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Abstract

Machine learning (ml) methods have the potential to automate high-stakes decisions, such as
bail admissions or credit lending, by analyzing and learning from historical data. But these
algorithmic decisions may be unfair: in learning from historical data, they may replicate
discriminatory practices from the past. In this paper, we propose two algorithms that adjust
fitted ML predictors to produce decisions that are fair. Our methods provide post-hoc
adjustments to the predictors, without requiring that they be retrained. We consider a causal
model of the ML decisions, define fairness through counterfactual decisions within the model,
and then form algorithmic decisions that capture the historical data as well as possible, but
are provably fair. In particular, we consider two definitions of fairness. The first is “equal
counterfactual opportunity,” where the counterfactual distribution of the decision is the same
regardless of the protected attribute; the second is counterfactual fairness. We evaluate the
algorithms, and the trade-o� between accuracy and fairness, on datasets about admissions,
income, credit, and recidivism.

1 Introduction

There is growing interest in using machine learning (ml) methods to automate important decisions about
people by analyzing and learning from historical data. For example, in the criminal justice system, ml
algorithms are routinely used to assess a defendant’s risk of recidivism to inform pretrial release and parole
decisions (Brennan et al., 2009; Larson et al., 2016; Lin et al., 2020). ml algorithms were also used by a
university to help determine which college applicants should be reviewed (Waters & Miikkulainen, 2014).

As a running example, consider an admissions committee that decides which applicants to accept to a
university. Given historical data about applicants’ traits and the admission decisions, an ml algorithm can
learn to predict who will be admitted and who will not, and the resulting ml decision-maker will accurately
simulate the committee’s decisions. But while these algorithmic decisions would save time and e�ort, they
will also inherit some of the undesirable properties of the admissions committee (Corbett-Davies et al., 2017;
Mitchell et al., 2021). If the committee was unfairly biased then its ml replacement will be as well.

In this paper, we develop two methods that adjust existing ML decision-makers to produce algorithmic
decisions that are both accurate and fair. We prove that these algorithmic decisions maintain as much fidelity
as possible to the decisions of the historical committee, but are adjusted to correct for the biases inherent in
past decisions. We demonstrate these algorithmic decisions on datasets about income, credit, and recidivism.

A key contribution of the proposed methods is that they do not require refitting the ML method to data.
One can train an ML decision-maker as usual, but then use the proposed methods to adjust the resulting
algorithmic decisions to be fair. Consequently, these methods can be employed by practitioners who have a
pre-trained ml model but without the original data, or when the ml model is too expensive to refit.

Main idea. To quantify the fairness of a decision maker, we use two causal criteria. Causal criteria for fairness
were first introduced in Kusner et al. (2017), and have been operationalized in many algorithms (Zhang &
Bareinboim, 2018a;b; Zhang et al., 2017; Wu et al., 2019a;b; Coston et al., 2020; Kilbertus et al., 2017; 2019;
Chiappa, 2019). Causal fairness criteria require encoding our assumptions about bias using causal models.
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While these assumptions require careful scrutiny (Kohler-Hausmann, 2018), causal models enable us to derive
fairness measures to capture di�erent mechanisms of bias. In contrast to causal criteria, statistical measures
of fairness cannot distinguish between di�erent mechanisms of unfairness (Hardt et al., 2016).

First, we introduce the equal counterfactual opportunity (eco) criterion. With an eco decision-maker,
individuals that have the same attributes will receive the same probability of admission, regardless of
their demographic group. In particular, for an algorithmic decision that satisfies eco, there is no causal
relationship between the protected attributes (such as race or gender) and the decision. The eco criterion is
individual-level; it requires that each decision is fair.

Second, we consider the counterfactual fairness (cf) criterion proposed in Kusner et al. (2019). Under cf,
the probability of admission is not a�ected by (hypothetical) interventions on protected attributes, including
when we account for how those interventions might subsequently change the other attributes. For example,
minority applicants may have been historically denied university admission due to lower test scores, but
these low scores might be consequences of systemic disadvantages that the minority applicants face. A cf
decision-maker adjusts an individuals’ attributes (such as test score) to account for such disadvantages.
Similar to the eco criterion, the cf is also individual-level.

With these two criteria in place, the methods we develop draw on the ideas and methods of causal infer-
ence (Pearl, 2009; Peters et al., 2017). First we require that the historical decision-making process is captured
by a causal model. This model reflects domain knowledge and assumptions about the process, including the
probabilistic relationship between an individual’s attributes and the decision, and relationships between the
attributes themselves. The causal model might be elicited from experts, informed from data, or a combination.

Continuing the example, a causal model of admissions represents the applicants’ traits and the committee’s
decisions. In this paper we use the model illustrated in Fig. 2. There are protected attributes, such as gender,
and non-protected attributes, such as test score. The model posits that the (historical) decision was a�ected
by both, e.g., the committee considered the test score but also unfairly considered gender. The model also
posits that the non-protected attributes may be a�ected by the protected ones, e.g., gender may a�ect the
test score through systematic gender bias in schooling. The methods we develop do not require this particular
causal model, but it will be a running example.

Given the causal model of historical decisions, we then frame algorithmic decisions as new causal variables in
the same model, ones whose values are functions of the individuals’ attributes. This framing is important
because it allows us to consider counterfactuals about the algorithms, e.g., “what would the algorithm decide
for this applicant if she was male and had achieved the same test score?” Probabilistic properties of such
counterfactuals help formally define the mathematical criteria for eco and cf.

Finally, we derive methods to produce algorithmic decisions that meet these criteria. The first step is to use
the historical data to fit an ml method to predict the decision, such as with a simple logistic regression or a
neural network. (Note we can then use the causal model and causal criteria to assess the fairness of the ML
decision-maker.) We then show how to adjust the trained ml decision-maker to satisfy eco, and we show
how to adjust the eco decision-maker to exercise cf. We will see that both adjustment procedures involve
estimating causal quantities based on both the assumed causal model and the original ml predictions.

We emphasize again that this method uses a fitted ml decision-maker but does not require retraining it or
re-analyzing the historical data, which could require significant computational cost. We prove that, under the
assumed causal model, the fair decision-makers we derive are theoretically optimal—they maintain as much
fidelity to the historical data as possible, while still being eco-fair or cf-fair.

