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ABSTRACT

Neural network-based methods for solving Mean-Field Games (MFGs) equilib-
ria have garnered significant attention for their effectiveness in high-dimensional
problems. However, many algorithms struggle with ensuring that the evolution
of the density distribution adheres to the required mathematical constraints. This
paper investigates a neural network approach to solving MFGs equilibria through
a stochastic process perspective. It integrates process-regularized Normalizing
Flow (NF) frameworks with state-policy-connected time-series neural networks
to address McKean-Vlasov-type Forward-Backward Stochastic Differential Equa-
tion (MKV FBSDE) fixed-point problems, equivalent to MFGs equilibria. First,
we reformulate MFGs equilibria as MKV FBSDEs, embedding the density dis-
tribution into the equation coefficients within a probabilistic framework. Neural
networks are then designed to approximate value functions and gradients derived
from these equations. Second, we employ NF architectures, a class of generative
neural network models, and impose loss constraints on each density transfer func-
tion to ensure volumetric invariance and time continuity. Additionally, this paper
presents theoretical proofs of the algorithm’s validity and demonstrates its appli-
cability across diverse scenarios, highlighting its superior effectiveness compared
to existing methods.

1 INTRODUCTION

Mean-Field Games (MFGs), introduced independently by Lasry & Lions (2007) and Huang et al.
(2006), provide a robust framework for addressing large-scale multi-agent problems. MFGs are
widely applied in domains such as autonomous driving, social networks, crowd management, and
power systems.

Neural network-based algorithms have recently been employed to solve MFGs equations due to their
ability to handle high-dimensional problems effectively. For example, Lin et al. (2021) reformulated
MFGs as a generative adversarial network (GAN) training problem, and Ruthotto et al. (2020) in-
troduced a Lagrangian-based approach to approximate agent states through sampling. Additionally,
Chen et al. (2023) applied reinforcement learning and neural networks to model distributions and
address value functions. Most approaches focus on optimizing the loss term in MFGs coupled
equations using sampled agents, but they often neglect density dynamics, leading to challenges in
representing continuous state density distributions.

Carmona et al. (2018) introduced a stochastic process perspective on MFGs, leveraging McKean-
Vlasov Forward-Backward Stochastic Differential Equations (MKV FBSDEs) to address MFGs
equilibria, and explored numerical methods for solving them. Achdou & Lauriere (2015) proposed
simplified MFGs models for pedestrian dynamics and demonstrated them with numerical simula-
tions. Ren et al. (2024) studied multi-group MFGs by solving asymmetric Riccati differential equa-
tions and established sufficient conditions for the existence and uniqueness of optimal solutions.
However, existing MKV FBSDE methods are often limited to linear-quadratic MFGs, where dis-
tributions are simplified to the expectation of agents’ states, rather than full distribution functions,
in nonlinear settings. Recently, Huang et al. (2023) proposed a data-driven Normalizing Flow (NF)
approach to solve distribution-involved optimal transport stochastic problems. Nevertheless, con-
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straints from MFGs process dynamics, terminal loss, and equation coupling limit the availability of
NF frameworks for high-dimensional MKV FBSDEs.

In summary, solving the MFGs equilibrium reduces to addressing equivalent stochastic fixed-point
problems that incorporate distribution flows. NF-MKV Net is proposed to solve the MKV FBSDEs
problem by coupling the process-regularized NF and state-policy-connected time series neural net-
works. The enhanced NF framework models flows of probability measures, constructing a density
distribution flow that satisfies volumetric invariance at each time step. State-policy-connected time
series neural networks, grounded in MKV FBSDEs, model relationships between time-step value
functions and approximate their gradients, enabling solutions in a time-consistent manner. Using
the coupled frameworks, the fixed-point distribution flow equivalent to the MFGs equilibrium can
be determined while ensuring mathematical constraints are satisfied.

Contributions: The main contributions and results are summarized as follows:

• NF-MKV Net is proposed to solve MKV FBSDEs, which are equivalent to MFGs equilib-
rium, from a stochastic process perspective. By integrating process-regularized NFs and
state-policy-connected time series neural networks into a coupled framework with alternat-
ing training, the method adheres to volumetric invariance and time-continuity constraints.

• Process-regularized NF frameworks are designed to model probability measure flows by
enforcing loss constraints on each density transfer function, ensuring volumetric invariance
at each time step.

• State-policy-connected time series neural networks, built upon MKV FBSDEs, capture the
relationships between time-step value functions and approximate their gradients, enabling
time-consistent solutions.

• The method demonstrates applicability in traffic flow, low- and high-dimensional crowd
motion, and obstacle avoidance problems. Additionally, it satisfies mathematical con-
straints better than existing neural network-based approaches.

2 CONNECTIONS AMONG MFG, MKV, AND NF

2.1 MFGS↔ MCKEAN-VLASOV FBSDE

We now formalize the MFGs problem without considering common noise. For this purpose, we start
with a complete filtered probability space (Ω,F ,F = (Ft)0≤t≤T ,P)) the filtration F supporting a
d−dimensional Wiener process W = (Wt)0≤t≤T with respect to F and an initial condition ξ ∈
L2(Ω,F0,P;Rd). This MFGs problem can be described as:

(i) For each fixed deterministic flow µ = (µt)0≤t≤T of probability measures on Rd, solve the
standard stochastic control problem:

inf
α∈A

Jµ(α) with Jµ(α) = E[
∫ T

0

f(t,Xα
t , µt, αt)dt+ g(Xα

T , µT )], (1)

subject to

{
dXα

t = b(t,Xα
T , µt, αt)dt+ σ(t,Xα

T , µt, αt)dWt, t ∈ [0, T ],
Xα

0 = ξ
(2)

(ii) Find a flow µ = (µt)0≤t≤T such that L(X̂µ
T ) = µt for all t ∈ [0, T ], if X̂µ is a solution of the

above optimal control problem.

We can see that the first step provides the best response of a given player interacting with the statisti-
cal distribution of the states of the other players if this statistical distribution is assumed to be given
by µt. In contrast, the second step solves a specific fixed point problem in the spirit of the search for
fixed points of the best response function.
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Usually, the solution of MFGs is transformed into a set of coupled partial differential equations,
namely the HJB-FPK equations, which respectively describe the evolution of the value function of
the representative element and the density evolution of the group, as shown below:

− ∂tu− ν∆u+H(x,∇u) = f(x, µ) (HJB)
∂tµ− ν∆µ− div(µ∇pH(x,∇u)) = 0 (FPK)
µ(x, 0) = µ0, u(x, T ) = g(x, µ(·, T ))

(3)

in which, u : Rn × [0, T ]→ R is the value function to guide the agents make decisions; H : Rn ×
Rn → R is the Hamiltonian, which describes the physics energy of the system; µ(·, t) ∈ L(Rn)is
the distribution of agents at time t, f : Rn × L(Rn) → Rn denotes the loss during process; and
g : Rn × L(Rn)→ Rn is the terminal condition, guiding the agents to the final distribution.

