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Abstract

Automated evaluation of Natural Language001
Generation (NLG) tasks is hard due to the possi-002
bility of multiple correct outputs. The common003
practice of evaluating NLG systems involves004
computing the similarity between a collection005
of automatically generated documents and their006
corresponding (human-written) golden refer-007
ence documents. Unfortunately, existing doc-008
ument similarity metrics are black boxes and,009
thus, hard to interpret and explain, making ro-010
bust evaluation of NLG tasks even more chal-011
lenging. To address this issue, this paper intro-012
duces a new evaluation metric called ExSiM013
that provides a vector of scores instead of a sin-014
gle similarity score, where each component of015
the vector describes a particular property of the016
similarity metric, thus providing a natural way017
of explanation. Our experimental results with018
Wikipedia article triplets and a custom-created019
narrative dataset demonstrate that the proposed020
ExSiM vector can perform comparably to tra-021
ditional metrics like BERTScore and ROUGE022
for undirected similarity assessment while pro-023
viding useful explanations. In addition, ExSiM024
yields a higher human-machine agreement for025
directed similarity assessment.026

1 Introduction027

With the rise of Large Language Models (LLMs),028

the application of Natural Language Generation029

(NLG) systems has gained more popularity than030

ever (Novikova et al., 2017; Wang et al., 2018). As031

NLG systems are adopted more widely, automated032

evaluation of these systems at scale becomes an033

important issue. The most common practice for034

conducting such evaluations involves computing035

the similarity between a collection of automati-036

cally generated documents and their correspond-037

ing (human-written) golden reference documents.038

The traditional way of computing the similarity039

between a pair of documents has been to com-040

pare the overall lexical (n-gram-based)/semantic041

(embeddings-based) overlap between those docu- 042

ments. For example, ROUGE (Lin, 2004a) con- 043

siders direct lexical overlap, while metrics like 044

S+WMS (Clark et al., 2019), MoverScore (Zhao 045

et al., 2019), and BERTScore (Zhang et al., 2020a), 046

are based on semantic similarity between two doc- 047

uments. Unfortunately, these metrics have been 048

criticized for many limitations, as discussed below. 049

1. Difficulty in Storyline Matching: In classi- 050

cal document similarity metrics like TF-IDF- 051

Cosine-Similarity (Ramos, 2003), ROUGE (Lin, 052

2004a), etc., intra-document order between sen- 053

tences is lost as these metrics compute simi- 054

larity solely based on word frequencies or n- 055

gram overlaps. This makes distinguishing two 056

similar storylines with different orders for the 057

same set of events difficult. Likewise, for recent 058

embedding-based semantic metrics, the practice 059

of averaging lower-level (e.g., sentence) embed- 060

dings to construct higher-level (e.g., document) 061

ones (Le and Mikolov, 2014; Sultan et al., 2015; 062

Saggau et al., 2023) loses order sensitivity. 063

2. Difficulty handling Information Split and Fu- 064

sion: Consider a hypothetical task of using an 065

NLG model (e.g., ChatGPT) to rearrange a col- 066

lection of jumbled sentences into a coherent 067

story. In this case, storyline matching becomes 068

challenging as the NLG model would not simply 069

copy and reorder the input sentences but rather 070

generate novel sentences that may sometimes 071

fuse two or more original sentences into one or 072

split one original sentence into two or more. Ex- 073

isting document similarity metrics cannot prop- 074

erly capture these information split/fusion sce- 075

narios while matching the ordering of informa- 076

tion simultaneously. 077

3. Lack of Explainability: Recently, transformer- 078

based (especially LLM-based) architecture has 079

gained much popularity for computing docu- 080

ment similarity (Saggau et al., 2023; Fu et al., 081
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2023). Unfortunately, these black boxes provide082