We study these approaches on simulated admissions data and on three public datasets, about income, credit,
and recidivism. We find that classical ml decisions are the most accurate, but they may be unfair. The
fair decision-makers deviate from the ml decisions, but provide decisions that meet the fairness criteria.
Compared to other approaches that satisfy eco and cf (Chen et al., 2019; Kusner et al., 2017), the method
developed here provides decisions with higher accuracy while remaining fair.

Contributions. 1) We develop algorithms that modify existing ml predictors to be fair, without requiring
retraining. 2) We prove that these decisions optimally recover ml predictors while satisfying the criteria for

2



Under review as submission to TMLR

eco and CF. 3) We conduct empirical studies on real and simulated settings to show that our algorithms
produce better decisions than existing approaches that satisfy the same fairness criteria.

Related work. This paper contributes to research about causal models for defining and implementing fair ML.
Kusner et al. (2017) introduce counterfactual fairness (the cf criterion above) and the FairLearning algorithm
to satisfy it. This paper provides eco-fair decisions and cf-fair decisions that minimally adjust the fitted ml
decisions. Like FairLearning Kusner et al. (2017), the cf-fair decisions also satisfy counterfactual fairness.
But in contrast to FairLearning, which omits descendants of the protected attributes, the cf decision-maker
in this paper uses all available attributes and achieves higher fidelity to historical decisions.

Kilbertus et al. (2017) considers more fine-grained causal notions of fairness and relates paths and variables
in causal models to violations of eco and cf. Other work studies path-specific fairness, where some
paths in the causal model are deemed unfair. These works typically propose new training objectives that
satisfy fairness (Chiappa, 2019; Zhang et al., 2017; Nabi & Shpitser, 2018; Zhang & Bareinboim, 2018b; Wu
et al., 2019b; Mhasawade & Chunara, 2021; Dutta et al., 2021; Madras et al., 2019). In contrast to the
methods developed for path-specific fairness, this paper targets individual-level fairness, where each decision is
guaranteed to be fair. Moreover, the algorithmic decisions we propose in this paper do not require re-training
the ml decision-makers.

A number of recent papers further extend the idea of counterfactual fairness. Kusner et al. (2019); Mishler &
Kennedy (2021) develop decision-makers that target multiple decisions or multiple fairness criteria. Coston
et al. (2020) extends the use of counterfactuals for fair risk assessment scores. Galhotra et al. (2021); Parafita
& Vitria (2021); Dai et al. (2021); Foster et al. (2021); Artelt et al. (2021); Karimi et al. (2021); Veitch et al.
(2021) develop algorithms for counterfactual invariance and counterfactual fairness in model explanation and
representation learning. Mishler et al. (2021) extends counterfactual fairness to counterfactual equalized odds
and propose post-processing optimization programs for adjustment. Unlike these works, this paper focuses
on developing post-hoc fairness adjustments with closed forms, without requiring retraining.

Alongside these causal approaches to algorithmic fairness, there is a vast literature on statistical criteria for
fairness. We refer the readers to Mitchell et al. (2021); Corbett-Davies & Goel (2018); Pessach & Shmueli
(2022); Berk et al. (2021) for surveys of these related ideas.

The literature on fair ML contrasts fairness criteria that apply to each individual and those that apply to
groups. The definitions of eco and cf in this paper are individual-level criteria. Similarly, Dwork et al.
(2012) define a notion of eco without causality called individual fairness. Given a distance metric between
individuals, it requires similar individuals receive similar decisions. The eco-fair decisions (of Eq. 1) recover
this requirement without relying on an explicit distance metric, which can be di�cult to construct. Speicher
et al. (2018); Chouldechova & Roth (2019) study the tradeo�s between group- and invididual-level criteria.

Finally, the method proposed here crucially relies on the theory and algorithms behind causal inference (Pearl,
2009; Peters et al., 2017). In particular, it requires that the causal model is accurate, that the necessary
counterfactuals are identifiable, and that they can be estimated. In practice, these assumptions are strong
and have the potential to be misused (Kasirzadeh & Smart, 2021; Kohler-Hausmann, 2018). To alleviate
some of this burden, subsequent research can extend this method to employ recent ideas about causal fairness
under uncertain causal models (Kilbertus et al., 2018; Russell et al., 2017; Kilbertus et al., 2019; Wu et al.,
2019a;b; De Lara et al., 2021).

2 Assessing fairness with counterfactuals

Consider automating the admissions process at a university. By using a dataset of past admissions, the goal
is to algorithmically compute the admissions decision for new applicants. The dataset contains n applicants,
each with attributes and the committee’s decision about whether to admit them. Some attributes are deemed
protected, such as gender, religion, or ethnicity; others are not protected, such as a grade point average or a
score on a standardized test.

To illustrate the ideas, we will consider a simple setting. Suppose there are only two attributes for each
applicant, their gender and their score on a test. (For ease of exposition, we consider two attributes and
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a binary gender variable, but the methods in this paper easily handle multiple attributes and non-binary
gender.) The gender is a protected attribute; the test score is not. Fig. 1 shows an example of such data. In
the figure, the first 5,000 applicants are (simulated) historical data—applicants’ attributes and the decisions
made by a committee. The three applicants A, B, and C are new applicants for whom we will make decisions.

A causal model of the decisions. The methods we develop require a causal model (Pearl, 2009) of the
historical admissions process. This model should capture the decision, the inputs to the decision, and the
causal relationships among these variables. Consider the model in Fig. 2. It assumes that an applicant’s
gender A and test score S can a�ect the admissions decision Y ; the admissions committee might unfairly
prefer to admit males. It also assumes the applicant’s gender A can a�ect the test score S; female applicants
might receive fewer opportunities for test preparation, a disparity that results in lower scores. (There are
also other variables in Fig. 2, which we will discuss below.) Note that positing a causal model is a strong
assumption; it is important for the user of the methods to consult domain knowledge and provide a plausible
model of the historical decisions. Many causal models are special cases of the causal model in Fig. 2, if we
have multiple (or multi-dimensional) protected and unprotected attributes. We discuss these cases in § 3.

ID Sex Test Admit Ŷ ml Ŷ eco Ŷ cf

1 f 54 yes
2 m 66 no
...

...
...

