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ABSTRACT

Information retrieval has transitioned from standalone systems into essential com-
ponents across broader applications, with indexing efficiency, cost-effectiveness,
and freshness becoming increasingly critical yet often overlooked. In this paper,
we introduce SemI-parametric Disentangled Retrieval (SiDR), a bi-encoder re-
trieval framework that decouples retrieval index from neural parameters to enable
efficient, low-cost, and parameter-agnostic indexing for emerging use cases. Specif-
ically, in addition to using embeddings as indexes like existing neural retrieval
methods, SiDR supports a non-parametric tokenization index for search, achiev-
ing BM25-like indexing complexity with significantly better effectiveness. Our
comprehensive evaluation across 16 retrieval benchmarks demonstrates that SiDR
outperforms both neural and term-based retrieval baselines under the same indexing
workload: (i) When using an parametric embedding-based index, SiDR exceeds the
performance of conventional neural retrievers while maintaining similar training
complexity; (ii) When using a non-parametric tokenization-based index, SiDR
drastically reduces indexing cost and time, matching the complexity of traditional
term-based retrieval BM25, while consistently outperforming it on in-domain
datasets; (iii) Additionally, we introduce a late parametric mechanism that matches
BM25 index preparation time for search while outperforming other neural retrieval
baselines in effectiveness.

1 INTRODUCTION

In recent years, information retrievers has evolved from end-to-end systems to essential components
in various applications, including question answering (Kolomiyets & Moens, 2011; Zhu et al., 2021),
classification (Long et al., 2022), recommendation (Dong et al., 2020; Manzoor & Jannach, 2022)
and dialog systems (Liu et al., 2024b). This evolution has notably accelerated with the advent of
the retrieval-augmented generation (RAG) paradigm (Bommasani et al., 2021; Guu et al., 2020; Yu
et al., 2022; Mialon et al., 2023), in which the retrieval component enables large language models
(LLMs) to access relevant data from external sources, effectively addressing challenges such as like
hallucination (Ji et al., 2023; Zhang et al., 2023), obsolescence (Wang et al., 2023), and privacy
concerns (Huang et al., 2022).

Traditional retrieval systems typically provide end-to-end search services and build indexes offline,
with little concern for cost or latency. In contrast, modern retrieval components need to integrate
with various models and tasks, requiring greater flexibility to meet the diverse needs of contemporary
applications. These include online indexing of real-time data, temporary indexing for exploration,
and regular re-indexing for co-training that differ significantly from traditional retrieval systems. We
highlight several emerging retrieval-based scenarios where current neural retrievers face limitations,
and introduce specific index properties in our proposed framework designed to overcome these
challenges.

Scenario 1: Online indexing for RAG applications with real-time knowledge sources. In
RAG applications that depend on real-time knowledge source, such as up-to-the-minute internet
information (Liu et al., 2023) and user-uploaded content requiring immediate responses (Wang et al.,
2024), efficient online indexing is essential as it determines the time lag between the availability of
data and its application. Effective neural retrieval with efficient online indexing facilitates the rapid
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assimilation and filtering of real-time datastreams, reducing computational burdens and mitigating
hallucinations (Liu et al., 2024a; Shuster et al., 2021) when LLMs process long contexts.

Figure 1: Comparison of storage require-
ments (2 GB vs. 31 GB) and time/resource
costs (1 CPU hour vs. 30 GPU hours) for two
index types.

Scenario 2: Low-cost index for exploration and
deployment. With growing concerns about data
privacy (Huang et al., 2022; Arora et al., 2023) and
licensing issues (Min et al., 2023), startups and indi-
vidual users are increasingly opting to build local re-
trieval pipelines for RAG applications. During the ex-
ploration and deployment of these applications (Shao
et al., 2024), it is common to construct temporary re-
trieval indexes to analyze large datastores and adjust
configurations. The retrieval index needs to be ad-
justed and rebuilt according to different data sources
and chunk size selections. In such exploratory sce-
narios, smaller entities are more sensitive to resource
constraints and can often compromise on effective-
ness in favor of reducing costs, making Low-cost
Index more important than achieving state-of-the-art
performance.

Scenario 3: Parameter-agnostic index for co-training retrievers with LLMs. A significant
challenge in co-training neural retrievers with LLMs is the index update issue (Asai et al., 2023)
caused by in-training retrieval (Guu et al., 2020; Izacard et al., 2022a; Shi et al., 2023). Specifically,
during training, a neural retriever parameterized by θ is learned to fetch information from a datastore
D to enhance the downstream LLMs. The retrieval index, denoted as Eθ(D), consists of the neural
embeddings of D. As the parameters update θ → θ′, the index needs to be rebuilt Eθ(D)→ Eθ′(D)
to prevent it from becoming stale. This process is computationally expensive and compromises the
training objectives. Developing a neural retrieval that supports a Parameter-agnostic Index could
address this issue and streamline the co-training pipelines.

To meet these emerging needs, our paper introduces the semi-parametric disentangled retrieval
framework (SiDR), which decouples retrieval index from neural parameters to facilitate an efficient,
low-cost, and non-parametric indexing setup. Specifically, our framework involves learning paramet-
ric term weighting within a language model vocabulary space, where non-parametric representations
can be straightforwardly defined and constructed via tokenization. By aligning these two types of
representations, one encoder within the bi-encoder framework can optionally utilize tokenization-
based representations as a shortcut for indexing large data volumes. As a result, SiDR simultaneously
supports a parametric index that utilizes neural embeddings and a non-parametric index that employs
bag-of-tokens representations. As illustrated in Figure 1, using the non-parametric index for the
Wikipedia corpus drastically reduces the indexing cost and time from 30 GPU hours to just 1 CPU
hour and reduces storage size from 31GB to 2GB. This design offers flexibility in choosing indexes
with varying complexity to meet diverse retrieval scenarios and co-training propose.

Our comprehensive evaluations across 16 retrieval benchmarks demonstrate that SiDR outperforms
both neural and term-based retrieval baselines under comparable indexing workloads. Specifically, our
framework with a non-parametric index achieves a 10.6% improvement in top-1 accuracy in-domain
compared to BM25, while maintaining indexing efficiency on par with BM25. Additionally, when
utilizing a parametric index, our framework surpasses neural retrieval methods by 2.7% with similar
training complexity. Furthermore, our late parametric approach that retrieves from a non-parametric
index and re-ranks the results on-the-fly, achieving indexing efficiency comparable to BM25 while
maintaining the effectiveness of neural retrieval.