a single similarity score and lack explainability,083

as all the reasoning behind the output score is084

hidden inside a pretrained neural network.085

4. Default Commutative Property: Current sim-086

ilarity metrics treat the task as inherently sym-087

metric/commutative, but this is not always true.088

Although many use cases are commutative, e.g.089

document clustering and recommender systems,090

where one does not care about directional simi-091

larity, i.e., no documents have superiority over092

one another. But there are also use cases where093

the task is non-commutative, like, most notably,094

NLG evaluation, where there is a ground truth095

reference document that a generated document096

is being compared against. In this case, a direc-097

tional similarity between the reference and the098

generated is desired, and a commutative prop-099

erty should not be enforced.100

To address the abovementioned limitations, we101

introduce ExSiM (Explainable Similarity Metric),102

which can quantify how well a reference narra-103

tive/storyline is preserved within a generated narra-104

tive while accounting for information splits/fusions.105

ExSiM also provides a vector of scores instead of106

a single similarity score, where each vector compo-107

nent describes a particular aspect of similarity, thus108

providing a natural explanation. Finally, ExSiM109

allows users to either preserve or discard the com-110

mutative property as they see fit based on their111

target application.112

For evaluation, we performed two sets of ex-113

periments: 1) Undirected (commutative) similar-114

ity assessment experiments with sets of article115

triplets from Wikipedia, and 2) Directed (non-116

commutative) similarity assessment experiments117

with a handcrafted narrative pair dataset. These118

tests show that the proposed ExSiM metric can119

achieve comparable performance to well-known120

measures such as BERTScore and ROUGE in the121

case of undirected similarity assessment, i.e., the122

case when we look at how similar things are with-123

out worrying about which direction the similarity124

goes. Additionally, the ExSiM vector offers helpful125

explanations on how two documents are similar in-126

stead of providing a single numeric score. Finally127

and most importantly, the ExSiM metric yields a128

higher correlation with human judgments when as-129

sessing the similarity between two documents in a130

specific direction (non-commutative), e.g., match-131

ing machine-generated text against reference text.132

2 Related Work 133

NLG evaluation metrics have been extensively stud- 134

ied in the literature over the past two decades. 135

ROUGE (Lin, 2004b) is perhaps the most popular 136

metric used today for the evaluation of automated 137

NLG systems, mainly because it is a simple and au- 138

tomatic process. As of today, around 192 variants 139

of ROUGE have been proposed (Graham, 2015) in- 140

cluding ROUGE with word embedding (Ng and 141

Abrecht, 2015) and synonym (Ganesan, 2018), 142

graph-based lexical measurement (ShafieiBavani 143

et al., 2018), Vanilla ROUGE (Yang et al., 2018) 144

and highlight-based ROUGE (Hardy et al., 2019). 145

However, ROUGE scores are not self-explanatory 146

and cannot distinguish between similar narratives 147

with different storylines. 148

Researchers also attempted to develop meth- 149

ods for evaluating reference-free model-generated 150

text (Louis and Nenkova, 2013; Xenouleas et al., 151

2019). Distance measures between the machine- 152

generated document and reference document 153

based on word embeddings have also been pro- 154

posed (Zhao et al., 2019; Sun and Nenkova, 2019). 155

Model-based evaluation for text generation has also 156

been a recent trend (Sellam et al., 2020; Zhang 157

et al., 2020a; Yuan et al., 2021). There are also 158

works done on taking lower-level similarity met- 159

rics and constructing higher-level ones (Wei et al., 160

2022; Gahman and Elangovan, 2023; Gómez and 161

Vázquez, 2022). Yet, these metrics possess the 162

same weaknesses as ROUGE in terms of lacking 163

explainability and their inability to distinguish sto- 164

rylines. 165

Recently, researchers have spent a lot of effort 166

evaluating different aspects of text generation tech- 167

niques that rely on measuring textual similarity in 168

some capacity. For example, Fabbri et al. (2021); 169

Zhong et al. (2022) discussed how to perform meta- 170

evaluation of summarization metrics along four 171

explainable dimensions: coherence, consistency, 172

fluency, and relevance. However, these explainable 173

dimensions were evaluated manually by humans 174

without any automation, which ExSiM offers. 175

As an interesting development, recent research 176

has witnessed the emergence of Large Language 177

Models (LLMs) like ChatGPT (Xie et al., 2023), 178

as a versatile tool for evaluating various NLP tasks 179

as well. For instance, Gao et al. (2023); Fu et al. 180

(2023); Laban et al. (2023); Wang et al. (2023) in- 181

vestigated the strengths and limitations of ChatGPT 182

as an evaluator of textual similarity and summa- 183
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rization quality. Moreover, the GPT-4 model, as184

