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ABSTRACT

Knowledge Graphs (KGs) are structured knowledge repositories containing enti-
ties and relations between them. In this paper, we study the problem of automati-
cally updating KGs over time in response to evolving knowledge in unstructured
textual sources. Addressing this problem requires identifying a wide range of up-
date operations based on the state of an existing KG at a given time and the infor-
mation extracted from text. This contrasts with traditional information extraction
pipelines, which extract knowledge from text independently of the current state
of a KG. To address this challenge, we propose a method for construction of a
dataset consisting of Wikidata KG snapshots over time and Wikipedia passages
paired with the corresponding edit operations that they induce in a particular KG
snapshot. We obtain these pairs by aligning annotated hyperlinked entity mentions
in each Wikipedia passage with the corresponding entities involved in the updated
Wikidata triples. We verify, using LLMs with human validation, that these tex-
tual passages contain the knowledge needed to support the associated KG edits.
The resulting dataset comprises 233K Wikipedia passages aligned with a total of
1.45 million KG edits over 7 different yearly snapshots of Wikidata from 2019 to
2025. Our experimental results highlight key challenges in updating KG snapshots
based on emerging textual knowledge, particularly in integrating knowledge ex-
pressed in text with the existing KG structure. These findings position the dataset
as a valuable benchmark for future research. We will publicly release our dataset
and model implementationsﬂ

1 INTRODUCTION

Knowledge graphs (KGs) play a crucial role in applications such as question answering (Wang et al.,
2024;|Dong et al.,[2025)), recommender systems (Zhang et al.,|2024; | Wang et al.,2025)), information
retrieval (Reinanda et al.| [2020), fact-checking (Kim et al., 2023 |Hao & Wul[2025), and healthcare
prediction (Jiang et al., [2025), among others (Zou, 2020). Furthermore, KGs provide structured,
queryable world knowledge that increasingly complements large language models (LLMs) (Pan
et al., 2024} |Cai et al.| [2025)). This integration has been used to reduce LLM hallucinations (Agrawal
et al., 2024; [Lavrinovics et al., 2025), improve fine-tuning (Chen et al [2025; Ma et al., |2025)),
enhance planning (Chen et al., [2024; |Petruzzellis et al.| 2025)), support complex reasoning (Sun
et al., 2024} [Luo et al.|, 2025)), and provide reliable knowledge augmentation (Han et al., 2024} [Li
et al., 2025c). However, as world knowledge evolves, KGs must also be updated to remain reliable
(Polleres et al., 2023 Hofer et al.| 2024 [Li et al., |2025b). Yet, existing temporal KG benchmarks
(Liang et al.| 2024 /Alam et al.| | 2024)) model only internal temporal dynamics and do not capture how
KGs should be updated in response to new world knowledge emerging in external textual sources.
In addition, current textual information extraction (IE) datasets and models (Zhao et al.| 2024b; [Xu
et al.,[2024)) do not link extracted facts to the concrete KG updates they should induce.

To address these limitations, we introduce EMERGE, a novel, automatically constructed bench-
mark that aligns emerging textual knowledge with the concrete updates it induces in a KG. Con-
cretely, EMERGE links evolving changes in the Wikidata KG (Vrandeci¢ & Krotzsch, 2014) with

!Code and dataset will be released upon acceptance. The test set is included in the supplementary material.
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Figure 1: Illustration of one instance in EMERGE. The reference KG snapshot of January 1st 2024
is updated with new, emerging knowledge contained in the incoming fextual passage from January
3rd 2024. The updated KG involves not only creation of new relations (solid green arrows), but also
generation of new entities (green circle) and deprecation of relations (dashed green arrows).

corresponding textual passages from Wikipedia that reflect these KG updates over time. This align-
ment enables evaluating both (i) how well models integrate new textual knowledge into a KG and
(i1) how temporally evolving KG structures (i.e., KG schema) affect this integration. Furthermore,
EMERGE is incrementally extensible through an automatic pipeline that continuously incorporates
new knowledge from Wikipedia and Wikidata. Figure[I]illustrates an example in which a KG snap-
shot from January Ist, 2024 is updated based on emerging textual evidence from January 3rd, 2024.
To construct such instances, EMERGE aligns weekly knowledge deltas in Wikidata with the corre-
sponding textual changes in Wikipedia.

Furthermore, EMERGE differs from existing mainstream IE datasets, which primarily focus on ex-
tracting triples from text, either via manual annotations or by linking text to a static KG. As a result,
these existing benchmarks cannot evaluate the broader set of operations needed to update a KG to
reflect textual knowledge. Such operations require creation new entities, linking them to existing
ones, and deprecation of outdated facts (see Figure [I] for an example). To capture these require-
ments, EMERGE defines five text-driven KG updating (TKGU) operations (see Section EI) and is,
to our knowledge, the first dataset to support all of them (see a detailed comparison with existing
benchmarks in Appendix [AT). Our benchmarking further shows that state-of-the-art IE models fall
short in supporting the full range of operations required to update KGs with new knowledge (see Ta-
ble[T). Furthermore, these models rely solely on knowledge expressed in text and remain unaware of
how that knowledge is structured within a KG. As a result, the extracted triples, though semantically
valid, often fail to align with the KG schema and structure.

In summary, the contributions of this paper are as follows:

* We formalize and study the problem of maintaining KGs from emerging textual knowledge,
defining it through a set of fundamental text-driven KG updating (TKGU) operations.

 EMERGE, a novel dataset that maps emerging knowledge in textual passages to corre-
sponding updates in temporally evolving KG snapshots.

* A publicly available pipeline for extending EMERGE with new KG snapshots, enabling
the evaluation of models on continuously evolving knowledge.

» Experimental results and analysis on EMERGE using two state-of-the-art IE architectures.



Table 1: Comparison of state-of-the-art information extraction models by the type of extracted
knowledge: (1) existing KG triples (X-Triples), (2) new triples with existing KG entities (E-Triples),
(3) new triples with emerging entities (EE-Triples), (4) new triples linking emerging entities to the
rest of the KG (EE-KG-Triples), and (5) deprecated triples (D-Triples). The KG Link column indi-
cates whether extracted triples are linked to a KG.

KG Supported textual knowledge type extraction
Link  X-Triples E-Triples EE-Triples EE-KG-Triples D-Triples

Model

REBEL (2021) X v v v X X
GenlE (2022) e v v X X X
KnowGL (2023) v v v v X X
GCD (2023) v v v X X X
ReLiK cIE (2024) v v v X X X
ReLiK RE (2024) X v v v X X
EDC (2024) X v v v X X
ATG (2024) X v v v X X
CodeKGC (2024) X v v v X X

2 RELATED WORK

Below we describe the most relevant related work directions. Additionally, we provide an extensive
related work section and a comparison table (Table d) in Appendix [A]

KG completion and refinement. Research on KG completion (KGC) (Shen et al., 2022} and re-
finement (Paulheim| 2016} Subagdja et al., 2024) has produced many datasets aimed at predicting
missing relations between entities. Early work introduced WN18 and FB15k |Bordes et al.| (2013),
derived from WordNet (Miller, |1995) and Freebase (Bollacker et al., 2008), followed by improved
variants such as WN18RR and FB15k-237 (Toutanova & Chenl [2015; Dettmers et al.,2018) address-
ing redundancy and data leakage. Larger and more recent datasets include WikidataSM [Wang et al.
(2021)), along with Wiki/NELL-One (Xiong et al.| [2018)), FB15K-237N (Lv et al., [2022)), CoDEx
(Safavi & Koutra, 2020), YAGO3-10 (Mahdisoltani et al., |2014), and LiterallyWikidata (Gesese
et al., [2021). While these datasets evaluate models on predicting new edges within the KG, they
remain restricted to the KG internal structure. Our objective instead is to support KG updates driven
by the information originating in external unstructured textual sources. This distinction also sepa-
rates our work from temporal KG completion (TKGC) datasets such as GDELT (Leetaru & Schrodt,
2013)), ICEWS14/05-15 (Garcia-Duran et al.| 2018), Wikidatal2k (Dasgupta et al.|[2018]), Wikidata-
big (Lacroix et al., 2020), [CEWS18 (Jin et al.,[2020), and more recently TGB and TGB 2.0 (Huang
et al., 2024} \Gastinger et al., [2024), among others (Liang et al., [2024; |Alam et al., [2024). While
these benchmarks capture internal temporal evolution of facts, they do not model how KGs should
be kept up to date with knowledge emerging in external textual sources. EMERGE fills this gap by
aligning such external textual evidence with the concrete KG updates it induces, enabling the study
of models that keep KGs updated as world knowledge evolves.

Information extraction (IE). To evaluate the ability of models to extract structured knowledge,
researchers have developed IE datasets by annotating entity relations. MUC-7 (Chinchor & Marsh,
1998)) introduced three relation types, with later datasets expanding in size, relation diversity, or both.
Notable examples include CoNLL04 (Roth & Yih| [2004), ACE 2005 (Walker et al., [2006), ERE
(Aguilar et al., 2014; Song et al., [2015), BCSCDR (Li et al., [2016)), TACRED (Zhang et al., 2017,
SciERC (Luan et al., [2018), SemEval-2010 (Hendrickx et al.l 2010), SemEval-2017 (Augenstein
et al., [2017), DWIE (Zaporojets et al.| 2021)) and BioRED (Luo et al., 2022), among others. Other
datasets, such as NYT (Riedel et al., [2010), explicitly linked KG triples to textual snippets using
distant supervision. Similarly, but on a larger scale, (Gabrilovich et al.| (2013) introduced FACC1
by aligning ClueWeb12 documents with Freebase entity mention annotations. In parallel, the TAC-
KBP challenges (J1 et al., [2010; [TAC-KBP} 2022) (2009 — 2020) produced proprietary manually
annotated datasets for knowledge base population tasks such as slot filling and entity linking. More
recently, these resources have been extended with a variety of datasets that map textual knowledge
to KG triples, such as WebNLG (Gardent et al., 2017), KELM (Agarwal et al., 2021), FewRel
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Figure 2: Illustration of EMERGE creation pipeline. First, weekly knowledge deltas (A) are ex-
tracted by identifying changes in Wikipedia passages and Wikidata KG relative to a fixed snapshot.
In the Alignment step, these KG and textual deltas are connected. During Curation, an LLM discards
KG updates not supported by aligned textual changes, a process verified with manual annotations on
a subsample of alignments. The result is high-quality text-KG update pairs, as in Figure [I| where
multiple TKGU operations (Section [3)) update the KG with emerging textual knowledge.

(Han et al., 2018)), DocRED (Yao et al., 2019), Wiki/GEO-NRE (Distiawan et al., 2019), BioRel
(Xing et al., [2020), T-REX (Elsahar et al.,[2019) and REBEL (Cabot & Navigli, [2021). While these
datasets connect textual knowledge to KG triples and literals, they do not account for the operations
required to update a KG as new information emerges in text. Our work addresses this gap by
linking new textual knowledge to the specific update operations (see Section [3) on a KG snapshot.
Methodologically, existing state-of-the-art IE methods (see Table[I) provide a natural starting point
for tackling TKGU operations, as they extract structured knowledge from text and already cover
some of these operations. However, they remain largely oblivious to the existing KG structure and
require extensions to integrate emerging textual content into the KG, such as deprecating outdated
triples, adding new entities, and enforcing structural consistency based on how entities and relations
are used within the KG.

3 PROBLEM DEFINITION

We define the problem of fext-driven knowledge graph updating (TKGU) as determining the neces-
sary edits to a KG at a particular point in time, given a textual passage. More formally, we define a
KG snapshot at some point time ¢ as a tuple Gy = (V;, Ry, T;) where V; is a set of entities, R; is a
set of relation types, and T is a set of triples of the form (s, p, 0) where s, 0 € V; are the subject and
object, and p € R, is the relation between them. Given a textual passage dy created at some point
in time ¢’ > t, the task consists in generating a set of TKGU operations defined as follows:

Emerging triples (E-Triples). Addition of triples that are not present in the KG but involve entities
that already exist in it; that is, (s, p,0) ¢ Gt and and s € V; A o € V;. For example, in Figure the
added triple (Washington Commanders, sport, American Football) involves the entities Washington
Commanders and American Football, both of which already exist in the KG.

Emerging entities and triples (EE-Triples). Addition of triples that do not exist in the KG and
involve a subject entity, object entity, or both that are also absent. That is, (s,p,0) ¢ G; and
s ¢ VyVo ¢ V. Forexample, in Figure the added triple (Washington Commanders, coach, Adam
Peters) introduces the entity Adam Peters, which is not yet in the KG.

