
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SPIRITSIGHT AGENT:
ADVANCED GUI AGENT WITH ONE LOOK

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical User Interface (GUI) Agents show amazing abilities in assisting human-
computer interaction, automating human user’s navigation on digital devices. An
ideal GUI Agent is expected to achieve high accuracy, low latency, and generality
across various GUI platforms. Recent visual-based approaches show promises,
taking the advantages of advanced Vision Language Models (VLMs). Although
they generally meet the requirements of generality and low latency, these visual-
based GUI Agents often fall short in terms of localization accuracy. To address
this issue, we propose SpiritSight, a visual-based generalist end-to-end GUI agent
with outstanding grounding abilities. First, we create a multi-level, large-scale,
high-quality GUI training dataset with scalable methods and train SpiritSight us-
ing curriculum learning, empowering it with robust GUI understanding and local-
ization capabilities. Second, we introduce the Universal Block Parsing (UBP)
method, which frames the localization task as a multi-image QA problem, further
enhancing SpiritSight’s ability to ground GUI objects. With the above-mentioned
efforts, SpiritSight constantly outperforms previous SOTA methods across nu-
merous major automatic GUI navigation benchmarks. Notably, SpiritSight-8B
achieves a 46.1% Step Success Rate(Step SR) on the Mind2Web benchmark
without any candidates element input, more than doubling the performance of
SeeClick (20.9%) with a comparable model scale. SpiritSight also outperforms
other visual-language-based methods in various GUI platforms, demonstrating its
superior capability and compatibility in GUI Agent tasks. The models and the
code will be made available upon publications.

(a) The performance of SpiritSight Agent in compar-
ison with previous SOTA approaches. (b) An overview of SpiritSight Agent’s solution.

Figure 1: (a) Our model achieves new state-of-the-art (SOTA) performance across benchmarks in
web, mobile, and desktop scenarios. (b) We introduced the Universal Block Parsing (UBP) method,
which replaces the global coordinate representation with a relative coordinate for each block sub-
image, significantly enhancing the model’s grounding capabilities. We also developed a large-scale
curriculum learning dataset that equips models with three levels of comprehensive GUI knowledge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Comparison of the Average Step SR on Mind2Web benchmark of our SpiritSight Agent
of three sizes(2B, 8B, 26B) with various previous approaches. We constantly surpass all of them.

1 INTRODUCTION

Graphical User Interface (GUI) automation has long been pursued by people along with the develop-
ment of the modern digital devices. Thanks to recent advances of Large Languge Models (LLMs),
GUI Agents are constructed to assist users in interacting with graphical interfaces, automatically
making action decisions based on observations of environmental elements and user’s objective.

Current approaches can be divided into three categories based on their inputs. Language-based and
visual-based approaches make use of Hyper Text Markup Language (HTML) / Extensible Markup
Language (XML) and screenshots as input (Zheng et al., 2023; Huq et al., 2023; Deng et al., 2024;
Wan et al., 2024; Lai et al., 2024; Lee et al., 2024; Yin et al., 2024; Hong et al., 2024; Cheng
et al., 2024; Chen et al., 2024b), respectively. Visual-language-based methods integrate multi-modal
information by enhancing HTML with screenshots (Furuta et al., 2023; Thil et al., 2024; Kil et al.,
2024; Zheng et al., 2024).

The language-based and visual-language-based methods typically applied only in the web domain,
and often limited by the excessive length of HTML or security concerns regarding it. The visual-
based approaches demonstrates enhanced compatibility across various GUI platforms, as acquir-
ing screenshots is generally easier than obtaining hierarchical data from platforms except for the
web. However, visual-based approaches struggle to localize the elements objects (i.e. buttons, text
boxes) from the input visual context. Some works solve this problem by adopting Dynamic High-
Resolution (Kim et al., 2022; Chen et al., 2024c) approach, which may bring ambiguity to the
process of model learning. Others attempt to collect large scale training data through manual syn-
thesis (Shi et al., 2017; Liu et al., 2018; Lee et al., 2023), human annotation (Yao et al., 2022; Deng
et al., 2024; Rawles et al., 2024; Chen et al., 2024a; Chai et al., 2024; Lu et al., 2024; Lù et al.,
2024) and the use of common datasets (Deka et al., 2017; Li et al., 2020; Wang et al., 2021; Cheng
et al., 2024; Zhang et al., 2024a), while these data are respectively unrealistic, expensive and of low
quality.

To address the aforementioned challenges, in this paper, we proposed a single-stage, visual-based
GUI Agent——SpiritSight, which has strong ability in GUI navigation task. Our contributions are
summarized as follows.

Firstly, we propose a cost-effective GUI dataset of 5.46 million samples to enhance our model’s
GUI understanding and localization capabilities. The datasets is collected from real-world and
filtered through carefully designed rules to ensure data quality. They are also constructed with a
clear hierarchy and consist of 3 different level of components: text/icon recognition and grounding
tasks, functional grounding task, and GUI navigation task. The first two parts of datasets, which
constitute 90% of the total and have been collected for free, are primarily used to equip our model
with robust elements grounding capabilities, thereby improve its GUI navigation ability.

Secondly, We introduce a Universal Block Parsing (UBP) method to resolve the ambiguity
in Dynamic High-Resolution input. This method treats the localization task as a multi-image
QA problem (Raj et al., 2021), where each element object are grounded within the corresponding
sub-image. It also introduce a 2-dimensional block-wise position embedding method (Kim et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2022) to help the model learn the spacial information of cropped input image, thereby enhances the
grounding capabilities of SpiritSight.

Thirdly, we evaluate our SpiritSight model family in various GUI benchmark and it exhibits
impressive performance among them. We release two versions of GUI Agent with different model
size: the large-scale SpiritSight-26B, standard SpiritSight-8B and the lightweight SpiritSight-2B.
SpiritSight-2B achieve a 96% hit rate on text/icon grounding task, demonstrating near-perfect perfor-
mance in pure grounding tasks. On the ScreenSpot (Cheng et al., 2024) benchmark, SpiritSight-8B
achieve a 66.5% accuracy and surpasses SeeClick (8B) (Cheng et al., 2024) by 13.1%, and by 19.1%
over CogAgent (18B) (Hong et al., 2024). Under the non-candidate input setting, SpiritSight-8B
and SpiritSight-26B attains an average Step Success Rate of 46.1% and 50.2% on the Mind2Web
(Deng et al., 2024) benchmark, outperform all works including language-based, visual-based and
even visual-language-based methods.

2 RELATED WORK

2.1 LANGUAGE-BASED AND VISUAL-LANGUAGE-BASED GUI AGENT

Several works leverage the capabilities of Large-scale Language models (LLMs) to construct GUI
agents. It is noticed that they are mostly multi-stage architectures. Mind2Web (Deng et al., 2024)
employs a lightweight language model to extract candidate elements from HTML, followed by a
ranking model that sorts the elements based on task descriptions and historical actions. Finally,
a large language model predicts actions and the elements on which they are applied. WebAgent
(Gur et al., 2023) first uses an encoder-decoder model to generate low-level instructions and relevant
HTML code snippets, then uses another decoder to produce executable Python code. AutoWebGLM
(Lai et al., 2024) simplifies HTML code through manually designed rules before predicting the
action codes.