We summarize our contributions from two main aspects. From a retrieval perspective, we introduce
a semi-parametric retrieval framework that supports indexes of varying complexity to meet diverse
emerging scenarios. Our framework consistently outperforms both BM25 and neural retrieval
methods under comparable indexing workload. From a training perspective, our approach is the
first to enable in-training retrieval that facilitated by the semi-parametric design without the need for
costly updates to the retrieval index. This effectively addresses a common challenge in co-training
bi-encoder retrievers with other models.
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2 BACKGROUND

Information Retrieval Task Given a query q and a datastore D, information retrieval (Manning,
2009) aims to identify the most relevant passage p ∈ D based on q. This task is typically performed
using a bi-encoder framework, which employs two independent encoders to embed queries and
passages into vector representations. The retrieval process can be formulated as:

p̂ = argmax f(q,D) = argmax
∀p∈D

f(q, p)

In this equation, p̂ is the retrieved passage, and f is a function measures the relevance between q and
p, usually calculated as the inner product of their vector representations.

Notation We use Eθ(·) to denote a general neural embedding process, applicable to both dense
and sparse retrieval. Specifically, for term-based and sparse lexical retrieval, a |V |-dimensional
representation is used, where each dimension represents the weight of a token or word within
vocabulary V . We denote this embedding function as VModelθ (·) : x → R|V |, where the subscript
indicates the model architecture, and θ reflects whether the embedding involves learnable parameters.

Term-based Retrieval Traditional term-based retrieval, such as TF-IDF (Ramos et al., 2003) and
BM25 (Robertson et al., 2009), assess relevance based on weighted term overlap, which can be
described as:

fBM25(q, p) = ⟨VBM25(q), VBM25(p)⟩ = ⟨wBM25 · VBoW(q), wBM25 · VBoW(p)⟩

These methods do not involve learned neural parameters and are therefore categorized as non-
parametric (Min et al., 2022; Freeman et al., 2002). They employ a million-scale dimensional
bag-of-words (BoW) representation VBoW(·), with heuristic statistical metrics determining the term
weighting wBM25 for each dimension. Due to the efficiency and cost-effectiveness in constructing the
term-based index VBM25(D), these methods are still widely used in industry applications.

Neural Retrieval Unlike term-based retrieval that is heuristic-driven, neural retrieval (Karpukhin
et al., 2020; Zhu et al., 2023) is data-driven and parameterized, tailored to learn on specific datasets
and tasks. The relevance assessment is defined as:

fθ(q, p) = ⟨Eθ(q), Eθ(p)⟩

While neural retrievers are effective with ample training data, the construction of the parametric index
Eθ(D) requires embedding the entire datastore, which introduces significant computational costs and
latency that hinder their widespread adoption.

3 METHODOLOGY

As an overview, Semi-parametric Disentangled Retrieval (SiDR) is a sparse lexical retrieval system
that builds on the VDR architecture (Zhou et al., 2024), incorporating modifications in the learning
objective and utilizing in-training retrieval for negative mining to enhance its effectiveness. At
downstream, SiDR supports both embedding-based index and bag-of-tokens (BoT) index. The
primary goal of our work is to expand the functionality of the current retrieval system to better
accommodate emerging scenarios, while still maintaining comparable performance in traditional
search applications that do not prioritize indexing.

In the following sections, we begin by revisiting masked language models, which lay the foundation
for our approach (§3.1). We then delve into details of representation (§3.2), training objectives (§3.3),
search pipelines (§3.4), and the application of in-training retrieval techniques (§3.5).

3.1 REVISITING PRE-TRAINED LANGUAGE MODELING

In this section, we revisit pre-trained masked language models (MLMs) (Devlin et al., 2018), which
lays the foundation for demonstrating the MLM objective in Equation 1 with our semi-parametric
alignment in Equation 2. Additionally, decoder-only LLMs can be considered a variant of MLM
where the masked token is always the next token in the sequence. During pre-training, MLMs are
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Figure 2: Left: Training frameworks of dense retrieval, sparse lexical retrieval and our proposed
semi-parametric retrieval; Right: Different inference pipelines of SiDR.

optimized to predict masked tokens by leveraging the context from surrounding tokens. Specifically,
given an input sequence of tokens x = [t1, t2, . . . ,M(ti), . . . , tn] with ti masked, the masked
language model uses its prediction head (MLMH) with a softmax function to produce a contextualized
vocabulary probability VMLMHθ+softmax(Mask(ti)|x) for predicting the masked token ti. The ground
truth probability is the one-hot representation of the token ti. In this paper, we refer to this type
of representation as the bag-of-tokens (BoT) representation, denote as VBoT(ti). The mask token
prediction task can be viewed as alignment between the vocabulary distribution of the masked token
position with the one-hot representation VBoT(ti) in a masked setup:

VMLMHθ+softmax(Mask(ti)|x)
align←−→ VBoT(ti) (1)

As a result, the representation VMLMHθ
(ti|x) tends to assign large values to the dimension correspond-

ing to ti, or that are semantically related to ti based on the context x.

3.2 PARAMETRIC AND NON-PARAMETRIC REPRESENTATION

Learned sparse lexical retrievers represent data in vocabulary space, which can be interpreted as a
set of tokens with weights. At downstream, SiDR aims to align the parametric representation Vθ(x),
using learned token weights predicted by a neural encoder, with the non-parametric representation
VBoT(x), using unweighted tokens generated by a tokenizer.

Parametric Representation We inherit the VDR encoder (Zhou et al., 2024), which extends the
conventional MLMs architecture with three modification: (i) replacing the softmax activation with
elu1p to map dimensional values from (0, 1) to (0,+∞); (ii) applying max-pooling to aggregate
token representations into a global representation; and (iii) employing top-k sparsify (Stopk) to prune
the less significant dimensional values to zero. These modifications can be expressed as follows:

elu1p(x) =

{
x+ 1 if x >= 0

ex otherwise

Vθ(x) = Stopk ◦MaxPool ◦ {VMLMHθ+elu1p(ti|x),∀ti ∈ x}

Significantly, these modifications aggregate token representations into a global one, while preserving
the property of assigning larger values to more relevant dimensions.

Non-parametric Representation The non-parametric bag-of-tokens (BoT) representation for a
sequence of tokens x is defined as follows:

VBoT(x) = MaxPool ◦ {VBoT(ti),∀ti ∈ x}; VBoT(x)[i] =

{
1 if V [i] ∈ x

0 otherwise

VBoT(x) can be seen as the result of applying max pooling to the one-hot representations of all tokens
in x, assigning each i-th dimension a value of 1 or 0, depending on whether the ith token in V is
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present in x. Compared to VBM25(·), VBoT(·) is tokenizer-specific, with dimensionality on the scale of
tens of thousands, and uses binary values that require less storage space, making it well-suited for
tensorization and efficient GPU computation.

