
Gated Slot Attention for Efficient Linear-Time
Sequence Modeling

Yu Zhang1∗ Songlin Yang2∗ Ruijie Zhu3 Yue Zhang1 Leyang Cui4
Yiqiao Wang5 Bolun Wang5 Freda Shi6 Bailin Wang2

Wei Bi4 Peng Zhou5† Guohong Fu1†
1School of Computer Science and Technology, Soochow University, China

2Massachusetts Institute of Technology 3University of California, Santa Cruz
4Tencent AI Lab 5LuxiTech 6University of Waterloo

yzhang.cs@outlook.com yangsl66@mit.edu

� https://github.com/sustcsonglin/flash-linear-attention
https://huggingface.co/fla-hub

Abstract

Linear attention Transformers and their gated variants, celebrated for enabling
parallel training and efficient recurrent inference, still fall short in recall-intensive
tasks compared to traditional Transformers and demand significant resources for
training from scratch. This paper introduces Gated Slot Attention (GSA), which
enhances Attention with Bounded-memory-Control (ABC [63]) by incorporating
a gating mechanism inspired by Gated Linear Attention (GLA [96]). Essentially,
GSA comprises a two-layer GLA linked via softmax, utilizing context-aware mem-
ory reading and adaptive forgetting to improve memory capacity while maintaining
compact recurrent state size. This design greatly enhances both training and infer-
ence efficiency through GLA’s hardware-efficient training algorithm and reduced
state size. Additionally, retaining the softmax operation is particularly beneficial
in “finetuning pretrained Transformers to RNNs” (T2R [41]) settings, reducing the
need for extensive training from scratch. Extensive experiments confirm GSA’s
superior performance in scenarios requiring in-context recall and in T2R settings.

1 Introduction

Transformers [88] have emerged as the predominant architecture for most, if not all, sequence
modeling tasks. Nevertheless, the quadratic complexity of softmax-based standard attention (SA)
poses significant challenges for long sequence modeling (e.g., video understanding and biological
sequence modeling). In the context of language modeling, where sequence lengths are moderate,
training efficiency is generally not a primary concern. However, during inference, the Key-Value (KV)
cache [34, 64] grows linearly with the generation length, resulting in substantial memory burdens
and throughput bottlenecks due to high I/O costs.

Linear (kernelized) attention [42] and its gated variants [96, 82, 68, 61, 16, 69] have received interest
as promising alternatives to softmax attention. These models demonstrate strong performance in
language modeling and understanding tasks. Notably, they can be reframed as RNNs during inference,
achieving constant memory complexity and thereby significantly enhancing inference efficiency.

However, two key issues persist with these models: (i) Performance-wise, recent research indicates
that linear recurrent models still struggle with tasks requiring in-context retrieval or learning [2, 1, 37,
∗Equal contributions. Work was conducted during Yu Zhang’s internship at Tencent AI Lab.
†Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:yzhang.cs@outlook.com
mailto:yangsl66@mit.edu
https://github.com/sustcsonglin/flash-linear-attention
https://huggingface.co/fla-hub

28], and there is a fundamental recall-memory trade-off [3, 91] where all inference-time-constant-
memory models face inherent limitations. (ii) In terms of training efficiency, while linear attention
supports hardware-efficient chunkwise training [96] as implemented in FlashLinearAttention (FLA
[95]), training from scratch on trillions of tokens remains prohibitively expensive. A paradigm,
“finetuning pretrained Transformers to RNNs” (short for T2R [41]), has recently gained great attention
[101, 10, 54, 13, 7, 90]. This approach circumvents the high cost of training from scratch by requiring
only a few billion tokens for finetuning—about 1–3% of the total cost. However, linear attention
uses a different kernel method from softmax, leading to performance discrepancies when finetuning
pretrained softmax attention models to linear attention [101].

To address these issues, we revisit the Attention with Bounded-Memory Control (ABC) model [63],
which retains the softmax operation, thereby reducing training-finetuning discrepancies between
standard and linear attention, making it ideal for T2R settings. Additionally, ABC enables more
effective state utilization, requiring less state size to achieve similar performance, as observed in Peng
et al. [63]. This results in more efficient inference and potentially expands the Pareto frontier of the
recall-memory tradeoff [3]. However, ABC has not gained significant attention due to its mediocre
language modeling performance and slow training speed.

In this work, we first reformulate ABC as two-pass linear attention linked via softmax, allowing us to
leverage the hardware-efficient chunkwise implementation from FLA [95] for more efficient training.
We then identify several limitations of ABC and propose a new model, dubbed Gated Slot Attention
(GSA), which is essentially a gated version of ABC, following the recent trend of enhancing linear
attention with gating mechanisms [96, 69, 61, 16, 6, 62, 52, 65].

Our extensive evaluation shows that GSA not only matches performance in language modeling
and understanding tasks but also significantly outperforms other linear models in in-context recall-
intensive tasks [3, 4], without requiring a large state size like RetNet [82] or GLA [96]. In the
T2R finetuning setting, we found that finetuning Mistral-7B [39] to GSA surpasses large recurrent
language models (e.g., RWKV6-7B, Mamba-7B) and also outperforms finetuning Mistral-7B to other
linear models (e.g., RetNet, GLA) and other T2R methods like SUPRA [54], verifying the importance
of retaining the softmax operator. Finally, we remark that GSA achieves similar training speeds to
GLA while offering an inference speedup due to its smaller state size.

2 Background and Preliminary

2.1 Transformers as Unbounded Key-Value Memories

Given X = [x1, . . . ,xT]
⊤ ∈ RT×d, where T is the sequence length and xi ∈ Rd is the i-th input

vector with d dimensions, SA with causal masking computes the output matrix:

O = f((QK⊤)⊙M)V, (1)

where Q,K,V ∈ RT×d are linear mappings of the input X via learnable weights Wq,Wk,Wv ∈
Rd×d, M = {Mij = 1 if i ≥ j o.w. −∞} is the causal mask to prevent future information leakage,
⊙ denotes element-wise production, and f(·) is softmax (·).

Generally, K,V can be viewed as neural key-value memories K̃t, Ṽt ∈ Rm×d, respectively [81, 24],
where m is the number of memory slots. At step t, the query qt = Wqxt ∈ Rd first attends to the
key memories K̃t to retrieve relevant information, which is then summarized into ot by computing
a weighted sum of the value memories Ṽt [104], where the weights are the normalized attention
scores:

ot = Ṽ⊤
t f(K̃tqt). (2)

From this perspective, Transformers are equipped with an unbounded number of memory slots,
which grow linearly with respect to the sequence length [57] (i.e., m = t for step t)—a new key
kt = Wkxt ∈ Rd is assigned with a unique memory slot upon its introduction. This leads to a simple
memory updating rule: K̃t = K̃t−1 ∪ {kt}. The value memories Ṽt are updated in a similar way.
This mechanism, however, comes at the cost of quadratic time complexity in terms of the sequence
length for training and O(Td) time/memory complexity for inference [64], posing challenges for
large-scale models.

2

2.2 ABC [63]: Linearizing Attention with Bounded Memory Control

From a key-value memory perspective, the training and inference complexity of self-attention (SA)
can be reduced by fixing the number of memory slots to a constant size m≪ T [27, 51, 63]. One
straightforward way to achieve this is by employing a first-in-first-out memory management strategy,
commonly known as sliding window attention (SWA). However, SWA is inefficient because it discards
all information outside the window, leading to poor performance in balancing the recall-memory
tradeoff [3]. To achieve acceptable performance, SWA often requires a large window size (e.g., 4,096
tokens in Mistral [39]), which diminishes its advantage over to global attention.

When the number of tokens in a sequence exceeds the number of memory slots, it becomes necessary
to store information from multiple tokens in a single slot. To address this challenge, Peng et al. [63]
propose the Attention-with-Bounded-memory-Control (ABC) mechanism, which allows multiple
tokens to be written into a single slot:

K̃t = K̃t−1+ϕt⊗kt ∈ Rm×d, Ṽt = Ṽt−1+ϕt⊗vt ∈ Rm×d, ot = ṼT f(K̃T
t qt) ∈ Rd (3)

where
αi = exp (Wϕxi) ∈ Rm, ϕi =

αi∑i
j=1 αj

∈ (0, 1)m (4)

Here, (ϕi)j represents the writing intensity of the ith token to the jth slot, obtained using a cumulative
softmax function (cf. [63, footnote 5]), which can be computed with a prefix sum.

ABC as two-pass linear attention. The outer-product-based additive memory update rule in Eq. 3
bears a resemblance to linear attention [42], which involves the following recurrence3:

St = St−1 + kt ⊗ vt ∈ Rd×d, ot = ST
t qt ∈ Rd (5)

We denote this linear attention operator that computes oi from qi,ki and vi (Eq. 5) by {oi}Ti=1 =
LA({qi,ki,vi}Ti=1). We show that the ABC operations can be written as

{o′
i}Ti=1 = LA({qi,ki,ϕi}Ti=1),

{oi}Ti=1 = LA({softmax(o′
i),ϕi,vi}Ti=1),

where o′
i ∈ Rm,oi ∈ Rd. Therefore, ABC can enjoy hardware-efficient linear-time chunkwise

training [96], as implemented in the FLA library [95].

Remarks on state size. Peng et al. [63] empirically demonstrated that ABC requires a smaller
state size to achieve comparable performance to other linear attention models, resulting in improved
inference efficiency. We offer the following intuitive explanation: the new query o′ aggregates the
entire history through the initial pass of linear attention, making it more context-aware and better at
locating desired items for retrieval. The subsequent softmax operator helps mitigate the attention
dilution issue [66]. From the perspective of Hopfield networks, softmax can exponentially increase
the memory size [45]. Together, these factors suggest that ABC may possess an implicit large memory
capacity, even with a small actual recurrent state size.

2.3 GLA [96]: Linear Attention with Gating Mechanism

Linear attentions underperform softmax-attention Transformers in language modeling by a notable
margin. RetNet [82] and TransnormerLLM [68] incorporate a data-independent exponential decay
factor for memory update as

St = γSt−1 + kt ⊗ vt ∈ Rd×d,

where γ ∈ (0, 1) is a scalar data-independent decaying factor; that is, the decay rate is fixed across
time steps and hidden channels (under the same head), disrespect to the input tokens. RetNet has
shown better language modeling performance compared to vanilla linear attentions thanks to the
decaying mechanism.

3For simplicity, we omit the normalization term, which has been shown to be unnecessary [75, 66, 52, 82, 96].

3

However, research in recurrent neural networks (RNNs) has shown that data-dependent decay (or
forget gates) is crucial for selectively retaining and forgetting information [22, 26], thus better
leveraging the fixed recurrent hidden state. This selective mechanism has been revisited in recent
state-space models [29, 16]. Inspired by LSTMs, Gated Linear Attention (GLA) [52, 96] introduces
data-dependent decay parameters Gt ∈ (0, 1)d×d to gate the hidden state as follows,

St = Gt ⊙ St−1 + kt ⊗ vt ∈ Rd×d, ot = ST
t qt ∈ Rd.