Other visual-language-based works leverage both GUI screenshots and hierarchical HTML/XML to
enhance the robustness of GUI agents. WebGUM (Furuta et al., 2023), CC-Net (Thil et al., 2024)
use ResNet and ViT to extract features from screenshots respectively. The image embedding are
then combined with text embedding and fed into a multi-modal transformer. SeeAct (Zheng et al.,
2024), AppAgent (Yang et al., 2023) identify all interactive elements using HTML files or XML
files. It then assign each interactive element a unique identifier in the screenshot and then feed the
screenshot into the model.

These language-based methods or visual-language-based methods that rely on the hierarchical in-
formation exhibit several limitations: (1) Acquiring hierarchical representations like HTML/XML
are not equally available on different platforms. And even this information is available, their internal
rule difference makes language-based GUI Agents less compatible; (2) HTML often contains redun-
dant and customized information, requiring additional models or extensive manually crafted rules
for effective filtering.(3) Text-based GUI Agents are vulnerable to injection attacks (Zhan et al.,
2024; Wu et al., 2024; Liao et al., 2024), where malicious instructions hidden in HTML can easily
lead to erroneous or unsafe actions.

2.2 VISUAL-BASED GUI AGENT

Recently, some visual-based approaches have been proposed to overcome the drawbacks of
language-based methods. Some of them (Shaw et al., 2023; Hong et al., 2024; Cheng et al., 2024;
Baechler et al., 2024) are single-stage methods that only use GUI screenshots as input for MLLMs
and output the next action in an end-to-end manner. However, these agents perform worse on rel-
evant GUI benchmarks compared to other approaches. MobileAgent and MobileAgent-v2 (Wang
et al., 2024b;a) are two-stage methods, using the GPT-4V API instead of publicly available MLLMs.
They find that top models like GPT-4V are not adept at element grounding tasks, thus introduce ad-
ditional tools such as OCR and icon recognition models to assist with localization. However, this
may increase the complexity and inference latency of the agent system. Overall, the current MLLMs
demonstrate poor localization capabilities for GUI grounding task, limiting the navigation capabil-
ities of single-stage visual-based GUI agents. In Appendix A, We discuss additional related works
on large-scale language Models (LLMs) and Multi-modal Large Language Models (MLLMs).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Results of SpiritSight on Mind2Web Benchmark. * indicates that this model select from
the top-50 candidate elements (Lai et al., 2024; Hong et al., 2024; Zheng et al., 2024). †† indicates
visual-language-based methods (Zheng et al., 2024), while † indicates language-based methods (Lee
et al., 2024). Others are all visual-based methods. (Chen et al., 2024b; Bavishi et al., 2023; Cheng
et al., 2024)

Model
Size

Cross-Task Cross-Website Cross-Domain
Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR

HTML-T5-XL* 3B - - 71.5% - - 62.2% - - 67.1%
AutoWebGLM* 6B - - 66.4% - - 56.4% - - 55.8%
LLaMA2-7B* 7B - - 52.7% - - 47.1% - - 50.3%

CogAgent* 18B - - 62.3% - - 54.0% - - 59.4%

SeeAct†† - 46.4% 73.4% 40.2% 38.0% 67.8% 32.4% 42.4% 69.3% 36.8%
ReadAgent-P† 340B 33.7% 72.5% 29.2% 37.4% 75.1% 31.1% 37.2% 76.3% 33.4%
MiniCPM-GUI 3B 23.8% 86.8% 20.8% 20.3% 81.7% 17.3% 17.9% 74.5% 14.6%

Fuyu-GUI 8B 19.1% 86.1% 15.6% 13.9% 80.7% 12.2% 14.2% 83.1% 11.7%
SeeClick 9.6B 28.3% 87.0% 25.5% 21.4% 80.6% 16.4% 23.2% 84.8% 20.8%

SpiritSight-2B 2B 51.7% 87.2% 44.9% 44.0% 83.6% 37.8% 42.4% 83.5% 36.9%
SpiritSight-8B 8B 59.2% 88.9% 52.7% 52.2% 84.7% 44.0% 50.1% 86.0% 44.4%
SpiritSight-26B 26B 60.5% 89.7% 54.7% 57.0% 85.7% 48.1% 54.1% 87.2% 49.2%

3 DATA COLLECTION

In this chapter, We introduce a data collection strategy specifically designed to address the defi-
ciency in a visual-base GUI agent. We highlight the deficiency by modeling the GUI navigation task
using a sequential decision-making process and further breaking it down through hierarchical policy
decomposition. See Appendix B for details.

3.1 LEVEL ONE: VISUAL-TEXT ALIGNMENT

Visual text alignment refers to the model’s ability to recognize or locate the text content of a text el-
ement or the icon caption of a icon element, which requires the source data of the GUI platform. On
the web scenario, We collected website URLs from two sources: the common crawl (Group, 2024)
datasets and URLs from website ranking. We then developed a data collection tool using play-
wright (Microsoft, 2024) library to get real-world web data from the collected URLs. With this tool,
we collected 740k web-page screenshots along with their DOM annotation, with the diversity both
in resolution and languages. We also noticed that the icons on the web-pages often lack captions.
The existing icon detection (Bai et al., 2021; He et al., 2021) tools are not fully adaptable to the web
scenario, due to their extensive use of custom-designed icons. So, we developed a InternVL-Icon as
the icon annotation tool by collecting a dataset of 30K icon-caption pairs from Alibaba (2024) and
fine-tuning InternVL1.5-26B using this dataset. After that, we annotate all the icons on web-pages
by the captions generated from InternVL-Icon. As for the mobile scenario, we collect data from
AitW (Rawles et al., 2024), which contains a large-scale GUI data in mobile devices.

Based on our collected source data, we construct three tasks: text2bbox, bbox2text, and bbox2dom.
Text2bbox task prompts the model to ground the element based on the given text or icon caption. We
additionally include context information for the elements that appears multiple times in a screenshot
to avoid ambiguity. The text2bbox data is the most abundant among the three tasks, in order to help
the model learn grounding capabilities. Bbox2text task is the inverse version of the text2bbox task,
teaching the model about Optical Character Recognition (OCR) and icon captioning. Bbox2dom
task requires the model to generate the DOM-tree based on the given bounding box area, as show
in Figure 7. The bbox2dom is constructed to help model learns about the GUI layout knowledge
besides the basic OCR and icon recognition. To make sufficient use of the context length of the
model, We pack dozens of data pairs in one training sample for text2bbox and bbox2text task, and
select the box that include as many elements as possible for bbox2dom task. Overall, we totally
construct 1.9M and 1.1M training samples on web and mobile platforms. See Appendix F for more

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

details. These training data together largely enhance the GUI foundational abilities, especially the
GUI grounding ability, of our SpiritSight model.