Let assumption MFGs Solvability HJB (as shown in Appendix A.1) be in force. Then, for any
initial condition ξ ∈ L2(Ω,F0,P;Rd), the McKean-Vlasov FBSDEs:

{
dXt = b(t,Xt,L(Xt), α̂(t,Xt,L(Xt), σ(t,Xt,L(Xt))

−1†Zt))dt+ σ(t,Xt,L(Xt))dWt

dYt = −f(t,Xt,L(Xt), α̂(t,Xt,L(Xt), σ(t,Xt,L(Xt))
−1†Zt))dt+ Zt · dWt

(4)
for t ∈ [0, T ], with YT = g(XT ,L(XT )) as terminal condition, is solvable. Moreover, the flow
(L(XT ))0≤t≤T given by the marginal distributions of the forward component of any solution is an
equilibrium of the MFGs problem associated with the stochastic control problem Eq.(1).

We consider the optimal control step of the formulation of the MFGs problems described earlier.
Probabilists have a two-pronged approach to these optimal control problems. We consider that the
input µ = (µt)0≤t≤T is deterministic and fixed to search the optimal reaction decision. Then, after
the result of fixed decision, the optimal flows of probability measure can be solved. Alternately
seeking for the optimal control, the MFGs equilibrium can be finally derived.

2.2 MFGS↔ NF

NNormalizing Flows (NF), introduced by Tabak & Vanden-Eijnden (2010), enable exact computa-
tion of data likelihood through a sequence of invertible mappings. A key feature of NF is its use of
arbitrary bijective functions, achieved through stacked reversible transformations. The flow model
R consists of a sequence of reversible flows, expressed as R(x) = r1 ◦ r2 ◦ · · · ◦ rL(x), where each
ri has a tractable inverse and Jacobian determinant.

Our algorithm leverages the volume-preserving property of NF, aligning with the consistency of
density flow in MFGs during evolution. This principle is essential for constructing the density flow
in the MFGs model.

The connection between MFGs and NF provides inherent advantages. For example, in MFGs, the
initial distribution is often represented in a simple analytical form. This parallels NF’s approach,
where a simple initial distribution transforms into a more complex one for density estimation. Ad-
ditionally, one advantage of NF over other generative models is its preservation of total density
during transformation, consistent with the MFGs requirement

∫
µdx = 1. A challenge, however,

is that MFGs, unlike Optimal Transport (OT), lacks both initial and terminal density distributions.
In MFGs, only an initial distribution exists, and the terminal condition is governed by the terminal
value function g(x, µ(·, T )). This complicates framing the problem as a complete density evolution
problem.

To address this, we idealize the MFGs model with the assumption that the terminal value function
corresponds to an explicitly solvable optimal terminal density. For example, in trajectory plan-
ning problems, the terminal value function is often related to the destination, such as g(x, µ) =∫
Rd −e−||x−xT ||2dµ(x). In such cases, we assume the optimal terminal distribution is µ(xT ) = 1,

enabling the MFGs problem to be framed with initial and terminal densities. We will show that this
assumption is reasonable.

3
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3 METHODOLOGY: NF-MKV NET

We propose NF-MKV Net, an alternately trained model combining NF and McKean-Vlasov
Forward-Backward Stochastic Differential Equations (MKV FBSDEs), to address MFGs equilib-
rium problems. The main advantage of MKV FBSDEs is their ability to capture both optimization
and interaction components in a single coupled FBSDE, eliminating the need for separate references
to Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations. NF generates
flows represented by neural networks, constraining each density transfer function to define density
distributions at specific times. The density flow from NF couples with the value function of the
MFG. The value function constrains the neural network generating the flow via the HJB equation,
while its gradient update depends on the current marginal distribution flow.

First, we reformulate the stochastic equations of MFGs using MKV FBSDEs and approximate value
function gradients with neural networks, effectively addressing the curse of dimensionality in tra-
ditional numerical methods. Second, to address the distribution-coupled challenge, we use NF ar-
chitectures to model agents’ state density distributions, alternately training the unknown transition
processes with value functions. Figure (1) illustrates the framework of NF-MKV Net.

Figure 1: Framework Diagram of the NF-MKV Net

3.1 MODELING VALUE FUNCTION WITH MKV FBSDES

We consider a general class of MFGs problem associated with the stochastic control problem (1),
the relative FBSDEs can be represented as in (4), with initial condition ξ ∈ L2(Ω,F0,P;Rd) and
terminal condition YT = g(XT ,L(XT )).

Then the solution of Eq.(3) satisfies the following FBSDE:

u(x, t)−u(x, 0) = −
∫ t

0

f(s,Xs,L(Xs), α̂(s,Xs,L(Xs), σ(t,Xs,L(Xs))
−1†Zs))ds+

∫ t

0

ZsdWs.

(5)

We apply a temporal discretization to Eq.(4). Given a partition of the time interval[0, T ] : 0 = t0 <
t1 < · · · < tN = T , we consider the simple Euler scheme forn = 1, · · · , N − 1

Xtn+1
−Xtn ≈ b(t,Xα

T , µt, αt)∆tn + σ(t,Xα
T , µt, αt)∆Wn, (6)

and

u(x, tn+1)− u(x, tn) ≈ −f(s,Xs,L(Xs), α̂t(·)−1†Zs))∆tn + [∂xu(x, t)]
Tσ∆Wn, (7)
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where
∆tn = tn+1 − tn, ∆Wn =Wtn+1

−Wtn . (8)

The key in modeling the above FBSDEs is to approximate the value function x 7→ u(0, x) at t = t0,
which is u(0, x) ≈ u(0, x|θ0); while approximating the function x 7→ [∂xu(x, t)]

Tσ at each time
step t = tn through a multi-layer feedforward neural network

x 7→ [∂xu(x, t)]
Tσ ≈ [∂xu(x, t)|θn]Tσ, (9)

which represents the adjoint variable Zt of the value function of the element, which is expressed as
the product of the gradient and the random variable in the MFGs optimization problem.

Subsequently, all value functions are connected by summing Eq.(7) over t. The network uses
the generated density flows µ and Wtn as inputs and produces the final output û, approximating
u(x, T ) = g(x, µ(·, T )). This approximation defines the expected loss function by comparing the
maximum likelihoods of the two functions to minimize the difference for {xi}Ni=1 ∼ z = µ̂T :

lMKV = − logp(g(z, µ̂T )|û(θ, z)) = −
1

N

∑N

i=1
logp(g(xi, µ̂T )|û(θ, xi)). (10)

In summary, we reformulate MFGs as MKV FBSDEs (Eq.(5)) and discretize time to establish the
relationship between value functions at each time t (Eq.(7)), connecting them via the adjoint variable
Zt. Next, we parameterizeZt and u0, using these relationships to link uT with the terminal condition
g(x, µ(·, T )) for maximum likelihood estimation (Eq.(10)) to minimize the final MFGs loss.