[96] show that if gates are parameterized in an outer product form Gt = αt⊗βi, and αt,βt ∈ [0, 1]d

depend solely on input xt, such recurrence can be rewritten as matrix multiplication, allowing for
hardware-efficient training with a chunkwise parallel form. In what follows, we will use the following
notation GLA({qi,ki,vi,αi,βi}Ti=1) = {oi}Ti=1 to denote this computation. It is common to set
βi = 1 as in [96, 69, 61], which is also often written in the following equivalent form:

St = Diag(αt)St−1 + kt ⊗ vt.

Here kt can be viewed as the input gate, and αt can be viewed as the forget gate. In gated RNN
literature, it is common to couple these two gates via kt = 1−αt [12, 106, 67]. In particular, Qin
et al. [69] proposed HGRN2, which uses this strategy as an improved parameterization of GLA,
showing better performance in language modeling.

3 Method

3.1 Motivation: Issues with ABC

We identify two primary limitations in ABC’s memory update rule. Firstly, it lacks a forgetting
mechanism, resulting in indefinite retention of items once written into memory slots. This prevents
efficient memory reuse by impeding the prompt clearance of slots for new information.

Secondly, the rule introduces an unwarranted inductive bias favoring tokens at the sentence’s begin-
ning. This contradicts the recency bias in natural language, where more recent information is often
more relevant. Prioritizing initial tokens over the recent ones conflicts with this inherent tendency in
natural language processing.

Specifically, for the first token, the writing strength to all slots is maximized (i.e., ϕ1 = 1 ∈ Rm),
causing every memory slot to retain a copy of the first token’s representation. The absence of a
forgetting mechanism exacerbates this issue. For subsequent tokens, the writing strength diminishes
due to the influence of earlier tokens, as a result of the cumulative softmax in Eq. 4. This makes it
challenging for the model to retain later tokens without learning a significantly large αi, potentially
leading to instability in long-context settings, as observed by Zhang et al. [100].

3.2 Gated Slot Attention (GSA): ABC with gating mechanism

To address these limitations, we propose Gated Slot Attention (GSA), which incorporates a gat-
ing mechanism to simultaneously resolve both issues by: (i) enabling the forgetting of historical
information, and (ii) introducing a recency inductive bias, as detailed below.

For each memory slot, the update rule is a simple gated RNN with a scalar data-dependent gating
value αi ∈ [0, 1],

(K̃t)i = αi(K̃t−1)i + (1− αi)kt ∈ Rd, (Ṽt)i = αi(Ṽt−1)i + (1− αi)vt ∈ Rd

and these can be written in matrix form, which is reminiscent of HGRN2 [69].
K̃t = Diag(αt) · K̃t−1 + (1−αt)⊗ kt ∈ Rm×d

Ṽt = Diag(αt) · Ṽt−1 + (1−αt)⊗ vt ∈ Rm×d

ot = ṼT softmax(K̃T
t qt) ∈ Rd

(6)

GSA as two-pass GLA. It is straightforward to see that we can write GSA as a two-pass GLA as
shown below:

{o′
t}Tt=1 = GLA

(
{qt,kt, 1−αt,αt,1}Tt=1

)
{ot}Tt=1 = GLA

(
{softmax(o′

t), 1−αt,vt,1,αt}Tt=1

) (7)

Therefore, we can adapt GLA’s hardware-efficient chunkwise training algorithm for GSA training, as
shown in § A and § B. We illustrate the recurrent representation of GSA in Figure 1.

4

3.3 Neural Architecture

K̃t−1 K̃t

Ṽt−1 Ṽt

σ αt 1-

kt

vt

qt

+

+

×

×

×

softmax

× ot

Figure 1: The recurrent representation of
GSA. means taking xt as input.

N×

Inputs

Norm

GSA

Norm

GLU

Norm

Linear

Outputs

LinearLinearLinear Linear

σ

Inputs

Gated Slot Attention

Norm

Linear

Outputs

Figure 2: The backbone of our proposed GSA models.

The overall architecture of our proposed model, GSA, is shown in Figure 2. Following the Llama
architecture [86], we use a stack of L GSA blocks, each comprising a GSA token mixing layer
followed by a Gated Linear Unit (GLU) channel mixing layer [19, 33].

We utilize the multi-head attention mechanism [88] to capture different aspects of the input. For each
head h, the input to GSA token mixing is defined as

qh
i ,k

h
i ,v

h
i = ϕ(Wh

qxi), ϕ(W
h
kxi), ϕ(W

h
vxi) (8)

where ϕ is the Swish activation following [68]. The forget gate is obtained by a linear transformation
followed by a sigmoid activation σ with a damping factor τ [96, 83]: αh

i = σ(Wh
αxi)

1/τ , 4 where
the damping factor is to regulate the forget gate value to one, which has been shown to be crucial
for long-term dependency modeling [30, 67]. We feed them into a GSA layer to obtain outputs as
described in Eq. 7:

{oh
i }Ti=1 = GSA({qh

i ,k
h
i ,v

h
i ,α

h
i }Ti=1)

Finally, we obtain output via

yi = Wo

(
RMSNorm

(
Swish

(
Concat

(
o1
i , · · · ,oH

i

))))
(9)

The total number of parameters for Wq,Wk,Wv, and Wo is already 4d2, which is the same as in a
single standard softmax-attention layer. To control the overall parameter count, we aim to keep the
parameters for Wα, which amount to dHm, relatively small. In practice, we set m = 64 to achieve a
balance between efficiency and effectiveness (§ 4.1.4). One way to further manage the total parameter
count is by reducing the number of heads. In practice, we set H = 4, ensuring that Hm≪ d. This
keeps the total number of parameters approximately equal to 4d2. 5

4 Experiments

4.1 Language Modeling

We perform moderate-scale language modeling experiments with 1.3B and 2.7B parameters on
Slimpajama corpus [79] for 100B tokens each.

We compare the performance of GSA against Llama Transformer architecture (i.e., Xfmr++ [86] and
recent subquadratic architectures including: Mamba [29], RetNet [82], GLA [96] and HGRN2 [69].
We refer readers to § C for more details on baselines and other experimental setups.

4In practice we set τ = 8.
5For instance, in a 1.3B model with H ×m = 64× 4 = 256 and d = 2, 048, the total number of parameters

amount to 4.125d2, introducing only a 0.125d2 overhead.

5

4.1.1 Results on commonsense reasoning tasks

Following [29, 96], we report the perplexities and zero-shot performance of commonsense reasoning
tasks including ARCe & ARCc (ARC-easy, ARC-challenge) [14]; Hella. (Hellaswag) [99], Lamb.
(Lambada) [59], PIQA [8], Wiki. (Wikitext) [55], and Wino. (Winograde) [73]. We note that these
tasks are typically short in length and do not require in-context learning capabilities, thus they do not
adequately reflect long-context modeling or in-context learning retrieval abilities. Nevertheless, as
shown in Table 1, we found that GSA performs comparably to the recent strong model HGRN2 with
an equally sized hidden state, while outperforming GLA and RetNet even with a smaller state size.

Table 1: The zero-shot results of 1.3B and 2.7B models evaluated by lm-evaluation-harness [21].
L denotes number of layer while d denotes the model dimension.

State size Lamb. Wiki. ARCe ARCc Hella. Lamb. PIQA Wino. Avg.
ppl↓ ppl↓ acc accn accn acc acc acc

1.3B parameters with 100B training tokens, L=24, d=2,048
Xfmr++ N/A 15.3 17.1 54.1 27.1 49.3 47.0 70.3 54.9 50.5
Mamba 64× Ld 15.4 17.3 57.1 28.2 50.3 44.4 71.8 52.3 50.7
RetNet 512× Ld 15.4 17.3 57.4 27.9 50.3 44.6 71.7 51.8 50.6
GLA 256× Ld 15.4 17.6 55.4 27.7 49.0 46.4 69.9 54.0 50.4
HGRN2 128× Ld 11.8 16.9 58.1 28.1 51.8 49.4 71.4 52.3 51.9
GSA 128× Ld 12.6 16.7 58.1 28.2 51.0 47.4 72.0 53.4 51.7

2.7B parameters with 100B training tokens, L=32, d=2,560
Xfmr++ N/A 10.7 15.2 59.8 27.5 54.2 52.3 72.7 56.2 53.8
Mamba 64× Ld 13.6 15.9 60.7 29.8 53.9 46.4 72.8 53.9 52.9
RetNet 512× Ld 11.9 15.8 59.6 28.1 54.0 49.6 72.3 53.8 52.9
GLA 256× Ld 12.4 15.5 59.2 29.9 54.0 50.4 71.7 55.7 53.5
HGRN2 128× Ld 8.8 14.6 60.8 30.3 58.7 55.4 73.0 54.2 55.4
GSA 128× Ld 9.8 14.8 61.9 30.7 57.0 52.7 73.5 56.0 55.3

4.1.2 Results on in-context recall-intensive tasks

While subquadratic models can achieve comparable performance to (softmax-based) Transformers in
language modeling and understanding tasks, their performance on recall-intensive tasks significantly
lags behind Transformers and varies greatly across different subquadratic models, as observed in
many recent studies [3, 4, 96, 97]. Therefore, it is crucial to improve linear models on in-context
recall-intensive tasks.

64 128 256 512
0

25

50

75

100

Model dimension

A
cc

ur
ac

y
(%

)

GSA
Mamba
GLA
RetNet
HGRN2

(a) Results on the synthetic MQAR
task. We adopt the most challeng-
ing settings in [2], utilizing a se-
quence length of 512 and 64 key-
value pairs. Xfmr++ with standard at-
tention achieves near-perfect results
in this settings and is thus omitted for
brevity.

(b) Results on the recall-intensive tasks used in [4]. We truncate the
input to a maximum of 2K tokens.

State size FDA SWDE SQuAD NQ TriviaQA Drop Avg.

1.3B params / 100B tokens, L=24, d=2048
Xfmr++ N/A 46.0 29.2 41.0 24.8 58.8 21.3 36.9
Mamba 64× Ld 13.9 25.4 33.2 18.5 53.5 21.7 27.7
RetNet 512× Ld 21.2 27.2 34.0 15.5 52.7 20.0 28.4
GLA 256× Ld 26.7 30.6 34.8 21.5 56.0 19.1 31.4
HGRN2 128× Ld 09.9 23.1 32.0 16.4 55.2 19.1 25.9
GSA 128× Ld 23.6 29.8 36.0 23.2 57.0 20.9 31.8

2.7B params / 100B tokens, L=32, d=2560
Xfmr++ N/A 62.3 30.9 44.3 29.3 61.8 21.4 41.7
Mamba 64× Ld 21.5 26.7 34.2 21.2 57.0 22.2 30.5
RetNet 512× Ld 24.1 26.1 36.4 20.4 57.3 21.8 31.0
GLA 256× Ld 30.3 35.5 36.8 23.3 58.2 21.8 34.3
HGRN2 128× Ld 15.0 29.9 35.1 17.0 59.8 20.0 29.5
GSA 128× Ld 39.1 33.5 39.0 26.9 60.8 19.9 36.5

6

MQAR. We first present the results on the multi-query associative recall (MQAR) task [2], a
diagnostic synthetic task that requires models to retrieve multiple associative key-value pairs from
the context. This task has been shown to strongly correlate with language modeling performance [2].
The results in Table 3a validate the effectiveness of GSA.