3.2 LEVEL TWO: VISUAL-FUNCTION ALIGNMENT

Visual-Function Alignment refers to the model’s ability to recognize or locate the function of a ele-
ment, where the element function data cannot be directly obtained from the real-world environment
like in the first level. Inspired by the back-translation (Sennrich, 2015) method for data construc-
tion, who collect the dataset for the forward translation task using back-translation, we leverage
InternVL’s capabilities in image understanding to collect element function data.

We conducted custom tests on InternVL2-26B to evaluate its ability to recognize element functions
before collecting data. We divided the screenshot into a 3x3 grid to represent the approximate
location of the element (i.e. in the top-left corner of the image) and placed a bounding box around the
target element in the screenshot to assist with specifying the element. By providing the model with
the screenshot, the element’s text content or icon caption, the region where the element is located,
we prompted the model to generate the corresponding function of the element. Additionally, We
utilize InternVL2.5-20B to enhance the quality and diversity of the generated function descriptions.
InternVL2-26B achieving an 80% accept rate with human judgement, which we consider acceptable
for constructing the functional grounding data.

Based on the methodology above, we collect element-to-function pairs for all the operable elements
collected in level 3.1 and then reverse it to function-to-element pairs. Combined with the position
annotations of the elements, we ultimately obtain function2bbox pairs. We use the same packing
method as in the text2bbox and bbox2text data for efficient model training and ultimately obtained
0.9M training samples. Besides, we also collect the functional grounding data for the mobile sce-
nario, which is derived from the construction of the GUI navigation data, as described in the level 3
section.

3.3 LEVEL THREE: VISUAL GUI NAVIGATION

We utilize the public available AitW (Rawles et al., 2024) dataset to construct our GUI navigation
training data. As mentioned in Zhang et al. (2024a); Chai et al. (2024), AitW data involves a
certain amount of incorrectly labeled samples, so we decide to clean it with GPT-4o. We adopt the
Chain-of-Thought (CoT) (Wei et al., 2022b) to make the judgment more accurate. Specifically,
We prompt GPT-4o with the task objective, the screenshot at the current step and the next step,
the previous actions, and the labeled current action. GPT-4o is required to first summarize the two
screenshots and tell the difference between them, then describe the current actual step description
according to the difference, and lastly assess the reasonability of current action. We filter out data
samples deemed unreasonable and ultimately got 0.63M GUI navigation samples.

With the collected CoT-style data, we are able to collect functional grounding data for mobile sce-
nario that is mentioned in section 3.2, as each step includes a description. The collected data also
allow us to train the model in a CoT manner to make it stable for model to learn and easy to converge.

3.4 OTHER TRAINING DATA

To enhance the model’s understanding of GUI content, we further collected some public datasets as
a supplement, including doc/web/mobile VQA datasets (Mathew et al., 2021; Chen et al., 2024b;
2021; Hsiao et al., 2022), image captioning datasets (Deka et al., 2017; Wang et al., 2021), and
mobile grounding datasets (Li et al., 2020; Deka et al., 2017). Finally, we construct 0.49M QA
pairs from the datasets above.

4 UNIVERSAL BLOCK PARSING

4.1 PROBLEM STATEMENT

We build our model based on the pre-trained InternVL2.0 (Kim et al., 2022; Chen et al., 2024c),
known as InternVL for short, a family of advanced and open-sourced VLMs. Its dynamic resolution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Baseline Block Parsing. (b) Universal Block Parsing. (c) Performance gain with UBP.

Figure 3: (a) The Baseline Block Parsing method is used by previous works that uses a global
coordinate system for the whole input image. VS (b) Our proposed Universal Block Parsing (UBP)
that replace the global coordinates with relative ones that are specific to the block. (c) Comparison on
Mind2Web benchmark for 2D Block-wise Position Embedding(2D-BPE), Universal Block Parsing
(UBP), and the combination of 2D-BPE and UBP.

strategy largely preserves the details of the input screenshots by divided them into an optimal number
of blocks. However, the dynamic resolution strategy may introduce problem in grounding GUI
element.

As represented in Figure 3a and Figure 3b, To highlight the issue, we assume two input screenshots
with aspect ratios of 1:2 and 2:1, respectively. In each screenshot, there is a target element, both
of which are located in the same position within block-1 after the image cropping process. This
leads to the model being expected to predict different locations during training for two samples in
the same position, which we refer to as ambiguity.

4.2 METHOD

One solution is to input an additional thumbnail, but this may lead to extra computational and mem-
ory overhead. We propose to solve this positional ambiguity with two steps. Firstly, we introduce
2D Block-wise Position Embedding(2D-BPE)(Kim et al., 2022) by adding two position embedding
to the sub-image feature. Secondly, we introduce a Universal Block Parsing (UBP) method, where
we replace the global coordinates with relative ones that are specific to the block. Specifically, a
point is expressed in global coordinate as

loc = [cx, cy] (1)
Where cx and cy represent the horizontal and vertical coordinates values of the point in the original
image, respectively. In the UBP method, we expresses the same point as the following derivation.{

wblock = ⌈wimg

nw
⌉

hblock = ⌈himg

nh
⌉

{
bx = ⌊ cx

wblock
⌋

by = ⌊ cy
hblock

⌋

bi = by · wblock + bx
cx′ = cx mod blockw
cy′ = cy mod blockh

loc = [bi, cx
′, cy′] (2)

Where wimg and himg represent the width and height of the original image, nw and nh represent the
number of blocks in the columns and rows, respectively, and bi represent the block index. During
the model inference, the global coordinate of this point can be parsed inversely by{

cx = cx′ + (bi mod nw) · wblock

cy = cy′ + ⌊ bi
nw

⌋ · hblock

We assume that most GUI elements are small enough to be fully contained within a single block,
rather than being split across multiple blocks. As a result, for most element objects, the single-image
grounding task becomes a multi-image grounding task. For elements that are split between blocks,
we assign their block index based on the location of the element’s center, as described in Equation
2. This special case further improves the model’s ability to understand spatial relationships between
blocks, as it trains the model to restore the occluded parts. Overall, our UBP method ensures a
clear mapping of positional information between the model’s inputs and outputs, which improves
the model’s grounding capability.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results of SpiritSight on AitW, Odyssey, GUIAct(web-multi) and ScreenSpot. Data with
underscores indicates different settings, where MiniCPM-GUI was not tested on the general part of
AitW and SeeClick split the train-test set in a custom way.