an evaluator of text generation and similarity tasks,185

shows better alignment with human judgement (Liu186

et al., 2023). Yet, LLMs are deep neural networks187

that are difficult to interpret.188

3 Proposed Metric189

We propose ExSiM as a document-level similar-190

ity metric, which leverages rigorously optimized191

sentence-level similarity metrics as fundamental192

blocks for building the document-level metric. As193

mentioned in Section 1, ExSiM returns a vector194

of interpretable numbers that capture different as-195

pects of document similarity instead of providing a196

single score, as mentioned below.197

• Global Storyline Similarity198

• Localized Storyline Similarities199

• Frequency of Splits and Fusions200

• Coverage of Information201

• Information Preservation202

• Hallucination203

We follow four sequential steps to compute these204

vector components as described below and visually205

demonstrated in Figure 1.206

1. Information Segmentation207

2. Segment Matching208

3. Storyline Recreation209

4. Scoring210

Figure 1: Framework for computing the ExSiM metric

3.1 Step 1: Information Segmentation211

For model information split and fusion, we assume212

that clauses are units of information and all sen-213

tences are composed of at most two clauses. Under214

this assumption, we propose to measure a direc- 215

tional similarity score where we attempt to match 216

each sentence from the generated document to 217

one/more sentences in the reference, which needs 218

to consider three cases as follows: 219

• Matching Single Sentences : The trivial case is 220

a direct matching between two single sentences. 221

• Matching Fusion: To capture fusion, we con- 222

catenate two adjacent sentences (let us call them 223

segments) in the reference document and match 224

them to a single sentence in the generated one. 225

Formally, we construct from the reference doc- 226

ument a set of concatenated adjacent sentences, 227

cr,i = sr,i + sr,i+1 such that 0 ≤ i < nr − 1. 228

For an example, refer to Figure 2 and find how 229

segment tr,9 matched with segment tg,6. 230

• Matching Split: To capture split, we match a 231

singular sentence in the reference document to 232

two in the generated document, which recreates 233

a split, we construct in-kind cg,i such that 0 ≤ 234

i < ng − 1. 235

Since, from now on, sentences and concatenated 236

adjacent sentences are treated in a similar man- 237

ner, we will refer to them collectively as segments. 238

We have a collection of 2nr − 1 segments from 239

dr = (sr,0, sr,1, . . . , sr,nr−1) and 2ng − 1 from dg 240

likewise. We will use the following notation to 241

represent the reference segments according to the 242

following given 0 ≤ j < 2nr − 1 (and likewise for 243

generated segments): 244

tr,j =

{
cr,j/2, if j is even
sr,(j−1)/2, if j is odd

}
(1) 245

3.2 Step 2: Segment Matching 246

Because of our simplified assumption, we may now 247

construct a quite simple methodology to match 248

segments. Consider a reference document dr of 249

length nr and a generated document dg of length 250

ng. A hypothetical segment-matching scenario can 251

be seen in Figure 2. 252

We now want to derive which matches are best. 253

This is where our lower(sentence)-level similarity 254

metric (SM) comes into play. We compute the sim- 255

ilarity on each possible segment pair between the 256

documents, generating (2nr − 1)(2ng − 1) similar- 257

ity scores. To institute our transformation, we now 258

choose the best matches using a greedy algorithm 259

similar to the one used by Islam and Inkpen (2008). 260

More specifically, we consider three cases: 261
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Figure 2: A hypothetical example of reference and gen-
erated document with their segments matched

• Case 1: Sentence Vs. Sentence: When the cur-262

rent best-matched segments (according to our263

greedy criteria) are both single sentences, we264

must disallow any concatenations containing265

each matched sentence from further consider-266

ation to avoid duplication. To be exact, sup-267

posing we matched sg,x with sr,y. We would268

get rid of all the matches of the form (sg,x, tr,j)269

for all j and also the concatenations of the form270

(cg,x−1, tr,j) and (cg,x, tr,j) for all j. This also271

goes for eliminating the matches containing sr,y272

and its concatenations.273

• Case 2: Sentence Vs. Concatenation: We,274

again, disallow matches that involve either of275

the sentences or the concatenation to avoid dupli-276

cation. Similarly, we disallow the concatenations277

that contain the sentence. But what about for the278

matched concatenation? In this case, it is not279

just sufficient to disallow the two sentences that280

make up the matched concatenation. But since281

those sentences are disallowed, so too must we282

disallow the other concatenations that contain283

them. To be exact, supposing we matched cg,x284

with sr,y. The full set of matches we would get285

rid of for cg,x would be (cg,x−1, tr,j), (sg,x, tr,j),286

(cg,x, tr,j), (sg,x+1, tr,j), and (cg,x+1, tr,j) for all287

j. As for the matched sentence, the duplicative288

matches would be disallowed like normal.289

• Case 3: Concatenation Vs. Concatenation: In290

this case, we disallow the duplicative matches for291

both concatenations as described above.292

The pseudo-code of our greedy approach is pro- 293

vided as Algorithm 1. It’s noteworthy that we can 294

record four values for our final similarity vector as 295

part of this algorithm: the frequency of sentence 296

splits, the frequency of fusions, and the coverage of 297

the reference and generated documents. This last 298

metric is computed by finding the percentages of 299

how much each document matched the other. 300

Algorithm 1 Segment Matching
Require: Documents dr, dg , and similarity metric SM

sr[], sg[]← sentences(dr), sentences(dg)
cr[], cg[]← adjacentConcats(dr), adjacentConcats(dg)
tr[]← [sr[0], cr[0], sr[1], cr[1], . . . ] ▷ Segments
tg[]← [sg[0], cg[0], sg[1], cg[1], . . . ]

simScores[][] ▷ Find Similarity Scores
for tr[i] in tr[] do

for tg[j] in tg[] do
simScores[i][j] = SM(tr[i], tg[j])

