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ABSTRACT

Real-world problems often involve complex and unstructured sets of measurements,
which occurs when sensors are sparsely placed in either space or time. Being able
to model this irregular spatiotemporal data and extract meaningful forecasts is
crucial. Deep learning architectures capable of processing sets of measurements
with positions varying from set to set, and extracting readouts anywhere are method-
ologically difficult. Current state-of-the-art models are graph neural networks and
require domain-specific knowledge for proper setup.
We propose an attention-based model focused on robustness and practical applica-
bility, with two key design contributions. First, we adopt a ViT-like transformer
that takes both context points and read-out positions as inputs, eliminating the need
for an encoder-decoder structure. Second, we use a unified method for encoding
both context and read-out positions. This approach is intentionally straightforward
and integrates well with other systems. Compared to existing approaches, our
model is simpler, requires less specialized knowledge, and does not suffer from a
problematic bottleneck effect, all of which contribute to superior performance.
We conduct in-depth ablation studies that characterize this problematic bottleneck
in the latent representations of alternative models that inhibit information utiliza-
tion and impede training efficiency. We also perform experiments across various
problem domains, including high-altitude wind nowcasting, two-day weather fore-
casting, fluid dynamics, and heat diffusion. Our attention-based model consistently
outperforms state-of-the-art models in handling irregularly sampled data. Notably,
our model reduces the root mean square error (RMSE) for wind nowcasting from
9.24 to 7.98 and for heat diffusion tasks from 0.126 to 0.084.

1 INTRODUCTION
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Figure 1: Multi-layer Self-Attention

Deep learning (DL) has emerged as a powerful tool for
modeling dynamical systems by leveraging vast amounts
of data available in ways that traditional solvers cannot.
This has led to a growing reliance on DL models in weather
forecasting, with state-of-the-art results in precipitation
nowcasting Suman et al. (2021); Shi et al. (2017) and per-
formance on par with traditional partial differential equa-
tion (PDE) solvers in medium-term forecasting Lam et al.
(2022). However, these applications are currently limited
to data represented as images or on regular grids, where
models such as convolutional networks or graph neural
networks are used. In contrast, various real-world data
often comes from irregularly placed or moving sensors,
which means custom architectures are needed to handle it
effectively.

An example which can benefit significantly from such
an architecture is Air Traffic Control (ATC). ATC needs
reliable weather forecasts to manage airspace efficiently.
This is particularly true for wind conditions, as planes are highly sensitive to wind and deviations from
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Architecture Performance Simplicity Domain Knowledge
Agnostic

CNP ✗ ✔✔ ✔✔
GEN ✔ ✗ ✗
TFS ✔ ✔ ✔✔
MSA (Ours) ✔✔ ✔✔ ✔✔

Table 1: Comparison between our approach and the different baselines. Multi-Layer Self-Attention
(MSA) achieves good performance while being simple to implement and does not require practitioner
knowledge for proper setup.

the initial flight plan can be costly and pose safety hazards. DL models are a promising candidate for
producing reliable wind forecasts as a large amount of data is collected from airplanes that broadcast
wind speed measurements with a four seconds frequency. A model that can effectively model wind
speeds using data collected from airplanes,should be able to decode anywhere in space, as we aim to
predict wind conditions at future locations of the airplane, conditioned on past measurements taken
by that specific airplane or neighboring ones in a permutation invariant manner.

To meet these requirements, we introduce a Multi-layer Self-Attention model (MSA) and compare it
to different baselines [Table 1]: Conditional Neural Processes (CNP) Garnelo et al. (2018), Graph
Element Networks (GEN) Alet et al. (2019) and a transformer encoder-decoder baseline (TFS) that
we developed. While all of these models possess the aforementioned characteristics, they each adopt
distinct strategies for representing measurements within the latent space. CNP models use a single
vector as a summary of encoded measures, while GEN models map the context to a graph, based on
their distance to its nodes. MSA keeps one latent vector per encoded measurement and can access
them directly for forecasting. This latent representation is better, as it does not create a bottleneck.
We show that due to that architectural choice, both baselines can fail, in certain cases, to retrieve
information present in the context they condition on.