Rationale of Semi-parametric Alignment The alignment between parametric and non-parametric
representation can be expressed as follows:

Stopk ◦MaxPool ◦ {VMLMHθ+elu1p(ti|x),∀ti ∈ x} align←−→ Stopk ◦MaxPool ◦ {VBoT(ti),∀ti ∈ x} (2)

This alignment reflects the upstream masked token prediction process, as detailed in Equation 1.
While MLMs typically predict a single token using a one-hot representation, our approach extends this
by aligning representation of context with multi-hot representation (i.e, bag-of-tokens representation)
of the present tokens. Since the BoT representation typically has fewer than k = 768 unique tokens,
applying Stopk doesn’t change the outcome, but we include it in the formula for understanding. The
consistency between upstream and downstream supports the alignability of these two representations.
Further tuning is necessary to adapt the bi-encoder to specific tasks and datasets, aligning Vθ(q) and
VBoT(p) to enable parametric query searches on a non-parametric index.

3.3 SEMI-PARAMETRIC CONTRASTIVE LEARNING

In a batch containing N instances, each instance consists of a query qi, a positive passage pi, and
a set of of negative passages. Our training objective is based on contrastive learning (Jaiswal et al.,
2020), which aims to maximize the similarity of positive pairs f(qi, pi) for all instances i, while
minimize the similarity of all negative pairs, denoted as f(qi, pj) for all j ̸= i. The loss function is
defined as follows:

L(q, p) =−
N∑
i=1

(log
ef(qi,pi)∑

∀p∈B ef(qi,p)︸ ︷︷ ︸
q-to-p

+ log
ef(pi,qi)∑

∀q∈B ef(pi,q)︸ ︷︷ ︸
p-to-q

)

This results in a final loss that integrates both parametric and semi-parametric components:

Lpara(q, p) = L(Vθ(q), Vθ(p))

Lsemi-para(q, p) = L(Vθ(q), VBoT(p))/2 + L(VBoT(q), Vθ(p))/2

Lfinal(q, p) = Lpara(q, p) + Lsemi-para(q, p)

The parametric contrastive loss Lp aims to align the parametric representations of q and p, a common
objective for retrieval training. The semi-parametric contrastive loss Lsp ensures interaction between
the non-parametric and parametric representations, which forms the foundation of our model to
support a BoT index VBoT(D).

3.4 SEARCH PIPELINES AND INDEX TYPES

Our framework supports both a parametric embedding-based index and a non-parametric tokenization-
based index. Below, we discuss search functions and the corresponding index type.

Full parametric search (SiDRfull) utilizes a parametric index Vθ(D), which relies on embeddings
derived from a neural encoder for the datastore. The relevance is defined as:

fθ(q,D) = ⟨Vθ(q), Vθ(D)⟩

This is the common indexing process for neural retrieval systems, which are effective but involve
higher costs and longer latency for embedding the entire D to obtain the index Vθ(D).
Semi-parametric beta search (SiDRβ) leverages a non-parametric index VBoT(D) based on BoT
representations of the datastore, which are constructed solely by a tokenizer. The relevance is defined
as:

fβ(q,D) = ⟨Vθ(q), VBoT(D)⟩

Beta search applies BoT representations on the index side, eliminating the need for neural embeddings
during index processing for large datastores, making it suitable for various applications.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Late parametric with top-m re-rank (SiDRβ (m)) is a search pipeline that starts search with a
non-parametric index to retrieve top-m passages, denote asDm, and then embeds them for re-ranking:

fβ(q,D) = ⟨Vθ(q), VBoT(D)⟩; fθ(q,Dm) = ⟨Vθ(q), Vθ(Dm)⟩

Late parametric retrieval is designed to offer a quick-start and low-cost search initialization using
a non-parametric index, while concurrently building a parametric index during the search process.
To fulfill this need, it requires a first-stage retriever to support a non-parametric index, followed
by a second-stage bi-encoder retriever to re-rank and cache the passage embeddings. This strategy
serves as a compromise between full parametric and beta search models in terms of effectiveness and
cost. From an efficiency and cost perspective, the late parametric with top-m re-rank only requires
embedding at most Nq ×m passages, where Nq is the number of queries. It starts the search with a
non-parametric index, distributing the embedding workload throughout the online search process,
achieving a fast retrieval setup similar to beta search while maintaining effectiveness comparable
to the full parametric setup. In traditional search scenarios with an unlimited number of queries,
the embedding workload can reach the same upper bound as SiDRfull, where all |D| passages are
embedded. However, when dealing with exploratory scenarios that have limited queries or extremely
large datastores, this approach becomes more efficient, as Nq ×m remains much smaller than |D|.

3.5 IN-TRAINING RETRIEVAL FOR NEGATIVE SAMPLING

While semi-parametric retrieval offers advantages for in-training retrieval by eliminating the need
for re-indexing, it also has drawbacks, notably its limited effectiveness due to using non-parametric
representations on index side. To enhance their performance, we integrate beta search in the training
loop to dynamically source hard negative passages, leveraging the strengths of semi-parametric design
to counterbalance their limitations. Specifically, during the training, SiDR employs beta search to
retrieve the top-m passages in real-time — using Vθ(q) to search on non-parametric index VBoT(D)
and get the top-m results Dm. Subsequently, each passage in Dm is assessed whether it is negative
based on exact matches with the answer strings. For each query, one negative is randomly selected
from the identified negatives. This method is exclusively used for the Wikipedia benchmark, which
provides answer strings to distinguish between negative and positive passages.

While in-training retrieval is increasingly adopted to enhance retrieval training (Zhan et al., 2021;
Xiong et al., 2020) and facilitate co-training retrievers with LLMs (Shi et al., 2023), previous
approaches have necessitated periodic index refreshment in the training loop. In contrast, our
approach uniquely leverages a fixed index VBoT(D), eliminating the need for re-indexing D. Our
analysis shows that incorporating in-training retrieval with our non-parametric index does not add
significant latency; however, a slight latency increase occurs due to the string matching process to
identify negatives, which is discussed in Section 4.3.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Wiki21m Benchmark Following established benchmark in retrieval literature (Chen et al.,
2017; Karpukhin et al., 2020), we train our model on the training splits of Natural Questions
(NQ; Kwiatkowski et al., 2019), TriviaQA (TQA; Joshi et al., 2017), and WebQuestions (WQ; Berant
et al., 2013) datasets, and evaluated it on their respective test splits. The retrieval corpus used is
Wikipedia, which contains over 21 million 100-word passages.