Emerging entities to KG triples (EE-KG-Triples). Addition of new triples where exactly one
of the subject or object entities is mentioned in a passage d;/, while the other already exists in the
KG and is not explicitly mentioned in the passage. These triples evaluate the ability of the models
to integrate newly emerging entities by linking them to existing ones in the KG. For example, in
Figure[l] the added triple (Adam Peters, instance of, Human) links the emerging entity Adam Peters
to the existing entity Human, even though this relation is not explicitly stated in the passage.



Deprecated triples (D-Triples). Deprecation of triples already existing in a KG based on emerg-
ing evidence in textual passage. For example, in Figure [1| the triples (Adam Peters, member of,
San Francisco 49ers) and (Washington Commanders, coach, Ron Rivera) are deprecated based on
updated information in the passage.

Existing triples (X-Triples). Detection of triples already existing in the KG that are supported by
textual passage, i.e., (s,p,0) € G¢. This operation evaluates the ability of models to recognize
existing knowledge. For example, in Figure [I] the triple (San Francisco 49ers, sport, American
football) is both supported by the passage and already present in the original KG snapshot.

Table [[|compares existing IE architectures based on the types of TKGU operations (see above) they
are able to extract. While many models can extract triples involving existing entities in a KG (X-
Triples and E-Triples), most struggle to identify triples with emerging entities (EE-Triples) and none
of them supports linking them to the rest of the KG (EE-KG-Triples). Furthermore, some methods
only partially integrate newly extracted knowledge, as they do not link the extracted triples to the KG
(see KG column). For example, relation extraction models such as REBEL (Cabot & Navigli, 2021)
and ReLiK RE (Orlando et al., 2024) are able to extract new triples but do not link their entities
and relations to the KG; other models such as EDC (Zhang & Soh, 2024)), link only relations but
not entities. Finally, existing IE methods, to the best of our knowledge, are not designed to identify
triples that should be deprecated based on emerging textual knowledge (D-Triples).

4 OUR DATASET

We introduce EMERGE, a large-scale dataset that, unlike existing benchmarks, supports all the
TKGU operations defined in Section 3]

4.1 DATA COLLECTION

We construct a dataset consisting of 7 Wikidata yearly snapshots taken on January 1st at 00:00 GMT
from 2019 to 2025. We expect that these snapshots will enable to evaluate the drift in temporal
performance of models pre-trained at different time points. To evaluate the ability of the models to
update KG with emerging knowledge, we generate cumulative weekly deltas (up to 5 weeks) for
each snapshot (see Figure [2). Each delta represents a time window and includes textual passages
along with the corresponding KG updates occurring during that period. Below, we describe in more
detail the main steps in the EMERGE dataset creation pipeline.

Wikipedia and Wikidata dumps. We begin by downloading the historical revision logs from the
Wikipedia and Wikidata dumps available at https://dumps.wikimedia.org/. These logs
provide complete access to the revision history of Wikipedia and Wikidata, enabling fine-grained
tracking of temporal changes. Using this level of granularity, we are able to construct EMERGE us-
ing any number of arbitrarily defined KG snapshots and delta windows, with temporal precision
down to the second. This capability sets EMERGE apart from existing datasets designed to evaluate
model performance on evolving KG knowledge (Boschee et al.,[2015; Dasgupta et al.,[2018}; Lacroix
et al.,|2020), which are typically derived from a single KG snapshot and rely only on temporal at-
tributes associated with edges. While such datasets are valuable for predicting the emergence of new
facts over time, they do not allow the evaluation of how structural changes in the KG across different
snapshots affect model performance. Moreover, because we have access to the full revision history
of Wikipedia pages, we can evaluate models on all the newly introduced textual content within any
chosen temporal delta. This allows us to assess, for instance, how varying the size of delta windows
influences model performance. It also contrasts with related datasets using Wikipedia (Lewis et al.
2020; Jang et al.| 2022a}; |Onoe et al.| [2023} [Zhao et al.l [2024a), which are based on only one or a
small number of manually downloaded Wikipedia snapshots, thereby limiting temporal flexibility.

Snapshot generation. Given a list of desired snapshot timestamps, we process Wikipedia and
Wikidata history revisions to obtain the following components for each timestamp ¢: (1) a Wikidata
KG snapshot G; corresponding to ¢, (2) a dictionary of entities present in Wikipedia at ¢, along with
their corresponding textual descriptions, and (3) a dictionary of relation types present in Wikidata at
t with definitions. In line with the WikidataSM dataset (Wang et al., [2021]), we restrict the Wikidata
KG to include only entities that are present in Wikipedia.


https://dumps.wikimedia.org/

KG deltas generation. For each snapshot, we generate deltas in weekly increments, spanning up to
5 weeks. Each delta represents the difference between two KG snapshots, denoted as Gyya — Gy,
where A represents the delta window. Each of the resulting deltas involve KG triple operations
outlined in Section 3} Concretely, X-Triples exist in G and Gy a, E-Triples contain new emerging
relations in G¢4 A between entities already existing in G, and EE-Triples and EE-KG-Triples consist
of emerging relations between entities where subject or object do not exist in GG, and is introduced in
G+ . Finally, to obtain D-Triples, besides including the removed edges, we match Wikidata triple
qualifiers (see Appendix [J) that explicitly indicate knowledge deprecation within the delta interval.
We mark these triples as deprecated rather than removing them, since the underlying fact does not
change but expires within the delta interval.

Aligning KG deltas with text. For each delta in a given snapshot ¢, we retrieve the newly introduced
Wikipedia passages within the temporal window corresponding to that delta. Following the approach
of [Cabot & Navigli| (2021); [Elsahar et al.| (2019), we then align these passages with triples in each
of the KG deltas by matching the annotated hyperlinked entity mentions in each of the passages to
the corresponding entities in the triples. We refer to this distant supervision process as the alignment
step (see Figure [2). The resulting text-triple pairs are subsequently refined in the curation step (see
Section to retain only those pairs in which the textual content supports the associated TKGU
operations defined in Section 3]

4.2 QUALITY ASSURANCE AND CONTROL

During the alignment step of EMERGE creation pipeline (see Figure [2) we use multiple heuristics
to ensure the quality of the aligned textual passages with KG updates. For instance, we filter out
passages with a low proportion of English words and those containing wikitext special symbols used
for constructing elements such as tables and images. Furthermore, we discard updates in Wikidata
and Wikipedia that are quickly rolled back, as these often indicate incorrect or vandalized changes.
A complete list of preprocessing and cleaning steps can be found in Section[L.4]in the appendix.

During the Curation step of the EMERGE pipeline (see Figure [2), we use
Meta-Llama-3.1-405B to validate that all TKGU operations can be derived from the
corresponding textual passage. The full prompt design and illustrative examples are provided in
Appendix This step flags KG updates not supported by the text, rather than removing them,
enabling future use of more powerful LLMs for additional verification and curation. Preserving
unsupported triples also allows evaluation of potential models that may rely less on text and more
on KG knowledge, particularly for EE-KG-Triples TKGU operations, where an entity may not
appear in the passage and updating the KG requires KG knowledge itself (e.g., all humans in the
KG link to the entity human). Appendix [C.3]reports additional statistics on the fraction of triples
marked as unsupported.

Finally, during the Curation step, we manually annotate a random subset of 500 triple-text pairs (100
per TKGU operation type) to verify agreement with the LLM. We observe Strong to Almost perfect
agreement depending on the operation type, supporting the use of Meta-Llama-3.1-405B to
annotate the full dataset. Detailed annotation guidelines and agreement statistics are provided in

Appendices|C.2.T]and [C.2.2] respectively.

4.3 DATASET STATISTICS

EMERGE consists of 233K instances across seven yearly KG snapshots (2019-2025), with a total
of 1.45M TKGU update operations. Updates in each snapshot are evaluated over cumulative weekly
delta (A) intervals of up to 5 weeks. Both the KG size (i.e., number of entities and edges) and the
schema (i.e., number of relation types) evolve across snapshots. For instance, the 2019 KG snap-
shot contains 5.96M entities, 25.73M relations, and 5,646 relation types, while the 2025 snapshot
includes 6.93M entities, 37.54M relations, and 12,304 relation types. This dynamic setting enables
the evaluation of model robustness under evolving KG knowledge and schema changes, thereby re-
flecting real-world KG evolution. Additional tables and figures in Appendix D] provide a detailed
overview of the size and distribution of TKGU operations in EMERGE. Furthermore, Tables
in Appendix [E] present illustrative examples of each TKGU operation type introduced in Section



4.4 DATASET EXTENSION

EMERGE is an automatically constructed dataset, which we plan to extend using yearly snapshots
of Wikipedia and Wikidata, following the pipeline described in Section |4 and illustrated in Fig-
ure[2] These periodic extensions will enable the evaluation of architectures on their ability to extract
emerging real-world knowledge from text. This is particularly important for LLM-based architec-
tures, which are prone to hallucinating outdated information due to their internal parameters being
pre-trained on older textual sources (Wu et al.,|2024a). To facilitate further development, we will
also provide code that allows users to extend the dataset themselves.

5 EXPERIMENTAL SETUP

We evaluate EMERGE using two state-of-the-art information extraction (IE) models that extract
structured knowledge as triples from text. These models are tested on a set constructed by subsam-
pling 5,000 instances from each snapshot (1,000 per delta), resulting in a total of 35,000 instances
and 201,369 TKGU operations. During subsampling, we retained up to 400 instances per delta con-
taining D-Triples TKGU operations. This ensures a sufficiently large number of D-Triples examples
for evaluation, even though they account for only 0.6% of all TKGU operations in the full dataset.
Conversely, in the test set, D-Triples constitute 3.3% (6,718 operations) of all TKGU operations.
This low proportion of D-Triples does not affect metric stability, as each TKGU operation type is
evaluated independently rather than through aggregated performance across types (see Table[2). A
detailed comparison of TKGU operation distributions is provided in Appendix [D.2]

5.1 MODELS

To assess state-of-the-art performance on EMERGE, we evaluate two widely used IE architectures:
traditional extractive span-based models (Lee et al., 2017) and recent generative large language
models (LLMs) (Dagdelen et al.l 2024; Xu et al., [2024} [Zhang et al., [2025). For the span-based
setting, we use ReLiK (Orlando et al.|[2024), and for the LLM-based setting, we adopt EDC (Zhang
& Sohl [2024). Rather than comparing these models in terms of absolute performance, our goal is
to illustrate the complementary limitations of two mainstream IE paradigms when applied to text-
driven KG updating. This setup highlights where each paradigm succeeds or fails across the different
TKGU operations defined in Section [3] particularly in their ability to handle emerging entities and
reason over existing KG structure. Below, we describe these architectures in more detail and explain
how we adapt them to each TKGU operation type.