Our approach offers better performance than its competitors and is conceptually simpler as it does not
require an encoder-decoder structure. To evaluate the effectiveness of our approach, we conducted
experiments on high-altitude wind nowcasting, heat diffusion and fluid dynamics and two-day weather
forecasting. Several additional ablation studies show the impact of different architectural choices.

The main contributions of this work are summarized below:

• We develop an attention-based model that can generate prediction anywhere in the space
conditioned on a set of measurements.

• We propose a novel encoding scheme using a shared MLP encoder to map context and target
positions, improving forecasting performance and enhancing the model’s understanding of
spatial patterns.

• We evaluate our method on a set of challenging tasks with data irregularly sampled in
space: high-altitude wind nowcasting, two-day weather forecasting, heat diffusion and fluid
dynamics.

• We examine the differences between models, and explain the impact of design choices such
as latent representation bottlenecks on the final performance of the trained models.

2 RELATED WORKS

DL performance for weather forecasting has improved in recent years, with DL models increasingly
matching or surpassing the performance of traditional PDE-based systems. Initially applied to
precipitation nowcasting based on 2D radar images Suman et al. (2021); Shi et al. (2017), DL-based
models have recently surpassed traditional methods for longer forecast periods Lam et al. (2022).
In the case of radar precipitation, data is organized as images and convolutional neural networks
are utilized. For 3D regular spherical grid data, graph neural networks or spherical CNNs are
employed Lam et al. (2022); Esteves et al. (2023). However, in our study, the data set is distributed
sparsely in space, which hinders the use of these traditional architectures. The use of DL for
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modelling dynamical systems, in general, has also seen recent advancements Li et al. (2021); Gupta
& Brandstetter (2022); Pfaff et al. (2020) but most approaches in this field typically operate on
regularly-spaced data or on irregular but fixed mesh.

Neural Processes Garnelo et al. (2018); Kim et al. (2019), Graph Element Networks Alet et al. (2019)
and attention-based models Vaswani et al. (2017) are three DL-based approaches that are capable
of modeling sets of data changing from set to set. In this study, we conduct a comparison of these
models by selecting a representative architecture from each category. Additionally, attention-based
models have been previously adapted for set classification tasks Lee et al. (2019), and here we adapt
them to generate forecasts.

Pannatier et al. (2021) use a kernel-based method for wind nowcasting based on flight data. This
method incorporates a distance metric with learned parameters to combine contexts for prediction at
any spatial location. However, a notable limitation of this technique is that its forecasts are constrained
to the convex hull of the input measurements, preventing accurate extrapolation. We evaluate the
efficacy of our method compared to this approach, along with the distinct outcomes obtained, in
Section 5 of the supplementary material.

While previous studies have utilized transformers for modeling physical systems Geneva & Zabaras
(2022), time series Li et al. (2019) or trajectory predictions Girgis et al. (2022); Nayakanti et al. (2023);
Yuan et al. (2021) these applications do not fully capture the specific structure of our particular domain,
which involves relating two spatial processes at arbitrary points on a shared domain. Although we
model temporal relationships, our approach lacks specialized treatment of time. Therefore, it does not
support inherently time-based concepts like heteroskedasticity, time-series imputation, recurrence, or
seasonality. Further details distinguishing our approach from other transformer-based applications
are elaborated in Section 3 of the supplementary material.