Table 2: Ablation study results for 340M
models trained on 10B Slimpajama tokens.

PPL (↓)

GSA w/ 64 slots 13.51

Ablations on gating mechanism
w/o decay (i.e., ABC) 16.94
w/ data-independent decay 15.83

Ablations on non-linearity
− softmax 14.03
− softmax+Swish 13.71
− softmax+ReLU 13.69
− softmax+ReLU2 13.95

Ablations on slot size
w/ 32 slots 13.74
w/ 128 slots 13.46

Real-world tasks. Next, we evaluate the zero-shot in-
context learning performance on recall-intensive tasks, as
used in Arora et al. [4].6 Specifically, we assess infor-
mation retrieval on FDA [93] and SWDE [49], which are
designed to evaluate retrieval from in-context passages
scraped from HTML/PDFs. We also evaluate question
answering on SQuAD [70], NQ [46], TriviaQA [40], and
Drop [20], where models must ground their answers in
in-context documents.

As shown in Table 3b, Xfmr++ achieves the best average
performance, as expected. Meanwhile, GSA outperforms
all other subquadratic baseline models by a notable mar-
gin without requiring a larger state size. We believe this
advantage stems from GSA’s context-aware memory read-
out mechanism (as discussed in §2.2) and its forgetting
mechanism (i.e., the gating mechanism), enabling it to
manipulate finite-sized memory more effectively.

4.1.3 Ablation

Table 2 presents the results of our ablation studies. Our findings indicate that: (i) the inclusion of
the gating mechanism in GSA is crucial for improving language modeling perplexity; (ii) applying
softmax non-linearities after the first recurrent pass is beneficial; and (iii) using 64 slots strikes an
optimal balance between performance and efficiency. 7

4.1.4 Efficiency

Fig. 4a illustrates the training throughput for four models on a single H800 GPU8. To optimize
memory usage, we employ the technique of recomputing the recurrent hidden state during the
backward pass, as done in FLA [95] and Mamba2 [16]. This approach results in reduced memory
consumption (Fig. 4b) at the cost of slightly lower training throughputs (Fig. 4a).

Despite requiring two GLA passes, GSA maintains comparable training throughputs to GLA due to
its reduced state size. Since inference is primarily memory-bound, inference speed highly correlates
with state size. As a result, GSA, with its smaller state size compared to RetNet and GLA, achieves
faster inference speeds, as shown in Figure 4c.

4.2 Finetuning Pretrained Transformers to RNNs

The concept of finetuning pretrained Transformers to linear Transformers for recurrent inference was
first introduced in T2R [41]. This approach uses pretrained language model weights to initialize all
parameters, leveraging the similarity between linear attention and softmax attention, and finetunes
all parameters, significantly reducing the total training time compared to training from scratch. Kasai
et al. [41] also introduced a parametric feature map, implemented as a learnable MLP layer followed
by ReLU, applied after the query/key projections. SUPRA, a follow-up to T2R, found that the
original T2R approach did not perform well in the era of LLMs, and highlighted the importance of

6Since our pretrained models are neither instruction-tuned nor instruction-aligned, following Arora et al. [4],
we use their Cloze Completion Formatting prompts for evaluation. It is noteworthy that results for certain tasks
may differ significantly from those obtained using lm-evaluation-harness [21] due to variations in prompt
templates.

7Empirically, we found that 32, 64, and 128 slots result in training throughputs of 46.7K, 44.1K, and 37.1K
tokens/s, respectively, under the settings described in the next section. Given the marginal improvement when
increasing the slot size from 64 to 128, along with the significant slowdown in training, we chose 64 slots.

8We utilize the training throughput benchmark scripts provided by FLA [95] for our measurements.

7

2K×8 4K×4 8K×2 16K×1
0

15k

30k

45k

60k

Context length × Batch size

To
ke

ns
/s

Xfmr++ Mamba GLA

GSA GSA w/o recomp.

(a)

010203040

GSA

w/o recomp.

GSA
GLA

M
amba

Xfmr++

35.9

37.4

36.2

38.0

41.4

Memories (GiB)

(b)

2K 4K 8K 16K
0

50

100

150

200

250

Decoding length

L
at

en
cy

(s
)

Xfmr++
Mamba
RetNet
GLA
GSA

(c)

Figure 4: (a) Training throughput of various 1.3B models on a single H800 GPU, with a fixed batch
size containing 16K tokens. “GSA w/o recomp.” indicates the use of the GSA kernel without hidden
state recomputation during the backward pass. (b) Memory footprint (in GiB) of each 1.3B model
during training with a batch size containing 16K tokens. (c) Inference latency (in seconds) of each
1.3B model on a single H800 GPU with 2K prefix tokens and a batch size of 1.

Table 3: Performance comparison across various 7B models. ♣ denotes models using softmax-attention. †

denotes our results.

Size Tokens ARCe ARCc Hella. PIQA Wino. NQ TriviaQA BBH MMLU Avg.
Shot(s) 0 0 0 0 0 5 5 3 5

Models trained from scratch (for reference)
RWKV6 7B 1.4T 73.6 44.0 75.2 78.4 68.5 20.9 59.5 23.4 43.9 54.1
Mamba 7B 1.2T 77.6 46.8 77.8 81.0 72.3 25.4 66.2 21.5 33.2 55.7
Llama2♣ 7B 2T 76.4 46.2 76.0 78.0 69.2 26.0 64.2 39.1 45.5 57.8
Gemma♣ 7B 6T 81.5 53.2 80.5 79.8 74.0 24.3 63.7 58.9 63.2 64.3
Mistral♣ 7B ? 80.8 54.0 81.1 80.6 74.0 29.7 70.3 56.5 62.4 65.5
Models finetuned from Mistral 7B
SUPRA 7B +20B 74.6 42.3 74.8 80.1 67.4 - - - 28.0 -
RetNet† 7B +20B 73.3 39.9 72.9 77.8 66.1 16.2 43.0 08.7 26.1 47.1
GLA† 7B +20B 74.6 44.0 75.9 79.2 69.5 22.2 57.8 20.8 28.4 52.5
GSA† 7B +20B 75.9 43.9 76.5 78.7 70.1 23.4 60.7 23.5 32.4 53.9
SUPRA 7B +100B 76.0 45.7 77.1 79.9 70.3 24.7 60.4 19.8 34.1 54.2
GSA† 7B +100B 76.0 46.9 77.9 78.9 72.6 26.9 65.8 29.3 38.1 56.9

output normalization and a decay mechanism—adopted from RetNet [82]—as critical for finetuning
performance. As a result, SUPRA essentially combines T2R and RetNet by finetuning pretrained
Transformers into a RetNet architecture, though it excludes the Swish output gate.

Settings. In our preliminary experiments, we found that the learnable MLP layer was unnecessary
and could be merged into the query and key projections, similar to the approach in Peng et al. [63].
We finetuned the pretrained Transformer Mistral 7B [39] to RetNet, as well as to GLA and GSA
models. Following SUPRA, we add ReLU as the feature map activation for RetNet and GLA, which
originally used an identity feature map without activation 9, and also excluded the Swish output gate.
For RetNet, there were no additional parameters; for GLA, the low-rank forget gate, and for GSA,
the Wα matrix are trainable parameters, though both are small in parameter count and negligible
in terms of the total model size. We set the peak learning rate to 3× 10−5 with 1K steps of linear
warmup following SUPRA. The training length was set to 2K tokens, with a batch size of 2M tokens.
For convenience, we trained on the SlimPajama corpus, while SUPRA used RefineWeb [60], a
higher-quality corpus. We leave the use of RefineWeb for future work.

9However, SUPRA reported poor performance with this strategy due to a significant discrepancy between
training and finetuning, where an identity map can lead to negative attention scores, a pattern unseen in pretrained
Transformers due to the nonnegativity of softmax.

8

Main results. Following Jiang et al. [39], Touvron et al. [87], we evaluated the models on common-
sense reasoning tasks: ARCe and ARCc [14], Hellaswag [99], PIQA [8], and Winogrande [73]; world
knowledge tasks: NQ [46] and TriviaQA [40]; and popular aggregated benchmarks: MMLU [31]
and BBH [85]. Results are shown in Table 3. We observed a clear advantage in finetuning Mistral to
GSA compared to GLA or RetNet, confirming our intuition that preserving softmax is beneficial in
T2R settings. When trained with 100B tokens, Mistral-to-GSA outperforms RWKV6 and Mamba on
average, even though those models were trained on over 1T tokens, thereby reducing the required
training data size.

Table 4: Long-context performance comparison.

Qasper NarrativeQA QuALITY QMSum

Models trained from scratch (for reference)
RWKV6 09.2 14.4 30.8 01.1
Mamba 05.6 27.9 27.5 00.8
Mistral♣ 25.8 25.1 38.0 05.0
Models finetuned from Mistral 7B on 20B tokens
RetNet 11.1 00.0 26.2 00.0
GLA 18.4 17.2 30.9 09.0
GSA 18.8 19.2 32.0 10.0

Long-context ability evaluation. Following
Xiong et al. [94], we evaluated the models on
long-sequence tasks, including Qasper [18], Nar-
rativeQA [44], QuALITY [58], and QMSum
[105]. For each task, the input was truncated to
16K tokens, which is 8× the training length.

The results are shown in Table 4. Notably, GSA
consistently outperforms other subquadratic
models across all four tasks. We attribute this to
the same factors observed in in-context recall-
intensive task settings. Interestingly, Mistral-
to-GSA also demonstrates overall better perfor-
mance compared to RWKV6 and Mamba, which were trained from scratch on >1T token.

5 Related works

Matrix-valued linear RNNs with hardware-efficient training. Traditional RNNs (e.g., LSTM
[32], GRU [12]) maintain 1-dimensional hidden states, which are often too small to capture sufficient
information. Recent work emphasizes the importance of expanding the size of recurrent states
[29, 69, 96, 82, 61, 16]. However, naive state expansion dramatically increases FLOPs and I/O costs,
making training impractical. To address this, Mamba introduces an I/O-aware approach, reducing
I/O costs by materializing parameters and hidden states only on SRAM (instead of HBM). However,
Mamba’s recurrence cannot be expressed in matmul form, leading to two key issues: (i) high FLOP
count cannot be optimized via tensor cores (the GPU’s fast matmul unit), resulting in slower runtimes;
and (ii) the recurrent hidden states cannot be compactly represented and must be materialized on
SRAM during backpropagation, limiting the recurrent state size due to SRAM constraints.

