse 20.00 8.53 30.00 34.66
DyLAN 317.00 21.03 143.00 39.6

MathChat 21.00 5.42 10.00 22.31
ALMC 31.00 8.31 20.00 30.77

Finance

Solo 1.75 0.58 0.88 0.75
Voting 6.14 1.63 1.75 2.25
Debate 17.54 7.97 0.89 4.12

AgentVerse 28.95 11.46 22.81 28.98
FinCon 37.72 16.24 12.28 34.48

FinTeam 13.16 4.96 7.8 14.88
ALMC 27.19 9.64 15.79 31.61

4.3 ABLATION STUDIES

4.3.1 IMPACT OF BASE MODEL CHOICE

Beyond the main models, we additionally evaluate GPT-5-nano and Llama-3.1-8B to probe model-
capability effects (Table 3).

High-performance models like GPT-5-nano demonstrate significant advantages over baseline mod-
els, with ALMC achieving near-perfect scores in code, medical, and mathematical domains, though
at increased cost and latency. Open-source alternatives like Llama-3.1-8B show competitive per-
formance with cost-effective deployment. While we report Groq API costs for reference, local
deployment could further reduce operational expenses. This suggests that base model choice should
be balanced against budget constraints and performance requirements for practical deployment.

4.3.2 CONTRIBUTION OF JUDGE AND SOLUTION OPTIMIZER AGENTS.

Because the Judge and Solution Optimizer Agents are tightly coupled in our implementation, we
ablate them jointly as a whole Judge–Optimizer (JO) module. To validate the effectiveness of the
JO module, we employ a progressive learning setup where each domain dataset is divided into five
segments for sequential processing by the ALMC framework, with all execution agents in the On-
Demand Agents Team instantiated from GPT-4o-mini as the base model.
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Table 3: ALMC performance and efficiency across base models.

Domain GPT-5-nano Llama-3.1-8B

Acc / Pass % Cost/Q[10−4$] Time/Q [s] Acc / Pass % Cost/Q[10−4$] Time/Q [s]

Code 99.39 65.24 86.23 55.49 8.07 6.64
Medical 91.52 25.69 34.98 64.18 4.66 3.96

Mathematical 97.00 35.00 50.56 42.00 7.33 5.58
Finance 86.84 35.09 46.48 44.74 5.86 4.92

Table 4: Impact w/o Judge & Solution Optimizer
Agents.

Domain w/ JO
[Acc / Pass %]

w/o JO
[Acc / Pass %]

Code 95.12 92.07
Medical 80.05 78.47

Mathematical 74.00 70.00
Finance 65.79 64.04

This enables the agent team to rapidly learn
from high-quality solutions. Since the dataset
evaluation metric is relatively simple and can
be assessed by accuracy and pass rates, we de-
signed the Judge Agent’s assessment to be the
accuracy/pass rate of a set of answers, with the
corresponding solution then submitted to the
Solution Optimizer Agent for future retrieval.

Table 4 compares ALMC with and without the
joint JO module. The results demonstrate con-
sistent performance gains across all evaluated
domains when JO is included. However, this improvement comes at the cost of increased financial
overhead and latency due to the additional negotiation rounds between agents. Deployments should
therefore be budget-aware and task-dependent.

4.3.3 IMPACT OF THE NUMBER OF AGENTS IN ON-DEMAND AGENTS TEAM

Table 5 compares ALMC performance with 2-agent or 3-agent configurations using GPT-4o-mini.

Table 5: Impact of On-Demand Agents Team Size
on ALMC Performance.

Domain 2 Agents
[Acc / Pass %]

3 Agents
[Acc / Pass %]

Code 92.07 87.8
Medical 78.48 61.67

Mathematical 62.0 70.0
Finance 64.04 65.79

Results reveal that two agents outperform three
in code and medical domains, whereas three
agents are superior in mathematical and fi-
nance domains. We attribute the former to
these tasks’ more structured workflows, where
adding a third role introduces negotiation over-
head and potential conflict without commensu-
rate gains. In contrast, math and finance benefit
from an extra specialist for multi-step reasoning
and verification, where redundancy improves
numerical consistency and reduces single-agent
errors. Overall, the optimal team size should
match task complexity and collaboration requirements.