...
5000 f 44 no
A f 85 ? 0.67 0.77 0.78
B m 85 ? 0.84 0.77 0.76
C f 65 ? 0.57 0.69 0.70

Figure 1: Simulated data of past university appli-
cants (1-5000) and their admissions decisions. The
(fictional) admissions committee violates eco and does
not enforce cf. For three new applicants (A, B, C), a
machine learning classifier trained on this biased data
yields unfair decisions, denoted by Ŷ ml. For example,
a male and female applicant with the same test score
receive di�erent admission probabilities, violating eco.
We algorithmically adjust this decision to produce Ŷ eco

decisions that are eco-fair. This decision provides the
equally qualified two candidates A and B an equal
probability of being admitted. From this Ŷ eco decision,
we derive Ŷ cf , an algorithmic decision that enforces cf.
It increases the probability of admission for applicant
C, by accounting for her systematic disadvantage.

A causal model implies a distribution of counterfac-
tuals, how each variable would change under hypo-
thetical intervention on other variables (Pearl, 2009).
(Note this “intervention” is only a mathematical con-
struction, a hypothetical change that helps articulate
counterfactuals. It may be about an immutable char-
acteristic (Greiner & Rubin, 2011).) Denote Yi(a, s)
to be the counterfactual decision of the ith applicant
when we set their test score to be Si = s and gender
to be Ai = a. For example, consider the counterfac-
tual decision of a female applicant had she been a
male and had the same test score. A key idea of this
paper is that we can use the assumed model to ask
counterfactual questions about any decisions, either
those made by a committee or those made by an al-
gorithm. We first show how we can interpret fairness
through properties of such counterfactual decisions.
We then show how to adjust an algorithmic decision
maker, such as one produced by classical ml, to
produce decisions that satisfy fairness properties.

The equal counterfactual opportunity criterion. A
decision maker provides equal counterfactual oppor-
tunity (eco) when equally qualified people receive
the same decisions regardless of their protected at-
tributes. In the causal model, we say that a decision
maker satisfies eco if changing the protected attribute A does not change its distribution of the decision Y .
Consider an applicant with gender a and test score s. An eco decision maker gives the same probability of
admission even after changing the gender to aÕ (but keeping the test score at s). In Fig. 1, candidates A and
B have the same test score but di�erent genders; if given equal opportunities, they should receive the same
probability of admission.

Definition 1 (Equal counterfactual opportunity (eco)). A decision Y satisfies eco in the protected attribute
A if, for all possible values of a, aÕ and s,

Y (a, s) | {A = a, S = s} d= Y (aÕ, s) | {A = a, S = s}.

(The notation Q
d= R means Q and R are equal in distribution.)
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This criterion requires that, for any individual with protected attributes A = a and unprotected attributes
S = s, their counterfactual decisions Y (aÕ, s) must have the same distribution if they had the same unprotected
attributes, no matter what the protected attribute value A = aÕ may be.

An algorithmic decision that satisfies eco asserts that there is no causal relationship between the protected
attributes A and the decision Y . If a committee or algorithm produces eco-fair decisions then the causal
model contains no arrow between A and Y ; two applicants from di�erent demographic groups, but who are
otherwise similarly qualified, will have the same probability of admission.

Other research has posited mathematical criteria to capture the legal notion of equal opportunity. Hardt
et al. (2016) proposed the equality of opportunity criterion to evaluate the fairness of decisions predicted by
a classifier. Their criterion requires the misclassification rates for the disadvantaged group to be the same as
those for the other group. In contrast, the eco criterion is finer-grained; it requires that the decisions are fair
under each possible configuration of the attributes that are input into the decision algorithm; all individuals
with the same unprotected attribute must receive the same decision probability regardless of interventions on
their protected attributes. Another fine-grained criterion appears in Dwork et al. (2012), which defines a
notion of equal opportunity (without causality) called individual fairness. Given a distance metric between
individuals, it requires that similar individuals receive similar decisions. Algorithmic decisions that satisfy
the eco criterion also recover this requirement, but with a distance metric implied by the causal model.

Finally, eco criterion is also equivalent to conditional demographic parity (Dwork et al., 2012), conditional
on all remaining attributes, if all remaining attributes (the unprotected attributes) are descendents of the
protected attribute in the causal graph. For example, if the protected attribute is current monthly income,
and the unprotected attributes include the location of the individual’s first job (which is an ancestor of
the protected attribute), then ECO-fairness is not equivalent to the conditional demographic parity given
all remaining attributes. However, suppose the unprotected attributes only include the descendants of the
protected attribute, e.g. the individual’s monthly expenditure. Then the ECO-fairness is equivalent to
conditional demographic parity.

Figure 2: The causal model reflects domain knowl-
edge and assumptions about an admissions deci-
sion process: protected attributes (A), such as
gender, can a�ect both the admissions decision
(Y ) and the remaining attributes (S), such as test
scores. Algorithmic decisions (Ŷ ml, Ŷ eco, Ŷ cf) are
variables in the causal model, produced by fitted
algorithms (fml, feco, fcf) and we can inspect their
biases. Classical ml reproduces the historical
data it was trained on, inheriting the unfairness
of a past admissions committee. eco decisions
adjust ml, eliminating any problematic depen-
dence on the protected attribute. cf decisions
further adjust eco decisions to exercise a�rma-
tive action based on the protected attributes.

The counterfactual fairness criterion. The coun-
terfactual fairness (cf) criterion was introduced by
Kusner et al. (2017). A decision maker that targets
cf corrects for historical disadvantages that may
stem from protected attributes. Female applicants
may have fewer opportunities for test preparation,
leading to lower test scores and a lower likelihood
of admission. Had they been male, they may have
had more opportunities for preparation, achieved a
higher score, and been admitted.

One of the goals of cf is to ensure that, all else
being equal (such as e�ort or aptitude), an applicant
would receive the same decision had they not been
in a disadvantaged group. This goal is di�erent from
that of eco because it accounts for how the pro-
tected attribute a�ects the other attributes, how an
applicant’s gender a�ects their test score. Moreover,
eco prohibits direct impacts of protected attributes
on decisions but allows an indirect influence through
unprotected attributes. In contrast, cf prohibits
both types of influences, direct or indirect.

Mathematically, counterfactuals help capture this
idea. Consider an applicant with test score s and
gender a. Had they belonged to a di�erent group
aÕ, they may have achieved a di�erent test score S(aÕ) | {A = a, S = s}. Notice this counterfactual score is
conditional on the attributes of the applicant, including their (factual) score. The variable S(male) | {A =
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female, S = high score} can capture that a female applicant with a high test score will have an even higher
test score had she been male.