3 METHODOLOGY

3.1 CONTEXT AND TARGETS

The problem addressed in this paper is the prediction of target values given a context and a prediction
target position. Data is in the form of pairs of vectors (cx, cy) and (tx, ty) where cx and tx are
the position and cy and ty are the measurements (or values), where we use c for context, t for
target, x for spatial position and y for the corresponding vector value. The positions lie in the same
underlying space cx, tx ∈ X ⊆ RX , but the context and target values not necessarly. We define the
corresponding spaces as cy ∈ I ⊆ RI and ty ∈ O ⊆ RO, respectively, where X, I,O are integers
that need not be equal. The data set consists of multiple pair of context and target sets that can be
of different lengths, we denote the length of the j-st context, target set respectively N j

c and N j
t .

All models take as input a set of context pairs {(cx, cy)ji}
Nj

c
i=1, as well as target positions, denoted

{(tx)ji}
Nj

t
i=1.

As an example, to transform a data set of wind speed measurements into context and target pair, we
partitioned the data set into one-minute time segments and generated context and target sets with
an intervening delay, as depicted in Figure 2. The underlying space, denoted by X, corresponds to
3D Euclidean space, with both I and O representing wind speed measurements in the x, y plane.
The models are given a set of context points at positions cx of value cy, and should be able when
given target positions tx to output a corresponding value ty conditioned on the context. Detailed
descriptions of the data set, including illustration of the different problems, and the respective spaces
for other scenarios and the ablation study can be found in Table 2 within the supplementary material.

3.2 ENCODING SCHEME

We propose in this section a novel encoding scheme for irregularly sampled data. Our approach
leverages the fact that both the context measurements and target positions reside within a shared
underlying space. To exploit this shared structure, we adopt a unified two-layers MLP encoder ϕ for
mapping both the context and target position to a latent space representation. Then, we use a second
MLP ν to encode the context values and add them to the encoded positions when available. This
differs from the approach proposed in Garnelo et al. (2018); Alet et al. (2019) where both the context
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position and value are concatenated and given to a encoder, and the target position is encoded by
another. The schemes are contrasted as:

ce = φ(cx, cy) (1)
te = ψ(tx) (2)

Traditional methods

ce = ϕ(cx) + ν(cy) (3)
te = ϕ(tx) (4)

Proposed scheme

Where ϕ, ν, φ, ψ are two hidden-layers MLPs, and ce, te ∈ RE are the encoded measurements
positions and values and encoded target position respectively.

3.3 MULTI-LAYER SELF-ATTENTION (MSA, OURS)

Our proposed model, Multi-layer Self-Attention (MSA) harnesses the advantages of attention-based
models. MSA maintains a single latent representation per input measurement and target position,
which conveys the ability to propagate gradients easily and correct errors in training quickly. MSA can
access and combine target position and context measurements at the same time, which forms a flexible
and powerful method for approaching the latent space. Our model is similar to a transformer-encoder,
as the backbone of a ViT Dosovitskiy et al. (2020), it can be written as:

cl, tl = Transformer-Encoder(ce, te) ce ∈ RNC×E , te ∈ RNt×E (5)

t̂y = γ(tl) t̂y ∈ RNt×O (6)

MSA does not use positional encoding for encoding the order of the inputs. This model is permutation
equivariant due to the self-attention mechanism and it uses full attention, allowing each target feature
to attend to all other targets and context measurements. MSA generate all the output in one pass in a
non-autoregressive way and the outputs of the model are only the units that correspond to the target
positions, which are then used to compute the loss.

3.4 BASELINES

Transformer(s) (TFS) We also adapt an encoder-decoder transformer (TFS) model Vaswani et al.
(2017). The motivation behind this was the intuitive appeal of the encoder-decoder stack for this
specific problem. TFS in our approach deviates from the standard transformer in a few ways: Firstly,
it does not employ causal masking in the decoder and secondly, the model forgoes the use of positional
encoding for the sequence positions. It can be written as:

cl = Transformer-Encoder(ce) ce ∈ RNt×E (7)

tl = Transformer-Decoder(cl, te) cl, te ∈ RNt×E (8)

t̂y = γ(tl) t̂y ∈ RNt×O (9)

In comparison with MSA, TFS uses an encoder-decoder architecture, which adds a layer of complexity.
Moreover, it necessitates the propagation of error through two pathways, specifically through a cross-
attention mechanism that lacks a residual connection to the encoder inputs.