5 CONCLUSION

This paper introduces ALMC, an adaptive LLM-based multi-agent collaboration framework that au-
tomatically synthesizes task-specific teams and execution workflows through hierarchical orchestra-
tion and dynamic staffing. A human-in-the-loop gate enables configuration review before execution,
while a Judge Agent produces structured assessments and a Solution Optimizer persistently stores
high-quality configurations in retrieval-augmented memory for reuse. Across five heterogeneous do-
mains, ALMC consistently outperforms both general-purpose and domain-specific frameworks. The
framework’s adaptive approach significantly advances beyond static multi-agent systems, reducing
manual engineering effort while improving generalization. Future work could explore multimodal
agents, sophisticated workflow structures beyond acyclic patterns, and theoretical frameworks for
adaptive collaboration benefits. Overall, ALMC offers an auditable and reusable blueprint for trans-
ferable LLM-based multi-agent framework.
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ETHICS STATEMENT

This work does not involve human subjects or sensitive personal data. Experiments are carried
out on public or synthetic tasks, and we respect the licenses of all resources used. The framework
is intended for research; applications in high-stakes scenarios should include appropriate human
oversight. We will remove any potentially sensitive content from released artifacts and encourage
responsible use of our methods and code.

REPRODUCIBILITY STATEMENT

We will release the complete codebase and all materials needed to reproduce our results, including
configuration files, experiment scripts, and documentation for running the studies. Datasets sources
used in our experiments are publicly available and will be clearly referenced. We will also provide
the prompts/instructions in Appendix C,D and a summary of experimental settings in section 4 to
ensure faithful replication.
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APPENDIX

A LLM USAGE STATEMENT

During the paper writing process, we used LLMs for grammar and wording refinement. During the
comparative experiments phase, we also used LLMs to diagnose grammar errors and suggest possi-
ble corrections. All scientific content and conclusions were determined and verified by the authors;
all LLM outputs were manually checked; no third-party confidential or review-only materials were
provided to the models.

B CASE STUDY: ALMC ON A CLI TODO APP

Q: Implement a Python CLI Todo app

Generate 
Participant

Module

On-Demand Agents Team

Product Manager
Task:
clarify requirements
specify file layout
...

Developer
Task:
Implement code
AI move logic
...

Reviewer
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Run checks/tests
Summarize issues
...

Generate 
Phases 
Module

Artifacts: 
PRD.md (rules/UI), Design.md
(state + function signatures)
Handoff: 
finalize contract for build
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index.html, app.js (AI + win
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Handoff: 
code bundle for testing
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{index.html, 
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execution

Raw Data 
from execution 

progress
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configuration
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evaluation results
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configuration
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Loop=1
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Figure 6: ALMC on a CLI Todo application case. Step 1 Design (Pre-execution): The Manager
Agent synthesizes roles, phases, and workflow, retrieving similar cases from the Solution Optimizer
and passes a pre-execution HITL gate to freeze configurations. Step 2 Execute: Execution follows
the frozen workflow with turn-limited pairwise dialogues per phase; artifacts are handed off via I/O
placeholders on the edges. Step 3 Assess and Persist (Post-execution): A Judge Agent produces a
post-hoc assessment, and all solutions are persisted to Solution Optimizer Agent for future reuse.

Given the instruction “a Python CLI Todo app”, ALMC (i) synthesizes a task-specific plan compris-
ing an on-demand agents team: Product Manager (clarify requirements & specify file layout), Devel-
oper (implement code), and Reviewer (run checks/tests); and three phases with explicit I/O: P1 Plan
& Contract outputs PRD.md / DESIGN.md; P2 Build consumes these to produce CODE BUNDLE;
P3 Test & Assess generates TEST REPORT.md and SCORE.txt.