The cf criterion further uses a nested counterfactual. The variable Y (aÕ, S(aÕ)) | {A = a, S = s} involves
an intervention on the protected attribute along with a resulting change in the unprotected attribute. An
cf-fair decision is one where this counterfactual does not change the distribution of the decision.
Definition 2 (Counterfactual fairness (Kusner et al., 2017)). A decision Y exercises counterfactual fairness
(cf) if, for all possible values of a, aÕ and s,

Y (a, S(a)) | {A = a, S = s} d= Y (aÕ, S(aÕ)) | {A = a, S = s}.

This criterion requires that, for any individual with protected attributes A = a and unprotected attributes
S = s, their counterfactual decisions Y (aÕ, S(aÕ)) must have the same distribution as if they had a di�erent
protected attribute value A = aÕ, together with the corresponding counterfactual unprotected attribute under
this di�erent protected attribute S(aÕ).

Algorithmic decisions that satisfy cf are not a�ected by (hypothetical) interventions on protected attributes,
including accounting for how those interventions might subsequently change the other attributes. They use
the protected attribute to correct for historical disadvantages.

3 Constructing fair algorithmic decisions

Defs. 1 and 2 provide criteria for fairness in terms of distributions of counterfactual decisions. Using the
causal model of the decision-making process, these criteria help evaluate the fairness of its outcomes. The
criteria can be used to evaluate decisions produced by a human process, such as an admissions committee, or
produced by an algorithm, such as a fitted ml model.

Denote an algorithmic decision as Ŷ , a causal variable that depends on the attributes {a, s}. It comes from a
fitted probabilistic decision maker, Ŷ ≥ f(a, s), where f(·) is a probability density function. For example,
a binary admissions decision Ŷ ≥ f(a, s) is drawn from a Bernoulli that depends on the attributes (e.g.,
a logistic regression). By considering algorithmic decisions as variables in the causal model, we can infer
algorithmic counterfactuals Ŷ (a, s) and confirm whether they satisfy the eco and cf criteria.

Now consider a classical ml model that is fit to emulate historical admissions data. If the historical decisions
did not exercise eco or cf then neither will the decisions produced by ml. Below we develop fair ml decision
makers, algorithms that adjust the decisions made by classical ml to be eco-fair or cf-fair, i.e., to satisfy
the eco and cf criteria. We will show that these adjusted decisions are as accurate as possible relative to
the historical data, while still producing eco-fair or cf-fair decisions.

Machine learning (ML) decisions. An machine learning (ml) decision maker uses historical data to accurately
predict the decision Y from the protected attribute A and unprotected attribute S. Admissions involves
binary decisions, and so logistic regression is a common choice. The decision maker fml(a, s) draws the
decision from a Bernoulli, Ŷ ml | {A = a, S = s} ≥ Bern(‡(—S · s + —A · a + —0)), where ‡(·) is the logistic
function and the coe�cients are fit to maximize the observed data likelihood. When included in the causal
model, fml and Ŷ ml are illustrated in Fig. 2.

The ml decision Ŷ ml will accurately mimic the historical data. But it will also replicate harmful discriminatory
practices. If the committee did not give equal opportunities to applicants of di�erent genders then the
decision Ŷ ml will violate eco. If the committee did not correct for the disparate impact of gender on the test
score, then Ŷ ml will not exercise cf.

Return to the illustrative simulation (Fig. 1). We fit a logistic regression to the training data, which finds
coe�cients close to the mechanism that generated the data. Consequently, when used to form algorithmic
decisions, it replicates the unfair committee. Consider female applicant A (a = f, s = 85) and male applicant
B (a = m, s = 85) and the classical ml decisions for each. For A, her probability of being admitted is 67%.
For B, his probability of admission is 84%. Despite identical scores, the female applicant is 17% less likely to
get in.
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Algorithmic decisions that satisfy eco. We use the ml decision maker fml to produce an eco-fair decision
maker feco, one whose decisions satisfy eco. Consider an ml decision maker fml(a, s) and an applicant with
attributes {anew, snew}. Her eco decision is Ŷ eco(anew, snew) ≥ feco(snew), where

feco(snew) =
⁄

fml(a, snew)p(a) da. (1)

The eco decision probability holds the unprotected attribute snew fixed and takes a weighted average of the
ml decision maker for the di�erent values of the protected attribute a. The weights are determined by the
proportions of each group in the whole population. Note that the ml decision maker is fixed; it does not
need to be retrained.

Return to Fig. 1. We use the fitted logistic regression fml(a, s) to produce the eco-fair decision maker.
This data has equal numbers of women and men so the weighted average is feco(a, s) = 0.5fml(male, s) +
0.5fml(female, s). Using eco-fair decisions, applicants A and B both have a 77% probability of admission.

The eco decision Ŷ eco ≥ feco(snew) satisfies the eco criterion: applicants with the same score will have
the same chance of admissions regardless of their gender. The intuition is that the eco decision preserves
the causal relationship between the test score S and the ml decision Ŷ ml, but it ignores the possible e�ect
of the protected attribute A. In the do notation for interventions (Pearl, 2009), what this means is that
P (Ŷ eco; do(a, s)) = P (Ŷ ml; do(s)) for all a. The weighted average is the adjustment formula (Pearl, 2009),
which calculates P (Ŷ ml; do(s)).

Finally, Thm. 1 shows the theoretical optimality of the eco decision makers among all those that satisfy
eco.
Theorem 1 (eco-fairness and optimality of eco decisions). eco decisions satisfy the follow properties:

1. The decision Ŷ eco ≥ feco(a, s) is eco-fair.

2. Among all eco-fair decisions, Ŷ ECO maximally recovers the ML decision Ŷ ml,

Ŷ ECO = arg min
Y ECOœYECO

E
Ë
KL(P (Ŷ ml(A, S))||P (Y eco(A, S)))

È
,

where YECO is the set of eco-fair decisions and the expectation is taken over P (A)P (S). (Proof in
App. A.)

Thm. 1 shows that Ŷ ECO is the eco-fair decision maker that is closest to the ML decision maker in KL
divergence, over a population where the protected and unprotected attributes are independent.