Graph Element Network(s) (GEN) Graph Element Networks (GEN) Alet et al. (2019) is an
architecture that utilizes a graph G as a latent representation. The encoder maps measurements to the
nodes of the graph based on their distance to the nodes, and the nodes’ features are processed by L
iteration of message passing. The nodes positions and edges of the graphs are additional parameters
that must be carefully chosen. Additionally the nodes position can be optimized during training. The
whole model can be described as:

ne =
∑
e

r(cx,nx)ce ce ∈ RNt×E (10)

nl = Message-Passing(ne,G, L) ne ∈ RNn×E (11)

cl =
∑
l

r(nx, tx)nl nl ∈ RNn×E (12)

t̂y = γ(cl, tl) t̂y ∈ RNt×O (13)
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Figure 2: Description of the context and target
sets in the wind nowcasting case. The context
set and the target set are time slices separated
by a delay, which corresponds to the forecasting
window. The underlying space is in that case
X ⊆ R3 and the context values and target val-
ues both represent wind speed and belong to the
same space I = O ⊆ R2.
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Figure 3: RMSE of the different models depend-
ing on the forecast duration (lower is better). We
ran three experiments varying the pseudorandom
number generator seeds for each time window
and each model to measure the standard devia-
tion. The error does not increase drastically over
the first two hours because the wind has some
persistence and the context values are good pre-
dictors of the targets in that regime.

GEN has for inductive bias that a single latent vector summarize a small part of the space. As
it includes a distance-based encoding and decoding scheme, the only way for the model to learn
non-local patterns is through message passing. This model was originally designed with a simple
message-passing scheme. But it can easily be extended to a broad family of graph networks by
using different message-passing schemes, including ones with attention. We present some related
experiments in Section 9 of the supplementary material.

Conditional Neural Process(es) (CNP) CNP Garnelo et al. (2018) encodes the whole context as
a single latent vector. They can be seen as a subset of GEN. Specifically, a CNP is a GEN with a
graph with a single node and no message passing. While CNP possess the desirable property of being
able to model any permutation-invariant function Zaheer et al. (2017), their expressive capability is
constrained by the single node architecture Kim et al. (2019). Despite this, CNP serve as a valuable
baseline and are considerably less computationally intensive.

cl = mean(ce) ce ∈ RNC×E (14)

t̂y = γ(tl, cl) t̂y ∈ RNt×O (15)

4 EXPERIMENTS

Our experiments aim to benchmark the performance of our models on various data sets with irregularly
sampled data. The first task focuses on high-altitude wind nowcasting. The second task is on heat
diffusion. Additionally, we evaluate our models on fluid flows, considering both a steady-state case
governed by the Darcy Flow equation and a dynamic case modeling the Navier-Stokes equation in an
irregularly spaced setting. Finally, we compare the models on a weather forecasting task, utilizing
irregularly sampled measurements from the ERA5 data set Hersbach et al. (2023) to predict wind
conditions two days ahead.

For the Wind Nowcasting Experiment, the data set, described in Section 3.1, consists of wind speed
measurements collected by airplanes with a sampling frequency of four seconds. We evaluate our
models on this data set [Table 2] and we assess the models’ performance as a function of forecast
duration, as depicted in Figure 3. We select model configurations with approximately 100,000
parameters and run each model using three different random seeds. Our results indicate that attention-
based models consistently outperform other models for most forecast durations, except for in the
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Table 2: Validation RMSE of the High-Altitude Wind Nowcasting, Poisson, Navier Stokes and Darcy
Flow equation and the weather forecasting task. Each model ran for 10, 2000, 1000, 100 and 100
epochs respectively on an NVIDIA GeForce GTX 1080 Ti. The low number of epochs for wind
nowcasting is due to the amount of data which is considerably larger than in the other experiments.
The standard deviation is computed over 3 runs. We present here the original implementation of CNP
and GEN compared with TFS and MSA with sharing weights for the position. More details can be
found in Table 1 of the supplementary material. We choose the configuration of the models so that
every model has a comparable number of parameters. We underline the best models for each size and
indicate in bold the best model overall.