ReLiK. ReLiK (Orlando et al.,|2024) is a highly scalable architecture designed to minimize resource
usage while achieving state-of-the-art performance in both entity linking and relation extraction. In
our study, we evaluate two variants of ReLiK: closed information extraction ReLiK (ReLiK cIE)
and relation-extraction ReLiK (ReLiK RE). ReLiK clIE operates under the closed IE assumption
(Galarraga et al., 2014; [Chaganty et al., 2017} Josifoski et al., 2023), predicting relations only be-
tween entities already present in the KG. Consequently, it can handle only those TKGU operations
involving known entities, namely, X-Triples and E-Triples as defined in Section E} For each test
snapshot ¢, both models are provided with the corresponding KG snapshot. Specifically, ReLiK cIE
receives the dictionaries of entities (V;) and relation types (R;) present in ¢, while ReLiK RE is
given only the relation types (R;), as it predicts relations without linking extracted entity mentions.
Further details on the ReLiK execution and configuration are provided in Appendix

EDC. The extract, define, canonicalize (EDC) framework, introduced by [Zhang & Sohl (2024),
is a state-of-the-art LLM-based approach. We adapt the original EDC prompt to additionally ex-
tract triples involving entities that are not explicitly mentioned in the input text but are poten-
tially present in a Wikidata KG snapshot. Furthermore, we extend this prompt even further, ask-
ing the model to identify potential triples to be deprecated from the KG. This way, we give the
model the ability to identify EE-KG-Triples and D-Triples operations based on the emerging ev-
idence in text (see Section [3). We term this adaptation EDC+ in our experiments, and evaluate
itonMistral-7B-Instruct-vO0.2 (EDC+ Mistral-7b) and gemma—"7b (EDC+ Gemma-7b)
LLMs. Additional execution details as well as the used prompts are described in Appendix



Table 2: Recall (measured using the completeness score) for IE models that do not link extracted
triples to the KG, evaluated across KG snapshots on the TKGU operations defined in Section 3]

TKGU Model 2019 2020 2021 2022 2023 2024 2025
EDC+ Mistral-7b 9.7 7.5 105 8.1 11.7 74 8.7
X-Triples EDC+ Gemma-7b 7.5 7.9 7.6 5.8 8.1 5.7 6.5
ReLiK RE 253 245 241 201 221 192 203
EDC+ Mistral-7b 188 17.6 163 171 186 194 193
E-Triples EDC+ Gemma-7b 164 144 13.0 135 157 145 14.6
ReLiK RE 233 203 231 159 170 150 164
EDC+ Mistral-7b 21.3  16.7 100 157 184 132 15.6
EE-Triples EDC+ Gemma-7b 184 135 9.1 148 17.2  13.0 132
ReLiK RE 254 187 124 237 224 156 162

EDC+ Mistral-7b = 25,6 199 7.1 23.0 21.6 169 183
EE-KG-Triples EDC+ Gemma-7b 11.3 8.0 2.0 8.2 8.9 7.3 6.5
ReLiK RE 3.2 4.6 2.7 3.8 4.1 4.0 4.4
EDC+ Mistral-7b 7.1 9.8 1.7 1.7 126 4.0 8.7
EDC+ Gemma-7b 5.5 106 8.4 104 108 5.8 6.7

D-Triples

Table 3: Recall for the closed IE model ReLiK cIE (i.e., the extracted triples are linked to the KG)
across KG snapshots, evaluated using the TKGU operations defined in Section

TKGU Operations Model 2019 2020 2021 2022 2023 2024 2025
X-Triples ReLiKcIE 18.1 165 157 144 157 129 149
E-Triples ReLiKcIE 149 168 140 134 152 125 147

5.2 METRICS AND EVALUATION

In order to evaluate the extraction and deprecation of triples based on emerging knowledge in text,
we use recall as the primary metric (see Appendix [B) to evaluate performance. We do not report
precision or F1 scores in our main results Tables as these metrics can be misleading under the
open-world assumption (Razniewski et al.,|2024). Under this assumption, the model may generate
correct triple predictions that are incorrectly classified as false positives due to the inherently incom-
plete nature of KGs, which do not necessarily capture the full set of valid triples. We additionally
provide precision and F1 scores in Tables [[3HI6]in Appendix [F.1]

For models that do not link extracted triples to KG, as indicated in the column KG Link in Table E]
(ReLiK RE and EDC+), we evaluate recall with the completeness score (Jiang et al., 2024). This
metric counts a ground-truth triple as correct if its cosine similarity with a predicted triple is above
a set threshold (see Appendix [B.2). This evaluation strategy is necessary because these models are
not grounded in the entities present in the KG. This limitation underscores a broader research gap:
existing IE methods operate largely independently of KG structure, making true text-driven KG
updating challenging. Developing IE models that jointly exploit textual evidence and KG state to

generate KG-grounded TKGU operations represents a promising direction for future work (see also
Section [K].

6 EXPERIMENTS AND ANALYSIS

Table [2] reports the performance of the ReLiK RE and EDC+ models across all TKGU operations.
Table [3[ shows the results for the ReLiK cIE model in the closed IE setting, which is restricted
to TKGU operations involving existing entities and relations in the KG, namely X-Triples and E-
Triples. The following paragraphs address key research questions and aim to lay the groundwork for
future studies leveraging the TKGU operations introduced in this work.
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Figure 3: Performance of the models across temporal KG knowledge deltas. Some models show
drops for certain TKGU operation types, for instance, EDC+Gemma-7b and EDC+Mistral-7b de-
cline by over 5 percentage points between the first and second week deltas for EE-KG-Triples TKGU

type.

What is the general performance? Overall, performance is low for both the recall metric reported
in Table [3|and the completeness metric in Table [2| However, a closer inspection of the model pre-
dictions (see Appendix [G) reveals that, in many cases, the extracted triples are semantically correct
but do not align with the specific ground truth triples involved in the annotated TKGU operations.
We hypothesize that this discrepancy arises because the models lack access to the KG content and
structure, which prevents them from determining the nature of the knowledge being added and the
types of relations involved. Access to KG-level statistics, such as the distribution of relation types,
could provide valuable context and help improve model performance. This also points to a promis-
ing direction for future research: developing IE models that can identify emerging knowledge from
unstructured text while leveraging the internal structure and temporal dynamics of the KGs.

How do ReLiK and EDC+ differ in handling TKGU operations? We selected the LLM-driven
generative EDC+ model and the traditional, lightweight extractive span-based ReLiK model to com-
pare how two fundamentally different and widely used architectures perform on TKGU operations.
From Table 2] we observe that ReLiK RE significantly outperforms EDC+ on X-Triples. We hypoth-
esize that this gap arises because ReLiK cIE and RE are explicitly trained to extract Wikidata triples
from Wikipedia text, allowing the models to better capture relation structures and their distribution
in the EMERGE corpora. In contrast, EDC+ relies only on a few in-context examples provided
in the prompt, which appears insufficient to capture the diversity and complexity of relation types
present in the dataset.

For TKGU operations that add previously non-existing triples to the KG, EDC+ performs compa-
rably to ReLiK on E-Triples and EE-Triples. Furthermore, EDC+ significantly outperforms ReLiK
RE on the EE-KG-Triples operation, which involves linking emerging entities mentioned in the pas-
sage to existing KG entities that are not explicitly referenced in the same passage. This result is
expected, as ReLiK RE is designed to extract only entities explicitly mentioned in the text, as is also
the case of other existing state-of-the-art IE models (see EE-KG-Triples column in Table([I). Its low
performance on EE-KG-Triples is largely due to its reliance on explicit mentions: it extracts valid
triples involving both emerging and existing entities that are present in the text but are not annotated
in EMERGE, which includes only entity mentions explicitly annotated via Wikipedia hyperlinks.

When evaluated on D-Triples, EDC+ demonstrates relatively low performance, largely due to its
lack of access to the knowledge graph. Without this information, the model cannot reliably identify
triples that are already present and should be deprecated (see Appendix |G| for an example). In
contrast, ReLiK is not trained to explicitly identify triples to be removed from KG and therefore is
unable to extract D-Triples TKGU operation. This limitation also applies to other state-of-the-art IE
models (see D-Triples column in Table[T).

What is the performance across different snapshots? Although results on earlier snapshots ap-
pear slightly higher than those from later years across different models and TKGU operations, there
is no clear overall trend. We hypothesize that these performance differences are driven less by the
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Figure 5: Performance of TKGU operations on relation types from the first KG delta week (Filtered
relations) versus the full dataset including all relation types (All relations). The increased perfor-
mance on Filtered relations shows that newly introduced relation types in later deltas are harder to
predict, leading to larger performance drops.

novelty of the knowledge itself and more by the type of emerging knowledge dominant in each
snapshot, an aspect we plan to investigate in future work.

What is the performance on increasing temporal KG
deltas? In Figure 3] we plot model performance across in-
creasing weekly KG deltas. Although not consistent across all

460

N
o
a

TKGU operations and models, we generally observe a perfor- £ 450

mance drop as deltas grow. We hypothesize that this decline &

stems from an increased number of relation types involved $445

in the TKGU operations at higher deltas (see Figure @). To &

test this hypothesis, we evaluate TKGU operations from the S 0

knowledge delta of week 2 onward while restricting relation ® 435

types to those already present in week 1. Figure [5] shows the 430

average performance difference across the evaluated models as

the delta interval grows. Here, Filtered relation types denote 1 2 3 4 5
performance restricted to relation types seen in week 1, while AWeeks

All relations corresponds to performance on the full set of rela-

tion types at each update. The reduced performance drop in the

filtered setting supports our claim. In future work, we plan to  Figure 4: Evolution of the num-
further investigate this phenomenon and develop more robust  ber of relation types with increas-
models for continual knowledge updates under ever-increasing  ing weekly KG deltas.

temporal deltas.

7 CONCLUSION

In this work, we introduced EMERGE, the first dataset to cover all text-driven knowledge graph
updating (TKGU) operations required to keep KGs aligned with emerging knowledge from textual
sources. Evaluation of two state-of-the-art models on a dataset subset revealed a gap in current
information extraction models to extract new information from text while accounting for existing
KG content and structure. This suggests that future work should focus on designing methods capable
of interacting with both emerging knowledge in text and the evolving content and structure of KGs.
Additional limitations of our work, along with potential directions for future research, are discussed

in Appendix
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8 REPRODUCIBILITY STATEMENT

The code for dataset creation and reproducing the experimental results will be released in a public
GitHub repository. The repository will also provide functionality for extending EMERGE with new
KG snapshots, enabling incorporation of novel emerging knowledge (see Section .4). Moreover,
the LLMs used for dataset annotation (Section [4.2) and within the EDC+ model (Section [5.1)) are
publicly accessible, enabling straightforward replication of dataset construction and experiments.
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A EXTENDED RELATED WORK

This appendix provides an expanded discussion of related work, offering additional context, com-
parisons, and references beyond those included in the main text.

A.1 COMPARISON OF EMERGE WITH EXISTING INFORMATION EXTRACTION BENCHMARKS

Table[]presents a detailed comparison of EMERGE with existing information extraction (IE) bench-
mark datasets across the following key criteria:

* Evolution: indicates whether the dataset captures the natural evolution of knowledge in
knowledge graph (KG) and textual (7ext) sources.

* Text-to-KG integration: extent to which information extraction annotations are integrated
with knowledge in a KG, broken down in:

— KG Link: indicates whether the annotated entities in the triples are linked to a KG,
supporting thus entity linking task.

— X-Triples: presence of triples aligned with facts already in a KG (X-Triples TKGU
operation; Section [3).

— E-Triples: whether a dataset can be used to extract triples from text that connect
existing entities in a KG (E-Triples TKGU type; Section [3).

— EE-Triples: coverage of triples involving emerging (non-existing) entities in a KG
(EE-Triples TKGU; Section [3).

— EE-KG-Triples: availability of annotations linking emerging entities in text to other
entities in KG not mentioned in text (EE-KG-Triples TKGU; Section .

— D-Triples: inclusion of annotations that mark deprecation of existing KG triples based
on information in textual passage (D-Triples TKGU; Section [3).

From Table[d] we observe that, to the best of our knowledge, none of the existing IE datasets support
information extraction in a realistic knowledge evolution setting, where knowledge evolves simul-
taneously in both KG and textual sources (columns Evolution-KG and Evolution-Text in the table).
Moreover, a number of datasets, such as TACRED (Zhang et al.,|2017), BCSCDR (Li et al., |2016),
DDI (Herrero-Zazo et al.l 2013), and DWIE (Zaporojets et al., [2021), include entity linking to a
KG, but are not accompanied by an actual KG, and their extracted relations do not align directly
with the relations defined in a KG schema. Finally, although E-Triples and EE-Triples operations
are nominally supported in some of the compared datasets, they do not capture genuinely emerging
knowledge; instead, they rely on random subsampling of triples to approximate TKGU operations.
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Table 4: Overview of major information extraction datasets from the past three decades across
various domains, compared to our EMERGE dataset.

| Evolution | Text-to-KG integration

Dataset KG Text | KG X- E- EE- EE-KG- D-
Link Triples Triples Triples Triples Triples