GUI Agent
Model
Size

AitW Odyssey GUIAct ScreenSpot
AMS AMS TypeEM CliACC Web Mobile Desktop

CogAgent (Hong et al., 2024) 18B 76.9% - - - 49.5% 45.5% 47.1%
SeeClick (Cheng et al., 2024) 9.6B 59.3% - - - 44.1% 65.0% 51.1%

OdysseyAgent (Lu et al., 2024) 9.6B 73.2% 74.3% - - - - -
MiniCPM-GUI (Chen et al., 2024b) 3B 58.4% - 67.0% 47.5% - - -

SpiritSight-2B 2B 72.1% 72.3% 67.9% 50.2% 63.6% 62.5% 61.8%
SpiritSight-8B 8B 73.6% 75.8% 72.3% 54.6% 68.3% 68.4% 62.9%

5 SETTINGS

5.1 IMPLEMENTATION DETAILS

We use InternVL(2B, 8B and 26B) (Kim et al., 2022; Chen et al., 2024c) as pre-trained models.
The history actions are limited within 5 actions to avoid excessive overload. The training process
is divided into two phases: continual pre-training and fine-tuning. During the pre-training phase,
we train all the collected datasets mentioned in the section 3 simultaneously. Different prompts
are designed for different training tasks to avoid task confusion. We unfreeze the visual encoder,
decoder, and MLP layer of InternVL. The learning rate is set to 1e-4, 1e-4, 5e-5 for 2B, 8B, 26B,
respectively, and the batch size is 1024.

After pre-training, we fine-tuning our model in several downstream datasets separately. for the
ScreenSpot benchmark, we follow the data proportions from Cheng et al. (2024), using part of the
first-level and second-level data, as well as data from Li et al. (2020); Deka et al. (2017); Wang
et al. (2021) to train the entire model. For other GUI navigation benchmarks, we first train the entire
model for 1 epoch using third-level data and the training data corresponding to each benchmark,
then fine-tune the model for 1 epoch on the benchmark-specific training data using LoRA (Hu
et al., 2021). While training the entire model, the learning rate is set to the same as pre-training, and
the batch size is 1024. During fine-tuning, the learning rate is set to 5e-5, the batch size is 64, with
the alpha of visual encoder and decoder set to 32 and 64, respectively.

5.2 BENCHMARK & METRIC

To access SpiritSight’s capability in diverse real-world environments, we evaluate SpiritSight on
AitW (Rawles et al., 2024), Mind2Web (Deng et al., 2024) ScreenSpot (Cheng et al., 2024),
GUIAct(web-multi) (Chen et al., 2024b), and GUI-Odyssey (Lu et al., 2024). For AitW, we use the
standard setting for splitting training and test data and remove all the test data from pre-training set
to prevent data leakage. Action matching is selected as the metric. For Mind2Web and ScreenSpot,
we use the same process and evaluation methods as SeeClick (Cheng et al., 2024) chose. For GUI-
Course, we evaluate SpiritSight in the web-multi data and report Step SR metric. For GUI-Odyssey,
we report the action matching score(AMS). Refer to Appendix D.1 for more information about the
benchmark.

6 EXPERIMENT

6.1 ADVANCED VISUAL-BASED GUI AGENT

We evaluate SpiritSight on Mind2Web (Deng et al., 2024) benchmark, which provides high-quality
and multi-dimensional test data. We compare the results of SpiritSight with other advanced methods
across various input modalities and test configurations, as shown in Table 1. Methods that using
top-50 candidates as input perform the best. This is evident, as the assistance of candidate elements

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Ablation of three data levels and our AitW data
augmentation. (b) Ablation of data percentages used in training.

Figure 4: The Average Step Success Rate (Avg Step SR) from the Mind2Web benchmark is used
as an indicator. (a)The blue: each level of data contributes to improving Step SR. The orange:
Both cleaning the AitW data and training in a CoT manner effectively improve the model’s GUI
navigation capabilities. (b)The performance improves as the dataset size increases. SpiritSight-26B
appears to have further potential for improvement.

can significantly reduce the decision space. However, such methods are not particularly feasible in
practice.

It is indicated that SpiritSight significantly outperforms all methods that do not rely on candidate ele-
ments as input, including visual-based methods, language-based methods, and even visual-language-
based methods. This demonstrates strong capabilities of SpiritSight in Web GUI navigation tasks. It
is noticed that SpiritSight achieved a significant advantage in the Ele.Acc metric compared to other
visual-based methods, which can be attributed to the specially constructed visual grounding training
data and the proposed UBP approach. We also evaluate the text grounding ability of SpiritSight on
our custom text2bbox datasets. See Appendix D.2 for more details.

6.2 STRONG CROSS-PLATFORM COMPATIBILITY

We evaluated SpiritSight on other benchmarks across various GUI platforms and compare it with
advanced visual-based Agents as shown in Table 2. SpiritSight demonstrated leading performance
on most benchmarks. For ScreenSpot, a functional grounding benchmark, SpiritSight performed
well across all three platforms. This not only highlights SpiritSight’s cross-platform capabilities
but also indicates that improving grounding enhances its GUI navigation abilities. It is noticed that
SpiritSight does not perform as well on mobile platforms(AitW, Odyssey, ScreenSpot-mobile) as
it does on web platforms(GUIAct, ScreenSpot-web), especially on the AitW benchmark. There
are two possible reasons for this: (1)the AitW test dataset contains some annotation errors (Zhang
et al., 2024a; Chai et al., 2024); (2) The dynamic resolution method may not significantly benefit
navigation tasks on mobile screens due to their inherently lower information density.

6.3 RECOGNITION AND GROUNDING AS PRIORS FOR GUI NAVIGATION

To verify the significance of the three levels of data, we progressively removed the third-level,
second-level, and first-level data from the training set during the pre-training phase. The results
is shown in Figure 4a. It can be seen that each level of data contributes to improving the Step SR.
While the first-level task differ the most from web navigation compared to the other two levels,
they provide an effective initialization for the pre-trained model. Although the third-level data is
constructed from the mobile environment, it also aids in web-based GUI navigation tasks. This
indicates that the joint learning strategy helps SpiritSight develop strong navigation abilities across
different GUI environments with limited resources. We also conducted ablation experiments to
evaluate the effectiveness of data cleaning and CoT construction on the third-level data, as shown

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Results on GUIAct(web-multi) with different language training datasets.

SFT Data
Overall
Step SR

Chinese
Step SR

English
Step SR

English+Chinese 49.3% 49.3% 49.2%
English 35.0% 24.5% 48.6%

in Figure 4a. It can be observed that both cleaning the AitW data and training in a CoT manner
effectively improve the model’s GUI navigation capabilities.

6.4 BETTER GROUNDING ABILITY FROM UBP

To verify the effectiveness of UBP on grounding task, we employ LoRA for resource efficiency to
train InternVL with the same data as SeeClick (Cheng et al., 2024)in 4 different settings, and then
evaluate it on Mind2Web benchmark. As shown in Figure 3c, it can be seen that UBP shows a
significant improvement in Ele.Acc compared to the baseline, while the difference in Op.F1 is not
substantial. This indicates that UBP improves the performance of GUI Agent primarily by enhance
the grounding ability. Finally, the combination of UBP and 2D-BPE achieves the best results.

