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Abstract

Automated evaluation of Natural Language
Generation (NLG) tasks is hard due to the possi-
bility of multiple correct outputs. The common
practice of evaluating NLG systems involves
computing the similarity between a collection
of automatically generated documents and their
corresponding (human-written) golden refer-
ence documents. Unfortunately, existing doc-
ument similarity metrics are black boxes and,
thus, hard to interpret and explain, making ro-
bust evaluation of NLG tasks even more chal-
lenging. To address this issue, this paper intro-
duces a new evaluation metric called ExSiM
that provides a vector of scores instead of a sin-
gle similarity score, where each component of
the vector describes a particular property of the
similarity metric, thus providing a natural way
of explanation. Our experimental results with
Wikipedia article triplets and a custom-created
narrative dataset demonstrate that the proposed
ExSiM vector can perform comparably to tra-
ditional metrics like BERTScore and ROUGE
for undirected similarity assessment while pro-
viding useful explanations. In addition, ExSiM
yields a higher human-machine agreement for
directed similarity assessment.

1 Introduction

With the rise of Large Language Models (LLMs),
the application of Natural Language Generation
(NLG) systems has gained more popularity than
ever (Novikova et al., 2017; Wang et al., 2018). As
NLG systems are adopted more widely, automated
evaluation of these systems at scale becomes an
important issue. The most common practice for
conducting such evaluations involves computing
the similarity between a collection of automati-
cally generated documents and their correspond-
ing (human-written) golden reference documents.
The traditional way of computing the similarity
between a pair of documents has been to com-
pare the overall lexical (n-gram-based)/semantic

(embeddings-based) overlap between those docu-
ments. For example, ROUGE (Lin, 2004a) con-
siders direct lexical overlap, while metrics like
S+WMS (Clark et al., 2019), MoverScore (Zhao
et al., 2019), and BERTScore (Zhang et al., 2020a),
are based on semantic similarity between two doc-
uments. Unfortunately, these metrics have been
criticized for many limitations, as discussed below.

1. Difficulty in Storyline Matching: In classi-
cal document similarity metrics like TF-IDF-
Cosine-Similarity (Ramos, 2003), ROUGE (Lin,
2004a), etc., intra-document order between sen-
tences is lost as these metrics compute simi-
larity solely based on word frequencies or n-
gram overlaps. This makes distinguishing two
similar storylines with different orders for the
same set of events difficult. Likewise, for recent
embedding-based semantic metrics, the practice
of averaging lower-level (e.g., sentence) embed-
dings to construct higher-level (e.g., document)
ones (Le and Mikolov, 2014; Sultan et al., 2015;
Saggau et al., 2023) loses order sensitivity.

2. Difficulty handling Information Split and Fu-
sion: Consider a hypothetical task of using an
NLG model (e.g., ChatGPT) to rearrange a col-
lection of jumbled sentences into a coherent
story. In this case, storyline matching becomes
challenging as the NLG model would not simply
copy and reorder the input sentences but rather
generate novel sentences that may sometimes
fuse two or more original sentences into one or
split one original sentence into two or more. Ex-
isting document similarity metrics cannot prop-
erly capture these information split/fusion sce-
narios while matching the ordering of informa-
tion simultaneously.

3. Lack of Explainability: Recently, transformer-
based (especially LLM-based) architecture has
gained much popularity for computing docu-
ment similarity (Saggau et al., 2023; Fu et al.,



2023). Unfortunately, these black boxes provide
a single similarity score and lack explainability,
as all the reasoning behind the output score is
hidden inside a pretrained neural network.

4. Default Commutative Property: Current sim-
ilarity metrics treat the task as inherently sym-
metric/commutative, but this is not always true.
Although many use cases are commutative, e.g.
document clustering and recommender systems,
where one does not care about directional simi-
larity, i.e., no documents have superiority over
one another. But there are also use cases where
the task is non-commutative, like, most notably,
NLG evaluation, where there is a ground truth
reference document that a generated document
is being compared against. In this case, a direc-
tional similarity between the reference and the
generated is desired, and a commutative prop-
erty should not be enforced.

To address the abovementioned limitations, we
introduce ExSiM (Explainable Similarity Metric),
which can quantify how well a reference narra-
tive/storyline is preserved within a generated narra-
tive while accounting for information splits/fusions.
ExSiM also provides a vector of scores instead of
a single similarity score, where each vector compo-
nent describes a particular aspect of similarity, thus
providing a natural explanation. Finally, ExSiM
allows users to either preserve or discard the com-
mutative property as they see fit based on their
target application.

For evaluation, we performed two sets of ex-
periments: 1) Undirected (commutative) similar-
ity assessment experiments with sets of article
triplets from Wikipedia, and 2) Directed (non-
commutative) similarity assessment experiments
with a handcrafted narrative pair dataset. These
tests show that the proposed ExSiM metric can
achieve comparable performance to well-known
measures such as BERTScore and ROUGE in the
case of undirected similarity assessment, i.e., the
case when we look at how similar things are with-
out worrying about which direction the similarity
goes. Additionally, the ExSiM vector offers helpful
explanations on how two documents are similar in-
stead of providing a single numeric score. Finally
and most importantly, the ExSiM metric yields a
higher correlation with human judgments when as-
sessing the similarity between two documents in a
specific direction (non-commutative), e.g., match-
ing machine-generated text against reference text.