end for
end for

matches[] ▷ Find Segment Matches
while max(simScores[][]) > 0 do

i, j ← maxIndex(simScores[][])
matches[] += (tr[i], tg[j])
simScores[i− 1, i, i+ 1][]← 0 ▷ Zero out columns
if i is odd then ▷ If a concatenation

simScores[i− 2, i+ 2][]← 0
end if
simScores[][j − 1, j, j + 1]← 0 ▷ Zero out rows
if j is odd then ▷ If a concatenation

simScores[][j − 2, j + 2]← 0
end if

end while

3.3 Step 3: Storyline Recreation 301

At this stage, we have found m segment matches, 302

i.e., T = ((tr,0, tg,0), (tr,1, tg,1), . . . , (tr,m, pg,m)). 303

Let us further assume that the original order of dg 304

orders T , and therefore, tg,0 is the earliest matched 305

segment in dg and tg,m is the last. 306

Let us now begin with how our metric scores 307

the recreation of a storyline as a human reader 308

would. When we, as a reader, are asked to com- 309

pare documents, we, of course, read the reference 310

document first. This establishes the context against 311

which we should compare the generated document. 312

To simulate this behavior, ExSiM scans through 313

the new document dg while periodically referring 314

back to the ground truth dr. This makes our metric 315

directional/non-commutative. 316

For storyline recreation, we can neither use only 317

matched segments nor merely use the sentences as 318

given. To this end, let us refer to dg’s used segments 319

as all the segments in dg that were matched along- 320

side the unmatched sentences in dg. And when 321

4



ordered, these used segments comprise the entire322

dg document. If we refer to these k used segments323

as u0, u1, . . . , uk−1 (see Figure 2), we can say:324

dg = u0 + u1 + · · ·+ uk−1 (2)325

Given the used segments in dg, one can see how326

well the generated narrative transforms to the ref-327

erence one by iterating on a segment-by-segment328

basis. But narrative is not truly a disordered set329

of independent thoughts, but the sequenced set of330

connections formed between them. Thus, let us331

use connections to mean the semantic meaning that332

relates one segment in a given document to the333

next segment in that same document. A diagram of334

these connections can be found in Figure 3.335

Figure 3: Labeling of connections for document dg

Given all this, we estimate the ease of narrative336

transformation between dr and dg in a computa-337

tionally efficient manner by determining for each338

narrative connection between used segments in dg,339

how well they are supported by the reference dr.340

As discussed, some connections occur between341

every two adjacent used segments in dg. But to342

better mimic how human readers compare texts, we343

also add cap connections between the beginning of344

the generated document and the first segment, and345

likewise between the last segment and the end of346

the document. Thus, if we have k used segments in347

dg, then we have k + 1 connections (see Figure 3).348

Now, these connections must be scored in their349

correspondence to dr, the ground truth. We will350

refer to the score values for each connection as351

{v0, v1, . . . , vk}.352

Ease of Transformation Score: For a given con-353

nection in dg, we score it by how easily it can be354

transformed back into dr. The prototypical case355

(without any exceptions) is as follows. Suppose356

we are finding the score v2 of the connection be-357

tween u1 and u2 as seen in Figure 2. u1 = tg,3 and358

u2 = tg,6, and furthermore, tg,3 is matched with359

tr,3 while tg,6 is matched with tr,9. This means360

that our connection, when transformed back to 361

dr, best corresponds with the portion of dr that 362

starts at sr,1 and goes all the way to sr,5. Thus, 363

we use our similarity metric (SM) to score the 364

similarity between u1+" "+u2 (our generated con- 365

nection) and the reference portion in dr such that 366

v2 = SM(u1+" "+u2, tr,3+" "+sr,3+" "+tr,9). 367

Yet, as mentioned, a few overlapping exceptions 368

for scoring connections should be discussed, e.g., 369

Cap Connections, Unmatched Connections, Patch- 370

ing Connections, and Inversely Ordered Connec- 371

tions. However, we discuss these exception cases 372

in the appendix due to a lack of space. 373

3.4 Step-4: Scoring 374

For someone reading dg, one can see how the aver- 375

age of these ease of transformation scores for each 376

connection maps onto how well dg recreates dr. 377

However, not all these scores contribute equally 378

to the narrative recreation. For example, both the 379

cap and patch connection scores are weighted dif- 380

ferently (explained in the appendix due to lack of 381

space), being scaled by hc and hp, respectively. 382

And to keep our ExSiM score normalized, let us 383

suppose mi equals the maximum score vi could 384

have achieved after being scaled by the hyper- 385

parameters it was scaled by, if any. So, in all, we 386

score each connection and then combine them into 387

our final storyline recreation score using a weighted 388

average. 389

ExSiM(dr, dg) =

∑k
i=0 vi∑k
i=0mi

(3) 390

Thus, our ExSiM vector of similarity metrics 391

can be completed to allow for greater explainabil- 392

ity. On top of the four segment-matching metrics 393

mentioned earlier and the storyline recreation score 394

computed above, we may now append four more. 395

For the local similarity scores and their positions 396

along their documents, we simply take the ease 397

of transformation score for each connection and 398

record the percentage of sentences that occur be- 399

fore it. Lastly, for our information preservation, we 400

append the average score of matched connections, 401

and for hallucination, we append the average score 402

for patching connections. 403

4 Explainability of ExSiM 404

The ultimate benefit of ExSiM is that while provid- 405

ing a useful similarity score as above, it can also 406

produce a host of auxiliary metric values that pro- 407

vide other insights into the similarity between two 408
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documents. Although we believe more values and409

