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Abstract
Training large deep learning models requires parallelization techniques to scale. In existing methods
such as Data Parallelism or ZeRO-DP, micro-batches of data are processed in parallel, which creates
two drawbacks: the total memory required to store the model’s activations peaks at the end of the
forward pass, and gradients must be simultaneously averaged at the end of the backpropagation step.
We propose Cyclic Data Parallelism, a novel paradigm shifting the execution of the micro-batches
from simultaneous to sequential, with a uniform delay. At the cost of a slight gradient delay, the
total memory taken by activations is constant, and the gradient communications are balanced during
the training step. With Model Parallelism, our technique reduces the number of GPUs needed,
by sharing GPUs across micro-batches. Within the ZeRO-DP framework, our technique allows
communication of the model states with point-to-point operations rather than a collective broadcast
operation. We illustrate the strength of our approach on the CIFAR-10 and ImageNet datasets.

1. Introduction

Deep learning models have grown significantly in size in recent years, reaching hundreds of billions
of parameters and requiring increasingly expensive training [12]. As the cost of training these
models continues to rise, there is an increasing need for parallelization strategies. In particular, Data
Parallelism (DP) [6, 17] remains the dominant method for training DNNs at scale. In DP, the model
to be trained is first replicated on multiple workers. Then, each worker locally computes gradients.
They are then communicated and averaged across all workers, and the averaged gradient is used to
locally update models, typically following SGD.

However, DP has significant drawbacks. First, the communication step between workers is
synchronous, and waiting for the slowest workers to complete their gradient computations results in
idle workers [11]. Second, gradients are communicated globally using an all-reduce operation, which
means that the communication step becomes a challenge as the number of workers increases [2].
Finally, the total memory used by all workers grows linearly with the number of workers since the
model is fully replicated on each worker [23]. This requirement can be impractical since modern
model sizes exceed the memory capacity of a single device (e.g., a GPU).

In this work, we tackle the memory and communication drawbacks of DP by proposing to
change the execution time of workers in DP from simultaneous to sequential. We refer to this
process as Cyclic Data Parallelism (CDP). Our modification of standard DP aims to balance both the
communication costs and the overall memory usage, by relying heavily on the sequential nature of
the execution steps of DNNs during training. More specifically, CDP reduces the cost of gradient
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Figure 1: Timeline of executions for DP and the two versions of CDP, for N=3 workers. (a)
DP. The workers begin executing their forward pass simultaneously, maintaining synchronization
throughout the entire forward-backward pass. (b) CDP-v1. The workers begin executing with an
equal delay between them (2 time steps). The model’s parameters are updated with a delay constant
equal to one training step. (c) CDP-v2. This delay is halved in CDP-v2, by allowing the stages to
update and send gradients independently. The novel balanced communication scheme is indicated.
The total complexity of a training step does not change, but activation memory does not peak in CDP.

communications in DP from collective communications at the end of the training step to point-to-
point communications balanced over the entire training step. This balances the total memory used by
all workers, at the cost of a small gradient delay. CDP can be combined with standard parallelization
implementations for further improvements.

Contributions. Our contributions are as follows: (a) We propose CDP, an alternative to DP that
balances gradient communications and overall memory usage across training. (b) We particularize
the CDP paradigm to approaches such as Model Parallelism (MP) and Zero Redundancy Optimizer
powered DP (ZeRO-DP) [23], showing improvements in all cases. (c) Empirically, we show that the
gradient delay of CDP does not affect training on the CIFAR-10 and ImageNet datasets.

2. The Cyclic Data Parallelism paradigm

2.1. Mini-batch SGD with Data Parallelism

Consider the DP paradigm for a mini-batch SGD step. First, the model is replicated over N workers,
each fed with mini-batch slices (i.e., micro-batches [13]). At training step t, each replica n ∈ [1, N ]
uses its micro-batch to compute a training objective fn parameterized by θt, and its corresponding
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gradient ∇fn(θt) via a forward and backward pass. We assume that the model can be partitioned
into N sequential stages, and write θt = {θjt}j∈[1,N ] to emphasize the dependency in the stage j.
The parameter gradients are averaged over all workers, typically using an all-reduce operation [2].
Finally, each worker locally updates the parameters θt with the averaged gradient. With the learning
rate γt, the standard update rule [27] which results can be written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θt). (DP)

The execution timeline of DP is shown in Fig. 1a, where one time step corresponds to the
execution of a forward or backward pass of a stage (we assume a homogeneous execution time
between all workers), and the training step t equal to 2N time steps.