Thm. 1 focuses on probabilistic decision makers Ŷ ml, even though the optimal classifier that minimizes the
misclassification rate is the deterministic Bayes classifier, which output decisions that are a deterministic
function of the protected and unprotected attributes. The reason is that the ground truth outcomes are
uncertain, e.g. an outcome of whether a student will be admitted to an Ivy League school entails randomness
in the process. Given probabilistic ground truth outcomes, the optimal probabilistic decision maker Ŷ ml

minimizes the KL divergence to the ground truth outcomes, which is equivalent to minimizing the commonly
used cross-entropy loss in a binary classification setting. While probabilistic decision makers Ŷ ml may not be
as accurate with respect to the misclassification rate as deterministic decision makers, they can reflect the
uncertainty in the predictions, remaining faithful to the uncertainty in ground truth outcomes. In contrast, a
deterministic classifier ignores this uncertainty. We thus consider probabilistic decision makers for both ML
and fair decision makers.

A reader may ask: in Thm. 1, why do we define optimality in terms of the KL distance between fair
decision makers and ML decision makers, given that probabilistic ML decision makers could be suboptimal in
classification? Why not minimize the distance to the ground truth outcomes? As it turns out, minimizing a
decision maker’s KL divergence to the optimal probabilistic decision maker Ŷ ml will also minimize its KL
divergence to the ground truth outcomes (if the class of probabilistic ML decision makers is flexible enough).
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The reason is that the optimal probabilistic ML decision maker (in terms of KL divergence to the ground
truth outcomes) must have the same distribution as the ground truth outcomes,

Ŷ ml(a, s) = arg min
Ỹ

KL(P (Y (a, s))||P (Ỹ (a, s))) ’a, s … Ŷ ml(a, s) d= Y (a, s) ’a, s.

Thus, considering the KL divergence to optimal probabilistic decision makers makes a meaningful metric; a
decision maker that minimizes this distance implicitly minimizes the KL divergence to the (random) ground
truth outcomes.

Figure 3: fairness through un-
awareness (ftu) vs. feco ; The
eco decision avoids inheriting
discrimination patterns when un-
protected attributes are highly
correlated with the protected at-
tribute. While both eco fair,
ftu decisions remain highly cor-
related with gender while the
eco decision has a substantially
lower correlation.

FTU, Ŷ eco
, and why consider the population of P (A)P (S) in Thm. 1. An

alternative method to satisfy eco is ftu (Kusner et al., 2017). ftu
satisfies eco by fitting an ml model from the unprotected attribute S
to the decision Y , and completely omitting the protected attribute A;
ftu decisions are also eco-fair. While both ftu and the eco decision
makers satisfy the eco criterion, ftu may still indirectly correlate with
the protected attributes if an unprotected attribute correlates with the
protected attribute in the population. In contrast, the eco decision maker
would not.

As an example, we simulate an additional unprotected attribute that has
a 0.9 correlation with gender. We further subsample the adult dataset
such that the correlation between the protected attribute and the decision
is 0.7. We then compare the ftu decision and the eco. While both eco-
fair, Fig. 3 shows that the ftu decisions remain highly correlated with
gender while the eco decision has a substantially lower correlation. The
eco decision avoids inheriting discrimination patterns when unprotected
attributes are highly correlated with the protected attribute. Such a high
correlation between protected and unprotected attributes do not appear
in the adult dataset; the prediction accuracy of ftu and feco are similar.
That said, Fig. 3 delineates a setting where the eco decision maker may
be desired.

This distinction between ftu and the eco decision makers also suggests we consider the population of
P (A)P (S) in Thm. 1. The theorem shows that the eco decision maker is closest in expected KL to the ML
decision maker, among all fair decision makers. Note the expectation is taken with respect to P (A)P (S), a
distribution where there is no information ’leaked’ from the protected attribute to the unprotected attributes.
The reason is that if there is correlation between them, then we could consider "fair" decision makers that are
not actually fair – they might make decisions based on unprotected attributes but really be capitalizing on
correlations to the protected ones. The optimality of the fair decision maker is under the setting where we
only pick attributes that are uncorrelated to the protected one.

Algorithmic decisions that exercise cf . We now show how to adjust the eco-fair decision maker to satisfy
counterfactual fairness.

Consider the eco-fair decision maker feco(s) and an applicant with attributes {anew, snew}. Her cf-fair
decision is Ŷ cf ≥ fcf(anew, snew), where

fcf(anew, snew)) =
⁄⁄

feco(s(a)) p(s(a) | anew, snew)p(a) ds(a) da. (2)

Thus we form an cf decision Ŷ cf by drawing from a mixture: (a) sample a gender from the population
distribution a ≥ p(a); (b) sample a test score from its counterfactual distribution s(a) ≥ p(s(a) | anew, snew);
(c) sample the eco-fair decision for that counterfactual test score ŷcf ≥ feco(s(a)). We repeat this sampling
over di�erent values of a and s(a) to form the cf decision Ŷ cf .

One subtlety of Ŷ cf is step (b). It draws the counterfactual test score under an intervened gender, but
conditions on the observed gender and test score. This requires abduction (Pearl, 2009), where unobserved
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noise variables are inferred conditioned on observed variables, allowing us to sample counterfactual outcomes
and construct CF-fair decision makers. For example, consider a model where females have fewer opportunities
for test preparation. If we observe a female applicant with a high test score, the unobserved noise might
capture that this applicant is particularly gifted. Under this value of noise, her counterfactual test score will
be even higher.

Figure 4: Measures of decision-quality in the
simulated admissions data (error bars indicate ±
1 sd). The eco decision maker fECO is the most
accurate one that achieves eco-fairness; the cf
decision maker fcf is the most accurate one that
satisfies cf-fairness. The classical ML decision
maker fml is most accurate overall but violates
both fairness measures. We vary the historical
disadvantage —a from 0.0 to +5.0 and vary direct
gender discrimination ⁄ from 0.0 to +0.8.

Put di�erently, the cf-fair decision maker uses the
eco-fair decision maker feco(s), which only depends
on the test score (and averages over the gender).
However, the cf-fair decision maker also corrects
for the e�ect on the test score due to the gender
of the applicant. It replaces the current test score
snew with the adjusted score s(a) | {anew, snew} under
a ≥ p(a). With this corrected score, it produces an
cf-fair decision.

For the simulated data in Fig. 1, we calculate fcf(a, s)
from feco(a, s). This decision maker requires abduc-
tion, calculating the test score each applicant would
have achieved had their gender been di�erent. Con-
sider applicant C. Her eco-fair probability of accep-
tance is 69%, but when exercising cf it increases
to 70%. This adjustment corrects for the (simu-
lated) systemic di�culty of females to receive test
preparation and, consequently, higher scores.