3.2 MODELING DENSITY DISTRIBUTION WITH NF

Typically, NF methods prioritize density estimation results. In contrast, our approach emphasizes the
NF density evolution process, constraining each layer to align with the density evolution in MFGs.

In an NF model, If ri are differentiable and reversible functions, we usually express it like:

(Normalizing) r = r1 ◦ r2 ◦ · · · ◦ rN , pµ0
(X) = pµT

(r(X))|detDr(X)|
(Construct) s = sN ◦ sN−1 ◦ · · · ◦ s1, pµT

(X) = pµ0
(s(X))|detDr(X)|−1 (11)

To simplify the explanation, we consider a one-dimensional model. During training, ri(x) is rep-
resented as a neural network, ri(x;ϕ). Multiple ri are combined to obtain the desired function f .
Typically, training minimizes the negative log-likelihood loss between the final estimated density
and the dataset, expressed as

L(x) = − logpµT
(x) = − logpµ0

(r−1(x))− log |detDr−1(x)| (12)

in which there is no need to consider the loss of each ri in the process.

Discretizing the NF construction process reveals that each function corresponds to Euler time dis-
cretization. Thus, each sub-function ri transforms the group density µi in MFGs into µi+1. This
series of reversible flows represents the time evolution process, which results in that

µ0
r(x)−−→ µT ⇔ µ0

rt1 (x)−−−−→ µt1

rt1 (x)−−−−→ µt2

rt2 (x)−−−−→ · · ·
rtN−1

(x)
−−−−−−→ µtN (13)

Additionally, as each sub-function is implemented as a neural network, the loss at each time step
can be used to constrain and optimize the sub-functions. The density µt can be expressed as µtn =
r1,2,··· ,n ◦ µ0, where r1,2,··· ,n = rtn ◦ rtn−1

◦ · · · ◦ rt1 .

Our way of modeling the limited is to approximate the crowd density of each layer

µ0 7→ r1,2,··· ,n(x) ◦ µ0(x) ≈ r1,2,··· ,n(x;Φ) ◦ µ0 (14)

at each time step t = tn through a NF model consisting of multiple layers of Masked Autoregressive
Flow (MAF) and Permute parameterized by ϕ.

To train the NF, the first step is computing the process loss lHJB. At each time step t = tn, the MFGs
system satisfies the HJB equation. Section 3.1 describes the value function and its gradient. Thus,
samples xiMi=1 from µt at each time step can be used in the HJB equation to compute the loss,

lHJB =
1

N

1

M

∑N

n=1

∑M

i=1
∥∂tu (xi, tn)+ν∆u (xi, tn)−H (∇xu (xi, tn))+f (xi, tn) ∥2 (15)
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where(
{xi}Mi=1, tn

)
∼ µtn ≈ µtn(ϕ) = rtn(x;ϕn) ◦ rtn−1

(x;ϕn−1) ◦ · · · ◦ rt1(x;ϕ1) ◦ µ0. (16)

Additionally, the NF method must match the terminal density condition, so the terminal loss lT is also
included in the loss calculation.If the terminal condition g is explicitly defined, the corresponding
optimal density µ̂T (ϕ) = f(x; Φ) ◦ µ0 can serve as the target distribution for NF. The negative log-
likelihood between µ̂T (ϕ) and µT generated by NF is used to compute the terminal loss lT. For
xi

N
i=1 ∼ µ̂T (Φ):

lT = − logp(µT |µ̂T (Φ)) = −
1

N

∑N

i=1
logp(µT |µ̂T (Φ, xi)). (17)

In summary, NF, as a generative model, can construct intermediate function compositions and dis-
tributions without direct data use, relying solely on the initial distribution µ0 and the terminal distri-
bution µT , while preserving density consistency. We first compute the terminal density distribution
µT explicitly and construct an NF to transition from µ0 to µT . The losses lHJB (Eq. 15) and lT (Eq.
17) constrain NF evolution, ensuring the flow density aligns with the control objectives.

3.3 COUPLING TWO PROCESSES

Two processes can be coupled and trained alternately. As NF is a generative model, it can first
generate a set of flow density evolution functions along with the corresponding density distributions
at each time step. This generated set of density distributions is fixed as the marginal distribution
to optimize the value function and gradient under the MKV FBSDE framework. Once the optimal
value function for this marginal distribution flow is obtained, it is fixed to update each rn and its
corresponding µtn in the NF evolution process. This continues until the optimal density distribution
flow under the current value function is achieved. This iterative coupled training continues until
convergence. Algorithm (1) presents the pseudo-code of the model.

Algorithm 1 NF-MKV Net
Require: σ diffusion parameter, g terminal cost, H Hamiltonian, f process loss, µ0 initial density
Ensure: µ = (µt)0≤t≤T density flow, u = (ut)0≤t≤T , value function
µT←argmaxµ g(x, µ(x, T ))
Generating NF {µtn(ϕn)}Nn=1 from µ0 to µT

while not converged do
Train u(0, x|θ0) and [∂xu(x, t)|θn]Tσ for n = 1, 2, · · · , N :
Sample batch

(
{xi}Mi=1, tn

)
∼ µtn for n = 1, 2, · · · , N

Sample Winner Process {Wtn}Nn=1 ∼ N (0, σ2)
lMKV ← − 1

N |g((xi, T ), µT ))− û({(xi,n, tn)}), {Wtn}Nn=1|2
Back-propagate the loss lMKV to θ weights.
Train rn(ϕn) for n = 1, 2, · · · , N :
Sample batch

(
{xi}Mi=1, tn

)
∼ µtn(ϕn) for n = 1, 2, · · · , N

lHJB ← 1
N

1
M

∑N
n=1

∑M
i=1 ∥∂tu (xi, tn) + ν∆u (xi, tn)−H (∇xu (xi, tn)) + f (xi, tn) ∥2

Sample batch {xi}Ni=1 ∼ µ̂T (Φ)

lT ← − 1
N

∑N
i=1 logp(µT |µ̂T (Φ, xi))

Back-propagate the loss lNF = lHJB + lT to ϕ weights.
end while

4 NUMERICAL EXPERIMENT

We apply NF-MKV Net to MFGs instances and present the numerical results in two parts. The first
part demonstrates NF-MKV Net as an effective method for solving MFGs equilibrium involving
density distributions. The second part highlights the accuracy of NF-MKV Net in comparison to
other algorithms.
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4.1 SOLVING MFGS WITH NF-MKV NET

This section presents three examples of solving MFGs using NF-MKV Net, demonstrating its appli-
cability to traffic flow problems, low- and high-dimensional crowd motion problems, and scenarios
with obstacles.