6.5 SCALING EFFECTS ON DATASET AND MODEL SIZE

We explored the impact of dataset and model size on SpiritSight using Mind2Web benchmark. train
the entire model for 1 epoch using third-level data and Mind2Web training set. and the results
are shown in Figure 4b. SpiritSight-2B, trained on just 1/8 of the dataset, achieved 32.1% Step SR,
surpassing SeeClick (Cheng et al., 2024). This impressive performance comes from the high quality
and grounding-focus of the collected data. The performance of the model improves as the dataset
size increases, demonstrating the significance of collecting large-scale data. SpiritSight-2B reaches
saturation with a smaller amount of data, while SpiritSight-26B appears to have further potential for
improvement, which aligns with the scaling law of LLM.

We also tested the sensitivity of models trained on 100% of the pre-training data to downstream
training data. It was noted that SpiritSight, which had not been pre-trained on web navigation data,
achieved 36.6% step SR with only 1/8 of the training data, showing strong foundational capabilities
in the web GUI domain.

6.6 EFFECTIVE TRANSFER TO OTHER LANGUAGES

Exploring the cross-lingual capabilities of GUI agents is highly beneficial for their application in
non-English environments. We split the training and test sets of GUIAct(web-multi) dataset into
English and Chinese parts, respectively. We then fine-tune SpiritSight-8B on two sets of data: the
entire training set (English + Chinese) and the English-only training set. The results are shown in
Table 3.

Under the English + Chinese configuration, SpiritSight achieved very similar results on both the
English and Chinese test sets. Notably, SpiritSight, fine-tuned only on the English training set,
achieved an Step SR of 24.5% on the Chinese test set, reaching half of the English + Chinese
performance. The zero-shot capability of SpiritSight in Chinese comes from the small but effective
foundational Chinese data included in the pre-training phase.

This experiment provides a paradigm for applying GUI agents to non-English environments: by
collecting (1) free web and mobile GUI information from the target language environment (level 1
& level 2 data), and (2) a small amount of high-quality GUI navigation data at minimal cost (level
3 data). With this, the same capabilities as in the English environment can be achieved through
training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 LIMITATION AND FUTURE WORK

Safety and compliance issues. As the SpiritSight Agent is a visual-based GUI agent, it constantly
requires access to screenshots which may contain personal information or other sensitive data. Users
and system providers should manage the system privileges granted to the SpiritSight Agent carefully
to mitigate potential privacy and security risks.

Increased computational demands with higher input resolutions. The computational require-
ments of the SpiritSight Agent increase with the resolution of the input images. The inference
latency for each step will get longer as the input image size get larger. Yet, for the real-world usage
of GUI Agents, the fluency of operation is pivotal to user’s experience. Future work could explore
more efficient model architectures or compression techniques to address these computational chal-
lenges.

8 CONCLUSION

In this paper, we propose an advanced visual-based end-to-end GUI agent——SpiritSight, with
high generalization across multiple GUI platforms. We construct a efficient mutli-level, large-scale,
high-quality GUI pre-training data to equip SpiritSight with robust GUI perception, grounding and
understanding capabilities. We further introduce UBP method to resolve the ambiguity in Dynamic
High-Resolution input during model training, further enhancing the ability of SpiritSight to ground
GUI objects. Ultimately, SpiritSight shows strong performance in numerous GUI navigation bench-
mark across various GUI platforms, demonstrating great potential for practical deployment in real-
world applications.

9 ETHICS STATEMENT

Online content is uncontrollable The screenshots in our web dataset are collected from online
environments. Although we have implemented measures such as filtering for sensitive words and
manual sampling checks to screen for offensive content, we still cannot guarantee that all such
content has been removed.

Computational and Energy Demands Training large language models is a computationally in-
tense process that requires substantial electrical power. In response to these challenges, we have
designed and conducted essential experiments to optimize the training process, aiming to reduce
energy consumption.

Regulations As GUI Agents interact with user interfaces, they access sensitive data and perform
tasks that could potentially breach privacy or violate data protection laws. Ensuring these agents
operate within legal frameworks is crucial to prevent unauthorized data access and misuse.

10 REPRODUCIBILITY

Data Collection We briefly explain the data collection approach in Chapter 3, and detail the spe-
cific process and nuances of the collection in Appendix F. This allows the data collection to be
reproducible.

Universal Block Parsing We list the core formulas of UBP in Chapter 4, which are very easy to
implement. Therefore, UBP is fully reproducible.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alibaba. Alibaba iconfont, 2024. URL iconfont@list.alibaba-inc.com.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter, Vic-
tor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen,
et al. Uibert: Learning generic multimodal representations for ui understanding. arXiv preprint
arXiv:2107.13731, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani,
and Sağnak Taşırlar. Introducing our multimodal models, 2023. URL https://www.adept.
ai/blog/fuyu-8b.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai
Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents.
arXiv preprint arXiv:2407.17490, 2024.

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Liuyi Chen, Yilin Bai, Zhigang He, Chenlong
Wang, Huichi Zhou, Yiqiang Li, et al. Gui-world: A dataset for gui-oriented multimodal llm-
based agents. arXiv preprint arXiv:2406.10819, 2024a.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024b.

Xingyu Chen, Zihan Zhao, Lu Chen, Danyang Zhang, Jiabao Ji, Ao Luo, Yuxuan Xiong, and
Kai Yu. Websrc: A dataset for web-based structural reading comprehension. arXiv preprint
arXiv:2101.09465, 2021.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong,
Kongzhi Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to com-
mercial multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024c.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024d.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design ap-
plications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845–854, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2024.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
arXiv preprint arXiv:2305.11854, 2023.

11

iconfont@list.alibaba-inc.com
https://www.adept.ai/blog/fuyu-8b
https://www.adept.ai/blog/fuyu-8b

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Common Crawl Group. Common crawl - open repository of web crawl data, 2024. URL
commoncrawl.org/.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023.

Markus Hafner, Maria Katsantoni, Tino Köster, James Marks, Joyita Mukherjee, Dorothee Staiger,
Jernej Ule, and Mihaela Zavolan. Clip and complementary methods. Nature Reviews Methods
Primers, 1(1):1–23, 2021.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wichers, Gabriel Schu-
biner, Ruby Lee, and Jindong Chen. Actionbert: Leveraging user actions for semantic under-
standing of user interfaces. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 5931–5938, 2021.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Yu-Chung Hsiao, Fedir Zubach, Maria Wang, et al. Screenqa: Large-scale question-answer pairs
over mobile app screenshots. arXiv preprint arXiv:2209.08199, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Faria Huq, Jeffrey P Bigham, and Nikolas Martelaro. ” what’s important here?”: Opportunities
and challenges of using llms in retrieving information from web interfaces. arXiv preprint
arXiv:2312.06147, 2023.

Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi
Lei, An Liu, et al. Unified language-vision pretraining in llm with dynamic discrete visual tok-
enization. arxiv 2024. arXiv preprint arXiv:2309.04669, 2023.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view
visual contextualization for web navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14445–14454, 2024.

Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document un-
derstanding transformer. In European Conference on Computer Vision, pp. 498–517. Springer,
2022.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large lan-
guage model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos,
Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screen-
shot parsing as pretraining for visual language understanding. In International Conference on
Machine Learning, pp. 18893–18912. PMLR, 2023.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts. arXiv preprint arXiv:2402.09727, 2024.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

12

commoncrawl.org/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget-captioning:
Generating natural language description for mobile user interface elements. arXiv preprint
arXiv:2010.04295, 2020.

Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei Xiao, Yuan Tian, Bo Li,
and Huan Sun. Eia: Environmental injection attack on generalist web agents for privacy leakage.
arXiv preprint arXiv:2409.11295, 2024.

Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
multi-modal large language models. arXiv preprint arXiv:2311.07575, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Microsoft. Playwright library, 2024. URL https://playwright.dev/.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. OpenAI, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Harsh Raj, Janhavi Dadhania, Akhilesh Bhardwaj, and Prabuchandran KJ. Multi-image visual ques-
tion answering. arXiv preprint arXiv:2112.13706, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Rico Sennrich. Improving neural machine translation models with monolingual data. arXiv preprint
arXiv:1511.06709, 2015.

13

https://playwright.dev/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina N Toutanova. From pixels to ui actions: Learning to follow
instructions via graphical user interfaces. Advances in Neural Information Processing Systems,
36:34354–34370, 2023.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pp. 3135–3144. PMLR, 2017.

Lucas-Andrei Thil, Mirela Popa, and Gerasimos Spanakis. Navigating webai: Training agents to
complete web tasks with large language models and reinforcement learning. In Proceedings of
the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 866–874, 2024.

Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai,
Cong Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting key information
extraction and table recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 15641–15653, 2024.

Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang Li. Screen2words: Au-
tomatic mobile ui summarization with multimodal learning. In The 34th Annual ACM Symposium
on User Interface Software and Technology, pp. 498–510, 2021.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and Jitao
Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception. arXiv
preprint arXiv:2401.16158, 2024b.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023a.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, et al. Cogvlm: Visual expert for pretrained language models. arXiv
preprint arXiv:2311.03079, 2023b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Chen Henry Wu, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried, and Aditi Raghunathan. Adver-
sarial attacks on multimodal agents. arXiv preprint arXiv:2406.12814, 2024.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model
for finance. arXiv preprint arXiv:2303.17564, 2023.

Yichong Xu, Chenguang Zhu, Shuohang Wang, Siqi Sun, Hao Cheng, Xiaodong Liu, Jianfeng
Gao, Pengcheng He, Michael Zeng, and Xuedong Huang. Human parity on commonsenseqa:
Augmenting self-attention with external attention. arXiv preprint arXiv:2112.03254, 2021.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12380–12403, 2024.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. Injecagent: Benchmarking in-
direct prompt injections in tool-integrated large language model agents. arXiv preprint
arXiv:2403.02691, 2024.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint
arXiv:2403.02713, 2024a.

Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
Duan, Bin Wang, Linke Ouyang, Songyang Zhang, Wenwei Zhang, Yining Li, Yang Gao, Peng
Sun, Xinyue Zhang, Wei Li, Jingwen Li, Wenhai Wang, Hang Yan, Conghui He, Xingcheng
Zhang, Kai Chen, Jifeng Dai, Yu Qiao, Dahua Lin, and Jiaqi Wang. Internlm-xcomposer-2.5: A
versatile large vision language model supporting long-contextual input and output, 2024b.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. In The Twelfth International Conference on Learn-
ing Representations, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

A.1 LARGE-SCALE LANGUAGE MODELS

In recent years, large language models (LLMs) (Radford et al., 2018; Devlin, 2018; Raffel et al.,
2020; Xu et al., 2021; Wu et al., 2023; Nijkamp et al., 2022; Roziere et al., 2023; Yu et al., 2023;
Wang et al., 2023a; Ying et al., 2024; Shao et al., 2024; Wei et al., 2022b;a; Pan et al., 2023)
have demonstrated remarkable capabilities in the field of Natural Language Processing (NLP), en-
compassing natural language generation, commonsense knowledge question-answering, code com-
pletion, mathematical computation, and logical reasoning. LLM have also demonstrated strong
decision-making capabilities, laying the foundation for the emergence of GUI agents.

A.2 MULTI-MODAL LARGE LANGUAGE MODELS

With the development of large language models, numerous works (Bai et al., 2023; Wang et al.,
2023b; Lin et al., 2023; Li et al., 2024; Chen et al., 2024c; Zhang et al., 2024b; Yao et al., 2024; Jin
et al., 2023) have proposed Multi-modal Large Language Models (MLLMs) to bring the capabilities
of language models into the visual domain. CLIP (Hafner et al., 2021) uses contrastive learning to
align visual and language features, while BLIP (Li et al., 2022) and BLIP-2 (Li et al., 2023)build on
this by adding a language decoder, enabling the models to perform image-grounded text generation.
InternVL (Chen et al., 2024d) attempts to scale the parameters of visual encoder up to 6 billion,
significantly enhancing the model’s ability to perceive visual input. LLaVA (Liu et al., 2023) and
Sphinx (Lin et al., 2023) improve the models’ understanding and chat abilities through instruction
tuning and multitask learning, respectively. Beyond general domains, OCR-Free (Kim et al., 2022)
methods use an encoder-decoder architecture to achieve end-to-end visual document understanding.
This demonstrates the significant potential of MLLM in GUI navigation task.

B TASK FORMULATION

For a given GUI platform, we first obtain an action space A which contains all possible action that
an agent can take. Given the task description T , the previous actions H = {a1, a2, ..., at−1}, the
action space A and the current screenshot ot, the agent is expected to infer the optimal action a∗t
that maximizes the expected future reward. The inference process is guided by a policy π, as shown
below, which maps the current context to a probability distribution over the action space A.

a∗t ∼ π(a|T ,H,A, ot) (3)

We propose a hierarchical decomposition of the policy to handle the complexity of action inference.
Initially, the overall policy π is decomposed into step inference policy πs(s|T ,H, ot) and action
inference policy πa(a|s,A). The step inference policy πs selects the step s based on the current
context, where the step is defined as the natural language description of the action. Once the step
s is determined, the action inference policy πa selects a specific action a from the action space A
conditioned on s.