This paradigm has several inherent problems. The total number of retained activations peaks
every 2N time steps, as all workers simultaneously store all intermediate activations before the
backward pass. This can be seen at step 2 in Fig. 1a. Then, the gradient synchronization barrier
every 2N steps introduces latency and workers idling as they wait for the communication to start but
also finish, as the communication overhead grows linearly with the number of workers N .

2.2. Towards delayed mini-batch SGD with Cyclic Data Parallelism

Algorithmic description. Contrary to the previous DP approach, our main idea is to break the
synchrony between the forward and backward passes of the N micro-batches. Instead of each step
being computed simultaneously, we assume that each micro-batch computation is delayed by 2 time
steps between one worker and a previous worker. More specifically, the computations of ∇fn are
delayed by a delay of 2 time steps compared to ∇fn−1 (where n is taken modulo N ). This results in
a cyclic pattern, illustrated in Fig. 1b and c. Furthermore, each stage constantly performs either a
forward or a backward pass on a single and distinct micro-batch: in particular, this implies that the
maximum number of activations stored at a given time step is nearly constant during training, and in
this case, smaller compared to DP. We call this concept Cyclic Data Parallelism (CDP).

Update rules. While the forward and backward passes are fully defined assuming an available
parameter θt, one has to define the corresponding update rule to generate θt+1, since breaking the
synchrony between the backward passes of the micro-batches makes it impossible to follow Eq. (DP).
Similar to [3, 37], at the training step t we introduce an auxiliary variable {θ̂n,t}n representing the
parameter available for gradient computation. Formally, our algorithm can be written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θ̂n,t) with θ̂jn,t = un,j(θ
j
t , θ

j
t−1) , (CDP)

where un,j(a, b) ∈ {a, b} is a rule on the parameters, that depends on both the micro-batch n and
the stage j. Thus, un,j implicitly depends on the time step of the algorithm but not on the training
step in our paradigm. An alternative that would is possible, and would easily allow more complex
asynchronous or randomized variants. Note that some rules un,j are not possible due to the delay
between workers, preventing for example the update rule of DP. In particular, we propose two
update rules with specific rules un,j that can be considered as the edge cases of the update rule, with
maximum and minimum delay, respectively, with all other rules un,j being an intermediate between
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them. First, we use a simultaneous barrier after the N th micro-batch has finished its computation,
which is illustrated in Fig. 1b with a barrier at the time step 9. In this specific case, a consistent
update consists of the rule un,j(a, b) = b, using the stored θ̂n,t = θt−1. This results in

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θt−1) . (CDP-v1)

We refer to this update rule as CDP-v1. This one step delay rule also corresponds to the ones
of [20, 26]. We now introduce a more elaborate rule referred to as CDP-v2 and illustrated in Fig.
1c. We fix the rule un,j so that after the N th micro-batch has finished computing the gradient of a
stage, it directly transmits the updated stage parameters to be computed on a micro-batch (with a
predefined order of communication). This gives the rule un,j(a, b) = a if j ≥ N − n + 1, and b
otherwise, reducing by half the number of delayed parameters compared to CDP-v1. Note that the
parameters in the workers’ memory are always the freshest available. This update is written as

θt+1 = θt −
γt
N

N∑
n=1

∇fn(θ1t−1, ..., θ
N−n
t−1 , θN−n+1

t , ..., θNt ) . (CDP-v2)

Note that in both cases the gradient communication does not have to be simultaneous, instead, the
results can be communicated at intermediate steps, benefiting the overall communication bandwidth.
We propose a possible communication scheme for CDP-v2 in Fig. 1c. We describe in Alg. 1 of the
Appendix the computation and communication done by one worker.