MUC-7 (1998) X X X X X X X X
CoNLL04 (2004) X X X X X X X X
ACE 2005 (2006) X X X X X X X X
SemEval 2010 (2010) | X X X X X X X X
NYT (2010) X X v v v X X X
ADE (2012) X X X X X X X X
DDI (2013) X X v/ X X X X X
BC5CDR (2016) X X v X X X X X
WikiReading (2016) X X X X X X X X
SciencelE(2017) X X X X X X X X
WebNLG (2017) X X v v v X X X
WNUT (2017) X X X X X X X X
TAC KBP (2017) X X v v v v/ X X
SciERC (2018) X X X X X X X X
TACRED (2017) X X v X X X X X
FewRel (2018) X X v v v/ X X X
FewRel 2.0 (2019) X X 4 v v X X X
Geo-NRE (2019) X X v v v X X X
Wiki-NRE (2019) X X v v v X X X
T-REX (2019) X X v v v X X X
DocRED (2019) X X v v v X X X
Wiki80 (2019) X X v/ v v X X X
FOBIE (2020) X X X X X X X X
DialogueRE (2020) X X X X X X X X
BioRel (2020) X X v v v X X X
Wiki20 (2020) X X v v v X X X
DWIE (2021} X X v X X X X X
KELM (2021) X X v v v X X X
REBEL (2021) X X v v v X X X
Re-TACRED (2021) X X v X X X X X
SMiLER (2021} X X X X X X X X
DrugProt (2021) X X 4 X X X X X
mLAMA (2021) X X X X X X X X
Re-DocRED (2022) X X v v v X X X
CDG (2022) X X v v v X X X
KD-DTTI (2022) X X v v v X X X
FinRED (2022) X X v v v X X X
BioRED (2022) X X v X X X X X
SynthIE-text (2023) X X v v v X X X
REFinD (2023) X X X X X X X X
BioDEX (2023) X X v X X X X X
TEXT2KG (2023) X X v v v X X X
EMERGE (ours) | v |/ v v/ v/ v/ v

A.2 RELATED RESEARCH DIRECTIONS

We situate our contribution within four overlapping research directions outlined below, extending
the related work described in Section[2]

KG completion and refinement. Research on KG completion (KGC) (Shen et al.| [2022)) and re-
finement (Paulheim, 2016; Subagdja et al.l 2024) has led to the creation of a number of datasets
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where the main task is to predict missing relations between entities. Thus, in their work,
introduced the WN18 and FB15k datasets. These datasets are derived from WordNet
and Freebase (Bollacker et al. respectively and capture the relations between
entities. Later work (Toutanova & Chenl [2015} [Dettmers et al.| 2018) modified WN18 and FB15k
datasets to eliminate redundant relations and train-test leakage, leading to the release of WN18RR
and FB15K-237 datasets. More recently, a much larger WikidataSM |Wang et al.| (2021)) was re-
leased and contains ~ 5 million entities and ~ 20 million triples. Other widely used text-based KGC
datasets are Wiki/NELL-One (Xiong et al} 2018), FB15K-237N (Lv et al,[2022), CoDEx (Safavi &
2020), YAGO3-10 (Mahdisoltan: et al., 2014) and LiterallyWikidata (Gesese et al., 2021).
While these datasets enable models to incorporate textual information as node features (Daza et al.,
2021}, [Wang et all, [2022)), they remain static and do not capture the evolving nature of knowledge
within KGs. Moreover, the KG triples in these datasets are not linked to textual sources that repre-
sent their information. To address this gap, our dataset captures the evolution of knowledge in the
Wikidata KG and links KG updates to textual evidence from passages in Wikipedia pages. In doing
so, it also creates opportunities to integrate ideas from KG completion, such as enforcing structural
consistency, into text-driven information extraction (see next paragraph), thereby bridging two lines
of work that are typically treated separately.

Information extraction (IE). To evaluate the ability of models to extract structured knowledge,
researchers have developed IE datasets by annotating entity relations. MUC-7 (Chinchor & Marsh,
1998)) introduced three relation types, with later datasets expanding in size, relation diversity, or both.

Notable examples include CoNLLO04 (Roth & Yihl| [2004), ACE 2005 (Walker et al., 2006)), ERE
(Aguilar et all, 2014} [2015), BC5CDR (Li et al} [2016)), TACRED (Zhang et al., 2017),
SciERC (Luan et al.| 2018)), SemEval-2010 (Hendrickx et al., 2010), SemEval-2017 (Augenstein
et al| 2017), DWIE (Zaporojets et al., and BioRED (Luo et al.| 2022), among others. Other
datasets, such as NYT (Riedel et al [2010), explicitly linked KG triples to textual snippets using
distant supervision. Similarly, but on a larger scale, Gabrilovich et al.|(2013) introduced FACC1 by
aligning ClueWeb12 documents with Freebase entity mention annotations. In parallel, the TAC-KBP
challenges (Ji et al.| 2010; [TAC-KBP} 2022) (2009 — 2020) produced proprietary manually annotated
datasets for knowledge base population tasks such as slot filling and entity linking. More recently,
these resources have been extended with a variety of datasets that map textual knowledge to KG

literals, such as LiterallyWikidata (Gesese et al} 2021)), and KG triples, such as WebNLG (Gardent

2017), KELM (Agarwal et al., 2021), FewRel (Han et al.| 2018), DocRED (Yao et al.,2019),

Wiki/GEO-NRE (Distiawan et al., [2019), BioRel (Xing et al., 2020), T-REX (Elsahar et al.l 2019)
and REBEL (Cabot & Navigli,2021). While these datasets connect textual knowledge to KG triples,

they do not account for the operations required to update a KG as new information emerges in text.
Our work addresses this gap by linking new textual knowledge to the specific update operations (see
Section [3) on a KG snapshot. Methodologically, existing state-of-the-art IE methods (see Table [T
provide a natural starting point for tackling TKGU operations, as they extract structured knowledge
from text and already cover some of these operations. However, they remain largely oblivious to the
existing KG structure and require extensions to integrate emerging textual content into the KG, such
as deprecating outdated triples, adding new entities, and enforcing structural consistency based on
how entities and relations are used within the KG.

Continual learning with emerging knowledge. Over the last few years, there has been a grow-
ing interest in developing datasets aimed at probing models on emerging knowledge Datasets like

ECBD 2022). TemporalWiki (Jang ct al 2022a). TempLAMA (Dhingra et al} 2022).
DynamicTempLAMA (Margatina et al., [2023), Updated and New LAMA (Jang et a1|, 022b were
proposed to evaluate LLMs on slot-filling tasks using up-to-date knowledge. More recently, this

line of work has expanded to question answering on emerging knowledge, with datasets such as

StreamingQA (Liska et al 2022), FreshQA (Vu et al| [2024), EvolvingQA (Kim et al.| [2024D),
RealtimeQA (]Kasal et all 2024), DynamicER (Kim et al., 2024a), GrowOVER (Ko et al., [2024),

ERASE (Li et al., [2025a), Wiki- Update (Wu et al.|2024b), AntiLeak-Bench (Wu et al.| [2024c), and
LiveBench (White et al.,[2024). However, existing datasets do not evaluate models on dynamically
updating large-scale KGs while grounding changes in textual evidence. This setting requires mod-
els to be aware of changes in continually evolving KG schema and emerging knowledge in textual
sources. To address this, we introduce EMERGE, a dataset that links emerging textual knowledge
to updates in a time-evolving Wikidata KG with 37 million edges.
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KG versioning. Our work is also related to KG versioning (Jin et al., [2025; |Alam et al.| 2024;
Hofer et al.l 2024). Similar to prior work in this area, we construct a KG in which each edge is
annotated with its temporal span, capturing both its addition and deprecation history. This enables
efficient extraction of KG snapshots and deltas (see Section @) However, in contrast to KG ver-
sioning approaches that focus solely on maintaining temporal KG states, we use these versions as an
intermediate step to build a dataset where KG updates are linked to the textual evidence in the corre-
sponding Wikipedia passages. As a result, unlike existing IE datasets in which annotated triples are
selected independently of KG evolution, the triples in EMERGE reflect the natural progression of
facts in a real-world KG, making the dataset highly practical and grounded in authentic knowledge
change.

B METRICS

B.1 RECALL

We use recall, which measures the fraction of correctly predicted ground truth triples and is defined

as follows: AT
Recall = 70 0 T

7ol

where Tp is a set of predicted triples and 7 is the set of ground truth triples.

B.2 COMPLETENESS

The completeness metric (Jiang et al.,|2024) can be formalized as follows:

(Th To) = {r € Th|37 € TD/, sim(r, 7") > ¢}|7
75|
where 77 is the set of ground truth, and 7p the set of predicted triples. sim(r,7’) =
CosSim(emb(7), emb(7’)). We use SentenceTransformer (‘all-mpnet-base-v2’) to
calculate the embeddings emb. We set the threshold ¢ to 0.9, which, based on our observations,
provides accurate similarity matching.

C QUALITY CONTROL

In this section, we describe how LLMs are used to automatically filter out triples that cannot be
derived from textual passages (Section [C.I). We also detail the human annotation process used to
validate the resulting LLM-generated annotations (Section [C.2).

C.1 QUALITY CONTROL PROMPTS AND EXAMPLES

We use two different prompts to filter out triples that cannot be inferred from a textual passage. The
first is an assertion prompt (see Section applied to validate X-Triples, E-Triples, EE-Triples,
and EE-KG-Triples as defined in Section g[ The goal of this prompt is to verify whether a triple
can be directly or indirectly derived from the text. The second prompt is a deprecation prompt
(see Section [C.1.2)), and is used to validate the deprecation of triples involved in D-Triples TKGU
operation.

C.1.1 TRIPLE ASSERTION PROMPT

The following is the structure of the prompt used to assert that the X-Triples, E-Triples, EE-Triples,
and EE-KG-Triples TKGU operations can be derived from the information in textual passages. The
placeholder <TEXT> is replaced by the textual passage, and <TRIPLES_LIST> by a list of triples.

You are given the following text:

<TEXT>
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Can the following triples be directly or indirectly (the text
provides some hints) inferred from the text? Use common sense
but not knowledge that cannot be inferred from the text above.

<TRIPLES_LIST>

Write a numbered list with the triples above, where each of the
triples is followed by YES if the triple is represented in the
text, and NO otherwise. Follow your ‘YES’ or 'NO’ answer for
each triple with a brief explanation.

The following is a concrete example of the triple assertion prompt outlined above:
You are given the following text:

After the war, Abraham H. Albertson returned to complete his
education and graduated, with scholarship assistance, from the
Columbia School of Architecture with a Ph.B in 1895.

Can the following triples be directly or indirectly (the text
provides some hints) inferred from the text? Use common sense
but not knowledge that cannot be inferred from the text above.

1. [Abraham H. Albertson (080520646),; educated at (P69);
Columbia Graduate School of Architecture, Planning and
Preservation (05149701) ]

2. [Abraham H. Albertson (080520646); occupation (P106);
architect (042973) ]

3. [Abraham H. Albertson (080520646); country of
citizenship (P27); United States of America (030) ]

4. [Abraham H. Albertson (080520646); instance of (P31);
human (Q5) ]

5. [Abraham H. Albertson (080520646); archives at (P485);
University of Washington Libraries (Q07896575) ]

Write a numbered list with the triples above, where each of
the triples is followed by YES if the triple is represented in
the text, and NO otherwise. Follow your ‘YES’ or ‘NO’ answer
for each triple with a brief explanation.

Below is the response generated by Meta-Llama-3.1-405B when prompted with the example
above:

1. [Abraham H. Albertson (Q80520646); educated at (P69);
Columbia Graduate School of Architecture, Planning and
Preservation (Q5149701)] - YES - The text explicitly states

that Abraham H. Albertson graduated from the Columbia School
of Architecture.

2. [Abraham H. Albertson (080520646); occupation (P106);
architect (Q42973)] - YES - Although the text does not directly
state that Abraham H. Albertson was an architect, it can be
inferred from the fact that he graduated from the Columbia
School of Architecture.

3. [Abraham H. Albertson (080520646); country of
citizenship(P27); United States of America (Q30)] - NO -

The text does not provide any information about Abraham H.
Albertson’s country of citizenship.

4. [Abraham H. Albertson (080520646); instance of (P31);
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human (Q5)] - YES - It can be inferred from the context that
Abraham H. Albertson 1s a human being, as he is described as
graduating from a school and having a war experience.

5. [Abraham H. Albertson (Q80520646); archives at (P485);
University of Washington Libraries (Q7896575)] — NO - The text
does not provide any information about the archives of Abraham
H. Albertson.

C.1.2 PROMPT FOR TRIPLE DEPRECATION

The following prompt is used to verify whether the textual passage supports the deprecation of a set
of triples from the KG:

You are given the following text:
<TEXT>

Does this text imply that the following triples are no longer
valid or do not hold at the moment the text was written?

<TRIPLES_LIST>

Write a numbered list with the triples above, where each of the
triples is followed by YES if the text implies that the triple
is no longer valid or do not hold, and NO otherwise. Follow
your ‘YES’ or ‘NO’ answer for each of the triples with a brief
explanation.