2 Related Work

NLG evaluation metrics have been extensively stud-
ied in the literature over the past two decades.
ROUGE (Lin, 2004b) is perhaps the most popular
metric used today for the evaluation of automated
NLG systems, mainly because it is a simple and au-
tomatic process. As of today, around 192 variants
of ROUGE have been proposed (Graham, 2015) in-
cluding ROUGE with word embedding (Ng and
Abrecht, 2015) and synonym (Ganesan, 2018),
graph-based lexical measurement (ShafieiBavani
et al., 2018), Vanilla ROUGE (Yang et al., 2018)
and highlight-based ROUGE (Hardy et al., 2019).
However, ROUGE scores are not self-explanatory
and cannot distinguish between similar narratives
with different storylines.

Researchers also attempted to develop meth-
ods for evaluating reference-free model-generated
text (Louis and Nenkova, 2013; Xenouleas et al.,
2019). Distance measures between the machine-
generated document and reference document
based on word embeddings have also been pro-
posed (Zhao et al., 2019; Sun and Nenkova, 2019).
Model-based evaluation for text generation has also
been a recent trend (Sellam et al., 2020; Zhang
et al., 2020a; Yuan et al., 2021). There are also
works done on taking lower-level similarity met-
rics and constructing higher-level ones (Wei et al.,
2022; Gahman and Elangovan, 2023; Gémez and
Vazquez, 2022). Yet, these metrics possess the
same weaknesses as ROUGE in terms of lacking
explainability and their inability to distinguish sto-
rylines.

Recently, researchers have spent a lot of effort
evaluating different aspects of text generation tech-
niques that rely on measuring textual similarity in
some capacity. For example, Fabbri et al. (2021);
Zhong et al. (2022) discussed how to perform meta-
evaluation of summarization metrics along four
explainable dimensions: coherence, consistency,
fluency, and relevance. However, these explainable
dimensions were evaluated manually by humans
without any automation, which ExSiM offers.

As an interesting development, recent research
has witnessed the emergence of Large Language
Models (LLMs) like ChatGPT (Xie et al., 2023),
as a versatile tool for evaluating various NLP tasks
as well. For instance, Gao et al. (2023); Fu et al.
(2023); Laban et al. (2023); Wang et al. (2023) in-
vestigated the strengths and limitations of ChatGPT
as an evaluator of textual similarity and summa-



rization quality. Moreover, the GPT-4 model, as
an evaluator of text generation and similarity tasks,
shows better alignment with human judgement (Liu
et al., 2023). Yet, LLMs are deep neural networks
that are difficult to interpret.

3 Proposed Metric

We propose ExSiM as a document-level similar-
ity metric, which leverages rigorously optimized
sentence-level similarity metrics as fundamental
blocks for building the document-level metric. As
mentioned in Section 1, ExSiM returns a vector
of interpretable numbers that capture different as-
pects of document similarity instead of providing a
single score, as mentioned below.

* Global Storyline Similarity

* Localized Storyline Similarities
* Frequency of Splits and Fusions
* Coverage of Information

* Information Preservation

* Hallucination

We follow four sequential steps to compute these
vector components as described below and visually
demonstrated in Figure 1.

1. Information Segmentation
2. Segment Matching
3. Storyline Recreation

4. Scoring
Reference Generated
Document Concatenated Document Concatenated
Sentences  Sentences Sentences  Sentences
—> —>
T o,
Segments t Segments t
v \
unmatched -
sentences ( Segment Matchlng)
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Figure 1: Framework for computing the ExSiM metric

3.1 Step 1: Information Segmentation

For model information split and fusion, we assume
that clauses are units of information and all sen-
tences are composed of at most two clauses. Under

this assumption, we propose to measure a direc-
tional similarity score where we attempt to match
each sentence from the generated document to
one/more sentences in the reference, which needs
to consider three cases as follows:

* Matching Single Sentences : The trivial case is
a direct matching between two single sentences.

* Matching Fusion: To capture fusion, we con-
catenate two adjacent sentences (let us call them
segments) in the reference document and match
them to a single sentence in the generated one.
Formally, we construct from the reference doc-
ument a set of concatenated adjacent sentences,
Cri = Spi + Spiy1 suchthat 0 <7 < n, — 1.
For an example, refer to Figure 2 and find how
segment 7,9 matched with segment ¢, .

* Matching Split: To capture split, we match a
singular sentence in the reference document to
two in the generated document, which recreates
a split, we construct in-kind ¢, ; such that 0 <
1 <mng—1.

Since, from now on, sentences and concatenated
adjacent sentences are treated in a similar man-
ner, we will refer to them collectively as segments.
We have a collection of 2n, — 1 segments from
dr = (87,0, Sr,15- -+ Srm,.—1) and 2ng — 1 from d,
likewise. We will use the following notation to
represent the reference segments according to the
following given 0 < 7 < 2n, — 1 (and likewise for
generated segments):

P ¢ j/2,1f jis even "
" Sp,(j—1)/2,1f j 1s odd

3.2 Step 2: Segment Matching

Because of our simplified assumption, we may now
construct a quite simple methodology to match
segments. Consider a reference document d, of
length n, and a generated document d, of length
ng. A hypothetical segment-matching scenario can
be seen in Figure 2.