Remark on the convergence. Note that Eq. (CDP) can, in the worst case, be understood as SGD
with delayed gradients with a fixed delay of 1. There is a large literature studying the convergence
of delayed first-order methods [18, 33, 38], guaranteeing a convergence rate almost equal to that of
SGD. In practice, very large DNNs using Transformer or GPT-2 architecture have been shown to
converge similarly with or without a delay of 1 step [4, 8, 20, 26, 28, 35].

3. Variants of DP, MP and ZeRO-DP with CDP

Representation. We now present how CDP reduces the computational overhead of other parallelism
frameworks (see the Appendix A for the Related Work). In particular, we study the integration of
CDP with DP (on one or several GPUs), Model Parallelism (MP) [6, 29], and ZeRO-DP [23, 40];
as well as the link to Pipeline Paralellism (PP) [13, 19]. The implementations are schematically
represented in Fig. 2. We first discuss the theoretical improvements of CDP.

Analytical comparisons. Note N the number of model stages and of micro-batches (of equal size
B). We will refer to ΨP as the parameter memory of the model (including the optimizer states) and
ΨA as the activations memory (for one data sample). In MP, activations are communicated accross
stages, and this subset is noted by Ψint

A (with Ψint
A ≤ ΨA). In Tab. 1, we summarize the memory

requirements per device, the communication volume, and the maximum number of communication
steps required between 2 time steps, for DP, MP, PP, and ZeRO-DP with and without CDP.

We find the following improvements with CDP compared to DP. CDP halves the memory required
to train on DP with a single-GPU device. Multi-GPU DP with CDP doesn’t require an all-reduce
operation at the end of the training step but only point-to-point communications at each time step.
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Figure 2: Comparison between parallelism frameworks with and without using CDP, for N=3.
Devices (e.g., GPUs) are represented by rectangles and micro-batches by color. Model stages are
represented by their activation (black circle) and parameter memories (disk). Communications are
intra or inter-device (thin or thick arrow), collective or point-to-point (double-headed or single-
headed arrow). (a) Single-GPU DP. On a single high-connectivity device, we can achieve a memory
reduction of half. (b) Multi-GPU DP. Communications can be balanced when using multiple GPUs
with CDP. (c) DP+MP. Both the number of required GPUs and the communications are reduced
compared to a standard implementation of MP with DP. Only N GPUs are needed in PP, but they
require more activation memory (thicker circle). (d) ZeRO-DP. The model states needs to be sent or
received by only one worker at each time step, instead of the broadcast operation of ZeRO-DP.

This improvement is also found with MP and ZeRO-DP with CDP. CDP allows MP to halve the
number of GPUs needed, thus halving the memory required, as well as the communication of
gradients between GPUs. The number of GPUs can be further reduced from MP with CDP to using
PP as in [19], which can be seen as a particular implementation of CDP. However, this requires the
GPUs to be able to store the activations of the entire mini-batch. More generally, a disadvantage of
MP and PP is that they need to communicate activations, which scale with the batch size B. We
discuss each setting in more depth in the Appendix C.

4. Numerical analysis

Framework. To test that our update rules do not affect convergence, we implement them in a
standard training pipeline on CIFAR-10 and ImageNet. Details are provided in the Appendix D.

Results. We report in Tab. 2 the test accuracy of our models for the three rules CDP-v1, CDP-v2,
and DP, for 5 runs on CIFAR-10 and 3 runs on ImageNet respectively. CDP leads to similar or better
performance compared to DP, consistent with the experimental findings of [20, 26]. For CIFAR-10,
CDP-v2 significantly outperforms CDP-v1, demonstrating our improvement over PipeDream-2BW’s
rule. We also show in Fig. 3 how delay affects only the start of the training loss curves on ImageNet.
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Table 1: Theoretical cost of the parallelism implementations discussed in Sec. 3. All implementa-
tions are improved (in bold) by using CDP (Cyclic) over DP, in terms of memory (per GPU or number
of GPUs) or communication. Parameter and activation memories of a model (for 1 data sample) are
noted as ΨP and ΨA (Ψint

A for the subset communicated in MP). N indicates both the number of
stages and of micro-batches (of size B). The communication volume is the size of the communicated
tensors. ‘Max com. steps’ is the maximum number of communication steps between 2 time steps
for 2 workers, which scales as O(log(N)) for a collective operation compared to point-to-point
communications. The parameter memory in Single-GPU DP may depend on the implementation.