4.1.1 EXAMPLE 1: MFGS TRAFFIC FLOW CONTROL

A series of numerical experiments in MFGs Traffic Flow Control explore the dynamics of MFGs,
focusing on autonomous vehicles (AVs) navigating a circular road network. The traffic flow scenario
is formulated as an MFGs problem involving density distribution and the value function.

The initial density is defined on the ring road, where the state x represents the AVs’ position. The
state transfer function is dx = vdt + σdWt, and the process constraint is f(x) = 1

2 (1 − µ − b)
2.

The Hamiltonian is defined as H(x, p, t) = f(p, µ) + pux, leading to the optimal control u∗ =
argminp(f(p, µ) + pux). In the finite time domain problem, the terminal value function uT of the
AVs system is constrained at t = T . It is assumed that AVs have no preference for their locations at
time T , i.e., u(x, T ) = 0. In the MFGs traffic flow problem, the terminal value function uT can be
solved explicitly as µT (x) = 1,∀x ∈ (0, 1), satisfying the model’s assumptions.

Without loss of generality, we define the time interval as [0, 1] and set the initial density µ0 at t = 0.
To verify the volumetric invariance of the density distribution discussed in our study, we selected
initial density functions satisfying

∫ 1

0
µ0(x)dx. Four different initial densities were selected, each

with a distinct diffusion coefficient σ for the Wiener process. NF-MKV Net was then employed to
solve for equilibrium, verifying the proposed algorithm’s applicability.

Results in Fig.(2) indicate that the agent distribution, regardless of initial density µ0 or drift term σ,
converges to the equilibrium µ(x, T ) = 1. Comparing NF-MKV Net with the numerical solution
shows errors below 10−3, demonstrating the algorithm’s effectiveness in solving traffic flow prob-
lems. The results illustrate the evolution of the density distribution µ(x) over time t and the log
errors compared to the noise-free numerical method.

Figure 2: NF-MKV Net solutions and numerical error of MFGs traffic flow with various initial
density distribution and diffusion coefficients

4.1.2 EXAMPLE 2: MFGS CROWD MOTION

In this example, a dynamically formulated MFGs problem, the Crowd Motion problem, is con-
structed in dimensions d = 2 and d = 50 to demonstrate the applicability of NF-MKV Net. We set
the problems as in Eq.(3) with parameter:

f(x, µ) =

∫
Rn

e−|x−x̂|
2

dµ(x̂), H(x, p, t) = |p|2 + f(x, µ, t),

µ(x, 0) = µ0(x), u(x, T ) =

∫
Rn

|x− xT |2dµ(x)
(18)

d = 2 Crowd Motion. Here, σ =
√
2 is used with 20 time steps in the dynamics process, and

the initial distribution is set as µ0(x) = N ((−2,−2), (12, 12)). To reach the goal point, we set
xT = (2,−2) which means the terminal condition is g(x, µ(·)) =

∫
R2 |x− (2,−2)|2dµ(x).The

7
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terminal distribution is set as µT (xT ) = 1 to minimize the terminal condition. With these settings,
NF-MKV Net trains the MFGs model associated with the dynamic system.

Figure 3: 2-dimensional crowd motion dynamics flow

d = 50 Crowd Motion. Similar to the 2-dimensional case, high-dimensional methods adopt
the same settings as in Eq.(3) and Eq.(18). In contrast, high-dimensional methods handle agent
states and controls in R50, along with density distributions in L(R50). So Our initial den-
sity µ0(x) is a Gaussian centered at (−2,−2, 0, · · · , 0) and terminal conditions g(x, µ(·)) =∫
R50 |x− (2, 2, 0, · · · , 0)|2dµ(x). Also, the optimal terminal density distribution can be written

as µT (xT ) = 1. With these settings, NF-MKV Net trains the MFGs model associated with the
dynamic system. Results are visualized in the first two dimensions by summing projections from
higher dimensions onto these two dimensions.

Figure 4: 50-dimensional crowd motion dynamics flow

The trajectories of 1000 points are shown in Fig. (3) for the 2-dimensional case and Fig. (4) for
the 50-dimensional case. NF-MKV Net effectively transforms the initial Gaussian density into the
terminal condition along a nearly straight trajectory, while ensuring crowd deformation and inter-
group collision avoidance. This behavior remains consistent as the dimensionality increases.

4.1.3 EXAMPLE 3: MFGS CROWD MOTION WITH OBSTACLE

This experiment considers an MFGs problem with complex process interaction costs. Following the
general setting in Eq.(3) and Eq.(18), we change the process interaction costs f as

f(x, µ) =

∫
Rn

e−|x−x̂|
2

dµ(x̂) +

∫
Rn

(
e−|x−xo|2 + e−||x−xo|2−ssafe|2

)
dµ(x). (19)

We set σ =
√
2 with 20 time steps in the dynamics process and set initial distribution as µ0(x) =

N ((−2,−2); 12). To reach the goal point, we set xT = (2, 2) which means the terminal condition is
g(x, µ(·)) =

∫
R2 |x− (2, 2)|2dµ(x). The terminal distribution should be µT (xT ) = 1 to minimize

the terminal condition. During the dynamics, the system optimizes the process loss f defined in
Eq. (19). The problem involves transforming the initial Gaussian density to a new location while
minimizing terminal conditions, avoiding congestion, and bypassing an obstacle at xo = (2,−2)
with a safety radius ssafe = 1.5. With these settings, NF-MKV Net successfully trains the MFGs
model associated with the dynamics system.

8
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Figure 5: 2-dimensional crowd motion dynamics flow with an obstacle.

The results, shown in Fig. (5), demonstrate that NF-MKV Net successfully transforms the initial
Gaussian density into the desired terminal condition along an optimized trajectory, ensuring crowd
deformation, inter-group collision avoidance, and obstacle avoidance.

4.2 COMPARISON WITH OTHER METHODS

To verify volumetric invariance and time continuity, we compare NF-MKV Net with existing MFGs
solving methods, including the distribution-based RL-PIDL method proposed by Chen et al. (2023)
and the high-dimensional neural network-based APAC-Net by Lin et al. (2021).

Distribution volumetric-invariance. We implement an approximated integral over the dynamics
region, widely used in density estimation such as O’Brien et al. (2016). By generating a grid over a
specified area, the numerical integration of a specified probability distribution over that area is com-
puted, and the return value should be close to 1. This method verifies the validity of the distribution.
Since the approximated integral is a grid-based method, it can only be used in low-dimensional
problems. So, when we approximate integral in d = 50 crowd motion, we use the same process as
when showing the high-dimensional trajectories from the experiment above, that is, a projection-like
method that accumulates the density distribution function on the other components over the first two
components and estimates the density in a 2-dimensional region.