insights could be derived, we will only list the met-410

rics that are relevant to the qualitative experiment411

done in section 6.2:412

• Information Preservation and Hallucination:413

ExSiM can provide insights on how much infor-414

mation is preserved and how much hallucinated415

by using data gathered during the matching and416

storyline recreation steps. For information preser-417

vation, ExSiM keeps track of what percentage of418

reference sentences were matched and the aver-419

age matched connection score. If these are both420

low, then that means there are many reference421

sentences being skipped over. For hallucination,422

ExSiM computes what percentage of generated423

sentences were matched and the average patch-424

ing connection score (explained in the appendix).425

If these are both low, then that means there are426

large swaths of the generated document that are427

not represented in the reference document and428

thus hallucinated.429

• Similarity Variance Along Documents: Con-430

sider the non-commutative problem we have been431

discussing with reference dr and generated dg.432

Since we are scoring every connection in dg, and433

each connection can be described as what per-434

centage of sentences it occurs after, then for each435

ease of transformation score, we can associate it436

with a percentage detailing how far along dg it437

occurs. Furthermore, one could create a graph438

visualizing a set of documents DG and where439

they tend to be more or less similar to the correct440

documents DR. For example, one could imag-441

ine a generative NLP model performing worse442

towards the end of its generation, and our model443

could provide evidence for or against this worry.444

On the other hand, this can be done in the oppo-445

site direction, wherein one can see what part of446

the documents in DR the model tends to do the447

worst in recreating.448

• Counting Fused and Split Sentences: Given449

our segment matching algorithm, one can see the450

tendency for whether many sentences are con-451

catenated in dr, dg, or both. If many sentences452

are concatenated to make segments in dr, then453

our generative model fuses many sentences to-454

gether. If the concatenations are occurring dg,455

then that means our model is splitting many sen-456

tences apart. And, of course, one can find further457

nuance than this in the actual counts.458

5 Experiments 459

To test the accuracy of our ExSiM similarity metric, 460

we conducted two sets of experiments as follows. 461

Undirected Similarity Assessment Experiments: 462

Wikipedia Triplets is a dataset created to test doc- 463

ument similarity metrics (Dai et al., 2015). They 464

have generated a dataset where the rows are triplets 465

of Wikipedia links such that the first two articles 466

are more similar than the second is to the third. 467

The dataset has two portions, a synthetic and hand- 468

picked section. For the synthetic triplets, they gen- 469

erated 19,876 rows of which 11,566 still have live 470

pages that we were able to use. These pages which 471

were used as documents had on average approxi- 472

mately 113 words and 6 sentences each. For the 473

handpicked triplets which they verified are aligned 474

with human intuition, of the original 172 triplets 475

there are 151 live pages. These pages had on aver- 476

age 337 words and 16 sentences each. 477

They boast scores that edge out our own on their 478

dataset, but it is important to note that not only 479

are many of the pages they used dead but also the 480

pages themselves have changed significantly in the 481

last eight years. However, these changes should not 482

impact the utility of the dataset since the ideas be- 483

hind the articles are the same, we merely posit that 484

what scores models should be expected to attain 485

has likely shifted. 486

Directed Similarity Assessment Experiments: 487

As for Directed Similarity Assessment , we tasked 488

five Auburn University undergraduate students 489

with annotating 20 alternative narrative pairs con- 490

structed in the following manner. We took the first 491

five articles from the CNN Daily Mail data set as 492

provided by (See et al., 2017) and (Hermann et al., 493

2015). For the articles we used, they had on av- 494

erage approximately 330 words and 23 sentences. 495

Then for each article, we shuffled the sentences 496

before feeding them into four different models that 497

attempted to reorder the sentences back into their 498

correct order. Then for each of the five ground truth 499

articles, the students were asked to rate the simi- 500

larity of each reordered document to the original. 501

They were likewise asked to rate the similarity of 502

the sentence ordering of the generated documents 503

to the original. The questions we asked can be 504

found in appendix C. 505

The four reordering models were Facebook’s 506

BART (Lewis et al., 2019), OpenAI’s GPT-3.5 507

(Brown et al., 2020), ReBART (Chowdhury et al., 508

2021), and DistilBART (Shleifer and Rush, 2020). 509
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6 Results510