Memory per GPU Communications inter-GPUs Nb of
Implementation Activations Parameters Volume Max com. steps GPUs Rule
Single-GPU DP NBΨA NΨP 1 (DP)
+ Cyclic N+1

2
BΨA

N+1
2

ΨP 1 (CDP)
Multi-GPU DP BΨA ΨP ΨP O(log(N)) N (DP)
+ Cyclic BΨA ΨP ΨP O(1) N (CDP)
DP with MP BΨA/N ΨP /N ΨP+BΨint

A O(log(N)) N2 (DP)
+ Cyclic BΨA/N ΨP /N

ΨP

2
+BΨint

A O(1) N+1
2

N (CDP)
PP BΨA ΨP /N BΨint

A O(1) N (CDP)
ZeRO-DP BΨA ΨP /N ΨP O(log(N)) N (DP)
+ Cyclic BΨA ΨP /N ΨP O(1) N (CDP)

Table 2: Top-1 test accuracy for the 3 learning rules (CDP-v1), (CDP-v2) and (DP) on the CIFAR-
10 and ImageNet datasets, by training a ResNet-18 or 50. Standard deviation over 5 runs is less than
0.08, indicating stable results. CDP-v2 in particular performs similarly to or better than DP.

CIFAR-10 ImageNet
Model (CDP-v1) (CDP-v2) (DP) (CDP-v1) (CDP-v2) (DP)

ResNet-18 94.1 94.8 94.7 69.9 70.0 70.1
ResNet-50 94.0 94.5 94.5 75.8 75.7 75.4

Activation memory tracking. To confirm the memory savings that CDP would provide, we track
the memory used in a forward-backward pass of a ResNet-50 and a ViT-B/16 on ImageNet, to infer
the mean memory usage per worker of DP and CDP. As predicted, the activation memory in CDP
flattens as the number of workers increases, to 30% for the ResNet-50 and 42% (= 3.9−2.3 GB

3.9 GB ) for
the ViT-B/16 of the memory used in DP. The ratio is close to theoretical having for the ViT, but lower
for the ResNet due to the heterogeneity of its layers. More details are in the Appendix.

5. Conclusion

We introduced Cyclic Data Parallelism (CDP), an alternative paradigm to Data Parallelism. By
executing the forward and backward passes of micro-batches of data cyclically rather than simul-
taneously, we balance gradient communication and the total memory occupied by activations. We
particularize CDP in the context of Data, Model, and Pipeline Parallelism as well as ZeRO-DP, and
demonstrate improvements in the total memory required to store activations or in the number of
communication steps required between time steps during training. Our results are supported by
existing theoretical guarantees and our numerical experiments. In future work, we would like to
release an efficient implementation for the MP and ZeRO-DP frameworks.
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Appendix A. Related work

Data Parallelism. For DP, the model is replicated on several workers, and each worker computes
a micro-batch, a subset of the mini-batch. As noted above, this method suffers from a linear
increase in memory as the number of workers increases, while communications costs increase either
logarithmically or linearly [2]. To reduce communications, less strict synchronization steps have
been introduced, at the cost of updating the parameters with stale gradients [17, 25, 32]. However,
these techniques do not take into account the memory required to train DNNs, a point we improve
on.

Two notable DP techniques aim to reduce the memory cost of DP: Zero Redundancy Optimizer
powered DP (ZeRO-DP) [23] and Fully-Sharded DP [40]. Rather than fully replicating the entire
model across the DP workers, each worker retains only a subset of the model states (i.e. optimizer
states, gradients, and parameters) corresponding to one stage of the model. The memory required can
be further reduced by storing model states on the CPU [24, 26], at the expense of communications
between the CPU and the GPUs. Despite the memory gains, the volume of communication increases
in ZeRO-DP, which has been addressed by compressing communications or striking a balance with
the memory [34, 39]. Nevertheless, the simultaneous nature of the micro-batches executions remains
the root cause of ZeRO-DP’s issues, which we tackle in this paper.