Agents states time-continuity. The Wasserstein distance is generally chosen as the metric for
the difference between two density distributions. Laurière et al. (2022) has used the method to
assess the difference between distributions. Even without an explicit probability density function,
the Wasserstein distance (W -dis) can be computed by optimization methods as long as it can be
sampled from both distributions.

We set the comparison experiments in traffic flow (d = 1) and crowd motion (d = 2 and 50). The
comparison results are shown in Tab.(1) and Fig.(6).

Table 1: Comparison with other methods

COMPARISON NF-MKV RL-PIDL APAC-NET

Exp 1:
traffic flow
(d = 1)

log of µ integral
difference from 1

−2.67 −0.21 /
(sample-based)

W -dis of µt bet-
ween time steps 0.044 0.052 0.047

Exp 2:
crowd motion

(d = 2)

log of µ integral
difference from 1

−2.32 −0.13 /
(sample-based)

W -dis of µt bet-
ween time steps 0.096 0.108 0.101

Exp 2:
crowd motion
(d = 50)

log of µ integral
difference from 1

−1.06 0.26
/

(sample-based)
W -dis of µt bet-
ween time steps 2.27 3.49 2.85

9
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Figure 6: Comparison results in time steps. Left: log of integration of distribution difference from
1 in traffic flow (d = 1). Right: Wasserstein distance of distribution between time steps in crowd
motion (d = 2).

The integral error of the NF-MKV Net method over the dynamic region is below 10−2 and close to
the standard value of 1, significantly outperforming the other method, which has an error exceeding
0.1 in low-dimensional problems. In high-dimensional scenarios, the error of the other method is
over ten times larger than that of NF-MKV Net, highlighting the distribution volumetric invariance
of NF-MKV Net. The NF-MKV Net has the smallest average Wasserstein distance between adja-
cent time steps among the three methods. This demonstrates smoother evolution and superior agent
state time-continuity.

In summary, NF-MKV Net excels in distribution volumetric invariance and agent state time-
continuity, making it suitable for solving MFGs problems involving density distributions.

5 CONCLUSION

This paper investigates MFGs equilibrium solutions using a stochastic process framework, address-
ing equivalent probability distribution flow fixed-point problems instead of directly solving the cou-
pled MFGs equations. We propose NF-MKV Net, which integrates process-regularized NF with
state-policy-connected time-series neural networks. Process-regularized NF frameworks enforce
mathematical constraints by regulating the transfer functions to represent flows of probability mea-
sures. State-policy-connected time-series neural networks, grounded in MKV FBSDEs, establish
relationships among value functions to ensure a time-consistent process. The proposed method
is validated in diverse scenarios, demonstrating its effectiveness compared to existing approaches.
NF-MKV Net exhibits strong performance in distribution volumetric invariance and agent state time-
continuity, making it applicable to MFGs problems involving distributions.
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A ASSUMPTION(MFGS SOLVABILITY HJB)

(A1) The volatility σ is independent of the control parameter α.
(A2) There exists a constant L ≥ 0 such that:

|b(t, x, µ, α)| ≤ L(1 + |α|), |f(t, x, µ, α)| ≤ L
(
1 + |α|2

)∣∣(σ, σ−1) (t, x, µ)∣∣ ≤ L, |g(x, µ)| ≤ L

for all (t, x, µ, α) ∈ [0, T ]× Rd × P2

(
Rd
)
×A.

(A3) For any t ∈ [0, T ], x ∈ R, and µ ∈ P2

(
Rd
)
, the functions b(t, x, µ, ·) and f(t, x, µ, ·) are

continuously differentiable in α.
(A4) For any t ∈ [0, T ], µ ∈ P2

(
Rd
)

and α ∈ A, the functions b(t, ·, µ, α), f(t, ·, µ, α),
σ(t, ·, µ) and g(·, µ) are L−Lipschitz continuous in x; for any t ∈ [0, T ], x ∈ R and
α ∈ A, the functions b(t, x, ·, α), f(t, x, ·, α), σ(t, x, ·) and g(x, ·) are continuous in the
measure argument with respect to the 2-Wasserstein distance.

(A5) For the same constant L and for all (t, x, µ, α) ∈ [0, T ]× Rd × P2

(
Rd
)
×A,

|∂αb(t, x, µ, α)| ≤ L, |∂αf(t, x, µ, α)| ≤ L(1 + |α|).

(A6) Letting
H(t, x, µ, y, α) = b(t, x, µ, α) · y + f(t, x, µ, α)

for all (t, x, µ, α) ∈ [0, T ] × Rd × P2

(
Rd
)
× A, there exists a unique minimizer

α̂(t, x, µ, y) ∈ argminαH(t, x, µ, y, α), continuous in µ and L−Lipschitz continuous in
(x, y), satisfying:

|α̂(t, x, µ, y)| ≤ L(1 + |y|),
for all (t, x, µ, y) ∈ [0, T ]× Rd × P2

(
Rd
)
× Rd.
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B SYMBOLS TABLE

To ensure clarity, we have included a correspondence table for all symbols to enhance the reading
experience.

Table 2: Table of symbols

Symbol Meaning
Ω State Process
F Filtration in the process
Ft Filtration at time t
P Probability space measure
W Wiener Process in the process
Wt Wiener Process at time t
ξ Initial Condition
L2(·) Square Integrable Function Space
Rd d-dimensional real number space
µ Probability Density Measures Flows in the process
µt Probability Density at time t
α Control Action Process
A Control Action Set
Jµ(α) Loss Functions under Behavioral and Density Flow
E Expectation
f Process Loss Function
g Terminal Loss Function
b State Control
σ Random Perturbation
Xα

0 Initial State under a Particular Behavioral Flow
X̂µ

t Optimal State of the Representative Agent
L(X̂µ

t ) The marginal density flow corresponding to the optimum
u Value Function
v Random Perturbation
H(x, p) Hamiltonian function corresponding to state x and covariates
Xt State at time t
Yt Value Function in MKV FBSDE at time t
Zt Covariate in MKV FBSDE at time t
rt Intermediate Conversion Functions for each layer in NF
R(x) Conversion Functions in NF
st The inverse of the intermediate conversion function for each layer in the NF
S(x) The inverse of the conversion function of NF
σ−1† The inverse ergodic conjugate transpose of sigma
u(0, x|θ0) Neural network representation of the value function at time t = 0
∂xu(x, t|θn) Neural network representation of the gradient of the value function
û Final output
P(g, u) Maximum likehood of function g and u
lMKV Training Loss of the MKVFBSDE
R1,2,··· ,n(x; Φ) Neural network parameter representation of NF
lHJB Training Loss of the HJB equation
N,M Number of time segments, number of full-plane samples
lT Terminal Loss
rt(x; Φt) Parameter representation of the NF conversion function
x ∼ µ Sample
p Covariate in Hamiltonian function
ux u takes a partial derivative with respect to x
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C THEORETICAL ANALYSIS

The theoretical work of our designed algorithm are primarily reflected in using the Representation
Theorem for Strong Formulation to guarantee that the neural network solution corresponds to the
equilibrium of Mean-Field Games (MFGs).