Mamba2 [16] addresses these limitations by adopting a linear attention [42]-like approach that
enables hardware-efficient training. Linear attention expands the state using outer products, allowing
for both parallel attention-style computation and recurrent inference (also known as state-space
duality in Mamba2). The chunkwise algorithm interpolates between parallel and recurrent forms,
enabling hardware-efficient, linear-time training [33, 82, 96]. However, vanilla linear attention
underperforms softmax attention in various tasks. Recent research has explored incorporating various
decay or gating mechanisms to enhance model expressiveness and performance while maintaining
matmul-based parallelism and chunkwise training. These include head-wise data-independent decay
[82, 68]; head-wise data-dependent decay [62, 16, 6, 83]; and channel-wise data-dependent decay
[96, 52, 43, 69, 61]. GSA leverages two-pass gated linear attention to further enhance capacity while
allowing hardware-efficient training.

Fast weight RNNs. Fast weight programming [77], a classical concept intensively investigated in
deep learning [5, 103, 74, 76, 56, 75, 35, 36, 52], has been shown to be closely related to (linear)
Transformers [75]. The core idea involves using a slow network to produce rapid context-dependent
weight modifications for the fast network. In linear attention, the fast network is a single-layer FFN
with weight matrix St (Eq. 5), while the slow networks are the query/key/value projections.

Linear attention is known to suffer from limited memory capacity [75], potentially due to the
constraints of a single-layer FFN without a large representation. In contrast, ABC and GSA can be
viewed as implementing a two-layer fast FFN with either additive update rule or gated update rule
[74, 52], where the weight matrices are K̃t and Ṽt connected by the softmax activation function
(Eq. 3 and Eq. 6). This structure resembles DeltaMLP [35], which uses a delta update rule [92, 75, 98]

9

and a multi-layer (potentially beyond two layers) fast FFN. The greater capacity of a two-layer FFN
compared to a similarly sized single-layer FFN could explain why GSA requires a smaller state size
to achieve similar or even better performance, especially in long sequence and recall-intensive tasks.

Finetuning Transformers to RNNs. As discussed, this paradigm could significantly reduce the
training cost for large-scale recurrent language models. The idea of distilling Transformers to RNNs
to improve inference efficiency can be traced back to Gerstenberger et al. [23]. In the following,
we briefly introduce some recent works that complement those already mentioned in §4.2 . Zhang
et al. [101] highlight the desirable properties of softmax, such as attention spikiness and dot-product
monotonicity, and employ a learnable MLP layer to approximate softmax behavior using logit
distillation loss (while freezing other parameters). Chen et al. [10] introduce DiJiang, an effective
method for approximating attention distributions using the Discrete Cosine Transform (DCT) to
enable frequency-domain kernelization, leading to faster feature mapping. Bick et al. [7] propose a
multi-stage distillation approach, aligning attention distributions (similar to Hedgehog [101]), hidden
states, and output logits to transfer knowledge from a pretrained Transformer teacher to a student
Mamba model. Wang et al. [90] distill Transformer-based LLMs into hybrid Mamba-Attention
architectures in the spirit of Ren et al. [71], Lieber et al. [47], Waleffe et al. [89]. However, they
freeze the FFN weights, while Choi [13] suggest that it might be more effective to unfreeze them. In
this work, we highlight the importance of the softmax operator, as discussed in Zhang et al. [101],
except that GSA directly incorporates softmax, while Zhang et al. [101] learns a feature map to
mimic softmax, without actually including any softmax operator in the resulting model.

6 Limitations and future work

Due to the relatively small scale of our pretrained models (compared to large-scale models trained
on trillions of tokens), we did not report any results on long-context tasks, as the performance
would all be poor. However, we believe Table 4 provides positive indications of GSA’s long-context
capabilities, and training on a larger token horizon and with larger models would address this. For
copy-oriented tasks, we observed negative results on the Phonebook Lookup [38] and Needle-In-
Haystack evaluations compared to Transformers, revealing the fundamental limitations of linear
recurrent models in handling “precise local token shifts and comparison”, as discussed in Arora et al.
[3]. Nonetheless, we expect this limitation could be significantly mitigated by pretraining a hybrid
GSA-attention model, as recently explored [3, 71, 89, 47, 98], or by distilling pretrained Transformers
into hybrid GSA-attention models, as in Wang et al. [90], or using different training objectives with
JRT prompts, as in Arora et al. [4], or combining with YOCO [83, 25].

GSA follows GLA in using a gated update rule, although we acknowledge recent work on Parallel
DeltaNet [98], which parallelizes the delta update rule computations in DeltaNet [75] over sequence
length, significantly enhancing training efficiency. The delta rule is known to improve in-context
retrieval ability [75, 98], aligning with one of the objectives of this work. We did not explore the
analogous two-pass DeltaNet, but we leave this for future investigation, which would bring the
approach closer to the original DeltaMLP [35], as discussed earlier. It would also be beneficial to
compare GSA with more recent strong RNN models, such as xLSTM [6], Mamba2 [16], TTT [84],
and Longhorn [48].

7 Conclusions

This work introduces Gated Slot Attention (GSA), which enhances ABC [63] with a gating mech-
anism inspired by Gated Linear Attention (GLA [96]). By framing GSA as a two-pass GLA, we
can leverage hardware-efficient implementations of GLA [95] to train GSA. As such, GSA benefits
from context-aware memory reading and forgetting, implicitly increasing the model’s capacity de-
spite a small actual state size, which improves training and inference efficiency. Through extensive
experiments, we demonstrate the advantages of GSA in in-context recall-intensive tasks [4] and in
“finetuning pretrained Transformers to RNNs” [41] scenarios.

10

Acknowledgments

We would like to thank Zhen Qin and Yikang Shen for their insightful discussions, Houquan Zhou
and Kazuki Irie for providing valuable feedback on this manuscript.

We gratefully acknowledge the support by LuxiTech for computational resources; and the support
by the National Natural Science Foundation of China (No. 62076173, 62476187), the High-level
Entrepreneurship and Innovation Plan of Jiangsu Province (No. JSSCRC2021524), and the Project
Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Yu Zhang was partially supported by Tencent AI Lab under Wei Bi’s mentorship. Songlin Yang was
supported by Xianhong Wu Fellowship from MIT.

References
[1] E. Akyürek, B. Wang, Y. Kim, and J. Andreas. In-context language learning: Architectures

and algorithms. In Proceedings of ICML, 2024. URL https://openreview.net/forum?id=
3Z9CRr5srL.

[2] S. Arora, S. Eyuboglu, A. Timalsina, I. Johnson, M. Poli, J. Zou, A. Rudra, and C. Ré. Zoology:
Measuring and improving recall in efficient language models, 2023.

[3] S. Arora, S. Eyuboglu, M. Zhang, A. Timalsina, S. Alberti, D. Zinsley, J. Zou, A. Rudra, and
C. Ré. Simple linear attention language models balance the recall-throughput tradeoff, 2024.

[4] S. Arora, A. Timalsina, A. Singhal, B. Spector, S. Eyuboglu, X. Zhao, A. Rao, A. Rudra, and
C. Ré. Just read twice: closing the recall gap for recurrent language models, 2024. URL
https://arxiv.org/abs/2407.05483.

[5] J. Ba, G. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu. Using fast weights to attend to the
recent past, 2016.

[6] M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brand-
stetter, and S. Hochreiter. xlstm: Extended long short-term memory, 2024.

[7] A. Bick, K. Y. Li, E. P. Xing, J. Z. Kolter, and A. Gu. Transformers to ssms: Distilling
quadratic knowledge to subquadratic models. 2024. URL https://api.semanticscholar.
org/CorpusID:271903923.

[8] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical common-
sense in natural language. In In Proceedings of AAAI, 2020.

[9] G. E. Blelloch. Prefix sums and their applications. Technical report, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, 1993. URL https://www.cs.cmu.edu/
~guyb/papers/Ble93.pdf.

[10] H. Chen, Z. Liu, X. Wang, Y. Tian, and Y. Wang. Dijiang: Efficient large language mod-
els through compact kernelization. ArXiv, abs/2403.19928, 2024. URL https://api.
semanticscholar.org/CorpusID:268793982.

[11] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost,
2016.

[12] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of EMNLP, pages 1724–1734, 2014. URL https:
//aclanthology.org/D14-1179.

[13] S. Choi. Cross-architecture transfer learning for linear-cost inference transformers, 2024. URL
https://arxiv.org/abs/2404.02684.

[14] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv:1803.05457v1,
2018.

11

https://openreview.net/forum?id=3Z9CRr5srL
https://openreview.net/forum?id=3Z9CRr5srL
https://arxiv.org/abs/2407.05483
https://api.semanticscholar.org/CorpusID:271903923
https://api.semanticscholar.org/CorpusID:271903923
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://api.semanticscholar.org/CorpusID:268793982
https://api.semanticscholar.org/CorpusID:268793982
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://arxiv.org/abs/2404.02684

[15] T. Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=mZn2Xyh9Ec.

[16] T. Dao and A. Gu. Transformers are ssms: Generalized models and efficient algorithms
through structured state space duality. CoRR, abs/2405.21060, 2024. doi: 10.48550/ARXIV.
2405.21060. URL https://doi.org/10.48550/arXiv.2405.21060.

[17] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. In Advances in NIPS, pages 16344–
16359, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf.

[18] P. Dasigi, K. Lo, I. Beltagy, A. Cohan, N. A. Smith, and M. Gardner. A dataset of information-
seeking questions and answers anchored in research papers. In Proceedings of NAACL, pages
4599–4610, 2021. URL https://aclanthology.org/2021.naacl-main.365.

[19] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional
networks. In Proceedings of ICML, pages 933–941, 2017. URL https://proceedings.mlr.
press/v70/dauphin17a.html.

[20] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. DROP: A reading
comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of
NAACL, pages 2368–2378, 2019. URL https://aclanthology.org/N19-1246.

[21] L. Gao, J. Tow, B. Abbasi, S. Biderman, S. Black, A. DiPofi, C. Foster, L. Golding, J. Hsu,
A. Le Noac’h, H. Li, K. McDonell, N. Muennighoff, C. Ociepa, J. Phang, L. Reynolds,
H. Schoelkopf, A. Skowron, L. Sutawika, E. Tang, A. Thite, B. Wang, K. Wang, and A. Zou.
A framework for few-shot language model evaluation, 2023. URL https://zenodo.org/
records/10256836.

[22] F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction with lstm.
In Proceedings of ICANN, pages 850–855, 1999.

[23] A. Gerstenberger, K. Irie, P. Golik, E. Beck, and H. Ney. Domain robust, fast, and compact
neural language models. In Proceedings of ICASSP, Barcelona, Spain, 2020.

[24] M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value
memories. In Proceedings of EMNLP, pages 5484–5495, Online and Punta Cana, Dominican
Republic, 2021. URL https://aclanthology.org/2021.emnlp-main.446.

[25] D. Goldstein, F. Obeid, E. Alcaide, G. Song, and E. Cheah. Goldfinch: High performance
rwkv/transformer hybrid with linear pre-fill and extreme kv-cache compression. ArXiv,
abs/2407.12077, 2024. URL https://api.semanticscholar.org/CorpusID:271244694.

[26] A. Graves. Generating sequences with recurrent neural networks, 2014.

[27] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines, 2014.