Model Parallelism. Instead of parallelizing computations by slicing a mini-batch, MP [6, 29] aims
to partition the components of the DNN. MP can be separated into two categories. First, Intra-layer
MP [15, 30], also called tensor parallelism, partitions individual layers across workers but requires
a high communication cost. Second, Inter-layer MP [6] splits a DNN into successive stages, and
workers are solicited for only one stage, thus requiring less memory. A disadvantage of this method
is that only one of the workers computes at a time since the stages are executed sequentially in the
forward-backward pass. This limitation was addressed in several ways. Local learning [1, 10, 21]
removes the need for a backward pass of the model with local auxiliary objectives at each stage. This
allows stages to compute mini-batches simultaneously but at the expense of model performance.
Delayed gradient methods [36, 41] allow stages to compute in parallel on micro-batches, by allowing
updates with delayed gradients.

Of particular interest is Pipeline Parallelism (PP), a form of Inter-layer MP, introduced in
GPipe [13], which also avoids this problem. In PP, mini-batches are divided into micro-batches
which are passed sequentially to the successive stages. This allows each micro-batch to be propagated
to the next stage as soon as it has completed its forward pass, allowing stages to compute micro-
batches in parallel. GPipe thus reduces the number of idle workers, while still leaving a "bubble".
PipeDream [19] proposes to reduce further reduce this bubble of computation by introducing the
one-forward-one-backward (1F1B) pipeline schedule. Within this implementation, a stage alternates
between the forward and the backward pass of one micro-batch. However, this comes at a cost as
multiple versions of the parameters must be stored by a stage, and potentially storing the activations
of the entire batch. Our method similarly introduces a cyclic delay of micro-batches. However, our
framework is more general and notably applies to many other parallelism frameworks, not just PP.
GEMS [14] is a MP framework that similarly reduces worker idleness by offsetting computations,
like CDP and PP. Still, workers must store parameters of two stages, and GEMS does not extend to
other frameworks either, unlike CDP. PipeDream-2BW [20] improves on PipeDream by keeping only
two versions of the parameters and accumulating the gradients of the micro-batches to update them.
This allows for continuous computations on each stage with no idle workers at the cost of a gradient
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staleness of one mini-batch. We will show that our more general framework can recover and improve
on the update rule of PipeDream-2BW when applied to the particular case of PP. PipeMare [37] keeps
a single version of the weights and, like the previous delayed gradient methods, allows asynchronous
updates. However, it requires additional hyperparameters, which we do not. DAPPLE [9] improves
on PP by using stage replicas to handle micro-batches partitions. This can be combined with our
CDP framework. Still, as in PP, GPUs need to store batch activations, not just micro-batches. Finally,
note that the parallelization techniques we have discussed are often integrated together, with 3D
Parallelism [31] being a notable example that combines DP, tensor parallelism, and PP.

Appendix B. Algorithm

In Alg. 1, we detail the execution of a worker in CDPv2, for a stage j on a micro-batch i, as well as
its communications.

Appendix C. Detailled implementation of CDP in other parallelism frameworks

C.1. CDP implementation on a single-GPU device

We first explore the setting of a single-GPU device training with mini-batch SGD, assuming that
communication within the GPU is cheap and fast, but memory is limited [5]. We illustrate the
training of standard DP on a single-GPU device in Fig. 2a.i. Then, at the peak of the forward pass,
the GPU must retain the activations of the entire model for N micro-batches, representing the total
mini-batch, resulting in a total memory of activations of about NBΨA. Turning our attention to CDP,
depicted in Fig. 2a.ii, we find that its implementation on a single-GPU device requires about half
the memory compared to standard DP. Indeed, in this approach, each stage of the model processes
one micro-batch at each time step. Consequently, the total memory occupied by activations remains
nearly constant across time steps, approximately equal to N+1

2 BΨA, reducing the total memory
required for a DP implementation by half. Depending on the implementation, parameters may be
shared on the GPU, resulting in no parameter memory improvement. The memory improvement is
still significant in this case, as activation memory is generally much larger than parameter memory,
peaking at 60GB for a GPT-2 model in [23], compared to 3GB for the fp16 parameters.