We now want to derive which matches are best.
This is where our lower(sentence)-level similarity
metric (SM) comes into play. We compute the sim-
ilarity on each possible segment pair between the
documents, generating (2n, — 1)(2n, — 1) similar-
ity scores. To institute our transformation, we now
choose the best matches using a greedy algorithm
similar to the one used by Islam and Inkpen (2008).
More specifically, we consider three cases:



Document

Document

Figure 2: A hypothetical example of reference and gen-
erated document with their segments matched

* Case 1: Sentence Vs. Sentence: When the cur-
rent best-matched segments (according to our
greedy criteria) are both single sentences, we
must disallow any concatenations containing
each matched sentence from further consider-
ation to avoid duplication. To be exact, sup-
posing we matched s, , with s,.,. We would
get rid of all the matches of the form (s, ¢, ;)
for all j and also the concatenations of the form
(cgz—1,trj) and (cgz,t, ;) for all j. This also
goes for eliminating the matches containing s, ,,
and its concatenations.

* Case 2: Sentence Vs. Concatenation: We,
again, disallow matches that involve either of
the sentences or the concatenation to avoid dupli-
cation. Similarly, we disallow the concatenations
that contain the sentence. But what about for the
matched concatenation? 1In this case, it is not
just sufficient to disallow the two sentences that
make up the matched concatenation. But since
those sentences are disallowed, so too must we
disallow the other concatenations that contain
them. To be exact, supposing we matched ¢ ;
with s;.,. The full set of matches we would get
rid of for ¢4 ; would be (¢ z—1,tr5), (Sg.2:trj)s
(cga>trj)s (Sgz+1,tr;), and (¢g i1,y ) forall
j. As for the matched sentence, the duplicative
matches would be disallowed like normal.

* Case 3: Concatenation Vs. Concatenation: In
this case, we disallow the duplicative matches for
both concatenations as described above.

The pseudo-code of our greedy approach is pro-
vided as Algorithm 1. It’s noteworthy that we can
record four values for our final similarity vector as
part of this algorithm: the frequency of sentence
splits, the frequency of fusions, and the coverage of
the reference and generated documents. This last
metric is computed by finding the percentages of
how much each document matched the other.

Algorithm 1 Segment Matching

Require: Documents d,, dg, and similarity metric S M
srll, sq4l] < sentences(d.), sentences(dy)
crll, cgl] ¢ adjacentConcats(d.), adjacentConcats(dg)
tr-[1 < [s-[0], c-[0], s-[1], cr[1], .. . ] > Segments
tyll < [s4[01, cgl01, sql1], cgl1], .. .]

simScores[][]
for t,.[i] in t,.[] do
for t4[j]in ty[] do
simScores[il[j] = SM(t,[i], t4[51)
end for
end for

> Find Similarity Scores

matches|] > Find Segment Matches
while mazx(simScores[][]) > 0 do

i,J + mazIndex(simScores(][])

matches(] += (t-[i], t4[7])

simScores|i — 1,14,1 + 1][] < 0 > Zero out columns

if 7 is odd then > If a concatenation
simScores[i — 2,1+ 2][] + 0
end if

simScores[l[j — 1,7, + 11+ 0 > Zero out rows
if 7 is odd then > If a concatenation
stmScores[][j — 2,5+ 2]+ 0
end if
end while

3.3 Step 3: Storyline Recreation

At this stage, we have found m segment matches,
i.e., T = ((tr,O’ tg70), (t’l”,].a tg71), ey (tr,mapg,m))-
Let us further assume that the original order of d,,
orders 7', and therefore, ¢, ¢ is the earliest matched
segment in dg and , ,, is the last.

Let us now begin with how our metric scores
the recreation of a storyline as a human reader
would. When we, as a reader, are asked to com-
pare documents, we, of course, read the reference
document first. This establishes the context against
which we should compare the generated document.
To simulate this behavior, ExSiM scans through
the new document d, while periodically referring
back to the ground truth d,.. This makes our metric
directional/non-commutative.

For storyline recreation, we can neither use only
matched segments nor merely use the sentences as
given. To this end, let us refer to d,’s used segments
as all the segments in d,; that were matched along-
side the unmatched sentences in d;. And when



ordered, these used segments comprise the entire
dy document. If we refer to these £ used segments

as ug, uy, . .., ug—1 (see Figure 2), we can say:

dg = ug +uy + -+ up_1 )

Given the used segments in d, one can see how
well the generated narrative transforms to the ref-
erence one by iterating on a segment-by-segment
basis. But narrative is not truly a disordered set
of independent thoughts, but the sequenced set of
connections formed between them. Thus, let us
use connections to mean the semantic meaning that
relates one segment in a given document to the
next segment in that same document. A diagram of
these connections can be found in Figure 3.

Beginning

W)

(_
End

<— < Begining Cap
Document

d,—

—— Connections

<«— <« EndCap

Figure 3: Labeling of connections for document d,,

Given all this, we estimate the ease of narrative
transformation between d, and d, in a computa-
tionally efficient manner by determining for each
narrative connection between used segments in d,
how well they are supported by the reference d,.

As discussed, some connections occur between
every two adjacent used segments in d,. But to
better mimic how human readers compare texts, we
also add cap connections between the beginning of
the generated document and the first segment, and
likewise between the last segment and the end of
the document. Thus, if we have £ used segments in
dg, then we have k + 1 connections (see Figure 3).
Now, these connections must be scored in their
correspondence to d,, the ground truth. We will
refer to the score values for each connection as
{’U(),’Ul, ces ,'Uk}.

Ease of Transformation Score: For a given con-
nection in dy, we score it by how easily it can be
transformed back into d,.. The prototypical case
(without any exceptions) is as follows. Suppose
we are finding the score vy of the connection be-
tween uq and us as seen in Figure 2. uy = ¢4 3 and
uz = 46, and furthermore, ¢, 3 is matched with
tr3 while t, ¢ is matched with ¢, 9. This means

that our connection, when transformed back to
d,, best corresponds with the portion of d, that
starts at s 1 and goes all the way to s, 5. Thus,
we use our similarity metric (SM) to score the
similarity between u1+" "+4us (our generated con-
nection) and the reference portion in d, such that
vy = SM(ur+" "+ug, tr3+" "+s,3+" "+t.0).