The cf-fair decision maker fcf(a, s) accounts for
historical disadvantage because it adjusts the ap-
plicant’s test score (and their resulting admissions
decision) to their counterfactual test scores under
intervention on gender. Further, each element is
computable from the dataset. (We discuss how to
calculate these decisions below.) Note that cf-fair
decisions can be formed from any eco-fair decision
maker.

The cf-fair decision maker depends on the protected
attribute, and thus the cf-fair decision Ŷ cf is not
eco-fair. But among all cf-fair decisions, it is closest to the eco-fair decision; we prove this fact in Thm. 2.
Theorem 2 (cf-fairness and optimality of the cf decisions ). cf decisions satisfy the following properties:

1. The decision Ŷ cf ≥ fcf(a, s) is cf-fair.

2. Among all cf decisions, the cf decision maker minimally modifies the marginal distribution of Y eco,

Ŷ cf = arg min
Y cfœYcf

E
Ë
KL(P (Ŷ eco(A, S))||P (Y cf(A, S)))

È
,

where Ycf are all cf decisions and the expectation is over P (A)P (S). It also preserves the marginal
distribution of the eco decision maker, P (Ŷ cf) = P (Ŷ eco). (Proof in App. B.)

Thm. 2 also says that cf-fair decisions preserve the marginal distribution of the eco-fair decisions. If the
eco decision maker admits 20% of the applicants then the cf decision maker will also admit 20%. (The cf
decision maker will likely admit a di�erent set of applicants from the eco decision maker.) That it preserves
the marginal distribution makes the cf-fair decision maker applicable as a decision policy, such as when there
is a fixed budget for admissions.

9
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Finally, cf-fair decisions also satisfy demographic parity, a group-level statistical criteria that has been used
as a measure of cf (Dwork et al., 2012). Demographic parity requires equal decision distributions for the
advantaged and disadvantaged groups of the protected attribute. (It does not involve a causal model.) Kusner
et al. (2017) shows that, assuming the causal model in Fig. 2, decisions that satisfy counterfactual cf also
satisfy demographic parity.

Why are the eco and cf decisions optimal? Thms. 1 and 2 establish the optimality of the the eco and cf
decisions; they rely on the following observation. The potential for unfairness arises when individuals have
di�erent values in their protected attributes. In the admissions example, applicants have di�erent genders
(protected attribute), which may causally a�ect their admission decisions (outcome) and lead to unfairness.
If all applicants had the same gender then any decision maker would be “fair” in that there is no possibility
for discrimination.

This observation leads to the theorems. The eco and cf decision makers predict in a fictitious world
where all applicants had the same gender AÕ. They take an existing decision maker and ask: what would
its counterfactual prediction be if each applicant had the gender AÕ? The eco decision (Eq. 1) averages
over a distribution P (AÕ). Thm. 1 says that the eco decisions are closest to the ML decisions when AÕ is
distributed as the gender distribution in the data. Thm. 2 says that the cf decision maker is closest to (i.e.
“minimally modifies”) the eco decision maker.

The decisions are probabilistic, so closeness in the two theorems is measured by the average KL distance. The
average is over a target population where the protected A and unprotected S are independent; this mimics
an ideal setting that fair learning algorithms target, i.e. where no applicants are disadvantaged.

Calculating eco and cf decision makers. The eco and cf decision makers can be calculated from data. The
eco decision maker uses the fitted ML decision maker fml, but marginalizes out the protected attribute. The
cf decision maker uses the eco decision maker feco, including an abduction step (Pearl, 2009) to calculate
the counterfactual value of the attribute s(aÕ).

Algorithm 1 The eco and cf decision makers (for
additive-error models).

Input: Data D = {(ai, si, yi)}n

i=1
, where ai is pro-

tected, si is not, and yi is the decision.
Output: Decision makers {fml(a, s), feco(s), fcf(a, s)}
From the data D, fit fml(a, s), p(a), and g(a) =
E [S | A = a] (e.g., with regression).

1 The ml decision maker fml(a, s) draws from

ŷml ≥ fml(a, s).

2 The eco decision maker feco(s) draws from
Eq. 1,

aÕ ≥ p(a); ŷeco ≥ fml(aÕ, s).

3 The cf decision maker fcf(a, s) draws from Eq. 2,

aÕ ≥ p(a); sÕ = g(aÕ) + (s ≠ g(a)); ŷcf ≥ feco(aÕ, sÕ).

We focus on settings where the counterfactual deci-
sions are identifiable from observational data. We
assume: (1) The protected attributes A and unpro-
tected attributes S follow the causal graph in Fig. 2.
That is, there is no unobserved confounding between
A and S, between S and Y , and between A and Y .
(2) The structural equation model for A, S, Y needs
to be correct so that structural equation can be iden-
tified from observational data. These two conditions
enable the identification of counterfactual decisions.

Given the necessary assumptions for identifiability,
the counterfactual calculation requires modeling the
e�ect of the protected attribute A (gender) on the
other attribute S (test score). With linear mod-
els, this calculation involves combining the residual
on the observed data with a prediction about the
counterfactual setting. In the data of Fig. 1, the
abduction infers what applicant C’s test would have
been had she been male, given her test score (as a
female) was 65. The algorithm can also be applied
to nonlinear models; see App. C for details.

As a concrete example, Alg. 1 provides the algorithm
for calculating eco and cf decision makers (Eqs. 1
and 2) from a fitted ml decision maker in the case
of additive-error models, e.g. s = g(a) + ‘ for some
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function g and some random variable ‘. (We discuss the identification of the eco and cf decision makers
and prove the correctness of Alg. 1 in App. C.)

The FairLearning (Kusner et al., 2017) algorithm, which also satisfies cf-fairness performs the same abduction
step as fcf to compute residuals Ái = si ≠ E [S | A = ai] but then fits a decision maker using only the residuals
and non-descendants of the protected attributes. For example, in admissions, after calculating the residual it
does not include the test score in its decision maker. In contrast, Alg. 1 uses all available attributes and still
is cf-fair. The eco decision maker in Alg. 1 also makes use of all attributes; it does not omit protected
attributes as done in ftu (Kusner et al., 2017). Empirically, Alg. 1 provides more accurate decisions than
these existing eco and cf algorithms.