C.2. CDP implementation on a multi-GPU device

Here, one GPU processes a single micro-batch, but communication between GPUs may hinder the
overall system efficiency. We consider the case where DP is implemented on N GPUs that process
N micro-batches of data independently, as depicted in Fig. 2b.i. These GPUs communicate the
gradients of the micro-batches with an all-reduce operation at the end of the training step before
proceeding to the next time step. All-reduce is a collective operation that requires at least O(log(N))
communication steps [2] in a favorable setting, or O(N) steps for a bandwidth-optimal ring-based
implementation [22]. CDP on N GPUs, as shown in Fig. 2b.ii, makes better use of GPU-to-GPU
communication bandwidth by breaking the all-reduce operation across the training step into point-
to-point operations between each time step. Indeed, half of the stages compute a backward pass at
each time step, and then send the computed gradient to the next worker (modulo N ) for the reduce
operation. This communication scheme corresponds to the ring-based all-reduce operation [22],
which has an optimal bandwidth usage.
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Algorithm 1 Worker (i, j) in CDPv2, for a stage j on micro-batch i.

1: Input: Stage replica fj , number of models/stages N , initial parameters θ0j , training steps T ,
dataset D, optimizer OPT.

2: while t < T do
3: #### Forward pass
4: # Propagate the new parameters
5: θj ←Wait and Receive from worker ((i− 1)%N, j) if i ̸= (N + 1− j) else (N, j)
6: Send θj to worker ((i+ 1)%N, j)
7: # Receive the activations
8: if j = 1 then
9: xj ← Sample from dataset D

10: else
11: xj ←Wait and Receive from worker (i, j − 1)
12: # Compute the forward pass
13: xj+1 ← fj(xj , θj)
14: # Propagate the activations
15: if j < N then
16: Send xj+1 to worker (i, j + 1)
17:

18: #### Backward pass
19: # Receive the gradients
20: if i = 1 then
21: ∆j ← 0
22: else
23: ∆j ←Wait and Receive from worker (i− 1, j)
24: if j = N then
25: δj+1 ← ∇L(xJ)
26: else
27: δj+1 ←Wait and Receive from worker (i, j + 1)
28: # Compute the backward pass

29: δj ← ∂fj
∂xj

T
δj+1

30: ∆j ← ∆j +
1
N

∂fj
∂θj

T
δj+1

31: # Propagate the gradients or the new parameters
32: if j>1 then
33: Send δj to worker (i, j − 1)
34: if i=N then
35: θj ← OPT(θj ,∆j)
36: Send θj to worker (N + 1− j, j)
37: else
38: Send ∆j to worker (i+ 1, j)
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C.3. Implementation in a MP paradigm

Now, in MP, a GPU does not hold a full replica of a model but only of a single stage. During
the forward and backward passes, activations and gradients must be communicated between GPUs
holding successive stages. A naive implementation of DP and MP results in Fig. 2c.i, where the N
micro-batches require N2 GPUs to process each slice of the data and the model. Furthermore, note
also that only N GPUs are busy at a time, so most GPUs are idle, waiting for the next micro-batch
of data to pass through, which is a significant inefficiency of MP. Here, CDP with MP, which we
present in Fig. 2c.ii, once again improves on the DP implementation. In particular, the number
of GPUs required for CDP is reduced, and we can show that for each stage j, CDP requires only
N − j + 1 GPUs to be shared among the N micro-batches. This leads to a "pyramidal" shape of the
stage structure. Thus in total, only N+1

2 N GPUs are needed to hold a stage of the model, halving
the number compared to DP, as well as the memory requirements. Compared to DP, a micro-batch
doesn’t send the activations of a stage to the same GPU each time for the computation of the next
stage. Instead, a GPU in the previous time step will have released the activations stored in its memory
after a backward pass. The micro-batch will send the activations to this GPU as its memory is
available for computation. Since the number of devices is smaller in DP than in CDP, note also that
the total number of gradient communications between devices is reduced. In fact, if a GPU can
only able to hold the activation of one micro-batch, the number of GPUs used, N+1