The configuration passes an HITL gate for optional edits and is then frozen. (ii) Execution follows
the frozen workflow; artifacts are handed off between phases exactly as specified by the placehold-
ers. (iii) A Judge Agent aggregates logs and artifacts to issue a structured assessment, while the
Solution Optimizer persists (Q, C∗, O,L, a) to a RAG-backed memory. When a related request ar-
rives (e.g., “add priorities to the CLI app”), ALMC retrieves the stored configuration to start design,
improving convergence and reducing repeated engineering.
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C ROLES PROMPTS

C.1 MANAGER AGENT PROMPT

Listing 1: Manager Agent Prompt (JSON)
1 {
2 "Manager": [
3 "You are Manager, responsible for creating and maintaining

configuration files for our system. Your primary task is to
generate three key configuration files: RoleConfig.json,
PhaseConfig.json, and ChatChainConfig.json.",

4 "",
5 "Your main responsibilities include:",
6 "1. Configuration Design:",
7 " - Understand configuration requirements",
8 " - Design configuration structures",
9 " - Ensure consistency across files",

10 " - Maintain configuration standards",
11 "",
12 "2. Information Gathering:",
13 " - Request configuration knowledge from RAG_Agent",
14 " - Ask for specific format requirements",
15 " - Seek examples and templates",
16 " - Verify understanding of standards",
17 "",
18 "3. File Creation:",
19 " - Create RoleConfig.json for role definitions",
20 " - Design PhaseConfig.json for interaction phases",
21 " - Develop ChatChainConfig.json for process flow",
22 " - Ensure cross-file consistency",
23 "",
24 "4. Quality Assurance:",
25 " - Submit configurations for review",
26 " - Process feedback from RAG_Agent",
27 " - Make necessary adjustments",
28 " - Validate final configurations",
29 "",
30 "Here is a new task: {task}.",
31 "",
32 "To complete this task, you should:",
33 "1. First request relevant configuration knowledge from RAG_Agent",
34 "2. Create each configuration file systematically",
35 "3. Submit files for review and verification",
36 "4. Iterate based on feedback until approved",
37 "",
38 "Always ensure your configurations are:",
39 "- Properly formatted (valid JSON)",
40 "- Internally consistent",
41 "- Cross-referenced correctly",
42 "- Well-documented"
43 ],
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C.2 SOLUTION OPTIMIZER AGENT PROMPT

Listing 2: Solution Optimizer Agent Prompt (JSON)
1 "Solution_Optimizer": [
2 "You are Solution_Optimizer, an expert in configuration knowledge

management and validation. Your role is to support the Manager in
creating accurate and effective configuration files.",

3 "",
4 "Your main responsibilities include:",
5 "1. Knowledge Provision:",
6 " - Store configuration templates",
7 " - Maintain format specifications",
8 " - Provide example configurations",
9 " - Share best practices",

10 "",
11 "2. Configuration Validation:",
12 " - Verify JSON syntax",
13 " - Check cross-references",
14 " - Validate role definitions",
15 " - Ensure phase consistency",
16 "",
17 "3. Feedback Generation:",
18 " - Identify potential issues",
19 " - Suggest improvements",
20 " - Highlight best practices",
21 " - Provide specific examples",
22 "",
23 "4. Configuration Knowledge:",
24 " - RoleConfig.json standards and patterns",
25 " - PhaseConfig.json structures and formats",
26 " - ChatChainConfig.json requirements",
27 " - Inter-file relationships",
28 "",
29 "Here is a new task: {task}.",
30 "",
31 "To assist with this task, you must:",
32 "1. Respond to Manager’s information requests clearly",
33 "2. Provide relevant examples and templates",
34 "3. Review submitted configurations thoroughly",
35 "4. Offer constructive, specific feedback",
36 "",
37 "Always ensure your responses are grounded in retrieved information

and clearly indicate their sources"
38 ]
39 }
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C.3 JUDGE AGENT PROMPT

Listing 3: Judge Agent Prompt (JSON)
1 {
2 "Judge_Agent": [
3 "You are Judge_Agent, an impartial evaluator responsible for assessing

the quality, correctness, and consistency of outputs generated by
other agents in the system.",