Further, we decompose πa into two additional sub-policies: πpos(apos|s,A) and πattr(aattr|s,A).
Here, apos corresponds to the positional information of the action, typically the coordinates where
the action is performed, while aattr represents the non-positional information of the action, such as
the action type (click, input) or additional parameters like input text. The decomposition is formally
expressed as:

π(a|T ,H,A, ot) = πs(s|T ,H, ot) · πpos(apos|s,A) · πattr(aattr|s,A) (4)

It is easy for visual-based agent to learn on the step inference policy πs, as modern VLLMs performs
well on reasoning and decision-making. The non-positional inference policy πattr is also easy since
the non-positional part of a action can be directly paraphrased according to the step. For example,
INPUT(”Copenhagen”) can be directly infer through the step Input “Copenhagen” into the arrival
input box. The primary challenge lies in learning the positional sub-policy πpos as mentioned in
Chapter 2. Based on this, we construct a large scale dataset with a primary focus on grounding tasks
to address the challenge of learning accurate positional actions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: The overall architecture of SpiritSight. SpiritSight is pre-trained on large-scale, multi-
level, high quality datasets. The UBP solve the ambiguity in Dynamic High-Resolution input during
model training.

C OVERALL ARCHITECTURE

We build our model based on the pre-trained InternVL2.0 (Chen et al., 2024c) (InternVL for short), a
family of advanced and open-sourced VLMs. We chose InternVL for the following reasons: (1) The
large-scale and high-performance visual encoder is more capable to handle the text-rich GUI envi-
ronment. (2) The dynamic resolution strategy largely preserves the details of the input screenshots,
allowing for the perception of fine-grained text and icon information. We take the advantage of
large-scaled visual encoder with a large-scaled GUI dataset described in chapter 3. We further pro-
pose a Universal Block Parsing (UBP) method to handle with the small object localization problem
brought by dynamic resolution in chapter 4.

The architecture of SpiritSight is depicted in Figure 5. To begin with, the input image is the GUI
screenshot. According to the dynamic resolution algorithm of InternVL, the appropriate ratio of
input image is decided. Then, the image is divided into several blocks, each with a unique index, in
preparation for the post-processing phase of our UBP method. These image blocks will be flattened
as batches before they are sent into visual encoder, which results in the loss of their 2D spatial
relation. To address this issue, we introduce the 2D Block-wise Position Embedding (2D-BPE)(Kim
et al., 2022) method, which maintains the blocks’ 2D spatial relation by adding a row embedding
and column embedding to each block. Afterwards, the embedded image features, along with the
task objective, the action space and the history actions are passed through the InternLM2 decoder
to make the action code inference. Finally, the exact pixel coordinate and the action to be executed
is obtained by the UBP parser. We define a separate action space Aspace for each GUI platforms,
making our SpiritSight model highly compatible to a variety of GUI navigation tasks. The history
actions H are limited within 5 actions to avoid excessive history overload. For each step, SpiritSight
would observe the current screen, output the optimal action-code A according to task objective T,
history actions H and the given action space Aspace. The detailed prompt template can be seen in
Appendix H.

D EXTENDED EXPERIMENTS

D.1 GUI AGENT BENCHMARK

In recent years, GUI agents have seen rapid development, with many types of benchmarks emerging.
MiniWoB (Shi et al., 2017), MiniWoB++ (Liu et al., 2018), and WebShop (Yao et al., 2022) are

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Visualization results of SpiritSight-2B on our custom text2bbox test set. we select a
Chinese web page to show the cross-lingual capabilities of our models. The red boxes represent the
generated results and the text next to it represent the text prompt.

early classic GUI navigation benchmarks. However, the data in these benchmarks is synthetically
generated, which creates a slight gap compared to real-world data. AitW Rawles et al. (2024) is a
large real-world dataset that is currently popular for mobile GUI navigation. Mind2Web Deng et al.
(2024) is a benchmark for web navigation that has become representative due to its high quality
and its provision of cross-task, cross-website, and cross-domain evaluations. ScreenSpot Cheng
et al. (2024) is a benchmark for functional grounding, covering mobile, web, and desktop scenarios.
GUIAct (Chen et al., 2024b) and GUI Odyssey (Lu et al., 2024) are newly released benchmarks
designed for web and mobile environments, respectively. They rely on human annotations, and the
annotations underwent quality checks, making them highly reliable benchmarks.

D.2 GUI GROUNDING ABILITIES

To evaluate SpiritSight’s ability in text localization, we construct a small text2bbox benchmark.
We select a small number of URLs from the website URL mentioned in Appendix F. These URLs
are not included in the training set. Following the method described in Chapter 3, we construct a
text2bbox task, resulting in 3,700 text2bbox pairs as the test set. We adopt the same metric as in
SeeClick (Cheng et al., 2024), where the goal is to determine whether the predicted center point
falls within the ground-truth bounding boxes. Finally, SpiritSight-2B achieves a 96.1% hit rate on
this test set, demonstrating its strong capability in fundamental grounding tasks. Fig. 6 shows the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

visualization of the predicted bounding boxes from SpiritSight-2B, where we select a Chinese web
page to show the cross-lingual capabilities of our models.

E BBOX2DOM TASK EXAMPLE

Figure 7: An example of the Bbox2dom task. Left shows a given bounding box on a web page, right
shows its corresponding simplified DOM structure.

F DATA COLLECTION

F.1 WEB DATA COLLECTION

We collected website URLs from two sources: the Common Crawl (Group, 2024) datasets and URLs
from website ranking. We then developed a data collection tool using playwright (Microsoft, 2024)
library to get real-world web data from the collected URLs. We used the URLs from the website
ranking as a supplement to Common Crawl due to their compromised quality, including a large
proportion of blank pages, sparse-texted pages, and dead pages. We developed a data collection tool
using playwright (Microsoft, 2024) library to get real-world web data from the collected URLs.

We sequentially traverse the collected URLs. For each URL, we start data collection only after
the page has fully loaded. The data collected includes website screenshots and hierarchical element
structure information. A carefully designed scheme is used to collect the element hierarchy. First, we
perform grid sampling on the coordinates, with a step size of 8, to ensure that elements with a length
or width greater than 8 are captured. Then, we obtain the corresponding element objects based
on the sampled coordinates, which include various information about the elements, such as type,
inner text, coordinates, and interactivity. We determine whether an element is clickable by checking
its pointer property and registered events, and assess whether it can accept text input by checking
its type. We also label these element objects to simplify the HTML information. Specifically,
after collecting all the element information, we developed an HTML pruning algorithm to simplify
the HTML structure. Through this pruning algorithm, all labeled element nodes and those with
structural representation functions are retained. The resulting DOM trees are used to construct the
bbox2dom data.

After collecting the data from the current website, we acquire new pages using two methods:
scrolling down or clicking on an element, with clickable elements randomly sampled from all avail-
able ones. We collect 30 pages for each initial URL. This process is repeated, creating a continuous
cycle of interaction. Ultimately, we collect 740k web-page screenshots along with their DOM an-
notation. Among them, English websites account for 3/4, while Chinese websites account for 1/4.