For our implementation, ExSiM used as its building511

block an SBERT-based sentence transformer model512

"all-MiniLM-L6-v2" from (Reimers and Gurevych,513

2019). We chose this transformer to generate em-514

beddings for our cosine similarity SSM because515

it performed the best on all three datasets. We516

tested it against other such sentence transformers517

like SBERT below and also against averaged word518

embeddings from GloVE. To tokenize our docu-519

ments into sentences, we used spacCy 2 (Honnibal520

and Montani, 2017) and, more specifically, the En-521

glish transformer pipeline with Roberta-base1. As522

for our hyper-parameters, we set hc = hp = 1 in523

experiments.524

In terms of the models we tested our SMU-made525

DSM against, we for one used "sentence-526

transformers/paraphrase-distilroberta-base-v1"527

model which we denote as SBERT. And we also528

used "all-MiniLM-L6-v2" which we denote as529

MiniLM. For Deberta and Roberta, we used530

BERTScore as set out by Zhang et al. (2020b). For531

the GloVE implementation, we used Řehůřek and532

Sojka (2010).533

6.1 Quantitative Results534

6.1.1 Undirected Similarity Assessment535

Wikipedia
Synthetic Handpicked

Deberta ED 73.0% 80.3%
Roberta ED 76.0% 84.2%

Avg. SBERT ES 76.2% 92.1%
Avg. MiniLM ES 77.1% 94.0%
Avg. GloVe EW 70.7% 88.7%

ExSiM∗ 77.7% 89.4%
ExSiM 77.7% 91.4%

Table 1: Wikipedia Dataset Results. ∗ matches between
concatenations disallowed. ED, ES , and EW mean
document, sentence, and word encoders.

Table 1 lists the accuracy of each respective536

model’s generated similarity scores. A model’s537

scores are computed between the first two docu-538

ments in each triplet and the last two, and the model539

is counted as generating the correct scores if the540

similarity score between the first two documents541

is higher than the score between the last two. Of542

further note, this task is commutative since the or-543

dering of documents should cause no change in the544

1 https://huggingface.co/spacy/en_core_web_lg

similarity scores. Thus, we used the commutative 545

variant of ExSiM (details in section 3.3). 546

One can see that ExSiM achieves comparable 547

performance with state-of-the-art document sim- 548

ilarity metrics. It edges out all the other metrics 549

on the synthetic task while beating most on the 550

handpicked but ultimately coming short of the im- 551

pressive score from "Avg. MiniLM ES ." Now, we 552

are not contending these results, in and of them- 553

selves, to be decisive. Instead, we argue that these 554

results show the explanatory power of ExSiM. With 555

that perspective, its other benefits show its worth: 556

• ExSiM shows superior explainability to these 557

other metrics, because instead of being a black 558

box, one can understand exactly where these 559

scores come from down to the lower-level simi- 560

larity metric. 561

• This explainability allows other metrics to be 562

derived, as discussed in section 4 and used in 563

section 6.2. 564

Correlation with
Human Annotations

Similarity Ordering
Deberta ED 0.632 0.589
Avg. SBERT ES 0.526 0.547
Avg. MiniLM ES 0.537 0.558
Avg. GloVe EW 0.537 0.537
ExSiM (Commutative) 0.621 0.579
ExSiM (Non-Commutative) 0.768 0.716
ExSiM∗ (Commutative) 0.579 0.589
ExSiM∗ (Non-Commutative) 0.747 0.8

Table 2: Correlation (Kendall’s tau) between Human
and Directed Similarity Assessment. ∗ matches between
concatenations disallowed. ED, ES , and EW mean
document, sentence, and word encoders.

6.1.2 Directed Similarity Assessment 565

Table 2 summarizes the results of our Directed 566

Similarity Assessment experiments. Looking at Ta- 567

ble 2, one can see the correlation between any given 568

models’ similarity scores and the human-annotated 569

ground truths. The inter-annotator agreement, com- 570

puted using Kendall Tau, was 0.68 on the question 571

of ordering similarity and 0.58 for overall similarity. 572

These correlations were computed using Kendall 573

Tau as they are ultimately ranking of similarities 574

between ground truth documents and reordered 575

documents. For a table that uses the Spearman 576

ranking correlation metric instead, see table 4 in 577

appendix D. 578
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Average per Document
Fuses Splits dr Matched Matched Scores dg Matched Patching Scores

BART 3.2 2.6 81.3% 0.231 100% N/A
GPT-3.5 3.2 2.8 93.4% 0.230 95% 0.037
ReBART 4.4 2.2 100% 0.228 68.6% 0.208
DistilBART 3.0 3.0 71.4% 0.212 100% N/A