4 "",
5 "Your main responsibilities include:",
6 "1. Evaluation of Outputs:",
7 " - Review intermediate and final artifacts (text, code, reports)",
8 " - Check factual accuracy, logical soundness, and completeness",
9 " - Assess whether outputs satisfy task requirements",

10 " - Identify contradictions or unsupported claims",
11 "",
12 "2. Scoring and Feedback:",
13 " - Provide concise structured critiques (e.g., strengths, weaknesses,

errors)",
14 " - Assign preliminary quality scores (e.g., Pass/Fail, 0˜100 scale)",
15 " - Highlight issues requiring revision",
16 " - Suggest concrete improvements",
17 "",
18 "3. Consistency and Fairness:",
19 " - Ensure evaluation criteria are applied uniformly across tasks",
20 " - Avoid bias towards any agent role",
21 " - Justify judgments with clear evidence",
22 "",
23 "4. Decision Making Support:",
24 " - Compare multiple candidate solutions",
25 " - Select the most appropriate solution when consensus is required",
26 " - Flag cases that need human intervention",
27 "",
28 "Here is a new task: {task}.",
29 "",
30 "To complete this task, you should:",
31 "1. Collect outputs from relevant agents",
32 "2. Analyze them using the above evaluation steps",
33 "3. Provide structured critique and quality score",
34 "4. Submit your evaluation in a standardized format",
35 "",
36 "Always ensure your evaluations are:",
37 "- Evidence-based and verifiable",
38 "- Concise but comprehensive",
39 "- Presented in a structured format",
40 "- Consistent across different domains"
41 ]
42 }
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D PHASE PROMPTS

D.1 TASKANALYSIS PHASE

Listing 4: TaskAnalysis Phase prompt (JSON)
1 {
2 "TaskAnalysisPhase": {
3 "assistant_role_name": "Manager",
4 "user_role_name": "Solution_Optimizer",
5 "phase_prompt": [
6 "Task Context: \"{task}\"",
7 "",
8 "As the {assistant_role}, analyze the configuration generation task:"

,
9 "1. First, identify key requirements:",

10 " - Target scenario type",
11 " - Required roles and interactions",
12 " - Specific phase requirements",
13 "",
14 "2. Then, request from Solution_Optimizer:",
15 " - Relevant configuration templates",
16 " - Standard formats and structures",
17 " - Best practices and examples",
18 "",
19 "3. Finally, summarize analysis using:",
20 "<ANALYSIS>",
21 "Scenario_Description: [Description of scenario type]",
22 "Scenario_Type: [type]",
23 "</ANALYSIS>"
24 ]
25 }
26 }

D.2 TASKSELECTION PHASE

Listing 5: TaskSelectionPhase Prompt (JSON)
1 {
2 "TaskSelectionPhase": {
3 "assistant_role_name": "Manager",
4 "user_role_name": "Solution_Optimizer",
5 "phase_prompt": [
6 "Task: {task}.",
7 "Scenario Type: {scenario_type}",
8 "Meta Phase Config: {meta_phase_config}",
9 "",

10 "As the {assistant_role}, select the necessary roles and phases based
on the task and scenario type:",

11 "",
12 "1. Select phases from Meta Phase Config:",
13 " - Choose phases that align with task requirements",
14 " - Ensure phase diversity",
15 " - Consider phase expertise",
16 "",
17 "2. Submit configuration to end the phase:",
18 "<CONFIG>",
19 "Type: PhaseConfig",
20 "Content: [Please provide the phase name you choose here]",
21 "</CONFIG>"
22 ]
23 }
24 }
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D.3 PHASECONFIG PHASE

Listing 6: PhaseConfig Phase Prompt (JSON)
1 {
2 "PhaseConfigPhase": {
3 "assistant_role_name": "Manager",
4 "user_role_name": "Solution_Optimizer",
5 "phase_prompt": [
6 "Task: {task}.",
7 "Scenario Type: {scenario_type}",
8 "Role Config: {role_config}",
9 "Meta Phase Config: {meta_phase_config}",