BEIR Benchmark We train our model on MS MARCO passage ranking dataset (Bajaj et al.,
2016), which consists of approximately 8.8 million passages with around 500 thousand queries. The
performance is assessed both in-domain on MS MARCO and in a zero-shot setting across 12 diverse
datasets within the BEIR benchmark (Thakur et al., 2021).

4.2 BASELINES

Primary Baselines We primarily compare our model with several established retrieval baselines,
selected due to their similar model sizes and training complexities, ensuring a comparable training
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cost. These include dense retrieval DPR, term-based retrieval BM25, and sparse lexical retrieval
models such as SPLADE (Formal et al., 2021b), uniCOIL (Lin & Ma, 2021), and VDR (Zhou et al.,
2024). Speicifically, VDRβ refer to directly using the VDR models to perform beta search.

Advanced Baselines We also introduce advanced retrieval systems for baselines, including Lex-
MAE (Shen et al., 2022), SPLADE-v2 (Formal et al., 2021a), Contriever (Izacard et al., 2021),
GTR (Ni et al., 2021), E5 (Wang et al., 2022), and Dragon (Lin et al., 2023a). These systems leverage
larger foundational models (Ma et al., 2023; Ni et al., 2021), retrieval-oriented pre-training (Fan et al.,
2022; Zhou et al., 2022), or knowledge distillation (Formal et al., 2022) to enhance performance. We
have categorized them as advanced baselines due to their significantly higher training costs associated
with the additional training techniques. Future work may explore their integration with our model to
assess potential benefits.

4.3 IMPLEMENTATION DETAILS

Hyperparameters For the NQ, TQA, and WQ datasets, our model is trained for 80 epochs, utilizing
in-training retrieval for negative sampling. For the MS MARCO dataset, the training duration is set
to 40 epochs. We utilize a batch size of 128 and an AdamW optimizer (Loshchilov & Hutter, 2018)
with a learning rate set at 2× 10−5. Our model use a top-k sparsification with k = 768, matching the
dimensionality of conventional dense retrieval embeddings. For computational devices, our systems
are equipped with 4 NVIDIA A100 GPUs and Intel Xeon Platinum 8358 CPUs.

Training Cost The training durations for DPR, VDR, and SiDR on the NQ dataset are 5, 8, and 9
hours respectively, with 80 epochs under similar conditions. For SiDR, the training time per epoch
without in-training retrieval is 6 minutes, which is identical to VDR. This duration increases to 8
minutes per epoch when incorporating in-training retrieval. The additional time is primarily due to
the string matching process required to identify negative samples from the retrieved top-k passages.

5 EXPERIMENTS

5.1 MAIN RESULTS

Table 1: Top-1/5/20 retrieval accuracy on test sets (i.e., percentage of questions for which the answers
is found in the retrieved passages). Bold numbers indicate the best performance within each setting.

NQ TQA WQ

top1 top5 top20 top1 top5 top20 top1 top5 top20
Parametric Index

DPR 46.0 68.9 80.2 54.1 71.5 80.0 37.4 59.7 73.2
VDR 43.8 68.0 79.9 52.9 71.3 79.3 37.1 58.7 72.5
ANCE - 70.7 81.4 - 73.9 81.4 - 65.7 77.2
SiDRfull 49.1 69.3 80.7 56.2 73.0 80.5 40.2 61.0 73.2

Non-parametric Index
BM25 22.7 43.6 62.9 48.2 66.4 76.4 19.5 42.6 62.8
VDRβ 12.3 30.0 46.8 16.9 31.6 45.9 7.7 22.4 39.2
SiDRβ 39.8 62.9 76.3 50.4 70.7 79.5 32.1 54.1 69.8

Late parametric with top-m re-rank
BM25+DPR (m = 5) 32.2 43.6 62.9 54.8 66.4 76.4 28.0 42.6 62.8
BM25+DPR (m = 20) 39.4 55.5 62.9 55.4 71.0 76.4 34.6 53.2 62.8
BM25+DPR (m = 100) 44.4 63.6 73.5 56.6 72.3 80.5 39.9 59.2 70.2
SiDRβ (m = 5) 44.9 60.6 76.4 54.9 70.7 79.6 38.0 54.1 69.8
SiDRβ (m = 20) 49.5 68.2 76.4 56.7 72.9 79.5 39.6 59.5 69.8
SiDRβ (m = 100) 50.3 70.7 80.6 56.8 73.3 81.3 41.5 62.0 73.5

Wiki21m Benchmark As shown in Table 1, when using a parametric index, SiDRfull outperforms
DPR and VDR in top-1 retrieval accuracy by 2.6% and 3.8%, respectively. These results demonstrate
that although our primary objective is to enable neural retrieval with support for non-parametric
indexing, our modifications do not diminish effectiveness with an embedding-based index; in fact,
they may even improve it. This enhancement also suggests that current benchmarks may favor lexical
relevance, likely due to their construction relying on term-based retrieval methods.
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When utilizing a non-parametric index, SiDRβ significantly surpasses VDRβ and BM25 in top-1
accuracy by 28.5% and 10.6%, respectively. Unlike BM25, which relies on empirically derived
heuristic term weights for indexing, SiDRβ employs binary values in a significantly smaller vo-
cabulary space, facilitating tensorization on GPUs. With ample in-domain training data, SiDRβ

significantly outperforms BM25, demonstrating the exceptional learnability and generalizability of
neural retrievers in this context.

Additionally, late parametric methods improve SiDRβ by enabling on-the-fly re-ranking of the top-m
passages. Our results show that by re-ranking the top-20 passages, SiDRβ (m = 20) matches the
performance of SiDRfull, and by extending re-ranking to the top-100 passages, it surpasses all primary
baselines. Beyond effectiveness, the most significant advantage of late parametric methods is their
substantial reduction in computational costs. For example, in evaluations on the NQ test split with 3k
queries, SiDRfull requires embedding the entire D, which consists of 21 million passages. In contrast,
SiDRβ (m = 100) only needs to embed Nq ×m passages, amounting to just 1% of the passages in
D, yet achieves superior effectiveness. This underscores the exceptional suitability of late parametric
methods for exploration or evaluation scenarios.