In fact, MFGs do not always have an equilibrium; its existence depends on the form of the value
function in the equations. According to the conditions for the existence of equilibrium in MFGs[1]
and the Representation Theorem for Strong Formulation, the objective function must satisfy the
Lipschitz continuous, continuously differentiable and convexity condition (see Appendix A). If an
objective function that fails to meet these conditions is directly used as the network’s loss function,
the resulting solution cannot be guaranteed to correspond to the equilibrium of the MFGs, even if
the network provides a solution. At the same time, the solution of the two equations also requires
iterative solving, as the MFGs achieves a fixed point through their iteration.

We employ two networks to represent the forward and backward equations, respectively. The value
function of each network is strongly tied to the objective function of the equation, following an
approach similar to that of Han et al.[2], which effectively represents the equations. And by designing
the iterative training structure of the two networks, we characterize the iterative solution process of
the two equations in the MKV FBSDE solution process.

These measures theoretically guarantee the existence and uniqueness of the equilibrium in the MFGs
system, ensuring that the solution produced by our algorithm is indeed the equilibrium.

In order to show the existence of solutions to the MKV FBSDEs and the equivalence with the MFGs
under the given Solvability HJB conditions for the MKV FBSDEs used, we give theoretical proofs
which can illustrate the validity of our proposed transformational approach to the equilibrium of the
MFGs.

The objective is to prove that, for a given initial condition, the FBSDE has a solution with a bounded
martingale integrand, and that this solution is unique within the class of solutions with bounded
martingale integrands. Meanwhile, we must also construct a decoupling field. Below shows the
theoretical analysis.

Reference

[1] Lasry J M, Lions P L. Mean field games[J]. Japanese journal of mathematics, 2007, 2(1): 229-
260.

[2] Han J, Jentzen A, E W. Solving high-dimensional partial differential equations using deep learn-
ing[J]. Proceedings of the National Academy of Sciences, 2018, 115(34): 8505-8510.

Theorem: Representation Theorem for Strong Formulation.

For the same input µ as above and under assumption MFGs Solvability HJB, the FBSDE withX0 =

ξ as initial condition at time 0 has a unique solution (X0,ξ
t , Y 0,ξ

t , Z0,ξ
t )0≤t≤T with (Z0,ξ

t )0≤t≤T
being bounded by a deterministic constant, almost everywhere for Leb1 ⊗ P on [0, T ]× Ω.

Moreover, there exists a continuous mapping u : [0, T ] × Rd → R Lipschitz continuous in x
uniformly with respect to t ∈ [0, T ] and to the input µ, such that, for any initial condition ξ ∈
L2(Ω,F0,P;Rd), the unique solution (X0,ξ

t , Y 0,ξ
t , Z0,ξ

t )0≤t≤T to the FBSDE withX0 = ξ as initial
condition at time 0, satisfies:

P
[
∀t ∈ [0, T ], Y 0,ξ

t = u
(
t,X0,ξ

t

)]
= 1.

Also, the process (σ(t,X0,ξ
t , µt)

−1†Z0,ξ
t )0⩽t⩽T is bounded by the Lipschitz constant of u in x.

Finally, the process (X0,ξ
t )0⩽t⩽T is the unique solution of the optimal control problem. In particular,

E[u(0, ξ)] = Jµ(α̂) for

α̂ = (α̂(t,X0,ξ
t , µt, σ(t,X

0,ξ
t , µt)

−1†Z0,ξ
t ))0⩽t⩽T .

Proof. We split the proof into successive steps.
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First Step. We first focus on a truncated version of FBSDE, namely:{
dXt = b

(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt+ σ(t,Xt, µt)dWt,

dYt = −ψ(Zt)f
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt+ Zt · dWt,

(20)

for t ∈ [0, T ], with the terminal conditionYt = g(XT , µT ), for a cut-off function ψ : Rd → [0, 1] ,
equal to 1 on the ball of center 0 and radius R, and equal to 0 outside the ball of center 0 and radius
2R, such that sup |ψ′| ⩽ 2/R. For the time being, R > 0 is an arbitrary real number. Its value will
be fixed later on.

By Ref.1, we know that, for any initial condition (t0, x) ∈ [0, T ]×Rd, Eq.(20) is uniquely solvable.
We denote the unique solution by (XR;t0,x, Y R;t0,x, ZR;t0,x) = (XR;t0,x

t , Y R;t0,x
t , ZR;t0,x

t )t0⩽t⩽T .
Thanks to the cut-off function ψ, the driver of Eq.(20) is indeed Lipschitz-continuous in the variable
z. Moreover, the solution can be represented through a continuous decoupling field uR, Lipschitz
continuous in the variable x, uniformly in time. Also, the martingale integrand ZR;t0,x is bounded
by L times the Lipschitz constant of uR, with L as in assumption MFGs Solvability HJB. Therefore,
the proof boils down to showing that we can bound the Lipschitz constant of the decoupling field
independently of the cut-off function in Eq.(20).

Second Step. In this step, we fix the values of (t0, x) ∈ [0, T ] × Rd and R > 0, and we use
the notation (X,Y, Z) for (XR;t0,x, Y R;t0,x, ZR;t0,x). We then let (Et)0⩽t⩽T be the Doléans-Dade
exponential of the stochastic integral:(

−
∫ t

0

[
(σ−1b)(s,Xs, µs, α̂s)

]
· dWs

)
0⩽t⩽T

,

where α̂s = α̂(s,Xs, µs, σ(s,Xs, µs)
−1†Zs). As earlier, we write (σ−1b)(t, x, µ, α) for

σ(t, x, µ)−1b(t, x, µ, α) despite the fact that σ−1 and b do not have the same arguments. Since
the integrand is bounded, (Ēt)0⩽t⩽T is a true martingale, and we can define the probability measure
Q = ET · P. Under Q, the process:(