Yet, as mentioned, a few overlapping exceptions
for scoring connections should be discussed, e.g.,
Cap Connections, Unmatched Connections, Patch-
ing Connections, and Inversely Ordered Connec-
tions. However, we discuss these exception cases
in the appendix due to a lack of space.

3.4 Step-4: Scoring

For someone reading d,, one can see how the aver-
age of these ease of transformation scores for each
connection maps onto how well d, recreates d,.
However, not all these scores contribute equally
to the narrative recreation. For example, both the
cap and patch connection scores are weighted dif-
ferently (explained in the appendix due to lack of
space), being scaled by h. and h,, respectively.
And to keep our ExSiM score normalized, let us
suppose m; equals the maximum score v; could
have achieved after being scaled by the hyper-
parameters it was scaled by, if any. So, in all, we
score each connection and then combine them into
our final storyline recreation score using a weighted
average.

Eo
ExSiM(d,,d,) = LizoY 3)

Thus, our ExSiM vector of similarity metrics
can be completed to allow for greater explainabil-
ity. On top of the four segment-matching metrics
mentioned earlier and the storyline recreation score
computed above, we may now append four more.
For the local similarity scores and their positions
along their documents, we simply take the ease
of transformation score for each connection and
record the percentage of sentences that occur be-
fore it. Lastly, for our information preservation, we
append the average score of matched connections,
and for hallucination, we append the average score
for patching connections.

4 Explainability of ExSiM

The ultimate benefit of ExSiM is that while provid-
ing a useful similarity score as above, it can also
produce a host of auxiliary metric values that pro-
vide other insights into the similarity between two



documents. Although we believe more values and
insights could be derived, we will only list the met-
rics that are relevant to the qualitative experiment
done in section 6.2:

* Information Preservation and Hallucination:
ExSiM can provide insights on how much infor-
mation is preserved and how much hallucinated
by using data gathered during the matching and
storyline recreation steps. For information preser-
vation, ExSiM keeps track of what percentage of
reference sentences were matched and the aver-
age matched connection score. If these are both
low, then that means there are many reference
sentences being skipped over. For hallucination,
ExSiM computes what percentage of generated
sentences were matched and the average patch-
ing connection score (explained in the appendix).
If these are both low, then that means there are
large swaths of the generated document that are
not represented in the reference document and
thus hallucinated.

* Similarity Variance Along Documents: Con-
sider the non-commutative problem we have been
discussing with reference d, and generated d,,.
Since we are scoring every connection in d, and
each connection can be described as what per-
centage of sentences it occurs after, then for each
ease of transformation score, we can associate it
with a percentage detailing how far along d, it
occurs. Furthermore, one could create a graph
visualizing a set of documents D and where
they tend to be more or less similar to the correct
documents Dg. For example, one could imag-
ine a generative NLP model performing worse
towards the end of its generation, and our model
could provide evidence for or against this worry.
On the other hand, this can be done in the oppo-
site direction, wherein one can see what part of
the documents in D the model tends to do the
worst in recreating.

* Counting Fused and Split Sentences: Given
our segment matching algorithm, one can see the
tendency for whether many sentences are con-
catenated in d,., dg, or both. If many sentences
are concatenated to make segments in d,, then
our generative model fuses many sentences to-
gether. If the concatenations are occurring d,,
then that means our model is splitting many sen-
tences apart. And, of course, one can find further
nuance than this in the actual counts.

S Experiments

To test the accuracy of our ExSiM similarity metric,
we conducted two sets of experiments as follows.

Undirected Similarity Assessment Experiments:
Wikipedia Triplets is a dataset created to test doc-
ument similarity metrics (Dai et al., 2015). They
have generated a dataset where the rows are triplets
of Wikipedia links such that the first two articles
are more similar than the second is to the third.
The dataset has two portions, a synthetic and hand-
picked section. For the synthetic triplets, they gen-
erated 19,876 rows of which 11,566 still have live
pages that we were able to use. These pages which
were used as documents had on average approxi-
mately 113 words and 6 sentences each. For the
handpicked triplets which they verified are aligned
with human intuition, of the original 172 triplets
there are 151 live pages. These pages had on aver-
age 337 words and 16 sentences each.

They boast scores that edge out our own on their
dataset, but it is important to note that not only
are many of the pages they used dead but also the
pages themselves have changed significantly in the
last eight years. However, these changes should not
impact the utility of the dataset since the ideas be-
hind the articles are the same, we merely posit that
what scores models should be expected to attain
has likely shifted.

Directed Similarity Assessment Experiments:
As for Directed Similarity Assessment , we tasked
five Auburn University undergraduate students
with annotating 20 alternative narrative pairs con-
structed in the following manner. We took the first
five articles from the CNN Daily Mail data set as
provided by (See et al., 2017) and (Hermann et al.,
2015). For the articles we used, they had on av-
erage approximately 330 words and 23 sentences.
Then for each article, we shuffled the sentences
before feeding them into four different models that
attempted to reorder the sentences back into their
correct order. Then for each of the five ground truth
articles, the students were asked to rate the simi-
larity of each reordered document to the original.
They were likewise asked to rate the similarity of
the sentence ordering of the generated documents
to the original. The questions we asked can be
found in appendix C.