The following is a concrete example of the triple deprecation prompt outlined above:
You are given the following text:

Kate Lehrer (born Kate Tom Staples; December 17, 1937) is an
American writer, novelist and book reviewer from Washington,
D.C., and a panelist on the Diane Rehm Book Club on National
Public Radio. She was married to fellow writer and journalist
Jim Lehrer from 1960 until his death in 2020.

Does this text imply that the following triples are no longer
valid or do not hold at the moment the text was written?

[Kate Lehrer (06375599),; spouse (P26); Jim Lehrer (0931148)]
[Jim Lehrer (0931148); spouse (P26); Kate Lehrer (06375599) ]
. [Jim Lehrer (0931148); residence (P551); Washington,

.C. (061)]

O Wb~

Write a numbered list with the triples above, where each of the
triples is followed by YES if the text implies that the triple
is no longer valid or do not hold, and NO otherwise. Follow
your ‘YES’ or ‘NO’ answer for each of the triples with a brief
explanation.

Below is the response generated by Meta-Llama-3.1-405B when prompted with the example
above:

1. [Kate Lehrer (06375599); spouse(P26); Jim Lehrer (0931148) ]
— YES - The text states that Kate Lehrer was married to Jim
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Lehrer ‘‘until his death in 2020’’, implying that the marriage
ended with his death, and therefore the spouse relationship 1is
no longer valid.

2. [Jim Lehrer (Q931148); spouse (P26); Kate Lehrer (06375599) ]
- YES - Similar to the previous triple, the text implies that
the marriage between Jim Lehrer and Kate Lehrer ended with his
death, so the spouse relationship is no longer valid.

3. [Jim Lehrer (Q931148); residence(P551); Washington,
D.C.(Q61l)] - NO - The text does not provide any information
about Jim Lehrer’s residence, let alone imply that he no longer
resides in Washington, D.C. It only mentions that Kate Lehrer
is from Washington, D.C.

C.2 HUMAN ANNOTATION PROCESS

To evaluate the accuracy of automatic LLM annotations, we employ two expert annotators (re-
searchers holding a PhD with a background in computer science) to manually label a subsample
of 500 (100 triples per each TKGU type defined in Section [3) triples from 166 randomly selected
passages from our EMERGE dataset. To ensure consistency and avoid ambiguity, the annotators
follow a detailed set of guidelines described in Section[C.2.1]

C.2.1 ANNOTATION GUIDELINES

Annotators were provided with the following guideline:

For each annotation instance, you are provided with a textual passage, a triple, and an assess-
ment type, which can be either assert or deprecate. For assert assessments, respond YES if the
triple can be directly or indirectly inferred from the passage, and NO if it is not supported by
the textual knowledge. For deprecate assessment, respond YES if the triple can be deprecated
based on information present or implied in the passage, and NO otherwise. Take into account
the following considerations when annotating for assert assessment type:

1. The triple may not be factually correct at the time the text was written, but it ex-
presses a fact that holds true at some other point in time. For example, the triple
(Barack Obama, president of, United States) should be assessed YES for the text pas-
sage “Barack Obama served as the 44th President of the United States from 2009 to
2017”.

2. Use common world knowledge and reasoning to induce triples from textual passage.
For example, the triple (Renault, headquarters in, France) should be assessed YES for
the text passage “The headquarters of Renault are located in Boulogne-Billancourt, a
suburb of Paris.”, as Paris is located in France.

3. Mark with NO any concrete fact that cannot be inferred from text, even if some of
the entities appear in the passage. For example, the triple (John Smith, participant
in, Portland Climate Action Group protest) should be assessed NO for the passage
“Several members of the Portland Climate Action Group gathered downtown to protest
against deforestation and climate inaction.”, as its factuality cannot be reliably inferred
from the text.

4. Assess with NO the triples that cannot be reliably inferred from a textual passage. For
example, the triple (David Bronkie, sibling, Eva Bronkie) should be assessed as NO for
the passage: “David Bronkie and Eva Bronkie co-founded a sustainable home goods
business focused on eco-friendly candle kits.”, since the sibling relationship cannot be
reliably inferred from the text (e.g., sharing the same last name).

Take into account the following considerations when annotating for deprecate assessment type:

1. The deprecation of a triple should be valid from the information provided in the pas-
sage and not the current status of the knowledge. For example, the triple ( Donald
Trump, president of, United States ) should be assessed with YES for the passage “Joe
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Biden is the President of the United States, having taken office recently and begun his
tenure with notable public appearances and speeches.”, despite the fact that Donald
Trump may be a current president of United States.

2. The deprecation of a triple might not be explicitly stated in the text, but can be im-
plied. For example, the deprecation of the triple (Hans Rausing, spouse, Julia Rausing)
should be assessed as YES for the passage “Julia Rausing, the philanthropist and busi-
ness heiress, passed away on April 18, 2024, at the age of 63 after a long battle with
cancer. She is survived by her husband, Hans Rausing, and their family.”, since the
marital relationship is no longer current due to Julia Rausing’s death, which implies
that the triple is deprecated.

3. Assess with NO any triples whose deprecation can not be reliably inferred from text,
even if some of the entities appear in the text.
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Figure 6: The ratio of TKGU operations supported by the LLM to the total number of TKGU
operations mapped to textual passages during the alignment process.

C.2.2 ANNOTATION AGREEMENT

We report annotation agreement between the two human annotators (H—H Cohen’s k), as well as
between each human annotator and the LLM (HI-LLM Cohen’s x and H2-LLM Cohen’s k) in
Table[5} The Cohen’s x scores indicate strong agreement (0.6-0.8) to almost perfect agreement (>
0.8). In addition, we compute Fleiss’ x (H+LLM Fleiss’ k) and Krippendorff’s oo (H+LLM Kripp.
«) to assess agreement among all three annotators, both humans and the LLM. Consistent with
Cohen’s k, these metrics also show strong to almost perfect agreement. This supports the use of the
evaluated Meta-Llama-3.1-405B LLM to annotate full dataset using the prompts described in

the Appendix

C.3 TRIPLE ANNOTATION STATISTICS

Figure [6] illustrates the ratio of triples aligned with textual passages during the alignment step de-
scribed in Section[4.2]that were marked by automatic LLM annotations — using the prompts detailed
in Section [C.I] - as not representative of the passages. This ratio is different between the complete
and subsampled dataset used during testing. The reason is that during subsampling we retain in-
stances with supported by LLM D-Triples operations (see Section [3). Additionally, we observe a
lower fraction of EE-KG-Triples supported by the LLM. This occurs because EE-KG-Triples in-
clude all entities in the KG, many of which are unrelated to the passage content but are connected
to emerging entities mentioned in the text. Consequently, these triples are inherently less likely
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Table 5: Annotation agreement per TKGU operation and overall. Columns show pairwise Co-
hen’s x between humans (H-H) and between each human and the LLM (H1-LLM, H2-LLM), as
well as multi-rater agreement including all three annotators (H+LLM) measured with Fleiss’ « and
Krippendorff’s a.

TKGU H-H HI1-LLM  H2-LLM H+LLM H+LLM
Operation Cohen’s k  Cohen’s k Cohen’s k Fleiss’ k  Kripp. o
X-Triples 0.718 0.649 0.637 0.668 0.669
E-Triples 0.750 0.698 0.750 0.732 0.733
EE-Triples 0.680 0.811 0.863 0.784 0.785
EE-KG-Triples 0.880 0.840 0.761 0.827 0.827
D-Triples 0.771 0.675 0.610 0.687 0.688
Overall 0.792 0.765 0.744 0.767 0.767

Table 6: Statistics of our newly introduced EMERGE dataset, organized by KG snapshots (rows).
For each snapshot, we report the number of instances and TKGU operations in both the complete
dataset and the subsampled test set. The KG statistics section summarizes the number of entities,
relation types, and triples in each KG snapshot.

Complete dataset Subsampled test set KG statistics
Snapshot Instances Operations Instances Operations Entities Rel. Types Triples
2019 37K 202K 5K 24K 5.96M 5,646 25.73M
2020 31K 199K 5K 26K 6.14M 7,017 28.76M
2021 40K 292K 5K 36K 6.34M 8,216 30.84M
2022 30K 188K 5K 27K 6.54M 9,425 33.41M
2023 26K 151K 5K 26K 6.67TM 10,599 34.99M
2024 32K 200K 5K 29K 6.80M 11,409 36.31M
2025 33K 217K 5K 31K 6.93M 12,304 37.54M

to be supported by the passages. A promising future direction is to develop information extrac-
tion methods that rely not only on textual evidence to extract triples but also integrate this content
with existing knowledge and patterns in the KG. Such an approach could be particularly beneficial
for incorporating emerging entities in EE-KG-Triples, even when they are not supported by textual
passages, into the broader KG.

D DATASET STATISTICS

In this section we will present additional statistics of EMERGE.

D.1 OVERALL STATISTICS OF EMERGE

Table [6] presents key statistics of our newly introduced EMERGE dataset, broken down by KG ref-
erence snapshots. For each snapshot, we report the number of instances and TKGU operations in
both the full dataset and the subsampled test set. The table also summarizes KG snapshots statistics,
including the number of entities, relation types, and triples in each snapshot. We observe that the
number of entities, relation types, and triples increases over time, reflecting the growth of Wikidata
and the addition of new relations to the KG schema. This evolving structure creates a challenging
scenario for future models, which must recognize these changes in the KG and adapt their predic-
tions accordingly.
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Figure 7: Distribution of TKGU operations defined in Section [3] in EMERGE. The left subgraph
shows the full dataset, while the right one shows the subsampled test set (see Section[5). In the test
set, D-Triples are retained at higher frequency to ensure sufficient evaluation, while other TKGU
operation types reflect the original dataset distribution.
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Figure 8: Distribution of TKGU operations across KG deltas up to 5 weeks defined in EMERGE.

D.2 NUMBER OF TKGU OPERATIONS AND THEIR DISTRIBUTION

Figure [7] illustrates the distribution of KG update operations for each TKGU type defined in Sec-
tion 3] We report on both the complete dataset (left subgraph) and the subsampled test set (right
subgraph). Furthermore, we display both the number as well as the percentage the operations of
each of the TKGU types represent in EMERGE. This distribution is very similar between the com-
plete dataset and subsampled test set, except for D-Triples, which were retained at higher frequency
in the test set to ensure sufficient evaluation (see Section[5). Additionally, Figure [§]shows the distri-
bution of TKGU update operations across temporally increasing weekly KG deltas. In the Complete
dataset (left subplot), the number of TKGU operations increases with larger deltas. A similar trend
is visible in the subsampled test set (right subplot), although the growth is less pronounced. This
is due to our subsampling procedure, which retains only 1,000 instances per delta (see Section [3)),
resulting in a more uniform distribution of operations across deltas.

32



E QUALITATIVE ANALYSIS

In this section, in Tables we present the five frequent factual triples from EMERGE for each
of the TKGU operation types, with an example of corresponding textual passage. The goal is to
highlight representative cases that illustrate both the contents of the benchmark and the challenges
it poses. The information in the tables contains the KG snapshot (Snap.) used to compute weekly
knowledge deltas aligned with each passage. We also report the number of occurrences of the triple
in the Triple column within EMERGE (#), along with an example passage. The emerging entities
in TKGU operations appear in bold. Due to space constraints, we selected the shortest passages;
however, in EMERGE, passages consist of full Wikipedia paragraphs.

Our main observation is that the derived TKGU operations are closely aligned with the primary
events occurring immediately after each KG snapshot (all snapshots are taken on January Ist of the
corresponding year). We also note that the resulting triples are highly specific to the Wikidata KG
structure. This is particularly evident in Table[T0] which shows examples of EE-KG-Triples, where
an emerging entity must be connected to the existing KG. Consequently, we believe a promising fu-
ture direction is to develop information extraction models that consider KG structure when proposing
knowledge updates in it.

Additionally, to illustrate the effectiveness of using an LLM (Meta-Llama-3.1-405B) to ver-
ify that all TKGU operations can be derived from their corresponding textual passages during the
curation step described in Section[d.2] we present the most frequent factual triples from the EE-KG-
Triples TKGU operation in EMERGE that were marked as not supported by the LLM in Table [TT}
These examples highlight triples that occurred frequently but were flagged because the LLM deter-
mined that their source textual passages did not support them. None of these triples are grounded in
the corresponding text, demonstrating the reliability of the LLM-based validation process.
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Table 7: Example entries of the most frequent X-Triples TKGU operation instances in EMERGE,
showing the snapshot (Snap.), triple, and number of instances (#).

Snap.