WQ
t =Wt +

∫ t

0

(
σ−1b

)
(s,Xs, µs, α̂s)ds

)
0⩽t⩽T

is a d-dimensional Brownian motion. Following the proof of Proposition 4.51, we learn that under
Q, (Xt, Yt, Zt)0≤t≤T is a solution of the forward-backward SDE:

dXt = σ(t,Xt, µt)dW
Q
t ,

dYt = −ψ(Zt)f
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

−Zt · (σ−1b)
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

+Zt · dWQ
t ,

(21)

over the interval [t0, T ], with the same terminal condition as before. Since Z is bounded, the
forward-backward SDE Eq.(21) may be regarded as an FBSDE with Lipschitz-continuous coeffi-
cients. By the FBSDE version of Yamada-Watanabe theorem proven in ref.1, any other solution
with a bounded martingale integrand, with the same initial condition but constructed with respect
to another Brownian motion, has the same distribution. Therefore, we can focus on the version of
Eq.(21) obtained by replacing WQ by W . If, for this version, the backward component Y can be
represented in the form Yt = V (t,Xt), for all t ∈ [t0, T ], with V being Lipschitz continuous in
space, uniformly in time, and with Z bounded, then V (t0, x) must coincide with uR(t0, x). Repeat-
ing the argument for any (t0, x) ∈ [0, T ]× Rd,we then have V ≡ uR.
Third Step. The strategy is now as follows. We consider the same FBSDE as in Eq.(21), but with
WQ replaced by the original W :

dXt = σ(t,Xt, µt)dWt,

dYt = −ψ(Zt)f
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

− Zt · (σ−1b)
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

+ Zt · dWt, t ∈ [0, T ],

(22)

with YT = g(XT , µT ), This BSDE may be regarded as a quadratic BSDE. In particular, Ref.1 ap-
plies and guarantees that it is uniquely solvable. However, since the driver in the backward equation
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is not Lipschitz continuous, we shall modify the form of the equation and focus on the following
version: 

dXt = σ(t,Xt, µt)dWt,

dYt = −ψ(Zt)f
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

− ψ(Zt)Zt · (σ−1b)
(
t,Xt, µt, α̂

(
t,Xt, µt, σ(t,Xt, µt)

−1†Zt

))
dt

+ Zt · dWt, t ∈ [0, T ].

(23)

Notice that the cut-off function ψ now appears on the third line. Our objective being to prove that
Eq.(23) admits a solution for which Z is bounded independently of R, whenR is large, the presence
of the cut-off does not make any difference.

Now, Eq.(23) may be regarded as both a quadratic and a Lipschitz FBSDE. For any initial condition
(t0, x), we may again denote the solution by (XR;t0,x, Y R;t0,x,ZR;t0,x). This is the same notation
as in the first step although the equation is different. Since the steps are completely separated, there is
no risk of confusion. We denote the corresponding decoupling field by V R. By Theorem in Ref.1, it
is bounded (the bound possibly depending on R at this stage of the proof) and ZR; t0, x is bounded.

For the sake of simplicity, we assume that t0 = 0 and we drop the indices R and t0 in the
notation (XR:t0,x,Y R:t0,x,ZR:t0,x). We just denote it by (Xx,Y x,Zx). Similarly, we just de-

note V R by V.

The goal is then to prove that there exists a constant C, independent of R and of the cut-off
functions, such that, for all x, x′ ∈ Rd,∣∣∣E[Y x′

0 − Y x
0 ]
∣∣∣ ⩽ C|x′ − x|, (24)

from which we will deduce that, for all x, x′ ∈ mathbbRd

|V (0, x′)− V (0, x)| ⩽ C|x′ − x|,
which is exactly the Lipschitz control we need on the decoupling field.

Fourth Step. We now proceed with the proof of Eq.(24). Fixing the values of x and x0 and letting

(δXt, δYt, δZt) =
(
Xx′

t −Xx
t , Y

x′

t − Y x
t , Z

x′

t − Zx
t

)
, t ∈ [0, T ],

we can write:
dδXt = [δσtδXt] dWt, t ∈ [0, T ], (25)

where δσtδXt is the d× dmatrix with entries:

(δσtδXt)i,j =

d∑
ℓ=1

(δσt)i,j,ℓ (δXt)ℓ, i, j ∈ {1, · · · , d}2,

where (δXt)ℓ is the ℓth coordinate of δXt and

(δσt)i,j,ℓ =
σi,j

(
t,Xℓ−1;x←x′

t , µt

)
− σi,j

(
t,Xℓ;x←x′

t , µt

)
(δXt)ℓ

1(δXt)ℓ ̸=0,

with:
Xℓ;x←x′

t =
(
(Xx

t )1, · · · , (Xx
t )ℓ, (X

x′

t )ℓ+1, · · · , (Xx′

t )d

)
.

From the Lipschitz property of σ in x,the process (δσt)0 ⩽ t ⩽ T is bounded by a constant C only
depending upon L in the assumption. Notice that in the notation δσtδXt, (δσtδXt)ij appears as
the inner product of ((δσt)i,j,ℓ)1≤ℓ≤d and ((δXt)ℓ)1≤ℓ≤d. Because of the presence of the additional
indices (i, j), we chose not to use the inner product notation in this definition. This warning being
out of the way, we may use the inner product notation when convenient.

Indeed, in a similar fashion, the pair(δYt, δZt)0⩽t⩽T satisfies a backward equation of the form:

δYt = δgT · δXT

+

∫ T

t

(
δF (1)

s · δXs + δF (2)
s · δZs

)
ds−

∫ T

t

δZs · dWs, t ∈ [0, T ],
(26)
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where δgT is an Rd-valued random variable bounded by C and δF (1) =

(δF
(1)
t )0⩽t⩽T and δF (2) = (δF

(2)
t )0≤t≤T are progressively measurable Rd-valued processes,

which are bounded, the bounds possibly depending upon the function ψ. Here,“” denotes the in-
ner product of Rd. Notice that, as a uniform bound on the growth of δF (1) and δF (2),we have:

|δF (1)
t | ⩽ C

(
1 + |Zx

t |2 + |Zx′

t |2
)

|δF (2)
t | ⩽ C

(
1 + |Zx

t |+ |Zx′

t |
), t ∈ [0, T ], (27)

the constantC only depending on the constant L appearing in the assumption and where we used the
assumption sup |ψ′| ⩽ 2/R. Since δF (2) is bounded, we may introduce a probability Q (again this is
not the same Q as that appearing in the second step, but, since the two steps are completely indepen-
dent, there is no risk of confusion), equivalent to P, under which (WQ

t = Wt −
∫ t

0
δF

(2)
s ds)0⩽t⩽T

is a Brownian motion. Then,

|E(δY0)| =
∣∣EQ(δY0)

∣∣ = ∣∣∣∣∣EQ

[
δgT · δXT +

∫ T

0

δF (1)
s · δXs.ds

]∣∣∣∣∣ . (28)

In order to handle the above right-hand side, we need to investigate dQ/dP. This requires to go back
to Eq.(27) and to Eq.(23).