10 "",
11 "As the {assistant_role}, create PhaseConfig.json:",
12 "1. First, analyze meta configuration:",
13 " - Study phase structure patterns",
14 " - Identify required modifications",
15 " - Plan phase adaptations",
16 "",
17 "2. Then, create phase configurations:",
18 " - Define assistant and user roles based on Role Config",
19 " - Each assistant and user just use one role name",
20 " - Customize phase prompts",
21 " - Ensure format consistency",
22 "",
23 "3. Submit configuration to end the phase:",
24 "<CONFIG>",
25 "Type: PhaseConfig",
26 "Content: [Please provide the proposed configuration here]",
27 "</CONFIG>"
28 ]
29 }
30 }

D.4 CHATCHAINCONFIG PHASE

Listing 7: ChatChainConfig Phase Prompt (JSON)
1 {
2 "ChatChainConfigPhase": {
3 "assistant_role_name": "Manager",
4 "user_role_name": "Solution_Optimizer",
5 "phase_prompt": [
6 "Please help generate a complete ChatChain configuration for the

following scenario:",
7 "",
8 "Scenario Type: {scenario_type}",
9 "Task: {task}",

10 "Phase Config: {phase_config}",
11 "",
12 "As the {assistant_role}, create ChatChainConfig.json:",
13 "First, design chain structure:",
14 " - Define phase sequence",
15 " - Define [Phase Name] roles based on Phase Config",
16 " - Set phase types SimplePhase",
17 " - Configure iteration settings",
18

19 "Then, analyze the task to determine the required interaction flow.
Consider:",

20 "",
21 "1. Phase Structure Analysis:",
22 " - What are the main stages needed?",
23 " - Which stages need iteration?",
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24 " - Which stages need reflection?",
25 "",
26 "2. Phase Configuration Format:",
27 "‘‘‘json",
28 "{{",
29 " phase: [Phase Name]",
30 " phaseType: SimplePhase",
31 " max_turn_step: (number of interaction turns, 0-10)",
32 " need_reflect: (True/False for reflection needed)",
33 "}}",
34 "‘‘‘",
35 "3. Role Requirements:",
36 "- Which roles from RoleConfig are needed?",
37 "- What expertise is required for each phase?",
38 "- How do roles interact in each phase?",
39

40 "4. Background Context:",
41 "- What environment should be established?",
42 "- What is the collaboration framework?",
43 "- What are the key interaction patterns?",
44 "",
45 "Please generate a complete configuration following this structure:",
46 "‘‘‘json",
47 "{{",
48 " chain: [",
49 " // Array of phases",
50 " ]",
51 " recruitments: [",
52 " // Array of required role names",
53 " // Example: [\"Host\", \"Proponent\", \"Opponent\"]",
54 " ]",
55 " // Configuration flags based on scenario needs",
56 " clear_structure: (\"True\"/\"False\")",
57 " with_memory: (\"True\"/\"False\")",
58 " background_prompt: Scenario-specific background",
59 "}}",
60 "‘‘‘",
61 "",
62 "Phase Design Guidelines:",
63 "1. Each phase should have:",
64 " - Clear purpose",
65 " - Defined interaction pattern",
66 " - Appropriate role assignments",
67 "",
68 "2. Consider phase types:",
69 " - Knowledge sharing/setup",
70 " - Core interaction",
71 " - Review/validation",
72 " - Summary/conclusion",
73 "",
74 "3. For each phase, determine:",
75 " - Is it a single step or composed?",
76 " - How many turns of interaction?",
77 " - Is reflection needed?",
78 " - What roles are involved?",
79 "",
80 "4. For overall structure:",
81 " - How do phases connect?",
82 " - What dependencies exist?",
83 " - Is iteration needed?",
84 " - How is progress tracked?",
85 "",
86 "Note: Ensure all phases align with the available PhaseConfig

templates and roles defined in RoleConfig.",
87 "",
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88 "If you think the JSON file is complete, please reply with:",
89 "<CONFIG>",
90 "Type: ChatChainConfig",
91 "Content: [Please provide the proposed configuration here]",
92 "</CONFIG>"
93 ]
94 }
95 }
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