#

Triple

Example Passage

2021

2021

2021

2021

2021

834

827

671

666

586

(Donald Trump; candidacy in
election; 2020 United States
presidential election)

(2020 United States presiden-
tial election; candidate; Donald
Trump)

(Joe Biden; candidacy in elec-
tion; 2020 United States presi-
dential election)

(2020 United States presiden-
tial election; candidate; Joe
Biden)

(midfielder; sport; association
football)

Over the span of the 2020 presidential election,
RSBN’s coverage of Donald Trump’s cam-
paign rallies grossed over 127 million views on
YouTube.

In 2020, Pletts voiced support for Donald
Trump and the Republican Party in the 2020
United States presidential election and Senate
elections.

In September 2020, Kennedy Kent endorsed
Republican President Donald Trump for re-
election over Democratic nominee Joe Biden.

Despite being divorced, she remains good
friends with her ex-husband, and she supported
Joe Biden and Kamala Harris in the 2020 elec-
tion.

“Niko Rak” (born 26 July 2003) is a Croat-
ian footballer who plays for Sibenik as a mid-
fielder.

Table 8: Example entries of the most frequent E-Triples TKGU operation instances in EMERGE,
showing the snapshot (Snap.), triple, and number of instances (#).

Snap. # Triple Example Passage
2021 315 (Joe Biden; position held; On 20 January 2021, Joe Biden was sworn in
President of the United States)  as 46th President of the United States.
2023 204 (Kevin McCarthy; posi- On January 3, 2023, at the beginning of the
tion held; Speaker of the 118th Congress, Boebert voted for Jim Jordan
United States House of to be the U.S. House Speaker, in rebuke of
Representatives) House Minority Leader Kevin McCarthy.
2020 168  (Abu Mahdi al-Muhandis; mil- Abu Mahdi al-Muhandis returned to Iraq fol-
itary branch; Popular Mobi- lowing the withdrawal of US troops (Decem-
lization Forces) ber 2011) to head the Kata’ib Hezbollah mili-
tia,; he then became deputy chief of the Popu-
lar Mobilization Forces.
2024 164 (Houthi movement; country; On 28 March 2021, the Houthis forced 13 Jews
Yemen) to leave Yemen, they only allowed four elderly
Jews to live in Yemen.
2020 138 (Qasem Soleimani; place of Soleimani was assassinated in a targeted U.S.

death; Baghdad)

drone strike on 3 January 2020 in Bagh-
dad, which was approved by President Donald
Trump on the grounds that Soleimani posed an
“imminent threat” to American lives.
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Table 9: Example entries of the most frequent EE-Triples TKGU operation instances in
EMERGE (emerging entities in bold), showing the snapshot (Snap.), triple, and number of instances

#).

Snap. # Triple Example Passage

2021 848 (January 6 United States She called for the impeachment of President
Capitol attack; significant Donald Trump, in wake of the 2021 storming
person; Donald Trump) of the United States Capitol.

2020 670 (Qasem Soleimani; significant He was killed by a targeted U.S. drone strike at
event; assassination of Qasem the Baghdad International Airport on 3 January
Soleimani) 2020, which also killed Iranian Armed Forces

Major General Qasem Soleimani.

2022 317 (Dawn FM; performer; The In 2022 the group also received credit for co
Weeknd) producing songs off The Weeknds fifth studio

album Dawn FM.

2025 291 (2025 New Orleans truck at- 2025 New Orleans truck attack: President Joe
tack; located in the adminis- Biden has been briefed on the attack and has
trative territorial entity; New been in touch with New Orleans Mayor to offer
Orleans) support.

2023 72 (Flowers; performer; Miley The chart’s current number one as of the issue

Cyrus)

dated January 28, 2023, is “Flowers” by Miley
Cyrus

Table 10: Example entries of the most frequent EE-KG-Triples TKGU operation instances in
EMERGE (emerging entities in bold), showing the snapshot (Snap.), triple, and number of instances

(#).

Snap. # Triple Example Passage

2021 3149 (January 6 United States January 6 United States Capitol attack: The
Capitol attack; located in the Proud Boys posted messages boasting and
administrative territorial en- taking credit for causing “absolute terror”.
tity; Washington, D.C.)

2020 1097 (assassination of Qasem Assassination of Qasem Soleimani: the pres-
Soleimani; instance  of; ident called for restraint and said the events
assassination) in Iraq were the result of previous “terrorist

acts”.

2025 991 (Golden Age of Argentine ‘“Volver a vivir” is a 1941 Argentine film of
cinema; part of; history of the Golden Age of Argentine cinema.
film)

2024 282 (South Africa wv. Israel; In 2023-24, he was appointed as a member of
charge; genocide) the South African legal team arguing “South

Africa v. Israel” regarding the Genocide Con-
vention.

2019 179  (All Elite Wrestling; instance ~ On January 1, 2019 Cody Rhodes unveiled a

of; business)

new promotion; All Elite Wrestling, in which
he, along with Matt and Nick Jackson, will
serve as Executive Vice President.
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Table 11: Representative examples of the most frequent EE-KG-Triples TKGU operation instances
in EMERGE filtered out by the Meta—-Llama—-3.1-405B curator. Emerging entities are in
bold. Each row shows the snapshot (Snap.), triple, and number of occurrences (#). None of these
triples are supported by the corresponding textual passages, illustrating the effectiveness of the
LLM-based filtering.

Snap. # Triple Example Passage

2021 1174 (Proud Boys; significant Trump supporters infiltrated Capitol Hill in
event; January 6 United Washington DC., 5 people killed.

States Capitol attack)

2022 158 (Dawn FM; distribution for- In 2022 the group also received credit for co
mat; LP record) producing songs off The Weeknds fifth studio

album Dawn FM.

2024 123 (2024 Haneda Airport run- 2024 Haneda Airport runway collision: All
way collision; destination flights in and out of Haneda were suspended
point; Niigata Airport) following the accident; operations currently

remain suspended.

2019 55 (All Elite Wrestling; legal On January 1, 2019 Cody Rhodes unveiled a
form; privately held company) new promotion; All Elite Wrestling, in which

he, along with Matt and Nick Jackson, will
serve as Executive Vice President.

2019 29 (@world record_egg; coun- @world_record_egg is an account on social

try; United Kingdom)

media platform Instagram, notable for hold-
ing the world records for both the most-liked
Instagram post and most liked online post on
any media platform in history.
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Table 12: Example entries of the most frequent D-Triples TKGU operation instances in
EMERGE (emerging entities in bold), showing the snapshot (Snap.), triple, and number of instances
#).
Snap. # Triple Example Passage
2024 88 (Adam Peters; member of Peters joined the Denver Broncos as a scout in
sports team; San Francisco 2009. He was promoted to assistant director of
49ers) college scouting in July 2014 and to director of
college scouting in 2016. He was a member of
the team that won Super Bowl 50 in 2015.
2021 79  (Parler; distributed by; Google After complaints that Parler was used to coor-
Play) dinate the 2021 storming of the U.S. Capitol,
Apple and Google removed Parler’s mobile app
from their app stores. Parler went offline on
January 10, 2021 at 11:59 PM (PST) after Ama-
zon Web Services canceled its hosting services.
2021 75 (Mike Pence; position; Vice “Marlon Bundo”, also known as “Bunny of the
President of the United States) United States” (“BOTUS”), is a rabbit, belong-
ing to the family of Mike Pence, the 48th and
former Vice President of the United States.
2025 63 (Vice President of the United West is the brother-in-law of former Vice Presi-
States; position holder; Kamala dent Kamala Harris. He served as an advisor to
Harris) her 2024 presidential campaign.
2020 43  (European Union; has part(s); Chris Davies was the chairman (2019 — 2020)

United Kingdom) - until the United Kingdom left the European

Union.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PRECISION AND F1 SCORES

In this section, we present precision and F1 results for both closed information extraction (ReLiK
cIE; Tables[T3HT4) and relation extraction (ReLiK RE and EDC+; Tables[T5HI6). Closed informa-
tion extraction performance is measured via exact triple matching against the ground truth. Relation
extraction is evaluated using the completeness-score approximation with a threshold ¢ = 0.9 (see
Section [B.2]for the formal definition).

Table 13: Precision for the closed IE model ReLiK cIE (i.e., the extracted triples are linked to the
KG) across KG snapshots, evaluated using the TKGU operations defined in Section[3]

TKGU Model 2019 2020 2021 2022 2023 2024 2025
X-Triples ReLiKcIE 458 314 351 372 333 340 312
E-Triples ReLiKcIE 2.6 3.2 1.9 29 33 2.7 2.1

Table 14: F1 score for the closed IE model ReLiK cIE (i.e., the extracted triples are linked to the
KG) across KG snapshots, evaluated using the TKGU operations defined in Section [3]

TKGU Model 2019 2020 2021 2022 2023 2024 2025
X-Triples ReLiKcIE 259 215 21.6 205 212 186 20.1
E-Triples ReLiKcIE 4.5 54 33 4.8 55 4.4 4.6
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Table 15: Precision (measured using the completeness score) for IE models that do not link extracted
triples to the KG, evaluated across KG snapshots on the TKGU operations defined in Section 3]

TKGU Model 2019 2020 2021 2022 2023 2024 2025
EDC+ Mistral-7b 4.7 3.2 4.9 4.1 5.2 3.7 4.9
X-Triples EDC+ Gemma-7b 3.2 2.8 3.1 2.5 32 2.5 34
ReLiK RE 9.2 8.2 8.1 9.2 8.6 9.2 9.9
EDC+ Mistral-7b 2.5 23 1.9 2.3 24 2.3 2.1
E-Triples EDC+ Gemma-7b 2.0 1.5 1.3 1.6 1.8 1.5 1.5
ReLiK RE 24 2.0 1.9 1.9 1.9 1.7 1.5
EDC+ Mistral-7b 1.9 2.3 1.1 1.8 2.1 1.6 1.8
EE-Triples EDC+ Gemma-7b 1.4 1.5 0.9 1.4 1.7 1.3 1.4
ReLiK RE 1.7 1.9 1.0 24 22 1.7 1.6

EDC+ Mistral-7b 1.6 2.1 1.8 1.8 1.9 1.5 1.8
EE-KG-Triples EDC+ Gemma-7b 2.2 2.7 1.6 1.9 24 2.0 2.0
ReLiK RE 0.3 0.7 0.8 0.5 0.6 0.6 0.7
EDC+ Mistral-7b 8.5 9.8 144 96 155 58 116
EDC+ Gemma-7b 5.0 6.9 8.3 8.9 8.6 33 6.4

D-Triples

Table 16: F1 score (measured using the completeness score) for IE models that do not link extracted
triples to the KG, evaluated across KG snapshots on the TKGU operations defined in Section 3]

TKGU Model 2019 2020 2021 2022 2023 2024 2025
EDC+ Mistral-7b 6.3 4.5 6.7 54 7.2 5.0 6.3
X-Triples EDC+ Gemma-7b 4.5 4.2 4.4 35 4.5 3.5 4.5
ReLiK RE 13,5 123 121 126 124 124 133
EDC+ Mistral-7b 4.5 4.0 33 4.0 4.3 4.2 3.8
E-Triples EDC+ Gemma-7b 3.5 2.8 2.3 2.8 32 2.8 2.7
ReLiK RE 4.3 3.7 3.4 3.4 3.4 3.0 2.8
EDC+ Mistral-7b 34 4.0 2.0 32 3.7 2.8 3.2
EE-Triples EDC+ Gemma-7b 2.6 2.7 1.6 2.6 3.1 24 2.6
ReLiK RE 3.1 35 1.8 44 4.0 3.1 29

EDC+ Mistral-7b 3.0 3.7 2.9 3.3 3.5 2.8 34
EE-KG-Triples EDC+ Gemma-7b 3.7 4.0 1.8 3.1 3.8 3.1 3.0
ReLiK RE 0.5 1.3 1.3 0.8 1.0 1.1 1.2
EDC+ Mistral-7b 7.8 9.8 10.0 8.5 139 4.7 9.9
EDC+ Gemma-7b 5.2 8.4 8.3 9.6 9.6 4.2 6.6

D-Triples

G QUALITATIVE ANALYSIS OF THE RESULTS

Table |17] presents three instances from EMERGE, together with the predictions of the evaluated
models described in Section [5.1] We observe that while most model predictions are semantically
correct, they often do not correspond to the TKGU operations that capture actual changes in the KG.
For instance, in passage I, the predicted D-Triples are reasonable but differ from the triple actually
deprecated in the KG: (CLC; has part; Elkie). This discrepancy is expected, as current state-of-
the-art information extraction models are largely unaware of the structure and content of KGs (see
Table [T). We observe similar mismatches for the X/E/EE/EE-KG-Triples operations in passage 2
and passage 3. Moreover, the LLM-driven EDC+ method exhibits a high degree of hallucination,
particularly for EE-KG-Triples, where an emerging entity must be connected to the KG. Since
EDC+ does not interact with the KG, its predicted emerging entities often fail to correspond to the
actual ones. For instance, in passage 3, the true emerging entity is Puttsburg Maulers, yet both
EDC+ Mistral-7b and EDC+ Gemma-7b instead generate EE-KG-Triples around Kirby Wilson. In
addition, many of the generated triples are not supported by the passage itself. We hypothesize
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that enabling these models to interact with KG content and structure could mitigate such errors, as
predictions would then be grounded not only in the text but also aligned with existing KG contents.
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Table 17: Table showcasing three instances (passages aligned to Ground truth TKGU operations) of
EMERGE. We also display the predictions of the models used in our experiments (see Section [5.1).
While these predictions are often correct, they frequently fail to align with the existing knowledge
and structure of the KG.