Table 3: Auxiliary metrics derived from ExSiM

Here, ExSiM boasts better performance and we579

attribute this to the task being on-commutative580

wherein the correct document is treated differ-581

ently than the generated document it’s being com-582

pared to. This pans out through the high vari-583

ance in correlation between our commutative584

and non-commutative models. Clearly, the non-585

commutative models correlate better with human586

intuitions than any other model, especially on the587

question of how well documents were ordered.588

One can also see how ExSiM varies in perfor-589

mance based on whether it was permitted to match590

segments that were both concatenations. Those that591

were allowed showed better correlation on the ques-592

tion of general similarity whilst those that were not593

allowed correlated better on the ordering criterion.594

The great performance on the ordering section of595

the human annotations is of particular importance.596

For one, this section has higher inter-annotater597

agreement giving better credence to the data. Fur-598

thermore, this correlation bodes well for our claim599

that ExSiM serves as a better metric in terms of its600

sensitivity to intra-document order.601

6.2 Qualitative Examples602

In order to present the potential use of ExSiM’s603

auxiliary metrics as given in a vector, we have604

decided to use the same dataset used in our directed605

similarity assessments from section 6.1.2.606

For sentence fusing/splitting and ordering, we607

show the auxiliary metric values in Table 3. Here,608

one can see that ReBART tended to be worse609

about fusing sentences while otherwise, the models610

tended to have similar habits about fusing/splitting611

sentences.612

More interestingly, let us discuss the rest of the613

metrics that describe information preservation and614

hallucination as mentioned in section 4. The dr615

and dg matched columns tell us what percentage616

of the respective documents are matched to the617

other. The matched scores column has the averaged618

scores of matched connections and likewise for619

patching. And for the patching (unmatched) scores,620

the N/A values occur because these models never 621

had a patch because they always matched all their 622

sentences. 623

As discussed, for investigating information 624

preservation we can see if a model is doing poorly 625

if it has a low matching rate for dr and low match- 626

ing scores. Given this, it becomes DistilBART does 627

a poor job at maintaining all the information in the 628

reference document. And not very surprisingly, 629

GPT-3.5 performed the best. 630

As for hallucinations, the models that had 100% 631

match rates for dg likely did not hallucinate much. 632

And when we compare the two models that gener- 633

ated longer texts than the reference texts (GPT-3.5 634

and ReBART), it seems neither hallucinated much 635

either. GPT-3.5 tended to maintain a similar num- 636

ber of sentences but when it did go over, the patch- 637

ing score is awful meaning that when GPT added 638

text it was highly hallucinatory. ReBART has the 639

opposite case where it had many extra sentences but 640

the patching scores are pretty high meaning many 641

of these appended sentences are relevant. There- 642

fore it may have only really hallucinated in terms 643

of volume. 644

We were able to find all these insights automati- 645

cally using ExSiM. 646

7 Conclusion 647

This paper presents ExSiM, a novel metric that 648

offers a score vector rather than a singular similarity 649

score for evaluating NLG tasks. Each element of 650

this vector represents a specific aspect of the overall 651

similarity assessment, offering an intuitive method 652

for explanation. 653

We believe ExSiM shows great promise as a 654

timeless methodology that will allow the upgrad- 655

ing of contemporary and future semantic similar- 656

ity metrics. Explainability is critically important, 657

especially in an age rife with black boxes. Under- 658

standing what we use not only allows methodical 659

improvement but is superior when in actual use be- 660

cause of the explanation and intuition it engenders. 661
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8 Limitations662

One fundamental limitation is the axiomatic as-663

sumptions we took about the language which may664

limit the use of ExSiM on a language-by-language665

basis, like assuming that sentences only have at666

most two clauses.667

But beyond that, most limitations provide av-668

enues to follow for future work. For one, we would669

like to attempt iterating ExSiM over itself multiple670

times to produce a similarity metric for long-form671

documents. There are already datasets out there672

for testing the long document similarity metrics673

we would produce, like (Ginzburg et al., 2021).674

ExSiM could also boast better performance through675

hyper-parameter optimization, improvements on676

the matching algorithms, and other tinkering with677

the methodology.678

There are also some caveats that may assuage679

worries about the ExSiMs’ comparable perfor-680

mance in the Undirected Similarity Assessment.681

• Our hyper-parameters were chosen intuitively,682

we chose for both our cap importance (hc) and683

patch importance (hp) hyper-parameters to equal684

1 because we supposed that to be the best.685

• Our model was designed to perform one linguis-686

tic level-up, meaning it is little wonder that our687

ExSiM performs better on the shorter single-688

paragraph synthetic tasks while lagging behind689

on the longer multi-paragraph handpicked tasks.690

It is likely that our metric ought to be used dif-691

ferently, using linguistic stacking to achieve im-692

proved performance on longer documents. But693

as is, this remains a future direction for our work.694
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A Matching Edge Cases 927