Architecture Size Wind
Nowcasting

Poisson
Equation

Navier Stokes
Equation

Darcy Flow
Equation ERA5

CNP
5k 11.94± 0.78 0.33± 0.004 0.701± 0.0023 0.0311± 0.0008 2.129± 0.0039

20k 10.19± 1.83 0.32± 0.003 0.672± 0.0011 0.0295± 0.0002 2.117± 0.0018

100k 10.17± 1.24 0.33± 0.003 0.656± 0.0007 0.0286± 0.0001 2.110± 0.0002

GEN
5k 11.02± 3.19 0.12± 0.006 0.604± 0.0010 0.0304± 0.0003 2.132± 0.0035

20k 9.98± 0.76 0.13± 0.014 0.599± 0.0006 0.0296± 0.0002 2.124± 0.0031

100k 9.56± 0.21 0.16± 0.049 0.596± 0.0005 0.0294± 0.0001 2.121± 0.0005

TFS (Ours, baseline)
5k 8.30± 0.03 0.15± 0.036 0.604± 0.0022 0.0275± 0.0014 2.129± 0.0032

20k 8.20± 0.04 0.09± 0.006 0.596± 0.0008 0.0258± 0.0003 2.109± 0.0012

100k 8.38± 0.13 0.18± 0.014 0.591± 0.0012 0.0269± 0.0004 2.100± 0.0011

MSA (Ours)
5k 8.07± 0.11 0.11± 0.006 0.597± 0.0011 0.0274± 0.0011 2.125± 0.0070

20k 7.98± 0.03 0.08± 0.003 0.589± 0.0013 0.0259± 0.0007 2.107± 0.0020

100k 8.18± 0.14 0.10± 0.009 0.589± 0.0006 0.0264± 0.0004 2.098± 0.0029

Table 3: Evaluation of the wind nowcasting task according to standard weather metrics, which are
described in Section 6 of the supplementary material. The optimal value of the metric is indicated in
the parenthesis. MSA is the best model overall, with the lowest absolute error, a near-zero systematical
bias and output values that have a similar dispersion to GEN.

Model RMSE (↓) θ MAE (↓) r MAE (↓) Relative
BIASx (0.0)

Relative
BIASy (0.0) rSTD (1.0) NSE (↑)

CNP 10.99± 0.75 25.55± 1.22 9.22± 0.33 0.00± 0.09 -1.09± 0.03 1.25± 0.07 -0.23± 0.01
GEN 8.97± 0.06 22.56± 0.77 6.97± 0.05 -0.02± 0.03 -0.97± 0.21 1.09± 0.07 0.25± 0.02
GKA 8.44± 0.01 21.89± 0.02 6.65± 0.02 -0.02± 0.00 -1.78± 0.02 1.13± 0.00 0.31± 0.01
TFS (Ours, baseline) 7.99± 0.15 22.17± 1.20 6.48± 0.50 0.08± 0.10 -2.21± 2.67 1.17± 0.04 0.43± 0.08
MSA (Ours) 7.36± 0.06 20.48± 0.48 5.67± 0.11 0.00± 0.02 -0.04± 0.64 1.09± 0.02 0.55± 0.05

6-hour range. Notably, we found that the Gaussian Kernel Averaging (GKA) model used in previous
work Pannatier et al. (2021) achieves satisfactory performance, despite its theoretical limitations,
which we analyse in Section 5 of the supplementary material. Moreover, our findings suggest
that attention-based models, particularly MSA and TFS, exhibit superior performance in this setup.
Furthermore, we observe that the GKA model performed well for short time horizons when most of
the information in the context was still up-to-date. However, as the time horizon increased, the GKA
model’s lack of flexibility become more apparent, and GEN become more competitive.