G TRAINING DATA FORMAT

We constructed a large number of text2bbox, bbox2text, bbox2dom, and function2bbox tasks. Each
sample contains multiple data pairs to fully utilize the context length and improve the efficiency and
stability of the model during training. It is worth noting that we adopted a representation with an
attached block index, which is derived from our proposed UBP method. Below are the training data
templates for each task, where the prompts used in the actual data construction are not fixed but
randomly selected from a prompt pool.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Data Format for text2bbox Task
user:
<image>
1.{text 1}
2.{text 2}
3.{text 3}
...
Provide the bounding boxes of each given text in a list format.
assistant:
1.{[block-index, cx, cy, w, h]}
2.{[block-index, cx, cy, w, h]}
3.{[block-index, cx, cy, w, h]}
...

Data Format for bbox2text Task
user:
<image>
1.{[block-index, cx, cy, w, h]}
2.{[block-index, cx, cy, w, h]}
3.{[block-index, cx, cy, w, h]}
...
Provide the text content of each given bounding box in a list format.
assist:
1.{function description 1}
2.{function description 2}
3.{function description 3}
...

Data Format for bbox2dom Task
user:
<image>
I’d like some information about the specific region [block-idx, cx, cy, w, h] in the image.
assistant:
{DOM Tree}

Data Format for function2bbox Task
user:
<image>
1.{function description 1}
2.{function description 2}
3.{function description 3}
...
In this image from a webpage, find out where to click for a certain need and provide bbox
coordinates in a list format.
assistant
1.{[block-index, cx, cy, w, h]}
2.{[block-index, cx, cy, w, h]}
3.{[block-index, cx, cy, w, h]}
...

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

H PROMPT TEMPLATES

H.1 EVALUATION INFERENCE

Prompt for Evaluation Inference
Task: {task}
History Actions:
{history}
Action Space
{Action Space}
Requirements: Please infer the next action according to the Task and History Actions.
Return with Action Code. The Action Code should follow the definition in the Action Space.

H.2 LEVEL-TWO FUNCTION GENERATION

Prompt for Level-two Function Generation
Please infer the purpose of the operation ”click on the ’{text}’ on the {region} of the
webpage” based on the webpage.
Please deliver the purpose specifically and clearly, which points to the certain item.
Its direct context includes the following information: {context text}.
Please make the answer only in English.
Let’s think step by step.
Your final answer should be in a new line and included in double quotation like:
The purpose is ”xxx”.

Prompt for Level-two Function Augmentation
Can you rewrite the original purpose ”{purpose}” into a short phrase?
Here are some examples:
{Few-shot example 1}
{Few-shot example 2}
{Few-shot example 3}
Output only the refined purpose, start with ’to’, without any explanation.

H.3 LEVEL-THREE DATA PROCESSING

System Prompt for Level-three Data Processing
You are a mobile operation assistant, the main goal is to help identify whether the mobile
navigation operation is correct.

Prompt for Level-three Single Step Data Processing
Task: {task}
Action History: {history}
The Next Action: {action}
Return:
1. Summarize the screenshot of a mobile phone about its main content and its functionality.
Describe it with necessary details, but not too long.
2. Based on the task, action history, the current screen and your summary, estimate the
purpose of the next action. Note that it is not the entire goal, but a single step goal for the
next step. Return only the purpose.
3. Analyze the rationality of the next action. Return with the reason.
4. Return the final answer of the rationality with just ’True’ or ’False’.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt for Level-three Multi Step Data Processing
Task: {task}
Action History: {history}
The Current Action: {action}
You are completing a mobile task and now in step {step idx}. Picture 1 shows the current
screen with action demonstration and picture 2 shows the screen after performing The Cur-
rent Action on picture 1. You are also given the Action History before the Current Action.
Return:
1. Summarize picture 1 about its main content and its functionality. Also describe the
changes that have occurred in Figure 2 compared to Figure 1. Describe them with necessary
details, but not too long.
2. Based on the changes between Figure 1 and Figure 2, estimate the function of the Current
Action. Return with format of ”The function of the Current Action: xxx”
3. Analyze the rationality of the Current Action based on the Task. Return only the reason.
4. Return the final answer of the rationality of the Current Action with just ’True’ or ’False’.
5. Analyze if the Task is successfully completed. Return only the reason.
6. Return the final answer of the complementarity of the Task with just ’True’ or ’False’.

Prompt for Level-three Multi Step Marked Data Processing
Task: {task}
Action History: {history}
The Current Action: {action}
You are completing a mobile task and now in step {step idx}. Picture 1 shows the current
screen with action demonstration and picture 2 shows the screen after performing The Cur-
rent Action on picture 1. You are also given the Action History before the Current Action.
Return:
1. Describe {mark}.
2. Summarize picture 1 about its main content and its functionality. Also describe the
changes that have occurred in Figure 2 compared to Figure 1. Describe them with necessary
details, but not too long.
3. Based on the changes between Figure 1 and Figure 2, estimate the function of the Current
Action. Return with format of ”The function of the Current Action: xxx”
4. Determine the Current Action is ”Click” or ”Long Press” based on the previous informa-
tion. (The Current Action: xxx)
5. Analyze the rationality of the Current Action based on the Task. Return only the reason.
6. Return the final answer of the rationality of the Current Action with just ’True’ or ’False’.
7. Analyze if the Task is successfully completed. Return only the reason.
8. Return the final answer of the complementarity of the Task with just ’True’ or ’False’.

Prompt for Level-three Last Step Data Processing
Task: {task}
Action History: {history}
You have just completed a mobile task with a series of actions listed in Action History. The
picture shows the final screen of the mobile.
Return:
1. Summarize the picture about its main content and its functionality. Describe it with nec-
essary details, but not too long.
2. Analyze if the task is successfully completed from the perspectives of success and com-
pletion separately.
3. Return the final answer of the analysis with just ’True’ or ’False’.

22

	Introduction
	Related Work
	Language-based and visual-language-based GUI Agent
	Visual-based GUI Agent

	Data Collection
	Level One: Visual-Text Alignment
	Level two: Visual-Function Alignment
	Level three: Visual GUI Navigation
	Other Training Data

	Universal Block Parsing
	Problem Statement
	Method

	Settings
	Implementation Details
	Benchmark & Metric

	Experiment
	Advanced Visual-based GUI Agent
	Strong Cross-Platform Compatibility
	Recognition and Grounding as Priors for GUI Navigation
	Better Grounding Ability from UBP
	Scaling Effects on Dataset and Model Size
	Effective Transfer to other languages

	Limitation and Future Work
	Conclusion
	Ethics Statement
	Reproducibility
	Extended Related Work
	Large-scale Language Models
	Multi-modal Large Language Models

	Task Formulation
	Overall Architecture
	Extended Experiments
	GUI Agent Benchmark
	GUI Grounding Abilities

	Bbox2dom Task Example
	Data Collection
	Web Data Collection

	Training Data Format
	Prompt Templates
	Evaluation Inference
	Level-two Function Generation
	Level-three Data Processing