The four reordering models were Facebook’s
BART (Lewis et al., 2019), OpenAI’'s GPT-3.5
(Brown et al., 2020), ReBART (Chowdhury et al.,
2021), and DistilBART (Shleifer and Rush, 2020).


https://huggingface.co/datasets/cnn_dailymail

6 Results

For our implementation, ExSiM used as its building
block an SBERT-based sentence transformer model
"all-MiniLM-L6-v2" from (Reimers and Gurevych,
2019). We chose this transformer to generate em-
beddings for our cosine similarity SSM because
it performed the best on all three datasets. We
tested it against other such sentence transformers
like SBERT below and also against averaged word
embeddings from GloVE. To tokenize our docu-
ments into sentences, we used spacCy 2 (Honnibal
and Montani, 2017) and, more specifically, the En-
glish transformer pipeline with Roberta-base'. As
for our hyper-parameters, we set h, = h, = 1in
experiments.

In terms of the models we tested our SMU-made
DSM against, we for one used "sentence-
transformers/paraphrase-distilroberta-base-v1"
model which we denote as SBERT. And we also
used "all-MiniLM-L6-v2" which we denote as
MiniLM. For Deberta and Roberta, we used
BERTScore as set out by Zhang et al. (2020b). For
the GloVE implementation, we used Rehiifek and
Sojka (2010).

6.1 Quantitative Results

6.1.1 Undirected Similarity Assessment

Wikipedia
Synthetic [ Handpicked

Deberta Ep 73.0% 80.3%
Roberta Ep 76.0% 84.2%
Avg. SBERT FEs 76.2% 92.1%
Avg. MiniLM Eg 77.1% 94.0 %
Avg. GloVe Ew 70.7% 88.7%
ExSiM* 77.7% 89.4%
ExSiM 77.7 % 91.4%

Table 1: Wikipedia Dataset Results. * matches between
concatenations disallowed. Ep, Eg, and Fy mean
document, sentence, and word encoders.

Table 1 lists the accuracy of each respective
model’s generated similarity scores. A model’s
scores are computed between the first two docu-
ments in each triplet and the last two, and the model
is counted as generating the correct scores if the
similarity score between the first two documents
is higher than the score between the last two. Of
further note, this task is commutative since the or-
dering of documents should cause no change in the

! https://huggingface.co/spacy/en_core_web_lg

similarity scores. Thus, we used the commutative
variant of ExSiM (details in section 3.3).

One can see that ExSiM achieves comparable
performance with state-of-the-art document sim-
ilarity metrics. It edges out all the other metrics
on the synthetic task while beating most on the
handpicked but ultimately coming short of the im-
pressive score from "Avg. MiniLM Eg." Now, we
are not contending these results, in and of them-
selves, to be decisive. Instead, we argue that these
results show the explanatory power of ExSiM. With
that perspective, its other benefits show its worth:

* ExSiM shows superior explainability to these
other metrics, because instead of being a black
box, one can understand exactly where these
scores come from down to the lower-level simi-
larity metric.

» This explainability allows other metrics to be
derived, as discussed in section 4 and used in
section 6.2.

Correlation with
Human Annotations
Similarity | Ordering
Deberta E'p 0.632 0.589
Avg. SBERT Eg 0.526 0.547
Avg. MiniLM FEg 0.537 0.558
Avg. GloVe Ew 0.537 0.537
ExSiM (Commutative) 0.621 0.579
ExSiM (Non-Commutative) 0.768 0.716
ExSiM™ (Commutative) 0.579 0.589
ExSiM™ (Non-Commutative) 0.747 0.8

Table 2: Correlation (Kendall’s tau) between Human
and Directed Similarity Assessment. * matches between
concatenations disallowed. Ep, Eg, and Ey mean
document, sentence, and word encoders.

6.1.2 Directed Similarity Assessment

Table 2 summarizes the results of our Directed
Similarity Assessment experiments. Looking at Ta-
ble 2, one can see the correlation between any given
models’ similarity scores and the human-annotated
ground truths. The inter-annotator agreement, com-
puted using Kendall Tau, was 0.68 on the question
of ordering similarity and 0.58 for overall similarity.
These correlations were computed using Kendall
Tau as they are ultimately ranking of similarities
between ground truth documents and reordered
documents. For a table that uses the Spearman
ranking correlation metric instead, see table 4 in
appendix D.


https://huggingface.co/spacy/en_core_web_lg

Average per Document

Fuses ‘ Splits ‘ d, Matched | Matched Scores ‘ dy Matched ‘ Patching Scores

BART 32 2.6 81.3% 0.231 100% N/A
GPT-3.5 32 2.8 93.4% 0.230 95% 0.037
ReBART 44 22 100% 0.228 68.6% 0.208
DistilBART || 3.0 3.0 71.4% 0.212 100% N/A

Table 3: Auxiliary metrics derived from ExSiM

Here, ExSiM boasts better performance and we
attribute this to the task being on-commutative
wherein the correct document is treated differ-
ently than the generated document it’s being com-
pared to. This pans out through the high vari-
ance in correlation between our commutative
and non-commutative models. Clearly, the non-
commutative models correlate better with human
intuitions than any other model, especially on the
question of how well documents were ordered.

One can also see how ExSiM varies in perfor-
mance based on whether it was permitted to match
segments that were both concatenations. Those that
were allowed showed better correlation on the ques-
tion of general similarity whilst those that were not
allowed correlated better on the ordering criterion.

