

000
 001
 002 **BAH DATASET FOR AMBIVALENCE/HESITANCY**
 003 **RECOGNITION IN VIDEOS FOR DIGITAL BE-**
 004 **HAVIOURAL CHANGE**

008 **Anonymous authors**

009 Paper under double-blind review

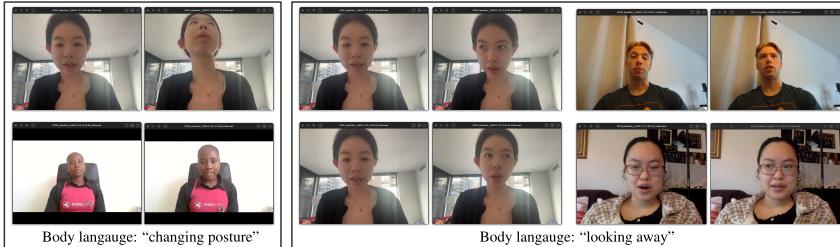
013 **ABSTRACT**

015 Ambivalence and hesitancy (A/H), a closely related construct, is the primary rea-
 016 sons why individuals delay, avoid, or abandon health behaviour changes. It is
 017 a subtle and conflicting emotion that sets a person in a state between positive
 018 and negative orientations, or between acceptance and refusal to do something. It
 019 manifests by a discord in affect between multiple modalities or within a modali-
 020 ty, such as facial and vocal expressions, and body language. Although experts
 021 can be trained to recognize A/H as done for in-person interactions, integrating
 022 them into digital health interventions is costly and less effective. Automatic A/H
 023 recognition is therefore critical for the personalization and cost-effectiveness of
 024 digital behaviour change interventions. However, no datasets currently exists for
 025 the design of machine learning models to recognize A/H. This paper introduces
 026 the Behavioural Ambivalence/Hesitancy (BAH) dataset collected for multimodal
 027 recognition of A/H in videos. It contains 1,427 videos with a total duration of
 028 10.60 hours captured from 300 participants across Canada answering predefined
 029 questions to elicit A/H. It is intended to mirror real-world online personalized
 030 behaviour change interventions. BAH is annotated by three experts to provide times-
 031 stamps that indicate where A/H occurs, and frame- and video-level annotations
 032 with A/H cues. Video transcripts, cropped and aligned faces, and participants'
 033 meta-data are also provided. Since A and H manifest similarly in practice, we
 034 provide a binary annotation indicating the presence or absence of A/H. Addition-
 035 ally, this paper includes benchmarking results using baseline models on BAH for
 036 frame- and video-level recognition, zero-shot prediction, and personalization us-
 037 ing source-free domain adaptation. The limited performance highlights the need
 038 for adapted multimodal and spatio-temporal models for A/H recognition. Results
 039 for specialized methods for fusion are shown to assess the presence of conflict
 040 between modalities, and for temporal modelling for within-modality conflict are
 041 publicly available.

042 **1 INTRODUCTION**

044 Emotion recognition plays a growing role in a range of health-related domains (Siddiqi et al., 2024),
 045 including disease prevention (Jin, 2024), diagnosis (Jiang et al., 2024; Maki et al., 2013), treat-
 046 ment monitoring (Dhuheir et al., 2021; Pepa et al., 2021; Suraj et al., 2022), and digital health
 047 promotion (Arabian et al., 2023; Subramanian et al., 2022), by supporting adaptive and responsive
 048 interventions (Liu et al., 2024b; Sinha et al., 2020). Emotion recognition technologies can sup-
 049 port behaviour change interventions (Guo et al., 2024) by identifying affective states relevant to
 050 motivation, adherence, and engagement. Health-related behaviour change focuses on strategies to
 051 support individuals in adopting and maintaining healthy behaviours to prevent or manage chronic
 052 diseases, reduce early mortality, and improve mental health and well-being (Davidson & Scholz,
 053 2020). Achieving and maintaining long-term behaviour change is a complex process. **It often in-**
cludes overcoming ambivalence and hesitancy (A/H) (McDonald et al., 2002; Michie et al., 2013a;b;

054
055
056
057
058
059
060
061
062



063 Figure 1: Examples of body language cues used by annotators to identify the occurrence of A/H:
064 “looking away,” and “changing posture.”

065
066
067 Voisard et al., 2024), a closely related constructs, as they are the primary reason for individuals to
068 delay, avoid, or abandon health behaviour changes (Conner & Armitage, 2008; Conner & Sparks,
069 2002; Manuel & Moyers, 2016; Miller & Rose, 2015; Van Gent et al., 2024; Williams, 2024). A/H
070 is a subtle and conflicting emotion manifested by a discord in affect between multiple modalities
071 or within a modality, such as facial and vocal expressions, and body language. This conflict sets
072 a person in a state between positive and negative orientations, or between acceptance and refusal
073 to do something, which often constitutes a barrier to initiating behaviour change and a trigger for
074 discontinuing interventions or change efforts. Healthcare providers (e.g., clinicians, therapists) of-
075 ten identify A/H through a combination of speech and non-verbal cues (e.g., facial expressions and
076 tone) (Heisel & Mongrain, 2004; Labb   et al., 2022; Miller & Rose, 2015) during in-person inter-
077 actions. However, integrating them into digital interventions and ehealth is costly and less effective.
078 Therefore, designing robust automated methods for A/H recognition can provide a cost-effective
079 alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-
080 limited environments.