There are edge cases that this approach does not 928

properly handle, and that is cases when the trans- 929

forming from one document to another would be 930

best described as involving two sentences split- 931

ting then both of them fusing two other sentences 932

respectively. But for the simplicity of the current 933

approach, these rare cases being maltreated seemed 934

warranted. Furthermore, these mismatches are ame- 935

liorated when later on ExSiM further combines ad- 936

jacent matches which will likely recombine these 937

separated clauses. 938

B Connection Exception Cases 939

• Cap Connections: We know readers care how 940

documents begin and end and so we introduced 941

cap connections. And we can and do score them 942

as prototypical connections above, but critically 943

it is not apparent a priori the relative importance 944

of cap connections to typical connections. Thus, 945

we have introduced a hyper-parameter hc that de- 946

notes the scaling importance and acts as a scalar 947

multiplier to whatever our cap ease of transforma- 948

tion scores are. For an example, in Figure 2 we 949

can see a that the beginning cap connection in dg 950

matches well with the beginning of dr. Therefore 951

in this case, v0 = hc · SM(u0, tr,0) 952

• Unmatched Connections: What of the case 953

when for a connection in dg, the second segment 954

was not matched to dr? For an example, one 955

can see the connection between u2 and u3 in Fig- 956

ure 2. Here, we declare it an unmatched match 957

and give it an ease of transformation score of 958

0, i.e., v3 = 0. But more than that, we declare 959

this connection to be in need of a patch. This is 960

because when a reader finds a connection that is 961

not represented in the reference document, they 962

do not merely forget about it and move on. They 963

attempt to patch over the narrative hole. And if 964

there are multiple unmatched connections in a 965

row, they are all part of one hole in need of a 966

patch. 967

• Patching Connections: When a narrative hole 968

begins as mentioned, it becomes patched when 969

we find find the next matched segment in dg. The 970

reason we are now able to patch over the hole 971

is because we can form a patching connection 972

between the last matched segment (which may in 973

fact be the beginning as seen in Figure 3 which is 974

not really a segment but behaves as one) and the 975
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just now matched segment. For an example, let976

us see what happens when we score the connec-977

tion between u3 and the end of dg. First, this is a978

cap so we will multiply our score by hc. Second,979

the second segment in this connection is the end980

of dg which cannot constitute an unmatched seg-981

ment because it is matched by definition to the982

end of dr. Therefore, the narrative hole starts at983

the matched u2 and stops here at the end. There-984

fore our patch is u2+" "+u3 and it corresponds to985

where the start of the patch matched to and where986

the stopping place matched to. Furthermore, as987

discussed for caps, there is no clear a priori intu-988

ition on how patches should be scored in compar-989

ison to typical connections. Thus, we introduce990

hyper-parameter hp to be a scaling factor. There-991

fore this particular patching capped connections,992

it as scored such that v4 = hc · hp · SM(u2+"993

"+u3, tr,9).994

• Inversely Ordered Connections: There is the995

last exceptional case when we are given a996

matched connection but the start and stop dg seg-997

ments occur in reverse order of their matched998

segments in dr. In this case, we determined that999

readers will only refer back to the reference seg-1000

ment that matches to the stop segment. This is1001

because the inverse ordering completely disman-1002

tles the narrative between the segments and so the1003

generated connection can most intuitively trans-1004

formed back into the first occurring segment that1005

it matched with.1006

C Human Annotation Questions1007

The form started with:1008

"Given "CorrectDocst.txt" and "Reordered-1009

Docs.txt", please do the following. For each set1010

(there are 5), first read that sets correct document.1011

This is the ordering of ideas and semantic meaning1012

that the reordering models are trying to recreate.1013

Then after reading each of these correct order-1014

ings, read the four reordered documents that were1015

generated by four different models. Then for each1016

one, grade it below based on how similar the or-1017

dering is, then how similar they are on a document1018

level.1019

If you have any questions at all, please reach1020

out."1021

Then for each set of four documents, we asked:1022

"Did the first model match the ordering well?"1023

and "Did the first model match the overall meaning1024

well?"1025

We allowed them to answer on a scale 1-5. 1026

D Human Annotations Spearman Scores 1027

See Table 4, the results are similar and warrant the 1028

same analysis. 1029

Correlation with
Human Annotations

Similarity Ordering
Deberta ED 0.700 0.677
Avg. SBERT ES 0.593 0.586
Avg. MiniLM ES 0.622 0.623
Avg. GloVe EW 0.641 0.606
ExSiM 0.691 0.671
(Commutative)
ExSiM 0.864 0.830
(Non-Commutative)
ExSiM∗ 0.668 0.678
(Commutative)
ExSiM∗ 0.852 0.885
(Non-Commutative)

Table 4: Correlation (Spearman) between Human and
Directed Similarity Assessment. ∗ matches between
concatenations disallowed
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