Passage 1

Ground truth
EDC+ Mistral-7b
EDC+ Gemma-7b

On February 3, 2021, Cube Entertainment confirmed Elkie’s departure
from CLC, and her contract with the company has been terminated.

D-Triples: (CLC; has part; Elkie)
D-Triples: (Elkie; member of musical group; CLC)
D-Triples: (CLC; employee; Elkie)

ReLiK RE -

ReLiK cIE -

Passage 2 “Cancilla liliformis” is a species of sea snail, a marine gastropod mollusk,
in the family Mitridae, the miters or miter snails.

Ground truth EE-Triples: (Cancilla liliformis; taxon rank; species)

EDC+ Mistral-7b

EDC+ Gemma-7b

X-Triples: (Mitridae; taxon rank; family), (Gastropoda; parent taxon;
Mollusca)

EE-KG-Triples: (Cancilla liliformis; instance of; taxon)
X/E/EE-Triples: (Cancilla liliformis; species of; Mitridae)
EE-KG-Triples: (Cancilla liliformis; instance of; marine organism),
(Cancilla liliformis; instance of; mollusk)

X/E/EE-Triples: (Cancilla liliformis; species of; Mitridae) (Cancilla
liliformis, instance of, Gastropoda)

EE-KG-Triples: (Cancilla liliformis, country of citizenship, France),
(Cancilla liliformis, place of birth, France), (Cancilla liliformis, instance
of, Human)

ReLiK RE X/E/EE/EE-KG-Triples: (Cancillopsis liliformis; subclass of; Mitridae),
(Cancilla liliformis; subclass of; Mitridae)

ReLiK cIE X/E/EE/EE-KG-Triples: (Sea snail; subclass of; gastropod), (Mitridae;
subclass of; gastropod)

Passage 3 Pittsburgh Maulers (USFL): On January 20, 2022, Wilson was named
Head Coach and General Manager of the Pittsburgh Maulers of the
United States Football League (USFL).

Ground truth EE-Triples: (Pittsburgh Maulers; league; United States Football League)

EDC+ Mistral-7b

EDC+ Gemma-7b

ReLiK RE

ReLiK cIE

EE-KG-Triples: (Pittsburgh Maulers; country; United States of
America), (Pittsburgh Maulers; sport; American football)
X/E/EE-Triples: (Pittsburgh Maulers, head coach, Kirby Wilson)
EE-KG-Triples: (Kirby Wilson; educated at; University of Pittsburgh),
(Kirby Wilson; place of birth, Pittsburgh), (Kirby Wilson; country of
citizenship; United States), (Kirby Wilson; instance of; human)
X/E/EE-Triples: (Pittsburgh Maulers; head coach; Kirby Wilson),
(Pittsburgh Maulers; country; United States)

EE-KG-Triples: (Kirby Wilson; educated at; University of North Texas),
(Kirby Wilson; place of birth; Dallas), (Kirby Wilson; instance of;
human)

X/E/EE/EE-KG-Triples: (Kirby Wilson; member of sports team;
Pittsburgh Maulers), (Kirby Wilson; member of; Pittsburgh Maulers),
(Kirby Wilson; member of sports team; Pittsburgh Maulers)

(Kirby Wilson; member of sports team; Pittsburgh Maulers), (Wilson;
member of sports team; Pittsburgh Maulers), (Head Coach; member of
sports team; Pittsburgh Maulers), (Pittsburgh Maulers; organizer; USFL)
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H EDC+ EXECUTION

H.1 EDC+ EXECUTION TIME

To generate predictions on the subsampled test set (see above), we run EDC+ with the
Mistral-7B-Instruct-v0.2 and gemma—-7b LLMs on two H100 GPUs for 24 hours.

H.2 EDC+ PROMPTS

The following prompt is designed to identify all the operations to update the KG defined in Section[3]
Concretely, it allows to identify triples explicitly mentioned in text under Triples in text category.
This includes X-Triples, E-Triples, and EE-Triples. It also allows to classify Triples in text in those
that should be added to the KG (i.e., with the ADD tag), and those that should be deprecated (i.e.,
with the DEPRECATE tag). This way, the prompt also facilitates the identification of KG triples
that may need to be deprecated (i.e., D-Triples). Finally, the prompt allows to detect EE-KG-Triples
under Triples not in text category, by asking LLM to identify triples with only one single entity (head
or tail) mentioned in text, and the other entity existing in the KG.

Your task is to transform the given text into a semantic graph
in the form of a list of triples. Two sets of triples are

to be extracted: ‘Triples in text’, which contain triples
relating entities mentioned in text in the form of [Entityl,
Relationship, Entity2, Action], where action indicates if the
triple has to be added (action ‘ADD’) or deprecated (action
‘DEPRECATE’) from the graph based on the knowledge in text.

The second set of triples is called ‘Triples not in text’, and
consists of triples with one entity (head or tail) mentioned in
text and the other entity not mentioned in text but potentially
existing in the graph.

In your answer, please strictly only include the triples and do
not include any explanation or apologies.

Here are some examples:

<FEW_SHOT_EXAMPLES>
Now please extract triplets from the following text.

Text: <INPUT_TEXT>

I RELIK EXPERIMENTAL CONFIGURATION

To generate predictions, we run ReLiK on each KG snapshot independently. In each run,
ReLiK is provided with the dictionary of entities and relations specific to that snapshot.
For relation encoding, we use the pre-trained ReLiK model available on Hugging Face:
relik-ie/encoder—e5-small-v2-wikipedia—- relations. These relation encod-
ings are used by both ReLiK RE and ReLiK cIE. For each snapshot, we also encode the cor-
responding KG entities using the model relik-ie/encoder-e5-small-v2-wikipedia-
matryoshka.

For prediction, we use the pre-trained relik-ie/relik-relation-extraction-large
model for ReLiK RE, and the pre-trained relik-ie/relik-cie—large model for ReLiK cIE.

Running ReLiK on the subsampled EMERGE test set takes about 5 hours on a single A100 GPU.

J  WIKIDATA QUALIFIERS TO DETECT DEPRECATION OF TRIPLES

The following is the list of Wikidata qualifiers we use to detect the deprecation of triples when
creating EMERGE:
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. P582: end time.

. P1326: latest date.

. P576: dissolved, abolished or demolished date.
. P570: date of death.

. P730: service retirement.

. P2032: work period (end).

. P2669: discontinued date.

. P3999: date of official closure.

. P7125: date of the latest one.

O 0 N N Lt AW N =

K LIMITATIONS AND FUTURE WORK

In this work, we focus specifically on changes to the KG that reflect the introduction or modification
of factual knowledge. We do not account for structural or curation-related changes that a KG may
undergo, such as schema adjustments, property reorganization, or entity merging. These types of
changes are often independent of new information appearing in external sources like Wikipedia and
are typically driven by internal quality control or ontology refinement processes. While important
for maintaining the integrity and usability of the KG, such changes fall outside the scope of our
current study.

In this work, we focus on leveraging external textual sources to enhance KGs. However, textual data
represents only one type of external knowledge. Other modalities—such as video (e.g., podcasts),
images, and audio—also contain rich, complementary information that can contribute to KG enrich-
ment. As such, a promising direction for future research is to explore the integration of knowledge
from these multimodal sources to address this limitation.

During the generation of EMERGE, we use the same temporal delta window for both, the extraction
of changes in Wikidata and the emerging passages from Wikipedia. However, certain pieces of
knowledge do not always appear within the same time frame in the two sources. For example,
events such as Brexit or the election of a president are often documented in Wikipedia months or
even years before they are incorporated into the Wikidata knowledge graph. In future work, we plan
to investigate this temporal discrepancy between the two knowledge sources more thoroughly.

Furthermore, this study restricts attention to triples in which both the subject and object are entities
present in the entity catalog. Nonetheless, numerous valuable relations involve literals as objects,
such as dates of birth, lengths, sizes, or employee counts (Mesquita et al.l 2019), which are not
considered in the current work.

Finally, a limitation of EMERGE is that it covers only the subset of Wikidata changes that can be
reliably grounded in Wikipedia text. This stems from the fact that Wikidata is crowdsourced and not
fully determined by Wikipedia content, meaning that many Wikidata updates have no corresponding
textual evidence. In addition, EMERGE is restricted to Wikipedia paragraphs in which annotated
entity mentions can be reliably identified through hyperlinks, as described in Sectiond.1] As future
work, an alternative dataset could be constructed using text-to-data generation methods (Hu et al.,
2025; Edge et al.,2024; |Hofer et al.,2024) to create a synthetic KG that mirrors all knowledge found
in text, thereby achieving complete coverage of updates. While such an approach would ensure full
alignment between text and KG, it would also introduce challenges such as potential errors in entity
disambiguation and the substantial computational cost of generating an entire KG from text.

Another direction for future work is to incorporate explicit start and end dates for TKGU operations
that imply changes in the KG, such as triple addition and deprecation. In the current version of
EMERGE, deprecated facts are identified through the delta interval, as our work primarily focuses
on updating the KG at a specific point in time rather than modeling full temporal validity. Adding
explicit temporal qualifiers would more precisely capture when a fact begins and ceases to hold,
aligning EMERGE more closely with the way temporal information is handled in Wikidata. This
extension would also enable richer modeling of fact evolution and support downstream methods that
rely on explicit temporal boundaries.

42



A further promising future direction is to develop information extraction methods that rely not only
on textual evidence to extract triples, but also integrate this content with existing knowledge and
patterns in the KG. Such an approach could be particularly beneficial for incorporating emerging
entities in EE-KG-Triples, even when they are not supported by textual passages, into the broader
KG.

L  DATASET DOCUMENTATION: DATASHEET

We describe our dataset following the datasheets for datasets guidelines introduced in (Gebru et al.,
2021)), detailing its motivation, composition, collection process, and recommended uses. This doc-
umentation supports transparency, reproducibility, and responsible dataset use in machine learning
research.

L.1 MOTIVATION

For what purpose was the dataset created? The EMERGE dataset was created to address the
lack of integration between changes in textual knowledge and their effect on knowledge graph con-
tent. The proposed benchmark enables evaluation of KG updates driven by newly emerging knowl-
edge in textual sources over temporally increasing KG deltas. Moreover, because the dataset is
generated via an automatic annotation pipeline, it can be continuously extended to include more
recent knowledge, thereby allowing evaluation of model robustness to ever-evolving and novel in-
formation and KG structures. This contrasts with existing benchmarks (see Table]in the Appendix
@), which are static in nature and unable to emulate the evolution of knowledge in textual and KG
sources (columns Evolution-KG and Evolution-Text in Table E]) Furthermore, existing benchmarks
do not cover all the necessary text-driven knowledge graph update (TKGU) operations necessary
to keep them updated (columns X-Triples, E-Triples, EE-Triples, EE-KG-Triples and D-Triples in
Table[d).

We expect EMERGE will encourage the research on methods that are not limited to extracting
knowledge from textual sources, but also capable of effectively maintaining KGs by integrating that
knowledge into existing KGs. This contrasts with current state-of-the-art IE methods (see Section
and Table[I)) limited to the extraction of knowledge purely from text without the ability to effectively
integrate that knowledge into existing knowledge in KGs.

Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)? The dataset was developed by academic researchers
through an international, cross-institutional collaboration. The contributing researchers bring exten-
sive expertise in information extraction methods and dataset construction.