BEIR Benchmark As shown in Table 2, SiDRfull surpasses VDR, DPR, and other primary baselines
in the BEIR benchmark when using either a parametric index or a non-parametric index with late
parametric techniques, consistent with the findings from the Wiki21m benchmark. However, when
relying solely on a non-parametric index, SiDRβ outperforms VDRβ and BM25 on in-domain
datasets but falls behind BM25 on most out-of-domain datasets. We attribute this performance decline
to three factors. First, due to the lack of answer strings to accurately identify negative passages in
MS MARCO, we do not implement in-training retrieval during training on MS MARCO, which
likely contributes to weaker performance. Second, as non-parametric indexes lack neural parameters,
they are more sensitive to shifts in data distribution, which may lead to weaker effectiveness in
out-of-domain scenarios. Lastly, many BEIR datasets exhibit a lexical bias due to their construction
using BM25, as noted in the BEIR paper (Thakur et al., 2021), which inherently gives BM25 an
advantage.

Table 2: Retrieval performance on MS MARCO (MRR@10) and BEIR benchmark (NDCG@10).
Bold numbers indicate the best performance within each setting.
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Avg.
Advanced Retrieval Baselines

LexMAE (Shen et al., 2022) 48.0 50.0 21.9 42.4 80.0 35.2 71.6 34.7 56.2 15.9 71.7 76.3 29.0 48.7
Splade-v2 (Formal et al., 2021a) 43.3 47.9 23.5 43.5 78.6 33.6 68.4 33.4 52.1 15.8 69.3 71.0 27.2 47.0
Contriever (Izacard et al., 2021) - 44.6 23.7 41.3 75.8 32.9 63.8 32.8 49.8 16.5 67.7 59.6 23.0 44.3
GTR-base (Ni et al., 2021) 42.0 51.1 24.1 34.7 66.0 34.9 53.5 30.8 49.5 14.9 60.0 53.9 20.5 41.2
E5-base (Wang et al., 2022) 43.1 51.4 15.4 41.0 58.2 36.4 63.3 36.1 62.9 19.0 73.1 79.6 28.3 47.1
Dragon (Lin et al., 2023a) 39.3 48.9 22.2 41.7 78.1 35.6 64.8 32.9 53.1 15.4 67.5 74.0 24.9 46.6

Parametric Index
DPR 30.2 40.8 16.2 30.4 63.8 23.7 45.2 26.1 43.2 10.9 47.4 60.1 22.1 35.8
ANCE 33.8 41.5 19.8 28.1 66.9 29.5 45.6 23.7 44.6 12.2 50.7 65.4 28.4 38.0
UniCOIL 32.9 35.5 15.0 30.2 72.3 27.0 64.0 32.5 36.2 13.9 67.4 59.7 25.9 39.4
SPLADE 34.0 43.9 19.9 36.6 73.0 28.7 63.6 31.3 46.9 14.5 62.8 67.3 20.1 42.4
VDR 34.3 48.6 17.6 39.0 74.0 28.8 65.5 33.0 47.2 15.3 67.3 67.8 29.8 44.5
SiDRfull 34.2 53.0 17.9 39.3 71.5 29.8 65.4 33.0 47.7 15.1 66.2 68.0 29.7 44.7

Non-parametric Index
BM25 18.7 31.5 21.3 31.3 75.3 23.6 60.3 32.5 32.9 15.8 66.5 65.6 36.7 41.1
VDRβ 6.1 14.1 6.1 7.9 28.4 6.4 5.7 23.9 6.8 8.1 54.5 21.9 9.2 16.1
SiDRβ 19.0 38.6 10.8 20.8 46.5 19.8 49.4 27.9 25.3 11.1 64.2 53.5 23.7 32.5

Late parametric with top-m re-rank
SiDRβ (m = 10) 26.3 44.0 12.1 24.9 57.3 22.8 55.4 30.2 33.1 12.2 65.5 54.9 25.2 36.5
SiDRβ (m = 20) 29.2 48.0 13.8 30.6 62.3 25.7 58.7 32.3 38.4 13.8 65.6 59.1 27.3 39.6
SiDRβ (m = 100) 32.9 51.5 16.6 37.8 69.2 29.3 63.3 33.2 44.7 14.8 65.7 65.9 29.0 43.4

5.2 RETRIEVAL LATENCY

We evaluated the latency of various retrieval systems across different stages using NQ test split and
Wikipedia corpus, as shown in Table 3. The comparison assumes that both BM25 and SiDR indexes
fit entirely into CPU/GPU memory. Further details can be found in Appendix B.
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Table 3: Latency at each stage of the retrieval pipeline. T(·): computations of tokenization; Eθ(·):
computation of neural model forward. †: Computations performed on a single GPU; times in
parentheses indicate the latency if performed on a single CPU thread. Eθ(p) in search stage refers to
the passage embedding used for late parametric re-ranking.

Model Indexing Search TotalT(D) Eθ(D) Eθ(q) T(q) f(q,D) Eθ(p) Total
BM25 0.6h / / 40s† (2m) / 40s 0.6h
DPR / 20.3h† 12s†(2m) / 41ms†(2m) / 12s 20.3h
VDR / 23.7h† 15s†(2m) / 130ms†(20m) / 15s 23.7h
SiDRfull / 23.7h† 15s†(2m) / 130ms†(20m) / 15s 23.7h
SiDRβ 0.5h / 15s†(2m) / 30ms† (3m) / 15s 0.5h
SiDRβ (m = 20) 0.5h / 15s†(2m) / 30ms†(3m) 4m† 4m 0.6h
SiDRβ (m = 100) 0.5h / 15s†(2m) / 30ms†(3m) 20m† 20m 0.9h

Indexing Stage The indexing stage converts the textual corpus into a searchable format. Both
SiDRβ and BM25 use tokenzation-based index and can complete indexing within 1 hour on a CPU,
much faster than the over 20 hours required on GPUs for embedding-based index. The indexing stage
often accounts for a large portion of the overall time and cost in the retrieval pipeline. Our BoT index
is efficient, more cost-effective and benefiting from parallelization, making it a flexible option for
practical retrieval-based applications.

Search Stage The search stage processes online incoming queries and retrieves relevant items from
the indexed data. As shown in the table, SiDRβ achieves significantly higher efficiency compared
to BM25 and performs on par with dense retrieval methods when utilizing GPU resources. This
advantage arises because the BoT index VBoT(D) has a fixed dimensionality, enabling tensorization
for inner product calculations on the GPU. In contrast, BM25 term-based index VBM25(D) operates
with millions of dimensions and relies on an inverted index for efficiency.