[28] R. Grazzi, J. N. Siems, S. Schrodi, T. Brox, and F. Hutter. Is mamba capable of in-context learn-
ing? ArXiv, abs/2402.03170, 2024. URL https://api.semanticscholar.org/CorpusID:
267412719.

[29] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.

[30] A. Gu, C. Gulcehre, T. Paine, M. Hoffman, and R. Pascanu. Improving the gating mechanism
of recurrent neural networks. In H. D. III and A. Singh, editors, Proceedings of ICML, pages
3800–3809. PMLR, 2020. URL https://proceedings.mlr.press/v119/gu20a.html.

[31] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding, 2021. URL https://arxiv.org/abs/2009.
03300.

[32] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

12

https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://doi.org/10.48550/arXiv.2405.21060
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf
https://aclanthology.org/2021.naacl-main.365
https://proceedings.mlr.press/v70/dauphin17a.html
https://proceedings.mlr.press/v70/dauphin17a.html
https://aclanthology.org/N19-1246
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://aclanthology.org/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:271244694
https://api.semanticscholar.org/CorpusID:267412719
https://api.semanticscholar.org/CorpusID:267412719
https://proceedings.mlr.press/v119/gu20a.html
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

[33] W. Hua, Z. Dai, H. Liu, and Q. Le. Transformer quality in linear time. In K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings of ICML, pages
9099–9117. PMLR, 2022. URL https://proceedings.mlr.press/v162/hua22a.html.

[34] K. Irie, A. Gerstenberger, R. Schlüter, and H. Ney. How much self-attention do we need?
Trading attention for feed-forward layers. In Proceedings of ICASSP, Virtual only, May 2020.

[35] K. Irie, I. Schlag, R. Csord’as, and J. Schmidhuber. Going beyond linear transformers
with recurrent fast weight programmers. ArXiv, abs/2106.06295, 2021. URL https://api.
semanticscholar.org/CorpusID:235417174.

[36] K. Irie, I. Schlag, R. Csord’as, and J. Schmidhuber. A modern self-referential weight matrix
that learns to modify itself. In International Conference on Machine Learning, 2022. URL
https://api.semanticscholar.org/CorpusID:246823084.

[37] S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. Repeat after me: Transformers
are better than state space models at copying. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=duRRoGeoQT.

[38] S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. Repeat after me: Transformers
are better than state space models at copying, 2024.

[39] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bres-
sand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao,
T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.

[40] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In R. Barzilay and M.-Y. Kan, editors, Proceed-
ings of ACL, pages 1601–1611, Vancouver, Canada, July 2017. doi: 10.18653/v1/P17-1147.
URL https://aclanthology.org/P17-1147.

[41] J. Kasai, H. Peng, Y. Zhang, D. Yogatama, G. Ilharco, N. Pappas, Y. Mao, W. Chen, and
N. A. Smith. Finetuning pretrained transformers into RNNs. In M.-F. Moens, X. Huang,
L. Specia, and S. W.-t. Yih, editors, Proceedings of EMNLP, pages 10630–10643, 2021. URL
https://aclanthology.org/2021.emnlp-main.830.

[42] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast autore-
gressive transformers with linear attention. In H. D. III and A. Singh, editors, Proceedings
of ICML, pages 5156–5165. PMLR, 2020. URL https://proceedings.mlr.press/v119/
katharopoulos20a.html.

[43] T. Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling, 2024.

[44] T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and E. Grefenstette.
The NarrativeQA reading comprehension challenge. TACL, pages 317–328, 2018. URL
https://aclanthology.org/Q18-1023.

[45] D. Krotov and J. Hopfield. Large Associative Memory Problem in Neurobiology and Machine
Learning, 2021. URL http://arxiv.org/abs/2008.06996.

[46] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M. Dai,
J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: A benchmark for question answering
research. TACL, pages 452–466, 2019. URL https://aclanthology.org/Q19-1026.

[47] O. Lieber, B. Lenz, H. Bata, G. Cohen, J. Osin, I. Dalmedigos, E. Safahi, S. Meirom,
Y. Belinkov, S. Shalev-Shwartz, O. Abend, R. Alon, T. Asida, A. Bergman, R. Gloz-
man, M. Gokhman, A. Manevich, N. Ratner, N. Rozen, E. Shwartz, M. Zusman, and
Y. Shoham. Jamba: A hybrid transformer-mamba language model, 2024. URL https:
//arxiv.org/abs/2403.19887.

13

https://proceedings.mlr.press/v162/hua22a.html
https://api.semanticscholar.org/CorpusID:235417174
https://api.semanticscholar.org/CorpusID:235417174
https://api.semanticscholar.org/CorpusID:246823084
https://openreview.net/forum?id=duRRoGeoQT
https://aclanthology.org/P17-1147
https://aclanthology.org/2021.emnlp-main.830
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://aclanthology.org/Q18-1023
http://arxiv.org/abs/2008.06996
https://aclanthology.org/Q19-1026
https://arxiv.org/abs/2403.19887
https://arxiv.org/abs/2403.19887

[48] B. Liu, R. Wang, L. Wu, Y. Feng, P. Stone, and Q. Liu. Longhorn: State space models are amor-
tized online learners. ArXiv, abs/2407.14207, 2024. URL https://api.semanticscholar.
org/CorpusID:271310065.

[49] C. Lockard, P. Shiralkar, and X. L. Dong. OpenCeres: When Open Information Extraction
Meets the Semi-Structured Web. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings
of NAACL, pages 3047–3056, Minneapolis, Minnesota, 2019. doi: 10.18653/v1/N19-1309.
URL https://aclanthology.org/N19-1309.

[50] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019.

[51] X. Ma, X. Kong, S. Wang, C. Zhou, J. May, H. Ma, and L. Zettlemoyer. Luna: Lin-
ear unified nested attention. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in NIPS, volume 34, pages 2441–2453. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
14319d9cfc6123106878dc20b94fbaf3-Paper.pdf.

[52] H. H. Mao. Fine-tuning pre-trained transformers into decaying fast weights. In Y. Goldberg,
Z. Kozareva, and Y. Zhang, editors, Proceedings of EMNLP, pages 10236–10242, Abu Dhabi,
United Arab Emirates, 2022. URL https://aclanthology.org/2022.emnlp-main.697.

[53] E. Martin and C. Cundy. Parallelizing linear recurrent neural nets over sequence length. In
Proceedings of ICLR, 2018. URL https://openreview.net/forum?id=HyUNwulC-.

[54] J. Mercat, I. Vasiljevic, S. Keh, K. Arora, A. Dave, A. Gaidon, and T. Kollar. Linearizing large
language models, 2024.

[55] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

[56] T. Munkhdalai, A. Sordoni, T. Wang, and A. Trischler. Metalearned neural memory. ArXiv,
abs/1907.09720, 2019. URL https://api.semanticscholar.org/CorpusID:198179407.

[57] M. Oren, M. Hassid, Y. Adi, and R. Schwartz. Transformers are multi-state rnns, 2024.

[58] R. Y. Pang, A. Parrish, N. Joshi, N. Nangia, J. Phang, A. Chen, V. Padmakumar, J. Ma,
J. Thompson, H. He, and S. R. Bowman. Quality: Question answering with long input texts,
yes!, 2022. URL https://arxiv.org/abs/2112.08608.

[59] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernández. The lambada dataset, 2016.

[60] G. Penedo, Q. Malartic, D. Hesslow, R. Cojocaru, A. Cappelli, H. Alobeidli, B. Pannier,
E. Almazrouei, and J. Launay. The RefinedWeb dataset for Falcon LLM: outperforming
curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116, 2023.
URL https://arxiv.org/abs/2306.01116.

[61] B. Peng, D. Goldstein, Q. Anthony, A. Albalak, E. Alcaide, S. Biderman, E. Cheah, X. Du,
T. Ferdinan, H. Hou, P. Kazienko, K. K. GV, J. Kocoń, B. Koptyra, S. Krishna, R. M. J. au2,
N. Muennighoff, F. Obeid, A. Saito, G. Song, H. Tu, S. Woźniak, R. Zhang, B. Zhao, Q. Zhao,
P. Zhou, J. Zhu, and R.-J. Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic
recurrence, 2024.

[62] H. Peng, N. Pappas, D. Yogatama, R. Schwartz, N. Smith, and L. Kong. Random fea-
ture attention. In Proceedings of ICLR, 2021. URL https://openreview.net/forum?id=
QtTKTdVrFBB.

[63] H. Peng, J. Kasai, N. Pappas, D. Yogatama, Z. Wu, L. Kong, R. Schwartz, and N. A. Smith.
ABC: Attention with bounded-memory control. In Proceedings of ACL, pages 7469–7483,
2022. URL https://aclanthology.org/2022.acl-long.515.

[64] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Levskaya, J. Heek, K. Xiao,
S. Agrawal, and J. Dean. Efficiently scaling transformer inference, 2022.

[65] S. Pramanik, E. Elelimy, M. C. Machado, and A. White. Recurrent linear transformers, 2023.
URL https://arxiv.org/abs/2310.15719.

14

https://api.semanticscholar.org/CorpusID:271310065
https://api.semanticscholar.org/CorpusID:271310065
https://aclanthology.org/N19-1309
https://proceedings.neurips.cc/paper_files/paper/2021/file/14319d9cfc6123106878dc20b94fbaf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/14319d9cfc6123106878dc20b94fbaf3-Paper.pdf
https://aclanthology.org/2022.emnlp-main.697
https://openreview.net/forum?id=HyUNwulC-
https://api.semanticscholar.org/CorpusID:198179407
https://arxiv.org/abs/2112.08608
https://arxiv.org/abs/2306.01116
https://openreview.net/forum?id=QtTKTdVrFBB
https://openreview.net/forum?id=QtTKTdVrFBB
https://aclanthology.org/2022.acl-long.515
https://arxiv.org/abs/2310.15719

[66] Z. Qin, X. Han, W. Sun, D. Li, L. Kong, N. Barnes, and Y. Zhong. The devil in linear
transformer. In Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Proceedings of EMNLP, pages
7025–7041, Abu Dhabi, United Arab Emirates, 2022. doi: 10.18653/v1/2022.emnlp-main.473.
URL https://aclanthology.org/2022.emnlp-main.473.

[67] Z. Qin, S. Yang, and Y. Zhong. Hierarchically gated recurrent neural network for sequence mod-
eling. In Advances in NIPS, 2023. URL https://openreview.net/forum?id=P1TCHxJwLB.

[68] Z. Qin, D. Li, W. Sun, W. Sun, X. Shen, X. Han, Y. Wei, B. Lv, X. Luo, Y. Qiao, and Y. Zhong.
Transnormerllm: A faster and better large language model with improved transnormer, 2024.

[69] Z. Qin, S. Yang, W. Sun, X. Shen, D. Li, W. Sun, and Y. Zhong. Hgrn2: Gated linear rnns
with state expansion, 2024.

[70] P. Rajpurkar, R. Jia, and P. Liang. Know What You Don’t Know: Unanswerable Questions for
SQuAD. In Proceedings of ACL, Melbourne, Australia, 2018. Association for Computational
Linguistics.