Fifth Step. The backward equation in Eq.(23) may be regarded as a BSDE satisfying assumption
Quadratic BSDE, uniformly in R. By Ref.1, the integral (

∫ t

0
Zx
s · dWs)0≤t≤T is of Bounded Mean

Oscillation and its BMO norm is independent of x and R. Without any loss of generality, we may
assume that it is less than C.

Coincidentally, the same holds true if we replace Zx
s by δF (2)

s from Eq.(26), as |δF (2)
s | ⩽ C(1 +

|Zx
s | + |Zx′

s |). By Ref.1, we deduce that there exists an exponent r > 1, only depending on L and
T , such that (allowing the constant C to increase from line to line):

E
[(

dQ
dP

)r]
⩽ C.

Now Eq.(25) implies that, for any p ⩾ 1, there exists a constant C ′p, independent of the cutoff func-
tions ψ, such that E[sup0⩽t⩽T |δXs|p]1/p ⩽ C ′p|x − x′|. Therefore, applying Hölder’s inequality,
Eq.(28) and the bound for the r-moment of dQ/dP, we obtain:

|E(δY0)| ⩽ C|x− x′|

1 + E

(∫ T

0

(
|Zx

s |2 + |Zx′

s |2
)
ds

)r′
1/r′

 ,

for some r′ > 1. In order to estimate the right-hand side, we invoke Ref.(1) again. We deduce that:

|E(δY0)| ⩽ C ′|x− x′|,

for a constantC ′ that only depends uponL and T . This proves the required estimate for the Lipschitz
constant of the decoupling field associated with the system (23).
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D ERROR ANALYSIS

The error due to discretized MKV FBSDEs is negatively correlated with the number of temporal
discretizations N , i.e., O(δu) ∼ O( 1

N ). Therefore, the denser the temporal discretization splits, the
smaller the resulting error in discretizations. Meanwhile, The training loss can be expressed as the
solution loss of the discretized MFGs, and the error is caused by the parameterized Neural Network.
Below shows the detail of error analysis.

D.1 ERRORS CAUSED BY DISCRETIZATION OF MKV FBSDES

For convenience, abbreviations will be used in the following error analysis, that is, f(t, ·) will rep-
resent f(t,Xt, L(Xt)σ

−1†Zt).

In MKV FBSDEs, Yt represents the value function ut. To get the value function, we integrate the
second term in eq.(4) in Section 2.1, that is

ut − u0 =

∫ t

0

−f(s, ·)ds+
∫ t

0

ZsdWs,

subtracting the case at t = tn from the case at t = tn+1 gives:

ut+1 − ut =
∫ tn+1

tn

−f(s, ·)ds+
∫ tn+1

tn

ZsdWs,

and can be discretized by Euler method, using f(t, ·) to represent the average value in the process,
and we can get

u(x, tn+1)− u(x, tn) ≈ −f(tn, ·)∆tn + [∂xu(x, t)]
Tσ∆Wn.

where
∆tn = tn+1 − tn, ∆Wn =Wtn+1 −Wtn

The item [∂xu(x, t)]
Tσ∆Wn has no error because Wt is a random process, so there is no difference

in its value between ∆Wt and the integral form. The item −f(t, ·)∆tn causes the error from the
real value

∫ tn+1

tn
−f(s, ·)ds. The error can be calculated as (represent by δn):

δ =

∣∣∣∣−f(tn, ·)∆tn − ∫ tn+1

tn

−f(s, ·)ds
∣∣∣∣ = ∣∣∣∣∫ tn+1

tn

f(s, ·)ds− f(tn, ·)∆tn
∣∣∣∣

By using First mean value theorem for definite integrals, ∃t′ ∈ [tn, tn+1], such that

δ = |(f(t′, ·)− f(tn, ·))∆tn| ⩽ |fmax − fmin|∆tn ⩽ |f ′|max(∆tn)
2

In the whole process, since t is discretized into N parts, the error of the whole process (represent as
σu) can be obtained as

δu ⩽
N∑

n=1

δn =

N∑
n=1

|f ′n|max(∆tn)
2 ⩽ |f ′|max(∆tn)

2 · T
tn

= |f ′|max ·∆tn · T

resulting that δu ∼ O(∆tn) = O( 1
N ).

In summary, the error δu caused by discretization is related to the inverse of the number of dis-
cretization division states. Meanwhile, ∀ε > 0, ∀|f ′|max < M , ∃N ∈ N∗ and N > MT 2

ε such that
δu < ε.

D.2 ERRORS CAUSED BY PARAMETERIZED DENSITY FLOW AND VALUE FUNCTION

In MFGs, the loss function of the entire system can be written as

inf
α∈A

Jµ(α) with Jµ(α) = E

[∫ T

0

f(t,Xα
t , µt, αt)dt+ g(Xα

T , µT )

]
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

For fixed control α, the form of the optimization loss function becomes

inf
µ
Jµ = E

[∫ T

0

f(t,Xt, µt)dt+ g(XT , µT )

]
(29)

It can be transformed into a parameterized problem for solving neural networks with Φ

inf
µ(Φ)

Jµ = E

[∫ T

0

f(t,Xt, µt)dt+ g(XT , µT )

]
(30)

Thus, the loss J consists of two parts, one for process loss and one for terminal loss.

Process loss. As a result of discretizing the MKV FBSDEs and constructing the neural network in
this way, the process loss changes from the form of an integral to the form of a cumulative sum of
the total loss, passed through the network, and can thus be expressed as lMKV .

Terminal Loss. In the iterative solution of the NF network by a network of fixed-value functions, the
terminal loss is calculated by substituting the loss into the terminal-value function g after sampling
by µT . Thus it can be expressed as lT .

Thus the above lMKV + lT can represent the total loss of the MFGs J .

Regularization term loss. The HJB-FPK equations involved in the MFGs still need to be satisfied to
hold throughout the process solution, so lHJB is added as a regularization term.

In summary, the sum of the three loss terms during training can be expressed as the solution loss of
the discretized MFGs, and since the error due to discretization has already been analyzed, this part
of the error is only due to the error caused by the parameterized Neural Network.

19


	Introduction
	Connections among MFG, MKV, and NF
	MFGs  McKean-Vlasov FBSDE
	MFGs  NF

	Methodology: NF-MKV Net
	Modeling Value Function with MKV FBSDEs
	Modeling density distribution with NF
	Coupling two processes

	Numerical Experiment
	Solving MFGs with NF-MKV Net
	Example 1: MFGs Traffic Flow Control
	Example 2: MFGs Crowd Motion
	Example 3: MFGs Crowd Motion with obstacle

	Comparison with other Methods

	Conclusion
	Assumption(MFGs Solvability HJB)
	Symbols Table
	Theoretical Analysis
	Error Analysis
	Errors caused by discretization of MKV FBSDEs
	Errors caused by parameterized density flow and value function