6 ANALYSIS

We assess the impact of proposed components and various influencing factors, as detailed in Table 4.

Table 4: Ablation study of SiDRfull and
SiDRβ on NQ dataset.

top1 top5 top20
Parametric Index

SiDRfull 49.1 69.3 80.7
w/ retrieved neg (m=1) 47.9 68.4 79.6
w/ retrieved neg (m=100) 47.3 69.0 80.5
w/ retrieved neg (MARCO) 39.7 63.9 77.5
w/ retrieved neg (WIKI 8m) 48.3 69.1 80.6
w/o retrieved neg 44.9 66.9 78.8
w/o neg 30.2 57.4 75.1
w/o SP objective 43.8 68.0 79.9

Non-parametric Index
SiDRβ 39.8 62.9 76.3
w/ retrieved neg (m=1) 41.2 62.3 76.4
w/ retrieved neg (m=100) 37.3 62.4 76.5
w/ retrieved neg (MARCO) 29.5 54.8 70.1
w/ retrieved neg (WIKI 8m) 37.5 62.4 76.3
w/o retrieved neg 32.3 56.0 72.1
w/o neg 24.4 49.1 68.2
w/o SP objective 12.3 30.0 46.8
w/ vary lentgh 37.5 61.2 76.1

Impact of our proposed components. Our ablation
study confirms the significance of each component in
our approach. Removing the semi-parametric loss (w/o
SP objective) leads to a drop in accuracy of 5.3% for
SiDRfull and a substantial 31.5% for SiDRβ , render-
ing beta search non-functional. Moreover, excluding
in-training retrieved negatives (w/o retrieved neg) re-
sults in a decrease in top-1 accuracy: 4.2% for SiDRfull
and 7.5% for SiDRβ . These results highlight the effec-
tiveness of using beta search for in-training retrieval.
Unlike static BM25 negatives, which quickly diminish
in effectiveness as the model learns, beta search utilizes
parametric queries that evolve with the model, contin-
ually ensuring that the negatives are challenging and
relevant throughout the training process.

Effect of negative sample hardness. We explore
how the difficulty of retrieved negatives affects model
effectiveness. The parameter m indicates the size of the passage pool from which negatives are
identified and then randomly drawn, with lower m values yielding harder negatives. While these
harder negatives can improve contrastive learning, they also increase the risk of misclassifying weak
positives as negatives. Our results (w/ retrieved neg m={1,100}) indicate that adjusting m to 1 or
100, compared to the baseline of 20, degrades the performance. Thus, an m value of 20 provides the
optimal balance, effectively challenging the model while reducing the likelihood of misclassification.

Effect of negative sample source. Our results (w/ retrieved neg MARCO) indicate that switching
the source of negative samples from the Wikipedia corpus to the MS MARCO with 8.8 million
passages leads to a notable drop in performance. In a parallel experiment (w/ retrieved neg WIKI
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8m) using a Wikipedia corpus of the same size, performance remained consistent with our baseline,
indicating that corpus size is not the main factor behind the observed decline. Instead, the source of
negatives plays a crucial role in performance. The disparity stems from differences in the writing
styles and structures unique to each corpus (e.g., Wikipedia passages typically include a short title
preceding the text), which cause the model to focus on superficial, corpus-specific features rather
than developing a deeper understanding of the relevance.

Impact of text length on non-parametric index. Unlike the BM25 term-based index, the BoT
index lacks term weighting, meaning longer texts may activate more dimensions, resulting in higher
inner product scores. To assess the impact of text length on the effectiveness of SiDRβ , we re-
segmented the Wikipedia corpus into passages ranging from 50 to 200 words, while maintaining
the same overall number of passages. Our results (w/ vary lentgh) show that the top-1 accuracy of
SiDRβ decreased slightly from 39.8% to 37.5%, indicating minimal impact on performance. This
slight drop can be explained by the sub-linear growth in unique tokens as text length increases and
the high sparsity of the representations, where increasing activations has little impact on relevance.

Table 5: In-training retrieval latency per
batch, with the storage size and GPU mem-
ory allocation for corresponding index.

Method Latency Storage GPU
BM25 3s 2.3GB /
DPR <1ms 31.5GB 31GB
SiDRβ <1ms 2.7GB 10GB

Comparison of in-training retrieval. We compared
in-training retrieval across different systems, as shown
in Table 5. Compared to BM25, SiDRβ has up to 30x
lower latency when using GPU resources for large cor-
pora. In contrast to dense retrieval methods like DPR,
SiDRβ requires less GPU allocation and uses a fixed in-
dex, which eliminates the need for periodic re-indexing
during the training loop and ensures that the training
objective is not compromised by a stale index. Additional details can be found in Appendix C.

7 RELATED WORK

Sparse Disentangled Retrieval Learned sparse disentangled retrieval, also known as sparse lexical
retrieval, develops sparse representations for queries and documents within a pre-defined vocabulary
space, where each dimension reflecting the importance of a specific token. These methods have
proven effective in text matching (Dai & Callan, 2020; Bai et al., 2020; Formal et al., 2021b; 2022;
Ram et al., 2022) and have been utilized to enhance search efficiency in subsequent studies (Gao
et al., 2021a; Shen et al., 2022; Lin et al., 2023b; Lin & Lin, 2023). Notably, several works like
TILDE (Zhuang & Zuccon, 2021b;a), and SPARTA (Zhao et al., 2021) use bag-of-tokens query
representations for efficient online query processing. These methods fall under the category of semi-
parametric retrieval as they employ non-parametric representations on the query side. Complementing
these efforts, our work focuses on addressing the challenges associated with the index side, which is
inherently more complex due to the greater length and contextual depth of documents. We discuss
the taxonomy of neural retrieval in more detail in Appendix A.

In-training Retrieval Retrieving data in the training loop of retrieval models is an emerging yet
challenging practice that serves several critical purposes. This includes acquiring negative samples
for contrastive learning (Zhan et al., 2021; Robinson et al., 2021), sourcing relevant instances for data
augmentation (Blattmann et al., 2022; Shi et al., 2023), and facilitating the training of retrieval-based
language models (Asai et al., 2023) in an end-to-end manner. However, this process is complicated
due to the need for frequent re-indexing of the corpus as the training of the retriever progresses. Recent
research has explored strategies like asynchronous index updates (Guu et al., 2020; Xiong et al.,
2020; Izacard et al., 2022b; Shi et al., 2023) or building temporary indexes on-the-fly from the current
training batch (Zhong et al., 2022; Min et al., 2022). Our work proposes a semi-parametric framework
which supports a non-parametric index, thereby avoiding these complications and streamlining the
in-training retrieval practice.