The great performance on the ordering section of
the human annotations is of particular importance.
For one, this section has higher inter-annotater
agreement giving better credence to the data. Fur-
thermore, this correlation bodes well for our claim
that ExSiM serves as a better metric in terms of its
sensitivity to intra-document order.

6.2 Qualitative Examples

In order to present the potential use of ExSiM’s
auxiliary metrics as given in a vector, we have
decided to use the same dataset used in our directed
similarity assessments from section 6.1.2.

For sentence fusing/splitting and ordering, we
show the auxiliary metric values in Table 3. Here,
one can see that ReBART tended to be worse
about fusing sentences while otherwise, the models
tended to have similar habits about fusing/splitting
sentences.

More interestingly, let us discuss the rest of the
metrics that describe information preservation and
hallucination as mentioned in section 4. The d,
and d, matched columns tell us what percentage
of the respective documents are matched to the
other. The matched scores column has the averaged
scores of matched connections and likewise for
patching. And for the patching (unmatched) scores,

the N/A values occur because these models never
had a patch because they always matched all their
sentences.

As discussed, for investigating information
preservation we can see if a model is doing poorly
if it has a low matching rate for d,. and low match-
ing scores. Given this, it becomes DistilBART does
a poor job at maintaining all the information in the
reference document. And not very surprisingly,
GPT-3.5 performed the best.

As for hallucinations, the models that had 100%
match rates for d, likely did not hallucinate much.
And when we compare the two models that gener-
ated longer texts than the reference texts (GPT-3.5
and ReBART), it seems neither hallucinated much
either. GPT-3.5 tended to maintain a similar num-
ber of sentences but when it did go over, the patch-
ing score is awful meaning that when GPT added
text it was highly hallucinatory. ReBART has the
opposite case where it had many extra sentences but
the patching scores are pretty high meaning many
of these appended sentences are relevant. There-
fore it may have only really hallucinated in terms
of volume.

We were able to find all these insights automati-
cally using ExSiM.

7 Conclusion

This paper presents ExSiM, a novel metric that
offers a score vector rather than a singular similarity
score for evaluating NLG tasks. Each element of
this vector represents a specific aspect of the overall
similarity assessment, offering an intuitive method
for explanation.

We believe ExSiM shows great promise as a
timeless methodology that will allow the upgrad-
ing of contemporary and future semantic similar-
ity metrics. Explainability is critically important,
especially in an age rife with black boxes. Under-
standing what we use not only allows methodical
improvement but is superior when in actual use be-
cause of the explanation and intuition it engenders.



8 Limitations

One fundamental limitation is the axiomatic as-
sumptions we took about the language which may
limit the use of ExSiM on a language-by-language
basis, like assuming that sentences only have at
most two clauses.

But beyond that, most limitations provide av-
enues to follow for future work. For one, we would
like to attempt iterating ExSiM over itself multiple
times to produce a similarity metric for long-form
documents. There are already datasets out there
for testing the long document similarity metrics
we would produce, like (Ginzburg et al., 2021).
ExSiM could also boast better performance through
hyper-parameter optimization, improvements on
the matching algorithms, and other tinkering with
the methodology.

There are also some caveats that may assuage
worries about the ExSiMs’ comparable perfor-
mance in the Undirected Similarity Assessment.

e Qur hyper-parameters were chosen intuitively,
we chose for both our cap importance (h.) and
patch importance (h,) hyper-parameters to equal
1 because we supposed that to be the best.

* Our model was designed to perform one linguis-
tic level-up, meaning it is little wonder that our
ExSiM performs better on the shorter single-
paragraph synthetic tasks while lagging behind
on the longer multi-paragraph handpicked tasks.
It is likely that our metric ought to be used dif-
ferently, using linguistic stacking to achieve im-
proved performance on longer documents. But
as is, this remains a future direction for our work.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Somnath Basu Roy Chowdhury, Faeze Brahman, and
Snigdha Chaturvedi. 2021. Is everything in order? a
simple way to order sentences.

Elizabeth Clark, Asli Celikyilmaz, and Noah A. Smith.
2019. Sentence mover’s similarity: Automatic eval-
uation for multi-sentence texts. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
2748-2760. Association for Computational Linguis-
tics.

Andrew M. Dai, Christopher Olah, and Quoc V. Le.
2015. Document embedding with paragraph vectors.

Alexander R. Fabbri, Wojciech Kryscinski, Bryan
McCann, Caiming Xiong, Richard Socher, and
Dragomir R. Radev. 2021. Summeval: Re-evaluating
summarization evaluation. Trans. Assoc. Comput.
Linguistics, 9:391-409.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. CoRR,
abs/2302.04166.

Nicholas Gahman and Vinayak Elangovan. 2023. A
comparison of document similarity algorithms.

Kavita Ganesan. 2018. ROUGE 2.0: Updated and im-
proved measures for evaluation of summarization
tasks. CoRR, abs/1803.01937.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin,
Shiping Yang, and Xiaojun Wan. 2023. Human-
like summarization evaluation with chatgpt. CoRR,
abs/2304.02554.

Dvir Ginzburg, Itzik Malkiel, Oren Barkan, Avi Caciu-
laru, and Noam Koenigstein. 2021. Self-supervised
document similarity ranking via contextualized lan-
guage models and hierarchical inference. In Find-
ings of the Association for Computational Linguistics:
ACL-IJCNLP 2021. Association for Computational
Linguistics.

Yvette Graham. 2015. Re-evaluating automatic sum-
marization with BLEU and 192 shades of ROUGE.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2015, Lisbon, Portugal, September 17-21, 2015,
pages 128-137. The Association for Computational
Linguistics.