[71] L. Ren, Y. Liu, Y. Lu, Y. Shen, C. Liang, and W. Chen. Samba: Simple hybrid state space
models for efficient unlimited context language modeling. CoRR, abs/2406.07522, 2024. doi:
10.48550/ARXIV.2406.07522. URL https://doi.org/10.48550/arXiv.2406.07522.

[72] A. Rush. Torch-struct: Deep structured prediction library. In A. Celikyilmaz and T.-H. Wen,
editors, Proceedings of ACL, pages 335–342, Online, July 2020. doi: 10.18653/v1/2020.
acl-demos.38. URL https://aclanthology.org/2020.acl-demos.38.

[73] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.10641.

[74] I. Schlag and J. Schmidhuber. Gated fast weights for on-the-fly neural program genera-
tion. In Proceedings of ICLR, 2017. URL https://api.semanticscholar.org/CorpusID:
216094255.

[75] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight program-
mers. In M. Meila and T. Zhang, editors, Proceedings of ICML, pages 9355–9366. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/schlag21a.html.

[76] I. Schlag, T. Munkhdalai, and J. Schmidhuber. Learning associative inference using fast weight
memory, 2021. URL https://arxiv.org/abs/2011.07831.

[77] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

[78] N. Shazeer. Glu variants improve transformer, 2020.

[79] D. Soboleva, F. Al-Khateeb, R. Myers, J. R. Steeves, J. Hestness, and N. Dey. Slimpa-
jama: A 627b token cleaned and deduplicated version of redpajama, 2023. URL https:
//huggingface.co/datasets/cerebras/SlimPajama-627B.

[80] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023.

[81] S. Sukhbaatar, a. szlam, J. Weston, and R. Fergus. End-to-end memory networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in NIPS. Curran
Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/
2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf.

[82] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue, J. Wang, and F. Wei. Retentive network: A
successor to transformer for large language models, 2023.

[83] Y. Sun, L. Dong, Y. Zhu, S. Huang, W. Wang, S. Ma, Q. Zhang, J. Wang, and F. Wei.
You only cache once: Decoder-decoder architectures for language models, 2024. URL
https://arxiv.org/abs/2405.05254.

15

https://aclanthology.org/2022.emnlp-main.473
https://openreview.net/forum?id=P1TCHxJwLB
https://doi.org/10.48550/arXiv.2406.07522
https://aclanthology.org/2020.acl-demos.38
https://arxiv.org/abs/1907.10641
https://api.semanticscholar.org/CorpusID:216094255
https://api.semanticscholar.org/CorpusID:216094255
https://proceedings.mlr.press/v139/schlag21a.html
https://arxiv.org/abs/2011.07831
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
https://arxiv.org/abs/2405.05254

[84] Y. Sun, X. Li, K. Dalal, J. Xu, A. Vikram, G. Zhang, Y. Dubois, X. Chen, X. Wang, O. Koyejo,
T. Hashimoto, and C. Guestrin. Learning to (learn at test time): Rnns with expressive hidden
states. ArXiv, abs/2407.04620, 2024. URL https://api.semanticscholar.org/CorpusID:
271039606.

[85] M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. Le,
E. Chi, D. Zhou, and J. Wei. Challenging BIG-bench tasks and whether chain-of-thought
can solve them. In Findings of the ACL, pages 13003–13051, Toronto, Canada, 2023. URL
https://aclanthology.org/2023.findings-acl.824.

[86] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama:
Open and efficient foundation language models, 2023.

[87] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,
M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan,
P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL
https://arxiv.org/abs/2307.09288.

[88] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in NIPS. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[89] R. Waleffe, W. Byeon, D. Riach, B. Norick, V. Korthikanti, T. Dao, A. Gu, A. Hatamizadeh,
S. Singh, D. Narayanan, G. Kulshreshtha, V. Singh, J. Casper, J. Kautz, M. Shoeybi, and
B. Catanzaro. An empirical study of mamba-based language models, 2024. URL https:
//arxiv.org/abs/2406.07887.

[90] J. Wang, D. Paliotta, A. May, A. M. Rush, and T. Dao. The mamba in the llama: Distilling and
accelerating hybrid models, 2024. URL https://arxiv.org/abs/2408.15237.

[91] K. Wen, X. Dang, and K. Lyu. Rnns are not transformers (yet): The key bottleneck on
in-context retrieval. ArXiv, abs/2402.18510, 2024. URL https://api.semanticscholar.
org/CorpusID:268041425.

[92] B. Widrow and M. E. Hoff. Adaptive switching circuits. 1988. URL https://api.
semanticscholar.org/CorpusID:60830585.

[93] E. Wu, K. Wu, R. Daneshjou, D. Ouyang, D. E. Ho, and J. Zou. How medical AI devices
are evaluated: limitations and recommendations from an analysis of FDA approvals. Nature
Medicine, pages 582–584, 2021. URL https://doi.org/10.1038/s41591-021-01312-x.

[94] W. Xiong, J. Liu, I. Molybog, H. Zhang, P. Bhargava, R. Hou, L. Martin, R. Rungta, K. A.
Sankararaman, B. Oguz, M. Khabsa, H. Fang, Y. Mehdad, S. Narang, K. Malik, A. Fan,
S. Bhosale, S. Edunov, M. Lewis, S. Wang, and H. Ma. Effective long-context scaling of
foundation models, 2023. URL https://arxiv.org/abs/2309.16039.

[95] S. Yang and Y. Zhang. FLA: A Triton-Based Library for Hardware-Efficient Implementa-
tions of Linear Attention Mechanism, 2024. URL https://github.com/sustcsonglin/
flash-linear-attention.

[96] S. Yang, B. Wang, Y. Shen, R. Panda, and Y. Kim. Gated linear attention transformers with
hardware-efficient training. In Proceedings of ICML. PMLR, 2024.

16

https://api.semanticscholar.org/CorpusID:271039606
https://api.semanticscholar.org/CorpusID:271039606
https://aclanthology.org/2023.findings-acl.824
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2408.15237
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:268041425
https://api.semanticscholar.org/CorpusID:60830585
https://api.semanticscholar.org/CorpusID:60830585
https://doi.org/10.1038/s41591-021-01312-x
https://arxiv.org/abs/2309.16039
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention

[97] S. Yang, B. Wang, Y. Zhang, Y. Shen, and Y. Kim. Parallelizing linear transformers with the
delta rule over sequence length. CoRR, abs/2406.06484, 2024. doi: 10.48550/ARXIV.2406.
06484. URL https://doi.org/10.48550/arXiv.2406.06484.

[98] S. Yang, B. Wang, Y. Zhang, Y. Shen, and Y. Kim. Parallelizing linear transformers with
the delta rule over sequence length. ArXiv, abs/2406.06484, 2024. URL https://api.
semanticscholar.org/CorpusID:270371554.

[99] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

[100] J. Zhang, S. Jiang, J. Feng, L. Zheng, and L. Kong. Cab: Comprehensive attention
benchmarking on long sequence modeling. ArXiv, abs/2210.07661, 2022. URL https:
//api.semanticscholar.org/CorpusID:252907545.

[101] M. Zhang, K. Bhatia, H. Kumbong, and C. Ré. The hedgehog & the porcupine: Expressive
linear attentions with softmax mimicry, 2024.

[102] P. Zhang, G. Zeng, T. Wang, and W. Lu. Tinyllama: An open-source small language model,
2024.

[103] W. Zhang and B. Zhou. Learning to update auto-associative memory in recurrent neural
networks for improving sequence memorization. ArXiv, abs/1709.06493, 2017. URL https:
//api.semanticscholar.org/CorpusID:22458497.

[104] Y. Zhang and D. Cai. Linearizing transformer with key-value memory. In Y. Gold-
berg, Z. Kozareva, and Y. Zhang, editors, Proceedings of EMNLP, pages 346–359, Abu
Dhabi, United Arab Emirates, 2022. doi: 10.18653/v1/2022.emnlp-main.24. URL https:
//aclanthology.org/2022.emnlp-main.24.

[105] M. Zhong, D. Yin, T. Yu, A. Zaidi, M. Mutuma, R. Jha, A. H. Awadallah, A. Celikyilmaz,
Y. Liu, X. Qiu, and D. Radev. QMSum: A new benchmark for query-based multi-domain
meeting summarization. In Proceedings of NAACL, pages 5905–5921, Online, 2021. doi:
10.18653/v1/2021.naacl-main.472. URL https://aclanthology.org/2021.naacl-main.
472.

[106] G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou. Minimal gated unit for recurrent neural
networks, 2016.

17

https://doi.org/10.48550/arXiv.2406.06484
https://api.semanticscholar.org/CorpusID:270371554
https://api.semanticscholar.org/CorpusID:270371554
https://api.semanticscholar.org/CorpusID:252907545
https://api.semanticscholar.org/CorpusID:252907545
https://api.semanticscholar.org/CorpusID:22458497
https://api.semanticscholar.org/CorpusID:22458497
https://aclanthology.org/2022.emnlp-main.24
https://aclanthology.org/2022.emnlp-main.24
https://aclanthology.org/2021.naacl-main.472
https://aclanthology.org/2021.naacl-main.472

A Linear Attention and its Chunkwise Form

Linear Attention (LA) [42, 66, 68] emerges as an alternative to resolve the quadratic complexity
of self-attention (SA). The key idea is to use the kernel trick, which replaces softmax with a
decomposable kernel function, resulting the following parallel form:10

O = ((ϕ(Q)ϕ(K)⊤)⊙M)V. (10)

where ϕ : Rd → Rm functions as feature mapping applied to each input. Unfolding Eq. 10, we have
qt,kt,vt = Wqxt,Wkxt,Wvxt ∈ Rd,

ot =

t∑
i=1

vif(k
⊤
i qt) =

t∑
i=1

viϕ(ki)
⊤ϕ(qt) =

[
St ≡

t∑
i=1

ϕ(ki)⊗ vi

]⊤

ϕ(qt).
(11)

⊗ means outer product operation. It is clear that by leveraging the associativity, LA admits simple
recurrent updating rules with matrix-valued hidden states St ∈ Rm×d:

ot = S⊤
t ϕ(qt); St = St−1 + ϕ(kt)⊗ vt. (12)

By reserving bounded m memory slots only, the overall computation complexity is reduced from
O(T 2d) to O(Tmd). When the sequence length is T ≫ m, d, the md factor has a minor impact on
the complexity, and LA can be much more efficient than its counterpart with quadratic complexity.

During inference, LA enjoys the merits of RNNs, which only need to maintain O(md) hidden
memories, helping avoid the memory-cost KV cache management in SA mechanisms. However,
Eq. 12 employs a simple additive updating rule and can be hard to “forget” unrelated information if
necessary [62], making the limited memory states vulnerable to be chaotic.