8 CONCLUSIONS

In this paper, we introduce SiDR, a semi-parametric bi-encoder retrieval framework that supports
both parametric and non-parametric indexes to address the emerging needs of retrieval-based ap-
plications. Unlike traditional neural retrieval methods that rely solely on embeddings as indexes,
SiDR additionally incorporates a non-parametric bag-of-tokens index. The flexibility of SiDR makes
it particularly well-suited for applications requiring efficient or low-cost indexing and facilitates
co-training with a fixed index.
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A TAXONOMY OF NEURAL RETRIEVAL

In this section, we outline the taxonomy of neural retrieval, discussing distinctions such as disentan-
gled versus entangled, dense versus sparse, and parametric versus semi-parametric. This classification
aims to clarify the concepts discussed throughout our paper.

Entangled vs. Disentangled Retrieval These approaches differ in their use of representations for
search. Entangled retrieval typically employs latent representations with dimensions like 512, 768,
1024, or 2048. Conversely, disentangled retrieval utilizes a much larger dimensionality, spanning
from tens of thousands (representing MLM vocabulary) to millions (typical of BM25 vocabulary),
where each dimension corresponds to a specific token within the vocabulary.

Dense vs. Sparse Retrieval These approaches differ based on whether their representations are
fully activated or have been sparsified. Typically, entangled representations are fully activated,
while disentangled representations are often sparsified to reduce storage size and to facilitate the
construction of an inverted index for efficient searching. Consequently, dense retrieval is commonly
associated with entangled representations and sparse retrieval with disentangled ones. However,
the relationship between entangled/disentangled and dense/sparse retrieval is not rigid. Exceptions
exist where entangled representations can be sparsified and disentangled representations can be
fully activated. For instance, BPR (Yamada et al., 2021) employs a learned hash function on a
768-dimensional latent vector for efficient searching, exemplifying entangled retrieval with sparse
representations; meanwhile, VDR (Zhou et al., 2024) utilizes disentangled representations which
could technically be fully activated.

Full Parametric vs. Semi-parametric Retrieval These approaches differ based on the utilization
of neural parameters for encoders. Full parametric retrieval systems employ neural parameters for
both encoders. In contrast, semi-parametric retrieval systems use one neural encoder alongside one
non-parametric encoder, typically involving tokenization-based representations. To our knowledge,
existing semi-parametric systems predominantly engage in disentangled retrieval, as they all utilize
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tokenization-based non-parametric representations that operate on a vocabulary space. Notable
examples include TILDE (Zhuang & Zuccon, 2021b), TILDE-v2 (Zhuang & Zuccon, 2021a), and
SPARTA (Zhao et al., 2021), which implement tokenization-based representations on the query side
for efficient online query processing. Our work, SiDR, represents a unique approach within this
category, offering semi-parametric retrieval that utilizes binary bag-of-tokens representations on the
index side for emerging scenarios.

B DETAILS OF LATENCY EVALUATION

During the indexing stage, Eθ and T operate with a batch size of 32 and a maximum text length
of 256. In the search stage, the computation of f(q,D) includes both inner product calculation and
sorting of the top-k passages. Queries are processed in batches of 32, with passage embeddings
stored in either CPU or GPU memory using half-precision floating-point (FP16) to optimize memory
usage. Our analysis excludes the time spent on I/O and data type conversion between CPU and GPU,
assuming sufficient processing resources are available.

For BM25 CPU setup, we utilize Pyserini (Lin et al., 2021), a library based on a Java implementation
developed around Lucene. For neural retrieval, our implementation is in Python, leveraging PyTorch’s
sparse module1 for efficient inner product computation, without building an inverted index. Timing
measurements are performed by running each operation 10 times and reporting the average after
excluding the maximum and minimum values. For the BM25 GPU setup, we use an implementation
from an open-source repository2. To avoid out-of-memory issues on our devices, we perform searches
in batches on a 1-million document corpus and accumulate the latencies. Note that inverted indexes
rely heavily on memory access and integer operations, which are generally inefficient on GPU
architectures.

C IN-TRAINING RETRIEVAL SIMULATION
Latency (ms) Storage (GB) GPU (GB)

Index Density
a=256 0.20 2.8 6.9
a=512 0.21 4.9 23.5
a=1024 0.21 9.0 46.7

Query Batch Size
bs=32 0.20 / /
bs=128 0.21 / /
bs=512 0.24 / /

Table 6: Retrieval latency, index storage
size, and GPU allocation for SiDRβ across
varying binary token index density and
query batch size.

We conducted a simulation test to evaluate factors af-
fecting in-training retrieval, summarized in Table 6.
Initially, we built a binary token index with dimensions
of 30k and a sample size of 500m, where each vector
consists of 256 dimensional activated. We then var-
ied the density of passage representations by adjusting
the activation number from 256 to 512 and 1024. As
the activation number increased, storage and GPU al-
location also increased, while latency remained largely
unchanged. Additionally, we found query batch size
had minimal impact on latency.

D ANALYSIS ON TERM WEIGHTING AND EXPANSION

To systematically compare our method with BM25, we control for vocabulary differences by using
BM25 with the same BERT-base-uncased vocabulary as ours. This ensures both methods share the
same dimensionality for sparse representation, differing only in two key aspects:

• Term expansion: BM25 uses only lexical tokens, while SiDR allows for term expansion.

• Term weighting: BM25 relies on statistical-based term weights, whereas SiDR learns
contextualized weights.

In this section, we empirically demonstrate how these factors – term expansion and term weighting –
affect the outcome. Below, we introduce two additional representation forms:

1https://pytorch.org/docs/stable/sparse.html
2https://github.com/jxmorris12/bm25_pt
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Lexical Parametric Representation V lex
θ (x) This representation activates only the lexical tokens

present in the input text x. It leverages learned term weights but does not permit term expansion:

V lex
θ (x) = VBoT ◦ Vθ(x)

Binary Parametric Representation V bin
θ (x) This representation activates the same number of

tokens but assigns uniform weights (set to one), removing learned scalar term weighting. It allows
term expansion but does not apply term weights:

V bin
θ (x) = Binarize ◦ Vθ(x)

where Binarize is a function mapping non-zero values to one.