Multiple protected and unprotected attributes. Alg. 1 can be generalized to settings with multiple protected
and unprotected attributes. Note that both A and S can be a vector, so we can collect all protected attributes
into the A variable and all unprotected attributes into the S variable. As long as the resulting attributes still
follow the causal graph in Fig. 2, Alg. 1 is still correct. That said, Alg. 1 may not apply in other cases, e.g.
when the following three conditions simultaneously hold: (1) the multiple unprotected attributes are chained;
(2) we consider interventions on only a subset of the unprotected attributes; (3) we focus on a subpopulation
by conditioning on a descendant of the intervened unprotected attributes. In this case, the corresponding
counterfactual is not identifiable.

4 Empirical studies

We study algorithmic decisions on both simulated and real datasets, examining the tradeo� between fairness
and prediction quality. We compare the eco and cf decision-makers to existing algorithmic decision-makers—
fairness through unawareness (ftu) and FairLearning (Kusner et al., 2017)—that target the same eco and
cf fairness criteria. Throughout the empirical studies, we consider ML decision-makers that are (generalized)
linear models. We use linear regression models when the outcome is real-valued, and logistic regression when
the outcome is binary. (The supplement provides software that reproduces the studies.)

We find the following. (1) As expected, the classical ml decision Ŷ ml is accurate but unfair. (2) The eco
decision Ŷ eco is less accurate than Ŷ ml, but is eco-fair; it is more accurate than ftu. (3) The cf decision
Ŷ cf is less accurate than the eco-fair decision, but is cf-fair and achieves demographic parity; it is more
accurate than FairLearning.

Evaluating algorithmic decision-makers. For each decision-maker, we measure the eco and cf fairness of its
decisions, and evaluate its fidelity relative to the historical data.

One way to measure fairness is to compare distributions of counterfactual decisions. Sup-
pose a protected attribute A with values a (for the advantaged group) and aÕ (for the dis-
advantaged group). As one metric, we consider the average violations of eco and cf
over the population as metrics: fleco = 1

n

q
n

i=1

Ë
E

Ë
Ŷ (a, si) | ai, si

È
≠ E

Ë
Ŷ (aÕ, si) | ai, si

ÈÈ
, flcf =

1

n

q
n

i=1

Ë
E

Ë
Ŷ (a, s(a)) | ai, si

È
≠ E

Ë
Ŷ (aÕ, s(aÕ)) | ai, si

ÈÈ
. The sum is over n samples in a held-out test set;

expectations are with respect to the decision-maker.

The eco metric contrasts the decision probabilities when changing the protected attribute but holding other
attributes fixed. The cf metric contrasts the decision probabilities when changing the protected attribute
A and allowed other attributes to counterfactually vary. When the eco metric is 0.0, the decision-maker
achieves eco-fairness; when it is greater than 0.0, there is bias towards the disadvantaged group; when it is
less than 0.0, the decision-maker favors the disadvantaged group. The same interpretation applies to cf.

Another measure of cf fairness is demographic parity Dwork et al. (2012). We measure demographic
parity with the symmetric Kullback-Leibler (kl) divergence between prediction distributions for the decision
P (Ŷ | A = a) and P (Ŷ | A = aÕ); it is zero for a decision-maker that achieves demographic parity. (We
evaluate the symmetric kl by binning the values of predictions.)
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Finally, we measure the fidelity of the decision-maker to the historical data on which it was fit. The metric is
the prediction score: for binary outcomes, it is the mean accuracy of out-of-sample predictions; for real-valued
outcomes, it is the coe�cient of determination R2 of the predictions.

Simulated admissions. We first study simulated datasets about an unfair admissions committee, which
is from the following structural model, ai ≥ Bernoulli(0.5); si | ai = max(0, min(⁄ · ai + 100 · Á, 100)); Á ≥
Uniform[0, 1]; yi | ai, si ≥ Bernoulli(‡(≠1.0 + —s · s + —a · a)).

(We threshold the test score to mimic real-world test scores that are usually bounded.) We fix the e�ect of
test score on admissions to —s = 2.0. We generate multiple datasets by varying the gender bias —a and the
historical disadvantage on test score ⁄.

Metrics (◊102
) on Adult

fleco flcf KL Prediction

fml 2.5(1.9) 16.2(12.0) 15.0 78.6
ftu 0(0) 14.8(7.9) 12.2 77.3
feco 0(0) 14.1(8.3) 12.6 77.4

FL -14.8(9.1) 0(0) 5.3 75.1
fcf -9.1(9.8) 0(0) 1.5 77.1

Figure 5: In the Adult dataset, algorithmic decision-
makers decide which individuals are loanworthy based
on their income and we examine their fairness relative
to gender. The eco and cf decision makers are fair
towards females while remaining the most accurate.
Both the eco decision maker feco and ftu achieve
eco-fairness as measured by the eco-metric. The
cf decision-maker fcf and FairLearning (FL) (Kusner
et al., 2017) are cf-fair and achieve demographic parity
(close-to-zero KL). The ml decision maker fml is the
most accurate overall but the eco decision maker is the
most accurate among the eco-fair decision-makers. We
report mean values across individuals with the standard
deviation in parentheses. eco and cf metric standard
deviations are Æ 0.1 and Æ 0.11, respectively. We
also report the KL divergence and prediction accuracy,
which are distributional metrics.

Fig. 4 show how eco-fairness and prediction quality
trade o� as the bias —a increases. Only the eco
decision-makers fECO and ftu achieve eco fairness.
Although both decision-makers are less accurate than
classical ml, the eco decision-maker is more accu-
rate than ftu. Fig. 4 shows how cf-fairness and
prediction quality trade o� as the historical disad-
vantage ⁄ increases. Only the fcf and FairLearning
decision-makers achieve cf-fairness. Among these
cf-fair decision-makers, the cf decision-maker of
this paper is more accurate.

Case studies. We study eco and cf decision-makers
on a simulated admissions dataset and three real
datasets of sensitive decisions about people. The
adult income data (Dua & Gra�, 2017a) and the
German credit data (Dua & Gra�, 2017b) contain
data about people and decisions about which are
loan worthy.1

ProPublica’s COMPAS data contains information
about criminal defendants and decisions about their
recidivism score. Each dataset contains protected
and unprotected attributes, and in the studies we ad-
just classical ml decision-makers to achieve fairness
relative to the protected attributes. We focus on
the adult income data in this section and defer the
results of the German credit data and the COMPAS
data to App. F.