For the Heat Diffusion Experiment, we utilize the data set introduced in Alet et al. (2019), derived
from a Poisson Equation solver. The data set consists of context measurements in the unit square
corresponding to sink or source points, as well as points on the boundaries. The targets correspond to
irregularly sampled heat measurements in the unit cube. Our approach offers significant performance
improvements, reducing the root mean square error (RMSE) from 0.12 to 0.08, (MSE reduction of
0.016 to 0.007, in terms of the original metric) as measured against the ground truth [Table 2].

For the Fluid Flow Experiment, both data sets are derived from Li et al. (2021), subsampled irregularly
in space. In both cases, our models outperforms the alternative [Table 2]. In the Darcy Flow equation,
the TFS model with 20k parameters exhibits the best performance, but this task proved to be relatively
easier, and we hypothesize that the MSA model could not fully exploit this specific setup. However,
it is worth mentioning that the performance of the MSA model was within a standard deviation of the
TFS model.

6



Under review as a conference paper at ICLR 2024

We conducted a Two-Day Weather Forecasting Experiment utilizing ERA5 data set measurements.
The data set consists of irregularly sampled measurements of seven quantities, including wind speed
at different altitudes, heat, and cloud cover. Our goal is to predict wind conditions at 100 meters
two days ahead based on these measurements. MSA demonstrates its effectiveness in capturing the
temporal and spatial patterns of weather conditions, enabling accurate predictions [Table 2].

To summarize, our experiments encompass a range of tasks including high-altitude wind nowcasting,
heat diffusion, fluid modeling, and two-day weather forecasting. Across these diverse tasks and data
sets, our proposed model consistently outperforms baseline models, showcasing their efficacy in
capturing complex temporal and spatial patterns.

5 UNDERSTANDING FAILURE MODES
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Figure 4: Results of the information retrieval exper-
iment. The three first rows correspond to models
with no bottlenecks. The x-axis corresponds to
data sets created by increasing frequency. Random
is the extreme case were the context value is in-
dependent from the position. When the learned
function does not vary too much spatially, models
with bottlenecks can suffice. The models in italics
represent hybrid architectures: GNG = GEN with-
out a graph, which maintains a latent per context
measure and PER = transformer with a perceiver
layer Jaegle et al. (2021) which creates a bottle-
neck.

We examine the limitations of CNP and GEN
latent representation for encoding a context.
Specifically, we focus on the bottleneck effect
that arises in CNP from using a single vector
to encode the entire context, resulting in an un-
derfitting problem Garnelo et al. (2018); Kim
et al. (2019), and that applies similarly to GEN.
To highlight this issue, we propose three simple
experiments. (1) We show in which case base-
lines are not able to retrieve information in the
context that they use for conditioning, and why
MSA and TFS are not suffering from this prob-
lem. (2) We show that maintaining disentangled
latent representation helped to the correct attri-
bution of perturbations. (3) We show that this
improved latent representation leads to better
error correction.

5.1 CONTEXT INFORMATION RETRIEVAL

Every model considered in this work encodes
context information differently. Ideally, each
should be capable of using or retrieving every
measure in their context. We will see that exces-
sive bottlenecking in the latent space can make
this difficult or impossible.

To demonstrate this result, we design a simple
experiment in which each model encodes a set
of 64 measures (cx, cy), and is then tasked with
retrieving the corresponding ty = cy given the tx = cx. The training and validation set have
respectively 10 000 and 1 000 pairs of sets of 64 examples. It is worth noting that the models have
access to all the information they need to solve the task with near-zero MSE. We conducted several
experiments, starting by randomly sampling 2D context positions cx = (x, y) from a Gaussian
distribution and computing the associated deterministic smooth function:

cy = sin(πfx) cos(πfy) ∈ R (16)

where f is a frequency parameter that governs problem difficulty. The higher f is, the more difficult
the function becomes, as local information becomes less informative about the output. We also
consider as a harder problem to sample cy randomly and independently from the position.