2 N , is optimal to
compute N micro-batches. An in-depth discussion is proposed in Sec.E.

If we assume that one GPU can store the activations of all N micro-batches, then we can further
reduce the total number of devices needed to only N , one per stage. Indeed, this implementation of
CDP with MP on N devices, depicted in Fig. 2c.ii, is equivalent to PP as presented in PipeDream [19].
If we follow our first update rule Eq. (CDP-v1), CDP follows the same update rule as PipeDream-
2BW [20]. However, our second update rule Eq. (CDP-v2) improves on this update rule by reducing
the gradient delay. PP requires fewer GPUs than MP, but only if the GPUs can store the activations
of the entire mini-batch. This limits its scaling capacity compared to MP, which is 2 times more GPU
efficient. Indeed, for GPUs with similar memory capacities, MP with CDP requires N+1

2 N GPUs to
train a batch of size B. Meanwhile, PP requires N GPUs to train a batch of size B

N , so, combined
with DP, N2 GPUs for a batch of size B.

C.4. Implementation in a ZeRO-DP paradigm

ZeRO-DP [23] is a training framework that aims to combine the advantages of DP and MP, which
we represent in Fig. 2d.i. Instead of replicating the entire model on each of the N GPUs, ZeRO-DP
replicates only the model states of a single stage across the GPUs. The model state (in stage 3 of
ZeRO-DP) refers to the model parameters, gradients, and optimizer states. When the workers execute
the forward or backward propagation through a stage, the model states of that stage are broadcast
from the GPU that stores them to all GPUs. After the computation, the model states are deleted
to free up the memory, so that a GPU only retains the model states of a maximum of two stages.
The communication volume is similar to standard multi-GPU DP, with a maximum increase of 1.5.
Note, however, that as with PP, the memory occupied by the activations on one GPU increases with
N , since all stages of the model must be retained. CDP improves on ZeRO-DP by eliminating the
need for collective communication of the model states, as shown in Fig. 2d.ii. Since one stage is
computed by a single GPU at a time step, the model states need only to be held by that GPU, without
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replication. Then, they only need to be communicated to a single GPU at the next time step. This
reduces the communication overhead at each time step, similar to Multi-GPU DP.

Appendix D. Implementation details

Framework. To test our method, we propose to use the standard training pipeline on the CIFAR-10
[16] and ImageNet [7] datasets, trained on the ResNet-18 and ResNet-50 architectures, split into
4 stages with similar FLOPs. We simulate our delayed gradients to train with SGD following DP,
CDP-v1, and CDP-v2. For ImageNet, following standard practice, we report the maximum validation
accuracy over the last 10 epochs. Contrary to [37], we did not need any specific tuning of the other
hyperparameters for our update rules. Our source code is provided with this submission and will be
released at the time of publication.

Hyperparameters and FLOPs partition. We simulate the partitioning of the models into equal
FLOPs stages using the fvcore library github.com/facebookresearch/fvcore/ to compute the FLOPs
count of each module of the ResNet. For finer partitioning of the linear modules, we separate them
into weight and bias modules by approximating the bias module’s FLOPs as the square root of the
linear module’s FLOPs. For our training, we consider the SGD optimizer with momentum 0.9 and
we simulate our delayed activations for DP, CDP-v1, and CDP-v2. We train over 100 epochs with
batch size 128 and 90 epochs with batch size 256 respectively for CIFAR-10 and ImageNet. We
consider an initial learning rate of 0.05 and 0.1, decreasing by a factor of 0.2 and 0.1 at epochs 30,
60, and 90 for CIFAR-10 and ImageNet, respectively. The weight decay is 10−4 for ImageNet and
5×10−4 or 10−3 for CIFAR-10, whether trained on a ResNet-18 or 50. To account for the smaller
image size of CIFAR-10, we remove the first max pooling and reduce the kernel size of the first
convolutional layer to 3 and the stride to 1. We need 8 A100 GPUs for 6 hours for our training runs
on ImageNet.

Train loss curve. In Fig. 3, we report the training loss curve for the three learning rules while
training a ResNet-50 on ImageNet. We observe that the effect of the delay, mostly visible for CDPv1,
mainly affects the start of training.

Memory tracking details In Fig. 4, we report the mean memory extrapolated for the ResNet-50
and ViT-B/16, for N = 4, 8, and 32. As discussed, the ResNet reaches a lower memory improvement
due to the heterogeneity of its layers, which require varying activation memory for the same execution
time (as feature size decreases through depth). This is not an issue for a Transformer-based model,
as feature size stays constant across depth. Although a heterogeneous environment will reduce
this improvement, this confirms that CDP will significantly improve the memory used in real
implementations when using homogeneous stages and workers.