Fig. 5 summarize the fairness and prediction quality
from the adult income data. In the adult income data, race and gender are the protected attributes. We
discuss the fairness metrics fleco and flcf relative to gender and report the mean (and s.d.) of all the metrics.
The findings are consistent with the simulation studies and generalize across the studies.

Although the classical ml decision-maker is the most accurate, its decisions are biased against the disadvan-
taged group. Positive values in the EO-metric fleco reveal direct discrimination in classical ml decisions;
males and white individuals receive a higher probability of being decided as loan-worthy or lower recidivism
score than their equivalent female or non-white counterparts. Positive values in the AA-metric flcf indicate
that the classical ml decision-maker does not exercise cf. It provides lower decision probabilities to females or
non-white individuals than their male or white counterparts whose attribute values also reflect the historical
advantage.

1Readers who are familiar with these datasets know that they contain scores, as opposed to decisions. We use these scores to
create “decisions” in order to evaluate the methods of this paper on binary decisions.
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(a) Assessing eco

(b) Assessing cf

Figure 6: Comparing individual decision probabilities
under (hypothetical) “intervention” on gender (in the
adult income data). (a) To study eco, the other at-
tributes remain at their original values and we plot
p(ŷ(a, s) | a, s) against p(ŷ(aÕ, s) | a, s). The fECO de-
cision maker provides eco to females; it produces
decision probabilities that align along the diagonal.
(b) To study cf, the remaining attributes vary with
the intervention on gender and we plot p(ŷ(a, s) | a, s)
against p(ŷ(aÕ, s(aÕ)) | a, s). The decision maker fcf

exercises cf; it provides equal decision probabilities
to females as their male counterparts after correcting
for the historical disadvantage they face. In contrast,
the classical ml decision maker fml demonstrates both
direct and indirect discrimination against females; it
provides lower decision probabilities to females com-
pared to their male counterparts in both comparisons.

The eco and ftu decisions are eco-fair (fleco is
zero) and the eco decisions are more accurate. The
eco-fair decision-makers provide equal decision prob-
abilities to individuals that are equal in all other
attributes, regardless of gender or race. Neither
counterfactual cf nor FairLearning achieve eco-
fairness, but this is by design. These decisions pro-
duce negative values for the eco metric, showing an
advantage for the disadvantaged group. The cf-fair
decision-makers correct for historical biases, which
leads to di�erent decisions for the disadvantaged and
advantaged groups.

The cf and FairLearning decisions both achieve cf-
fairness (flcf is zero) and demographic parity (kl
is zero). They succeed in providing equal decision
probabilities to females or non-white individuals af-
ter considering their counterfactual attribute values
had they been male or white. Among these cf-fair
decision-makers, fcf is more accurate.

Measuring decisions in the adult income data. We
study the algorithmic decisions in more depth. Using
the adult income data, we examine the metrics of
Fig. 5. (The results below exhibit similar patterns
in all three datasets.)

We first discuss eco-fairness for gender. Fig. 6a
reveals the same patterns of eco-fairness that Fig. 5
showed. Both eco and ftu decision probabilities
align with the diagonal; they are eco-fair in provid-
ing equal decision probabilities to equally qualified
individuals regardless of gender. None of the other
algorithmic decision makers is eco-fair. Fig. 6a
shows that classical ml decisions are biased against
females, producing lower decision probabilities for
them than their male counterparts. In contrast, the
cf-fair decision makers fcf and FairLearning are less
eco-fair than fml but provide an advantage to fe-
males after accounting for historical disadvantages.
Further, cf and FairLearning are less eco-fair than
classical ML.

We next discuss cf-fairness for gender. Fig. 6b
compares the decision probabilities received by indi-
viduals if they were females to those they receive if
they were males, with the resulting changes to their
other attributes. An algorithmic decision maker is
cf-fair if the decision probabilities align with the
diagonal. The decision makers fcf and FairLearning
produce decision probabilities that align with the
diagonal and are thus cf fair. The remaining decision makers do not exercise cf; eco decisions provide a
greater degree of cf-fairness than ftu decisions while classical ml decisions are the most unfair in exercising
cf.
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(a) cf decision maker (b) ml decision maker

Figure 7: The adult income data: distributions of
decision probabilities. (a) The cf-fair decision maker
fcf produces equal decision probabilities for females
and males, achieving demographic parity with respect
to gender. (b) The classical ml decision maker fml

does not satisfy demographic parity.

We next inspect demographic parity. Fig. 7 illus-
trates demographic parity by plotting the decision
probabilities for both male and female individuals.
The left panel comes from a classical ml decision
maker; the right panel comes from fcf . While the
classical ml decision maker produces noticeably dif-
ferent decision probabilities for the two groups, the
decision probabilities produced by the cf decision
maker fcf are nearly identical.

We now turn to the predictive performance. Fig. 5
reports the predictive performance of all methods.
Though it is not fair by either criterion, classical
ml produces the “best” predictions, closest to the
historical dataset. Among the eco-fair methods,
eco produces better predictions than ftu. This
corroborates Thm. 1. Moreover, eco’s prediction
scores are close to classical ml, so its fairness comes
with little cost. Among the cf-fair methods, cf
predicts better than FairLearning; this corroborates Thm. 2. But since it alters the decision probability of
individuals from disadvantaged groups, it predicts less well than the ml methods.

5 Discussion

We develop fair ML algorithms that modify fitted ML predictors to make them fair. We prove that the
resulting predictors are eco-fair or cf-fair, and they otherwise maximally recover the fitted ML predictor.

There are a few limitations of this work. One limitation is in the scope of fairness notions being studied.
We focus on two counterfactual notions of fairness in this work; the proposed algorithms may only be fair
with respect to these notions; they may not improve fairness with respect to other fairness notions. Develop
post-hoc algorithms that simultaneously enforce multiple fairness notions is an interesting direction.

Another limitation lies in the assumptions required by counterfactual approaches to fairness. The methods
in this paper rely on a correct causal model, the ability to estimate its parameters, and the ability to
estimate the necessary counterfactuals. We recognize that these are strong requirements—positing and
fitting causal models requires both domain expertise and statistical care. Moreover, even with the correct
model in hand, issues of unobserved confounding can a�ect the ability to properly estimate its parameters
or the counterfactuals. Developing fairness algorithms robust to violations of these assumptions is another
worthwhile avenue of future work.
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