The results of this experiment, as shown in Figure 4, indicate that the CNP and GEN models are less
effective in learning this task at higher frequencies. This inefficiency is primarily due to a phenomenon
we define as a ’bottleneck’: a situation where a single latent variable is responsible for representing
two distinct context measurements. This bottleneck impedes the models’ ability to distinguish and
retrieve the correct target value. In contrast, models with disentangled latent representations, like
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MSA, are not subject to this limitation and thus demonstrate superior performance in learning the
task.

To further demonstrate this bottleneck effect, we created two hybrid models. The first one denoted
GNG (for GEN No Graph), is adapted from GEN but instead of relying on a common graph, creates
one based on the measure position with one node per measure. Edges are artificially added between
neighboring measures which serve as the base structure for L steps of message-passing. This
latent representation is computationally expensive as it requires the creation of a graph per set of
measurements, but it does not create a bottleneck in the latent representation. We found that GNG is
indeed able to learn the task at hand. We then followed the reverse approach and artificially added a
bottleneck in the latent representation of attention-based models by using Perceiver Layer Jaegle et al.
(2021) with P learned latent vectors instead of the standard self-attention in the transformer encoder
(and call the resultant model PER). When P is smaller than the number of context measurements, it
creates a bottleneck and PER does not succeed in learning the task. If the underlying space is smooth
enough, GEN, CNP and PER are capable of reaching perfect accuracy on this task as they can rely
on neighboring values to retrieve the correct information. This experiment demonstrates that MSA
and TFS can use their disentangled latent representations to efficiently retrieve context information
regardless of the level of discontinuity in the underlying space, while models with bottlenecks, such
as CNP and GEN, are limited in this regard and perform better when the underlying space is smooth.

5.2 CORRECT PERTUBATION ATTRIBUTION
0 64

Error

0 64
MSA ctx

0 64
MSA tgt

0 64
TFS

0 64
GEN 8x8

0 49
GEN 7x7

0 36
GEN 6x6

0 25
GEN 5x5
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0 9
GEN 3x3

0 4
GEN 2x2

1
GEN 1x1

Figure 5: Gradients on the last layer of the encoder
corresponding to an artificial error of γ = 10.0
added to the second output. MSA maintains a dis-
entangled representation and the gradient at that
layer is non-zero only on the corresponding latent.
We compare it to different GEN models each ini-
tialized with a graph corresponding to a regular
grid of size i × i with i ∈ {1, . . . , 8}. Due to the
bottleneck effect, the gradients corresponding to
one error are propagated across different latent vec-
tors for GEN. Even when there are enough latents
(GEN 8 × 8), GEN still disperse attribution be-
cause their distance-based conditioning that does
not allow for a one-to-one mapping between tar-
gets and latents.

In the following analysis, we explore how dis-
entangled latent representations can enhance er-
ror correction during training. Specifically, we
ask whether models can correctly attribute the
effects of a perturbation in the output to back-
propagation.

We use MSA, TFS and GEN models applied to
the information retrieval task discussed in the
previous section. We pre-train each model to
zero error on the validation data in a smooth
case (f = 1.0), then apply a perturbation γ on
one of the output values, compute the loss be-
tween the perturbated output and the one without
perturbation and backpropagate it through each
model. The norm of gradients corresponding to
the latent at the last encoder layer is shown in
Figure 5. We see that MSA and TFS only receive
a signal on the corresponding latent while the
other models receive signals on different latents.
Here MSA has 128 latent vectors as it maintains
one latent per context measurement and per tar-
get position, and we see that the model has a
signal only on the latent corresponding to the
position where there is an error.