Joaquin Gémez and Pere-Pau Vazquez. 2022. An em-
pirical evaluation of document embeddings and simi-
larity metrics for scientific articles. Applied Sciences,
12(11).

Hardy, Shashi Narayan, and Andreas Vlachos. 2019.
Highres: Highlight-based reference-less evaluation
of summarization. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3381-3392.
Association for Computational Linguistics.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS, pages 1693-1701.


http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2104.07064
http://arxiv.org/abs/2104.07064
http://arxiv.org/abs/2104.07064
https://doi.org/10.18653/v1/p19-1264
https://doi.org/10.18653/v1/p19-1264
https://doi.org/10.18653/v1/p19-1264
http://arxiv.org/abs/1507.07998
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.48550/arXiv.2302.04166
http://arxiv.org/abs/2304.01330
http://arxiv.org/abs/2304.01330
http://arxiv.org/abs/2304.01330
https://doi.org/10.48550/arXiv.2304.02554
https://doi.org/10.48550/arXiv.2304.02554
https://doi.org/10.48550/arXiv.2304.02554
https://doi.org/10.18653/v1/2021.findings-acl.272
https://doi.org/10.18653/v1/2021.findings-acl.272
https://doi.org/10.18653/v1/2021.findings-acl.272
https://doi.org/10.18653/v1/2021.findings-acl.272
https://doi.org/10.18653/v1/2021.findings-acl.272
https://doi.org/10.3390/app12115664
https://doi.org/10.3390/app12115664
https://doi.org/10.3390/app12115664
https://doi.org/10.3390/app12115664
https://doi.org/10.3390/app12115664
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Aminul Islam and Diana Inkpen. 2008. Semantic text
similarity using corpus-based word similarity and
string similarity. ACM Trans. Knowl. Discov. Data,
2(2).

Philippe Laban, Wojciech Kryscinski, Divyansh Agar-
wal, Alexander R. Fabbri, Caiming Xiong, Shafiq
Joty, and Chien-Sheng Wu. 2023. Llms as factual
reasoners: Insights from existing benchmarks and
beyond. CoRR, abs/2305.14540.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Chin-Yew Lin. 2004a. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin. 2004b. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out, pages 74—81.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using GPT-4 with better human
alignment. CoRR, abs/2303.16634.

Annie Louis and Ani Nenkova. 2013. Automatically
assessing machine summary content without a gold
standard. Comput. Linguistics, 39(2):267-300.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
ROUGE. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 1925-1930. The Association for Com-
putational Linguistics.

Jekaterina Novikova, Ondfej DusSek, Amanda Cer-
cas Curry, and Verena Rieser. 2017. Why we need
new evaluation metrics for NLG. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2241-2252, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Juan Ramos. 2003. Using tf-idf to determine word
relevance in document queries.

Radim Rehiifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta. ELRA.

10

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Daniel Saggau, Mina Rezaei, Bernd Bisch, and Ilias
Chalkidis. 2023. Efficient document embeddings via
self-contrastive bregman divergence learning.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. BLEURT: learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7881-7892.
Association for Computational Linguistics.

Elaheh ShafieiBavani, Mohammad Ebrahimi, Ray-
mond K. Wong, and Fang Chen. 2018. A graph-
theoretic summary evaluation for rouge. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 762-767. As-
sociation for Computational Linguistics.

Sam Shleifer and Alexander M. Rush. 2020. Pre-trained
summarization distillation.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2015. DLS@CU: Sentence similarity from word
alignment and semantic vector composition. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015), pages 148—153,
Denver, Colorado. Association for Computational
Linguistics.

Simeng Sun and Ani Nenkova. 2019. The feasibility
of embedding based automatic evaluation for sin-
gle document summarization. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP, pages 1216-1221. Association for
Computational Linguistics.

Jiaan Wang, Yunlong Liang, Fandong Meng, Haoxi-
ang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie
Zhou. 2023. Is chatgpt a good NLG evaluator? A
preliminary study. CoRR, abs/2303.04048.

Xin Wang, Wenhu Chen, Yuan-Fang Wang, and
William Yang Wang. 2018. No metrics are perfect:
Adversarial reward learning for visual storytelling.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 899-909, Melbourne, Australia.
Association for Computational Linguistics.

Chengwei Wei, Bin Wang, and C. C. Jay Kuo. 2022.
Synwmd: Syntax-aware word mover’s distance for
sentence similarity evaluation.


https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.1145/1376815.1376819
https://doi.org/10.48550/arXiv.2305.14540
https://doi.org/10.48550/arXiv.2305.14540
https://doi.org/10.48550/arXiv.2305.14540
https://doi.org/10.48550/arXiv.2305.14540
https://doi.org/10.48550/arXiv.2305.14540
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.48550/arXiv.2303.16634
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2305.16031
http://arxiv.org/abs/2305.16031
http://arxiv.org/abs/2305.16031
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://arxiv.org/abs/2010.13002
http://arxiv.org/abs/2010.13002
http://arxiv.org/abs/2010.13002
https://doi.org/10.18653/v1/S15-2027
https://doi.org/10.18653/v1/S15-2027
https://doi.org/10.18653/v1/S15-2027
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.48550/arXiv.2303.04048
https://doi.org/10.18653/v1/P18-1083
https://doi.org/10.18653/v1/P18-1083
https://doi.org/10.18653/v1/P18-1083
http://arxiv.org/abs/2206.10029
http://arxiv.org/abs/2206.10029
http://arxiv.org/abs/2206.10029

Stratos Xenouleas, Prodromos Malakasiotis, Mari-
anna Apidianaki, and Ion Androutsopoulos. 2019.
SUM-QE: a bert-based summary quality estimation
model. In Proceedings of Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP, pages 6004-6010. Association for
Computational Linguistics.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2023. Adaptive chameleon or stubborn sloth:
Unraveling the behavior of large language models in
knowledge clashes. CoRR, abs/2305.13300.