Gating mechanism has played a key role in classical RNNs [32, 22, 12], which serves as a
mechanism to control the information flows in the network and help read and write from the memory
selectively. [82] propose to apply a data-independent gate to LA, significantly narrowing the gap
between LA and SA: St = λSt−1 + ϕ(kt) ⊗ vt, λ ∈ [0, 1] is a non-learnable scalar. Recent
work [96, 43] further imposes a finer-grained data-dependent gate:

St = Diag(αt)St−1 + ϕ(kt)⊗ vt, (13)
where each αt ∈ [0, 1]m from A := {αi}Ti=1 ∈ [0, 1]T×m is dependent on the input. Alternatively,
we can couple the key values with the forget gates by allowing ϕ(kt) = 1−αt in spirit of [12, 106]
and [69], which reduces the number of parameters and improves efficiency accordingly.

A.1 Hardware-Efficient Training

Despite the theoretical advantages of linear complexity, the recurrent form of Eq. 12 is still inefficient
during training. Such recurrent computation prevents the full utilization of modern GPU parallelism
over sequence lengths [53, 72]. On the other hand, the parallel form (Eq. 10) can be parallelized in
similar vein as in flash attention [17, 15]. However, due to the existence of the casual mask M, we
can not rearrange its computation order by KV first, so that the parallel form still adheres to the
quadratic complexity, which can hardly be scaled to very-long training context (e.g., sequences with
more than 8K tokens).

Chunkwise form recurrences have been carried forward by [82], and achieve a good trade-off
between the recurrent and parallel forms. [96] further disclose that the element-wise gating of Eq. 13
also satisfies the associative property required by parallel scan [9] and derive a parallelized chunkwise
gated linear attention in a similar vein. The key idea is to partition the sequence into N = ⌈TC ⌉ chunks
of size C with Q[t] = qtC , qtC+1, . . . , qtC+C , and so forth for K[t],V[t] ∈ RC×d,A[t] ∈ RC×m.
Firstly, unrolling the i-th hidden state in the t-th chunk in Eq. 13, we get

S[t],i = Diag
(
A[t],i

)
S[t],i−1 + ϕ

(
K[t],i

)
⊗V[t],i = · · ·

= Diag

 i∏
j=1

A[t],j

S[t−1],C +

i∑
k=1

ϕ(K[t],k)⊙
i∏

j=k+1

A[t],j

⊗V[t],k

(14)

10There is a normalization term in vanilla LA similar to softmax, [66] reveal that removing it could avoid
potential gradient explosions.

18

We write the last hidden in the chunk S[t],C as S[t] interchangeably for simplicity. Define
−→
A [t],i =∏i

j=1 A[t],j ∈ [0, 1]d as the cumulative decay from the start of chunk to i, and likewise
←−
A [t],i =∏C

j=i+1 A[t],j ∈ [0, 1]d from i+ 1 to the end of the chunk, then

S[t] = Diag(
−→
A [t],C)S[t−1] + (K[t] ⊙

←−
A [t])

⊤V[t] (15)
−→
A ,
←−
A can be absorbed into Q,K first : Q[t] = ϕ(Q[t]) ⊙

−→
A [t], K[t] = ϕ(K[t]) ⊙ (

←−
A [t]/

−→
A [t],C).

Combining them with Eq. 10 and Eq. 14, we derive the following vectorized updating rules

O[t] = Q[t]S[t−1] +
(
Q[t]K

⊤
[t] ⊙M[t]

)
V[t] (16)

The first term is referred to as the inter chunk part and the second term is the intra chunk part. The
process to get this intra part is a little more involved as the cumulative productions of

←−
A [t]/

−→
A [t],C

is greater than 1, which can lead to numerical instability. [96] deal with this issue by proposing a
secondary-chunking strategy, and we refer readers to their paper for more details.

Hardward considerations Modern GPU architectures, such as the NVIDIA A100, offer highly
optimized matrix multiplication (matmul) operations through specialized Tensor Cores, achieving
up to 16× higher throughput than non-matmul operations [17]. However, this incurs IO overheads
due to data transfer from slower, off-chip global high bandwidth memory (HBM) to on-chip shared
memory (SRAM). The chunkwise form balances I/O and computation complexity tradeoffs. As
shown in Eq.16, it improves parallelism over the sequence dimension while reducing non-matmul
FLOPs greatly. Also, the chunk recurrent updating conducts the query and hidden states reduction
in an online manner, requiring only O(Ndm) hidden states materialized into HBMs, so that it can
significantly reduce the memory/IO overheads. While LA enjoys much lower overall running FLOPs
than SA, the chunkwise form displays a practical significant wall-clock speedup against SA, due to
its hardware-efficient implementations [95].

B Details for GSA

Q̄[1] K[1]; I[1] Q̄[2] K[2]; I[2]

Sk
[0] Sk

[1] Sk
[2]

Ok
[1]

I[1]; V̄[1] Ok
[2]

I[2]; V̄[2]

Sv
[0] Sv

[1] Sv
[2]

O[1] O[2]

Figure 5: Diagrams of the recurrence and updating rules in
Gated Slot Attention. The outputs of the first pass is taken as
queries of the second pass.

: query nodes : key/value nodes
: output nodes : recurrent hidden states

Beyond the recurrent GSA form pro-
vided in Figure. 1, we give de-
tailed, hardware-efficient procedures for
the forward and backward passes of
Gated Slot Attention (GSA) in Algo-
rithm 1. For simplicity, we define
A = {αi}Ti=1 ∈ [0, 1]T×m, and I =
{1 − αi}Ti=1 ∈ [0, 1]T×m. The algo-
rithm demonstrates that GSA can be
modeled as a two-pass GLA, as illus-
trated in Fig. 5.

In the preprocessing step, we pre-
compute the chunkwise cumulative sum
of the forget gate, resulting in

−→
A . Subse-

quently,
−→
A along with the queries, keys,

and values are passed to engage in two
GLA passes. For each chunk of size C, we define

←−
A [i] :=

−→
A [i],C/

−→
A [i] as in Eq. 15 and Eq. 16.

In the first pass,
−→
A ,
←−
A is absorbed into Q,K : Q̄[i] = Q[i] ⊙

−→
A [i], K̄[i] = K[i] ⊙ (

←−
A [i]/

−→
A [i],C),

then Q̄ and K̄ function as usual queries and keys, and the slot representations I serve as the value
vectors.

Ok
[i] = Q̄k

[i] Sk
[i−1]︸ ︷︷ ︸

Ointer
[i]

+((Q̄k
[i] K̄⊤

[i])⊙M)I[i]︸ ︷︷ ︸
Ointra

[i]

∈ RC×m

We use different notations from those presented in Eq.6 to enhance clarity in the chunkwise updating
rules. The output Ok is decomposed into the inter-chunk recurrence and intra-chunk parallel
computations [96].

19

Algorithm 1 Hardware-Efficient Gated Slot Attention

Define FORWARDPASS(Q,K,V, I,A)
Divide Q,K,V ∈ RT×d, I,A ∈ RT×m

into N =
⌈

T
C

⌉
blocks ▷ C is chunk size

function chunk_cumsum(A)
parfor n← 1, N do

Load A[n] to SRAM

Store
−→
A[n] ← cumsum(A[n]) to HBM

return
−→
A ←

−→
A[0], . . . ,

−→
A [N]

function gsa_fwd(Q,K,V,
−→
A, GATE_K)

On chip: construct causal mask M ∈ RC×C

for n← 1, N do
Store S to HBM as S[n] ▷ Initialize S = 0

Load K[n] , V[n],
−→
A [n],C

←−
A[n] to SRAM

On chip:
←−
A[n] ←

−→
A[n],C/

−→
A [n]

if GATE_K then
S← Diag(

−→
A[n],C)S + (K[n] ⊙

←−
A [n])

⊤V[n]

else
S← SDiag(

−→
A[n],C) + K⊤

[n](V[n] ⊙
←−
A[n])

parfor n← 1, N do
Load Q[n],K[n],V[n],S[n],

←−
A [n],

−→
A [n] to SRAM

On chip:
if GATE_K then

Q̄[n] ← Q[n] ⊙
−→
A [n]

K̄[n] ← K[n] ⊙ (
←−
A[n]/

−→
A [n],C)

O[n] ← Q̄[n]S[n−1]+
(
P ≡ Q̄[n]K̄

⊤
[n] ⊙M

)
V[n]

else
V̄[n] ← V[n] ⊙ (

←−
A [n]/

−→
A[n],C)

O[n] ← Q[n]S[n−1]+
(
P ≡ Q[n]K

⊤
[n] ⊙M

)
V̄[n]

O[n] ← O[n] ⊙
−→
A [n]

Store O to HBM as O[n] .

return O[1,...,N],S[1,...,N]

−→
A ← chunk_cumsum(A) ▷ preprocessing
Ok,Sk ← gsa_fwd(Q,K, I,

−→
A, False)

Qv ← softmax(Ok)

O,Sv ← gsa_fwd(Qv, I,V,
−→
A, True)

return O

Define BACKWARDPASS(Q,K,V, I,A,Ok, dO)
Divide Q,K,V,O, dO ∈ RT×d, I,A ∈ RT×m

into N =
⌈

T
C

⌉
blocks ▷ C is chunk size

function gsa_bwd(Q,K,V,S,
−→
A, dO, GATE_K)

On chip: construct causal mask M ∈ RC×C

for n← N, 1 do ▷ in reverse order
Store dS in HBM as dS[n] ▷ Initialize dS = 0

Load Q[n],
−→
A [n], dO[n] to SRAM

On chip:
if GATE_K then
dS← Diag(

−→
A [i],C)dS + (Q[n] ⊙

−→
A[n])

⊤dO[n]

else
dS← dSDiag(

−→
A[i],C) + Q⊤

[n](dO[n] ⊙
−→
A[n])

parfor n← 1, N do
Load Q[n],K[n],V[n], dO[n] ∈ RC×d

S[n] , dS[n] ∈ Rd×d to SRAM

On chip: ▷ Recompute
←−
A[n], Q̄[n], K̄[n], V̄[n],P

if GATE_K then
dP← (dO[n]V

⊤
[n])⊙M

dQ← (dO[n]S + dPK̄⊤
[n])⊙

−→
A [n]

dK← (V[n]dS
⊤ + dP⊤Q̄[n])⊙

←−
A[n]

dV ← K̄[n]dS[n] + P⊤dO[n]

else
dP← (dO[n]V̄

⊤
[n])⊙M

dQ← dO[n]S
⊤ + dPK[n]

dK← V̄[n]dS
⊤ + dP⊤Q[n]

dV ← (K[n]dS[n] + P⊤dO[n])⊙
←−
A [n]

Write dQ, dK, dV to HBM as dQ[n], dK[n], dV[n]

return dQ[1,...,N], dK[1,...,N], dV[1,...,N]

Recompute
−→
A,Sk,Sv

dQv, dIv, dV ← gsa_bwd(Q, I,V,Sv,
−→
A, dO, False)

dOk ← d softmax(Ok, dQv) ▷ softmax gradients
dQ, dK, dIk ← gsa_bwd(Q,K, I,Sk,

−→
A, dOk, True)

dI← dIk + dIv

dA← reversed_cumsum(Q⊙ dQ−K⊙ dK+
O⊙ dO−V ⊙ dV)

return dQ, dK, dV, dI, dA

In the second pass, the output Ok from the first pass, after the application of the softmax function,
serves as the queries Qv ,

Qv
i = softmax(Ok

i
)

and I/V are used as the key/value vectors, respectively. The final GSA output O is obtained as
follows:

Ov
[i] = Qv

[i] Sv
[i−1] + ((Qv

[i] I⊤[i])⊙M)V̄[i] ∈ RC×d

Unlike in the first pass,
−→
A ,
←−
A is absorbed into V,O rather than Q,K.