To independently assess the impact of term expansion and term weighting, we propose several
variants of SiDRfull: SiDRfull (w/o weight at doc) and SiDRfull (w/o expand at doc), which utilize
V bin
θ (p) and V lex

θ (p) on the document side during inference. Additionally, we introduce variants
of SiDRβ : SiDRβ (w/o weight at query) and SiDRβ (w/o expand at query), which employ V bin

θ (q)
and V lex

θ (q) on the query side at inference. Furthermore, we propose SiDRfull (w/o expand at doc,
training), which is trained with Vθ(p) replaced by V lex

θ (p) to ensure consistency between training
and inference phases. All these models are compared against BM25 that utilizes the same bert-base-
uncased tokenization and vocabulary. This controls for vocabulary differences, isolating the effects
of term selection and term weighting. We also include an extreme baseline that uses a bag-of-tokens
representation for both the query and the passage, referred to as BoT overlap.

Table 7: Ablation study on learned term weighting and term expansion, with results reported as top-1
accuracy on NQ test splits.

Model
Query Document

AccuracyExpand Weight Expand Weight

BM25 (bert-base-uncased) × ✓ × ✓ 21.9

Ablation of SiDRfull on doc side
SiDRfull

✓ ✓

✓ ✓ 49.1
SiDRfull (w/o weight at doc) ✓ × 33.1
SiDRfull (w/o expand at doc) × ✓ 38.9
SiDRfull (w/o expand at doc, training) × ✓ 43.1
SiDRbeta × × 39.8

Ablation of SiDRbeta on query side
SiDRbeta (w/o weight at query) ✓ ×

× ×
14.5

SiDRbeta (w/o expand at query) × ✓ 34.3
BoT overlap × × 14.2

When using a parametric index, we conduct an ablation study on SiDRfull to assess the impact
of removing term weighting and term expansion on the document side. From top to bottom, we
systematically remove term weight or expansion, simplifying the index of SiDRfull to assess their
individual contributions. Our results indicate that removing either term weight or term expansion
leads to worse outcomes than removing both (i.e., SiDRβ). This is because our training objective
is specifically designed to align query embeddings with the BoT index, rather than these variations.
Furthermore, we find that if the training is adjusted to accommodate these variations, such as
document representations without term expansion, these variations can outperform the BoT index.
This demonstrates that neural bi-encoders have great learning potential, with improvement stemming
from not only the training itself but also how well the training aligns with inference.

When using a bag-of-tokens index, we assess the impact of term weight and expansion on the query
side. Starting from a baseline uses unweighted term overlap, referred to as “BoT overlap”, applying
BM25’s term weights to both queries and documents yields a 7.7% improvement. In comparison, our
method’s learned query term weights achieve a 20.1% improvement, while learned term expansion
provides minimal additional gain. Combining term weights and expansion on the query side results
in a 25.6% improvement, which is SiDRβ .

In conclusion, when using an embedding index, we demonstrate that both learned term weighting
and term expansion on the document side are crucial. Conversely, when using a bag-of-tokens index,
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the improvements primarily come from term weighting on the query side rather than expansion.
Furthermore, ensuring consistency between training and inference representations is essential. A
parametric index can underperform compared to non-parametric ones if the representations used
during inference do not align with those used during training.

E COST-EFFECTIVENESS ANALYSIS

Table 8: Additional late-parametric baselines and cost-effectiveness analysis performed on a retrieval
task using 3.6k NQ test queries across a 21 million Wikipedia corpus. Costs are determined by
the number of text chunks (including both queries and passages) that require embedding by neural
encoders. Parentheses indicate the ratio of text chunks embedded to the total retrieval corpus.

Performance Cost

Non-parametric Index
BM25 22.7 0
SiDRβ 39.8 3.6k (0.01%)

Late-parametric with top-100 rerank
BM25 + VDR 41.6 364k (1.73%)
BM25 + SiDR 44.0 364k (1.73%)
BM25 + Contriever 39.3 364k (1.73%)
BM25 + E5base 50.4 364k (1.73%)
SiDRβ (m=100) 50.3 364k (1.73%)
SiDRβ + VDR 43.2 367k (1.74%)
SiDRβ + Contriever 42.9 367k (1.74%)
SiDRβ + E5base 57.7 367k (1.74%)

Parametric Index
SiDRfull 49.1 21m (100.01%)
Contriever 41.5 21m (100.01%)
E5base 57.9 21m (100.01%)

Late parametric retrieval aims to provide a quick-start and low-cost search initialization through a
non-parametric index, while simultaneously building a parametric index during the search service,
eventually transitioning to a fully parametric index for searching. To fulfill this requirement, the first-
stage utilizes a retriever that supports a non-parametric index, while the second-stage retriever can be
any parametric bi-encoder. This method can be seen as a subset of hybrid retrieval systems (Leonhardt
et al., 2022; Gao et al., 2021b), with specific choices constrained to the two stages.

We introduce various combinations of BM25 and SiDRβ as the first-stage retriever, paired with
more advanced retrievers in the second stage to demonstrate their effectiveness. The results of
these combinations are presented in Table 8. Moreover, we assess the cost-effectiveness of these
frameworks, particularly in scenarios where raw data has not been indexed. In such cases, the primary
cost arises from the neural model’s forward pass for text embedding. Therefore, we measure cost by
counting the number of text chunks (both query and passage) that require embedding.

For BM25, no neural embedding is required. While SiDRβ employs a bag-of-tokens index, waiving
the indexing cost, it requires embedding 3.6k queries (0.01% of the corpus) to complete the retrieval
task. Despite this, it offers a significant performance improvement of 17.1% in accuracy over
BM25. For various late parametric baselines, an additional embedding of 100 passages per query
is needed — approximately 1.7% of the corpus — yet this results in further improvements over
BM25. Conversely, the conventional retrieval pipeline, which requires embedding the entire corpus
to achieve performance comparable to that of late parametric models with top-100 reranking. This
analysis shows that semi-parametric models provide a more cost-effective solution by balancing
retrieval performance with computational efficiency.

Among various late-parametric baselines, SiDRβ consistently outperforms BM25 as the first-stage
retriever. However, this advantage requires embedding an additional 3.6k queries if other models
are employed as the second-stage retriever. In exploring second-stage retrievers, we have tested
state-of-the-art models like E5 and Contriever. Our results indicate that stronger retrievers lead
to better overall late-parametric performance. Notably, in all our tests, SiDRβ combined with any
second-stage model consistently outperforms BM25 paired with the same model. Furthermore,
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when SiDRβ serves as the first-stage retriever and re-ranks the top-100 passages, its performance is
comparable to, and often exceeds, that of full parametric search with these retrievers.
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