Who funded the creation of the dataset? The dataset was created with funding from, among
others, the highly prestigious European Union Marie Curie Actions Postdoctoral Grant.

L.2 COMPOSITION

What do the instances that comprise the dataset represent (e.g., documents, photos, peo-
ple, countries)? The instances that comprise the dataset represent general-domain passages from
Wikipedia, KG triples representing the knowledge contained in those passages, and TKGU opera-
tions (see Section [3)) with respect to the respective general-domain Wikidata KG snapshot.

How many instances are there in total (of each type, if appropriate)? Our EMERGE contains
in total 233K instances, with a total of 1.4M TKGU operations: 727K X-Triples, 240K E-Triples,
161K EE-Triples, 313K EE-KG-Triples, and 8K D-Triples.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? We include a set with all possible instances that can be used for
training. For testing (on which we report our results), we subsampled 1,000 instances per delta per
snapshot.
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What data does each instance consist of? Each of the instances in the dataset consists of a
textual passage with an annotated set of entity mentions linked to a particular KG snapshot. In
addition, each instance includes a list of triples together with the corresponding TKGU operations
that update the KG snapshot, as described in Section [3] Each triple is further annotated with an
LLM-based assessment indicating whether the knowledge it represents can be inferred from the
textual passage. See Appendix [C.I|for details on the prompt and examples. The dataset spans seven
yearly KG snapshots covering 2019-2025. For each snapshot, TKGU updates are annotated over five
progressively larger weekly KG deltas, thereby capturing different levels of knowledge staleness in
the KG.

Is there a label or target associated with each instance? Yes, the target consists of all the triples
with corresponding TKGU operations associated with the textual passage of an instance. These
operations specify the updates to be applied to a KG snapshot to ensure consistency with the textual
passage.

Is any information missing from individual instances? All the instances are consistently anno-
tated. However, the triples involved in TKGU operations associated with a passage are restricted
to the entities of mentions explicitly annotated with hyperlinks in Wikipedia (see Section for
further details on annotation process). As such, there might be TKGU operations not covered by our
dataset. This is also discussed in the limitations sections (see Section [K).

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? Yes, all the detected TKGU operations during the annotation process are made
explicit. We further mark each of these operations as supported or no by the content of textual
passage using LLM automatic annotation process described in Section

Are there recommended data splits (e.g., training, development/validation, testing)? Yes. We
recommend training and validating models on earlier snapshots (e.g., from 2019 and 2020) and
testing on later snapshots (i.e., from 2021-2025). This setup prevents knowledge leakage, since
earlier KG snapshots do not contain information from later ones.

Are there any errors, sources of noise, or redundancies in the dataset? We applied several
quality-control measures, including removing duplicate or highly similar passages and filtering out
passages with a low proportion of English words, among others described in Section4.2] In addition,
we manually annotated and verified a random subset of the dataset (see Section @ Nevertheless,
we do not consider EMERGE as entirely error-free, as it may contain factual inaccuracies resulting
from erroneous edits in Wikipedia or Wikidata. Finally, the annotation agreement scores between the
LLMs and human annotators, as well as between humans, are very strong (see Section Section@]}
but not perfect, reflecting the complexity and intricacy of error detection in the dataset.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Yes, the introduced EMERGE dataset is self-contained and
consists of:

1. Annotated instances containing passages with associated KG triples and TKGU operations.

2. Wikidata KG snapshots to which the annotated TKGU updates are applied.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor—patient confidentiality, data that includes the content of
individuals’ non-public communications)? No, Wikidata and Wikipedia are public resources.

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No, no such instances were observed in EMERGE.

Does the dataset identify any subpopulations (e.g., by age, gender)? While Wikipedia and
Wikidata contain entities from various subpopulations, when building EMERGE, we do not focus
on identifying and annotating any one in particular.
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Is it possible to identify individuals (that is, one or more natural persons), either directly or
indirectly (that is, in combination with other data) from the dataset? It is possible to identify
individuals publicly described in Wikipedia pages or represented in Wikidata entities. However,
we do not save other personal information, such as details of the editors involved in Wikipedia and
Wikidata updates.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of gov-
ernment identification, such as social security numbers; criminal history)? Since Wikipedia
and Wikidata are public resources intended to be factual, this concern can be disregarded for the
majority of instances in EMERGE.

L.3 COLLECTION PROCESS

How was the data associated with each instance acquired? Was the data directly observ-
able (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indi-
rectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for
age or language)? The EMERGE dataset was annotated using publicly available entity mentions
in Wikipedia pages, as described in Section [d.I] These hyperlinked mentions are visible to any
Wikipedia visitor as links to other pages. To annotate the TKGU operations, we relied on actual
updates in Wikidata. Generative models (i.e., LLMs) were used only to verify whether the detected
TKGU operations are reflected in the textual content of the passages (see Sectiond.2)).

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? The EMERGE dataset
was generated from the Wikipedia and Wikidata dumps of March 2025. A computing cluster with 64
CPUs and 128 GB of RAM was used to process and generate the dataset. Additionally, a cluster with
4 H100 GPUs was used to run Meta—-Llama-3.1-405B for verifying that the TKGU operations
are effectively represented in the textual passages (see Section §.2).

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? The test set used in our experiments was
randomly sampled from the larger dataset, with a maximum of 1,000 instances per snapshot per
KG delta. The sampling procedure, described in detail in Section Section |5} includes retention of
a minimum of 400 instances per delta for operations that require actual updates to the KG (i.e., D-
Triples, E-Triples, EE-Triples, and EE-KG-Triples). This ensures that the models are evaluated on
a sufficiently large number of such instances. This is particularly important for D-Triples TKGU
operations, which are very scarce in the original dataset; without this retention, a purely random
subsample would contain only a few instances, potentially leading to high variability in the results.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)
and how were they compensated (e.g., how much were crowdworkers paid)? The dataset was
generated automatically from real-world updates to Wikidata and changes in Wikipedia articles.
LLMs were used to assess each TKGU operation with respect to the knowledge contained in the
textual passages. The only human involvement was the annotation of a subsample of the dataset to
measure agreement with the LLM annotations. For this purpose, two researchers acted as annotators
and were credited as co-authors of the paper.

Over what timeframe was the data collected? The data were collected from seven yearly snap-
shots, spanning January 1, 2019, to January 1, 2025. For each snapshot, KG deltas were extracted
for up to five weeks, ending on February 5 of the corresponding year.

Were any ethical review processes conducted (e.g., by an institutional review board)? No, the
public nature of the data, consisting of Wikipedia pages and Wikidata KG updates, meant that no
formal ethical review was required.
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Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? The data were obtained from publicly available Wikipedia and
Wikidata repository dumps (https://dumps.wikimedia.org/).

Were the individuals in question notified about the data collection? No individuals were di-
rectly involved in the data collection.

Did the individuals in question consent to the collection and use of their data? No individuals
were directly involved in the data collection.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke
their consent in the future or for certain uses? No individuals were directly involved in the data
collection.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? No formal data protection impact analysis was
conducted, as the dataset is derived entirely from publicly available Wikipedia pages and Wikidata
KG updates and does not include private or sensitive information about individuals.

L.4 PREPROCESSING/CLEANING/LABELING

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, process-
ing of missing values)?  Yes. The original raw data from the Wikipedia and Wikidata dumps
underwent several preprocessing steps:

1. Preprocessed Wikipedia wikitext, retaining only lists and textual paragraphs as dataset in-
puts, while excluding tables, figures, and other multimodal elements.

2. Extracted only Wikipedia text containing explicitly annotated entity mentions by editors,
which could be mapped to Wikidata updates within a given time window in the KG delta.

3. Constrained Wikipedia passages to lengths between 30 and 1,000 tokens.
4. Filtered out passages with fewer than 30% English words, using the Python n1tk package.

5. Applied stability constraints by discarding changes in Wikidata and Wikipedia that were
quickly rolled back (often indicating incorrect knowledge). Specifically, we retained Wiki-
data KG updates persisting at least 7 days and Wikipedia edits not followed by another
change within 30 minutes.

6. Ensured diversity by requiring passages aligned to similar updates in Wikipedia to differ
in content, measured by edit distance (minimum 0.15 for texts under 2,500 characters and
0.25 for texts 2,500 characters or longer).

7. Validated the alignment of TKGU operations to textual passages with LLMs, explicitly
marking operations that could be grounded in the passage content (see Section for
further details).

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? Yes. We preserved all input and output data from each preprocessing
step, beginning with the raw Wikipedia and Wikidata dumps used to construct EMERGE.

Is the software that was used to preprocess/clean/label the data available? Yes, all the software
that was used to preprocess/clean/label will be publicly released upon acceptance.

L.5 USES

Has the dataset been used for any tasks already? Yes, in Section [5|we experiment with various
current state-of-the-art information extraction models.
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Is there a repository that links to any or all papers or systems that use the dataset? Yes,
there is a repository (currently private due to anonymity policy), which will be made public upon
acceptance.

What (other) tasks could the dataset be used for? Beyond the KG updating task presented in
this paper, EMERGE could be directly applied to at least the following tasks:

1. Question answering over novel and emerging knowledge derived from the TKGU opera-
tions introduced here.

2. General knowledge graph completion, where certain changes may trigger additional up-
dates that are not limited to entities mentioned in textual passages but instead depend on
the evolving KG structure. To support this, we will release all KG changes, not only those
aligned with textual passages, which form the core of EMERGE.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

Are there tasks for which the dataset should not be used? No.

L.6 DISTRIBUTION

Will the dataset be distributed to third parties outside of the entity (e.g., company, institu-
tion, organization) on behalf of which the dataset was created? Yes, the dataset will be made
publicly available in Hugging Face.

How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The
EMERGE dataset will be distributed via Hugging Face (https://huggingface.co/), and
the code for generating the dataset will be released on GitHub (https://github.com/).

When will the dataset be distributed? The EMERGE dataset will be released publicly upon
acceptance of the paper.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? To support openness and collaboration in research,
we release the datasets under the Creative Commons Attribution 4.0 International (CC BY 4.0)
license. The full terms of this license can be found on the Creative Commons website: https:
//creativecommons.orqg/licenses/by/4.0/.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No, the dataset is derived from publicly available Wikipedia and Wikidata knowledge
repositories and is not subject to any third-party IP restrictions.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No, the dataset and its individual instances are based on publicly available Wikipedia
and Wikidata content and are not subject to export controls or other regulatory restrictions.

L.7 MAINTENANCE

Who will be supporting/hosting/maintaining the dataset? The dataset will be supported,
hosted, and maintained by the authors of this paper.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
dataset is curated and managed by the authors of this paper. Inquiries regarding the dataset, in-
cluding access, usage, and reporting issues, can be directed to the corresponding authors via email.
Additionally, users can submit questions or report issues through the GitHub repository hosting the
dataset generation code.
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Is there an erratum? No erratum has been issued for the EMERGE dataset.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? Yes, EMERGE will be regularly updated with emerging knowledge through yearly snap-
shots. Announcements regarding new versions will be communicated via the EMERGE GitHub
repository. Additionally, as described in Section users can generate customized versions of
EMERGE by adjusting relevant hyperparameters, as well as personalized snapshots of different
granularity (e.g., daily, weekly, monthly).

If the dataset relates to people, are there applicable limits on the retention of the data asso-
ciated with the instances (e.g., were the individuals in question told that their data would be
retained for a fixed period of time and then deleted)? The EMERGE dataset does not contain
private or personally identifiable information about individuals. It is derived entirely from publicly
available Wikipedia pages and Wikidata entities, and no retention limits for individual consent were
applicable.

Will older versions of the dataset continue to be supported/hosted/maintained? Yes, all pre-
vious versions of EMERGE will continue to be supported, hosted, and maintained. Each version
will be assigned a unique version number, and we will provide persistent links to access every ver-
sion through Hugging Face storage server. This will ensure reproducibility of experiments and will
enable users to reference or use specific dataset versions as needed.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes. As described in Sectionf.4] EMERGE users will have access to all necessary
scripts to re-generate the dataset with customized settings. This includes adjusting hyperparameters
such as the maximum passage length, generating the dataset for newer snapshots, and specifying the
number and granularity of KG deltas.

M ACCESSIBILITY

The EMERGE will be released publicly via a Hugging Face repository. The accompanying code for
extending it with emerging Wikipedia and Wikidata knowledge will be made available in a public
GitHub repository. In addition, the test set used in our experiments is included as supplementary
material with this submission.
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