During the backward pass, computing the gradients of Q,K,V, I,A involves variables already com-
puted in the forward pass. However, directly saving all intermediate results can pose severe challenges
for memory management. To address this issue, we adopt gradient checkpointing [11] to trade off
memory consumption for recomputation. In addition to the input Q,K,V, I,A, we selectively save
only the output of the first GLA pass, which significantly reduces memory consumption (Figure 4b).

Similar to the forward pass, the backward pass involves two GLA backward passes as well, but in the
reverse order. The final gradient dI is obtained by combining the gradients from these computations,
i.e., dI = dIk+dIv . The forget gate gradient can be decomposed into two parts: Q⊙dQ−K⊙dK
and O ⊙ dO − V ⊙ dV (cf. §C in [96]). The reversed cumulative sum in the backward pass
corresponds to the cumulative sum computed in the preprocessing step of the forward pass.

We provide a PyTorch implementation for the above algorithm with chunkwise parallelism in Listing 1.

20

1 def gsa_fwd_k(q, k, v, g, C):
2 '''
3 q/k/v:
4 query, key, value of shape [NC, C, K|V]
5 g:
6 local cumulative product of forget gate in log space
7 C:
8 chunk size
9 '''

10 # NC: number of chunks
11 # K: query/key head dimension
12 # V: value head dimension
13 NC, C, K, V = *q.shape, v.shape[-1]
14 # [K, V]
15 s = q.new_zeros(K, V)
16 # [NC, C, V]
17 o = torch.empty_like(v)
18

19 for i in range(0, NC):
20 # [C, K|V] chunking
21 c_q, c_k, c_v, c_g = q[i], k[i], v[i], g[i]
22 # the last g of each chunk
23 c_gn = c_g[-1]
24 # inter-chunk w/ matmul
25 c_vg, c_gn = c_v * (c_gn - c_g).exp(), c_gn.exp()
26 # [C, V]
27 c_o_inter = (c_q @ s) * c_g.exp()
28 # hidden state update
29 s = c_gn * s + c_k.t() @ c_vg
30

31 # intra-chunk
32 # [C, C]
33 c_A = c_q @ c_k.t()
34 # [C, V]
35 c_o_intra = torch.zeros_like(c_v)
36 for j in range(0, C // 16):
37 t = slice(j * 16, j * 16 + 16)
38 # [16, K|V] subchunking
39 s_A, s_v, s_g = c_A[t], c_v[t], c_g[t]
40 s_o = q.new_zeros(16, V)
41

42 # inter-subchunk w/ matmul
43 s_gn = s_g[0]
44 for si in range(0, j):
45 u = slice(si * 16, si * 16 + 16)
46 s_o += s_A[:, u] @ (c_v[u] * (s_gn - c_g[u]).exp())
47 s_o *= (s_g - s_gn).exp()
48 # intra-subchunk w/o matmul
49 for si in range(16):
50 for sj in range(si + 1):
51 s_o[si] += s_A[si, j * 16 + sj] * s_v[sj] * (s_g[si] - s_g[sj]).exp()
52 c_o_intra[t] = s_o
53 # [C, V]
54 o[i] = c_o_inter + c_o_intra
55 return o
56

57

58 def gsa_fwd_v(q, k, v, g, C):
59 NC, C, K, V = *q.shape, v.shape[-1]
60 s = q.new_zeros(K, V)
61 o = torch.empty_like(v)
62

63 for i in range(0, NC):

21

64 # [C, K|V] chunking
65 c_q, c_k, c_v, c_g = q[i], k[i], v[i], g[i]
66 # the last g of each chunk
67 c_gn = c_g[-1]
68 # inter-chunk w/ matmul
69 c_qg, c_kg, c_gn = c_q * c_g.exp(), c_k * (c_gn - c_g).exp(), c_gn.exp()
70 # [C, V]
71 c_o_inter = c_qg @ s
72 # hidden state update
73 s = c_gn[:, None] * s + c_kg.t() @ c_v
74

75 # intra-chunk
76 c_A = q.new_zeros(C, C)
77 for j in range(0, C // 16):
78 t = slice(j * 16, j * 16 + 16)
79 # [16, K|V] subchunking
80 s_q, s_k, s_g = c_q[t], c_k[t], c_g[t]
81 s_A = q.new_zeros(16, 16)
82

83 # intra-subchunk w/o matmul
84 for si in range(16):
85 for sj in range(si + 1):
86 s_A[si, sj] = torch.sum(s_q[si] * s_k[sj] * (s_g[si] - s_g[sj]).exp())
87 c_A[t, t] = s_A
88 # inter-subchunk w/ matmul
89 s_gn = s_g[0]
90 s_qg = s_q * (s_g - s_gn).exp()
91 for si in range(0, j):
92 u = slice(si * 16, si * 16 + 16)
93 c_A[t, u] = s_qg @ (c_k[u] * (s_gn - c_g[u]).exp()).t()
94 c_o_intra = c_A @ c_v
95 # [C, V]
96 o[i] = c_o_inter + c_o_intra
97 return o
98

99

100 def gsa(q, k, v, s, g):
101 T, M = s.shape
102 # reshape each input to [NC, C, K|V]
103 q, k, v, s, g = map(lambda x: x.view(-1, C, x.shape[-1]), (q, k, v, s, g))
104 # local compute of cumulative product of decay
105 # [NC, C, K]
106 g = g.cumsum(1)
107 ok = gsa_fwd_k(q, k, s, g, M)
108 qv = ok.softmax(-1)
109 o = gsa_fwd_v(qv, s, v, g, M)
110 return o.view(T, -1)

Listing 1: Pseudo PyTorch-style code snippet for GSA with chunkwise parallelism. For brevity, we
omit the dimensions of batch size and number of heads. Notably, unlike Algorithm 1, we obtain the
intra outputs via a secondary chunking strategy in Line 31-52 and Line 75-94, as utilized by GLA
[96], to ensure numerical stability.

C Experimental Setup

C.1 Language Modeling

We compare GSA with the following strong Transformers with modern architectural recipes as well
as other recent subquadratic architectures:

• Xfmr++ [86]: Llama-like architectures that enhance the vanilla Transformer by using Rotary
position embeddings [80] and GLU [78].

22

• Mamba [29]: State-space models with data-dependent decay.
• RetNet [82]: Linear attention with non-learnable, data-independent head-wise decay and rotary

embedding.
• GLA [96]: Linear attention with elementwise data-dependent decay.
• HGRN2 [69]: Gated Linear RNN with state expansion, or GLA with improved parameterization.

Setup. For a fair comparison, all models are trained from scratch with the same training recipes.
We utilize a subset of 100B tokens picked from the Slimpajama dataset [79]. The input tokens are
processed using the Mistral tokenizer [39] 11. We use AdamW [50] with a weight decay 0.01 as the
optimizer. During training, the learning rate is first warmed up to 3× 10−4 in the first 1B tokens, and
then decayed to 3× 10−5 gradually with a cosine schedule. The number of attention heads is set to 4
and 5 for 1.3B and 2.7B models, respectively. The number of memory slots is uniformly set to 64 for
all models. We utilize the open-sourced Triton-based library FLA [95] to run all compared models.

We ran all models on 32 Nvidia H800 GPUs. To facilitate distributed training and accelerate the
process, we utilized the DeepSpeed framework and fused all necessary modules, including ROPE,
cross-entropy, and LayerNorm, following the practice of [102]. The training of a GSA model with
2.7B parameters took approximately 2 days, while the 1.3B model required 1 day to complete training.

Remark on state size. Let the model dimension be denoted as d. Mamba expands the value
projection to 2d and uses a state expansion ratio of 16, resulting in a state size of 32d per layer.
Since Mamba also replaces the FFN with a Mamba layer, this effectively doubles both the number of
recurrent layers and the state size, leading to a total recurrent state size of 64Ld.

Similarly, RetNet expands the value projection to 2d and sets the head dimension of queries/keys to
be half that of the value head dimension. RetNet also reduces the number of heads to increase the
head dimensions of queries and keys. We fix the query/key head dimension to 256 and adjust the
number of heads accordingly, resulting in a recurrent state size of 512d per layer and 512Ld in total.

GLA does not expand the value projection but reduces the head dimensions of queries and keys to
half of the value head dimension to save parameters for the Swish output gate, ensuring each layer
contains 4d2 parameters. We fix the query/key head dimension to 256 and adjust the number of heads
accordingly, resulting in a recurrent state size of 256d per layer and 256Ld in total.

HGRN2 follows a similar approach to GLA but without the Swish output gate, keeping the head
dimensions of queries/keys and values equal, as in standard softmax attention, while still retaining
4d2 total parameters per recurrent layer. We set the head dimension to 128, resulting in a recurrent
state size of 128d per layer and 128Ld in total.

GSA maintains hidden states for both keys and values, so each layer contains a recurrent state size of
2× 64× d. We fix the state expansion (i.e., number of slots) to 6412, resulting in a total recurrent
state size of 128Ld.

11https://huggingface.co/mistralai/Mistral-7B-v0.1
12Note that in this case, the number of heads is independent of the state expansion ratio

23

https://huggingface.co/mistralai/Mistral-7B-v0.1

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper’s contributions and scope are reflected in abstract and introduction
part clearly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

24

Justification: This paper does not include theoretical results that require a full proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides sufficient details on hyperparameters and training proce-
dures to reproduce the results supporting its main conclusions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

25

Answer: [Yes]
Justification: The code, data and pretrained models are publicly available at GitHub and
Huggingface. The training processes are reproducible following the guidance in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have detailed all the training and evaluation settings before the main results
in the experimental part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not have enough resources to obtain error bars as running the experi-
ments multiple times is computationally expensive due to the large model size.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information of GPU type and number of GPUs used for running
our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work follows the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We foresee no potential societal impact of this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

27

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We foresee no such risks posed by this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All of the datasets we use are publicly available at huggingface site, and we
have properly cited all the training and evaluation datasets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

28

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Background and Preliminary
	Transformers as Unbounded Key-Value Memories
	ABC peng-etal-2022-abc: Linearizing Attention with Bounded Memory Control
	GLA yang-etal-2024-gla: Linear Attention with Gating Mechanism

	Method
	Motivation: Issues with ABC
	Gated Slot Attention (GSA): ABC with gating mechanism
	Neural Architecture

	Experiments
	Language Modeling
	Results on commonsense reasoning tasks
	Results on in-context recall-intensive tasks
	Ablation
	Efficiency

	Finetuning Pretrained Transformers to RNNs

	Related works
	Limitations and future work
	Conclusions
	Linear Attention and its Chunkwise Form
	Hardware-Efficient Training

	Details for GSA
	Experimental Setup
	Language Modeling