We hypothesize that this interference of gradi-
ents to other non-related latents impedes train-
ing, as the models struggle to correct the artifi-
cial error while maintaining the same value for
the other output values. Models with a disentangled representation can update the corresponding
latent independently and follow a smoother optimization trajectory.

To demonstrate this property, for the models described above, we tabulate the number of backpropa-
gation passes needed to fully correct the artificial error on one output (to reach a zero error on the
validation set again).

The results are shown in Figure 6. We used MSA as a reference and observed that all models with an
entangled representation required more time to reach a zero error on the validation set. We found that
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the more entangled the representation, the more time was needed to reach the desired performance.
Note that, in this setup, GEN 1 × 1 is equivalent to CNP.
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Figure 6: Comparison of the number of gradient
updates required to correct an artificial error, with
respect to MSA (lower is better). The y-axis rep-
resents the increase in percentage in the number
of steps required to reach a perfect accuracy with
respect to MSA. We compared MSA to different
GEN each initialized with a graph corresponding
to a regular grid of size i× i with i ∈ {1, . . . , 8}.
It can be observed that all GEN take more steps
to correct the same mistake, and the more entan-
gled the latent representation is, the more time it
requires to correct the problem.

These experiments demonstrate that models
with disentangled latent representations can
more efficiently correct errors during training,
while models with entangled representations
struggle to do so and require more time to reach
the desired performance.

5.3 ENCODING SCHEME

In this section, we evaluate the novel encoding
scheme presented in Section 3.2, we present the
results in Table 1 of the supplementary material.
We found that, it reduces the RMSE from 8.47
to 7.98 in the wind nowcasting task and enables
the MSA model to achieve the best performance
with an RMSE of 0.08 for the Poisson Equa-
tion. Sharing the same mapping for positions
is the appropriate inductive bias for encoding
positions, as it eliminates the need to learn the
same transformation twice. Since our data is
irregularly sampled in space, the positioning of
measurements and target positions significantly
influences the prediction, as demonstrated in ad-
ditional experiments, Sections 7 and 8 in the
supplementary material. We think that sharing the position mapping can link information from the
context and target positions, which helps the model to understand better how the space is shaped.

6 CONCLUSION

In this work, we introduced an attention-based model to handle the challenges of wind nowcasting
data. We demonstrated that the proposed attention-based model was able to reach the best performance
for high-altitude wind prediction and other dynamical systems, such as weather forecasting, heat
diffusion and fluid dynamics when working with data irregularly sampled in space. We then explained
why attention-based models were capable of outperforming other models on that task and provided
an in-depth examination of the differences between models, providing explanations for the impact
of design choices such as latent representation bottlenecks on the final performance of the trained
models.

Our work builds upon well-established attention models, which have demonstrated their versatility
and efficacy in various domains. Although the core model is essentially a vanilla transformer,
our architecture required careful adaptation to suit our specific requirements. We designed our
model to be set-to-set rather than sequence-to-sequence, handling data in a non-causal and non-
autoregressive manner, and generating continuous values for regression. The success of influential
models like BERT Devlin et al. (2019), GPT Radford et al. (2018), ViT Dosovitskiy et al. (2020), and
Whisper Radford et al. (2022), also closely resemble the original implementation by Vaswani et al.
(2017), which further supports the effectiveness of the transformer framework across different tasks
and domains.

Finally, our model’s scalability is currently limited by its quadratic complexity in the context size.
Although this limitation does not pose a problem in our particular use cases, it can impede the scaling
of applications. This is a significant challenge that affects all transformer-based models and has
garnered considerable attention. Recent developments to tackle this challenge include flash-attention
Dao et al. (2022), efficient transformers Katharopoulos et al. (2020), and quantization techniques
Dettmers et al. (2022), which can address this problem, enhancing the feasibility of our approach for
large-scale applications.
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