Appendix E. Optimality of Model Parallelism with Cyclic Data Parallelism

We extend the discussion on the implementation of MP with CDP, specifically on the number of
GPUs required. First, the following lemma shows the number of time steps required for a GPU to
process one micro-batch.

Lemma 1 A GPU processing one micro-batch for the stage j is occupied (either computing or
awaiting the backward pass while storing activations) for 2(N − j + 1) time steps.
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Figure 3: Training loss of a ResNet-50 trained on ImageNet following the learning rules (DP),
(CDP-v1) and (CDP-v2). Values are averaged over a window of 7 epochs for the sake of readability.
The loss of CDP-v1 is significantly higher at the beginning of training, which is not the case for
CDP-v2. As parameters converge, the effect of the delay disappears and the three losses show a
similar training curve, with a small advantage for both CDP-v1 and CDP-v2. This confirms that the
delay in our update rules does not affect convergence, even in realistic settings.

Proof The final stage requires 2 time steps to compute a forward and a backward pass. Similarly,
each stage takes 2 time steps to compute a forward and a backward pass and must also wait for the
next stage to finish its execution. Thus, by recurrence, a GPU computing for the stage j will be
occupied (for computation or activation retaining) for 2(N − j + 1) time steps.

We will now show that MP with CDP can be implemented with only N − j+1 GPUs per stage j
by showing that a GPU will always be available when a micro-batch is required to perform a forward
propagation on the stage j.

Proposition 2 MP with CDP can be implemented with N − j + 1 GPUs for each stage j ∈ [1, N ].

Proof Consider a worker n that computed the forward pass at stage j − 1 and requires a GPU at
stage j. The worker n − 1 required a GPU at stage j, 2 time steps earlier. Denote this GPU, for
instance, as the first GPU of stage j. The worker n− 2 required a GPU at stage j, 4 time steps earlier,
the second GPU of stage j. The final GPU at stage j, the (N − j + 1)th, thus was required by a
worker 2(N − j + 1) time steps earlier. Since we showed in Lemma 1 that a worker occupies a GPU
at stage j for 2(N − j +1) time steps, this proves that this GPU is now available for worker n to use.

Thus we have shown that MP with CDP requires N − j + 1 GPUs per stage, or when summing
all stages, a total of 1

2(N + 1)N GPUs. The following result shows that this number of GPUs is
optimal if we consider that a GPU can only hold the activations of one micro-batch. In other words,
if a GPU is occupied either while computing or storing the activations of a micro-batch.

Proposition 3 If a GPU is occupied when it is either computing or retaining the activations of a
micro-batch, then MP requires a minimum of N(N+1)

2 GPUs to be occupied at all time steps.
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Figure 4: Activation memory per worker, when training with N workers on ImageNet with
an efficient implementation of DP (full) and a CDP (dashed), on a ResNet-50 and a ViT-B/16. An
optimal halving of the parameters is represented in black (’Optimal’). The memory required by a
forward-backward pass for one work is first tracked, and parameter memory is removed. The figure is
extrapolated by mimicking the total memory used by N workers training on DP (i.e. simultaneously)
or CDP (i.e. cyclically), and dividing by N . As N increases, the memory required by CDP flattens,
to a value lower than DP. This value reaches close to the reduction in half theorized for the ViT-B/16,
with 42%. The heterogeneity of the layers of the ResNet reduces the effectiveness of CDP, only
reaching 30% reduction.

Proof For one micro-batch, each stage j requires a GPU to be occupied during 2(N − j + 1) time
steps (see Lemma 1). Thus, N micro-batches require devices to be occupied during 2N(N − j + 1)
time steps. Since a training step, in which N micro-batches are processed, takes 2N time steps,
a GPU occupied at all time steps will be occupied 2N time steps. Thus, a stage requires at least
2N(N−j+1)

2N = N − j + 1 devices occupied at all time steps to process N micro-batches. Summing
over all stages gives the result.
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