An Yang, Kai Liu, Jing Liu, Yajuan Lyu, and Sujian
Li. 2018. Adaptations of ROUGE and BLEU to bet-
ter evaluate machine reading comprehension task.
In Proceedings of the Workshop on Machine Read-
ing for Question Answering@ACL 2018, Melbourne,
Australia, July 19, 2018, pages 98—104. Association
for Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. CoRR, abs/2106.11520.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020a. Bertscore: Eval-
uating text generation with BERT. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore: Eval-
uating text generation with bert.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 563-578. Association for
Computational Linguistics.

Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu
Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and
Jiawei Han. 2022. Towards a unified multi-
dimensional evaluator for text generation. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 2023-2038. Association for Computa-
tional Linguistics.

11

A Matching Edge Cases

There are edge cases that this approach does not
properly handle, and that is cases when the trans-
forming from one document to another would be
best described as involving two sentences split-
ting then both of them fusing two other sentences
respectively. But for the simplicity of the current
approach, these rare cases being maltreated seemed
warranted. Furthermore, these mismatches are ame-
liorated when later on ExSiM further combines ad-
jacent matches which will likely recombine these
separated clauses.

B Connection Exception Cases

* Cap Connections: We know readers care how
documents begin and end and so we introduced
cap connections. And we can and do score them
as prototypical connections above, but critically
it is not apparent a priori the relative importance
of cap connections to typical connections. Thus,
we have introduced a hyper-parameter A, that de-
notes the scaling importance and acts as a scalar
multiplier to whatever our cap ease of transforma-
tion scores are. For an example, in Figure 2 we
can see a that the beginning cap connection in d,
matches well with the beginning of d,.. Therefore
in this case, vg = h¢ - SM (uo, tr0)
Unmatched Connections: What of the case
when for a connection in d, the second segment
was not matched to d,.? For an example, one
can see the connection between us and u3 in Fig-
ure 2. Here, we declare it an unmatched match
and give it an ease of transformation score of
0, i.e., v3 = 0. But more than that, we declare
this connection to be in need of a patch. This is
because when a reader finds a connection that is
not represented in the reference document, they
do not merely forget about it and move on. They
attempt to patch over the narrative hole. And if
there are multiple unmatched connections in a
row, they are all part of one hole in need of a
patch.

Patching Connections: When a narrative hole
begins as mentioned, it becomes patched when
we find find the next matched segment in d,. The
reason we are now able to patch over the hole
is because we can form a patching connection
between the last matched segment (which may in
fact be the beginning as seen in Figure 3 which is
not really a segment but behaves as one) and the
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just now matched segment. For an example, let
us see what happens when we score the connec-
tion between u3 and the end of d,. First, this is a
cap so we will multiply our score by h.. Second,
the second segment in this connection is the end
of dy which cannot constitute an unmatched seg-
ment because it is matched by definition to the
end of d,.. Therefore, the narrative hole starts at
the matched uy and stops here at the end. There-
fore our patch is ug+" "+ug and it corresponds to
where the start of the patch matched to and where
the stopping place matched to. Furthermore, as
discussed for caps, there is no clear a priori intu-
ition on how patches should be scored in compar-
ison to typical connections. Thus, we introduce
hyper-parameter h, to be a scaling factor. There-
fore this particular patching capped connections,
it as scored such that vy = hc - hy - SM (uz+"
"+us, tr9).

Inversely Ordered Connections: There is the
last exceptional case when we are given a
matched connection but the start and stop d; seg-
ments occur in reverse order of their matched
segments in d,. In this case, we determined that
readers will only refer back to the reference seg-
ment that matches to the stop segment. This is
because the inverse ordering completely disman-
tles the narrative between the segments and so the
generated connection can most intuitively trans-
formed back into the first occurring segment that
it matched with.

C Human Annotation Questions

The form started with:

"Given "CorrectDocst.txt" and "Reordered-
Docs.txt", please do the following. For each set
(there are 5), first read that sets correct document.
This is the ordering of ideas and semantic meaning
that the reordering models are trying to recreate.

Then after reading each of these correct order-
ings, read the four reordered documents that were
generated by four different models. Then for each
one, grade it below based on how similar the or-
dering is, then how similar they are on a document
level.

If you have any questions at all, please reach
out."

Then for each set of four documents, we asked:

"Did the first model match the ordering well?"
and "Did the first model match the overall meaning
well?"
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We allowed them to answer on a scale 1-5.

D Human Annotations Spearman Scores

See Table 4, the results are similar and warrant the
same analysis.

Correlation with
Human Annotations
Similarity \ Ordering
Deberta Ep 0.700 0.677
Avg. SBERT Eg 0.593 0.586
Avg. MiniLM Eg 0.622 0.623
Avg. GloVe Ew 0.641 0.606
ExSiM 0.691 0.671
(Commutative)
ExSiM 0.864 0.830
(Non-Commutative)
ExSiM* 0.668 0.678
(Commutative)
ExSiM* 0.852 0.885
(Non-Commutative)

Table 4: Correlation (Spearman) between Human and
Directed Similarity Assessment. * matches between
concatenations disallowed