081 Recent research on machine learning (ML) in emotion recognition focuses mainly on seven basic
082 discrete emotions, e.g., ‘Happy’, ‘Sad’, and ‘Surprised’ (Belharbi et al., 2024a; Liu et al., 2024a; Xue
083 et al., 2022). Other models in the literature predict ordinal levels, including pain and stress estima-
084 tion (Aslam et al., 2024; Chaptoukaev et al., 2023; Zeeshan et al., 2024; Nasimzada et al., 2024), or
085 continuous predictions such as valence-arousal (Dong et al., 2024; Praveen & Alam, 2024a; Praveen
086 et al., 2023; 2021). However, real-world scenarios present more complex cases of emotions. Re-
087 cently, there has been an increased interest in designing robust affect models for compound
088 emotions, a case where a mixture of basic emotions is manifested (Kollias, 2023; Richet et al., 2024).
089 In particular, compound emotions commonly occur in daily interactions. However, they are more
090 difficult to discern as they are subtle, ambiguous, and resemble basic emotions. A/H recognition is
091 related to such a task where intention and attitudes are conflicted or in a in-between state, between
092 willingness and resistance (MacDonald, 2015), or positive and negative affect (Armitage & Conner,
093 2000). This can manifest in how individuals express themselves and can be recognized (Hayashi
094 et al., 2023) in their facial expression, tone, verbal, and body language (Figure 1). As a result, A/H
095 exhibits a multimodal nature that comes as the result of subtle interconnection between different
096 cues; **in addition to manifesting within a modality**. Unfortunately, such discord is extremely difficult
097 to spot; a task that requires human training. This is a tedious and expensive procedure, leading to
098 ineffective and less scalable eHealth interventions under limited resources. **Integrating automated**
099 **and reliable tools for A/H recognition can have a major impact in improving eHealth interventions.**
100 Although A/H is a common topic in behavioural science (Conner & Armitage, 2008; Hohman et al.,
101 2016; Manuel & Moyers, 2016), it remains unexplored in the ML community, and as such, in the
102 design of eHealth components. A possible reason is the lack of the necessary and specialized data
103 for training and evaluation of ML models.

104 To address this limitation, we introduce in this work a first Behavioural Ambivalence/Hesitancy
105 (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. **Through a**
106 **collaboration between behavioural science and machine learning teams**, we have collected a large
107 video dataset, BAH, from 9 provinces in Canada. A data capture protocol is set in place to recruit
108 diverse participants, including the development of a web-platform for video capturing, a dedicated
109 storage server, and a specific annotation protocol. Our behavioural team designed seven questions to
110 elicit responses regarding behaviours and to identify possible instances where participants are dis-

108 playing A/H. Via our web-platform, participants are presented these questions and asked to record
 109 themselves while answering via their device camera with a microphone. Participants are guided in
 110 the platform by an avatar throughout the entire data capture session. **Our dataset was developed**
 111 **with real-world digital health applications in mind, particularly for use in personalized behaviour**
 112 **change interventions where users interact with an avatar that prompts them with predefined ques-**
 113 **tions. To mirror this setting, participants in our study responded to structured but genuine questions**
 114 **about behaviours they engage in or avoid, based on their actual experiences. This setup encourages**
 115 **authentic, spontaneous expression of ambivalence and hesitancy (A/H), while still maintaining con-**
 116 **sistency across participants. The BAH dataset was intentionally designed to maximize ecological**
 117 **validity. Participants had control over their environment and delivery, which contributed to natural-**
 118 **istic responses that reflect how people express A/H in real life.**

119 The BAH dataset is composed of 300 participants. This amounts to a total of 1,427 videos (~ 10.60 hours)
 120 where 778 videos contain A/H (~ 1.79 hours). It has 916,618 total frames where 156,255
 121 contain A/H. **Three of our behavioural experts** annotated the data at video- and frame-level to assess
 122 when A/H occurs. **Because ambivalence and hesitancy manifest similarly in practice, the annotation**
 123 **is framed under a binary form (A/H vs. non-A/H).** In addition, the video cues used by the annotators
 124 are reported such as facial expressions, body language, audio and language in addition to highlight-
 125 ing where there is inconsistency between the modalities. The BAH dataset is made public and it is
 126 provided with the raw videos with audio, cropped and aligned faces, detailed annotation/cues for
 127 video- and frame-level, audio transcript/timestamps/language, and participants meta-data such as
 128 age, ethnicity and more.

129 **Our main contributions are summarized as follows.** **(1)** A novel video dataset named BAH is
 130 proposed for automated subject-based multimodal recognition of A/H in videos that can be used
 131 in tools for digital health intervention systems. To mirror real-world digital interventions, partici-
 132 pants in our study responded to structured but genuine questions about behaviours that elicit A/H
 133 using our online platform while recording themselves. Behavioural experts labelled the data at the
 134 video- and frame-levels under a binary form to indicate the presence/absence of A/H as they both
 135 manifest similarly. BAH can be used to develop and evaluate standard and personalized ML models
 136 for classification task, and build insights about A/H for digital behaviour change interventions. **(2)**
 137 Preliminary benchmarking results for baseline models on BAH for frame- and video-based emotion
 138 recognition. Results allowed exploring the impact of key factors, including the impact of using
 139 temporal context, multimodal information, and feature fusion. They also showed the need for spe-
 140 cialized modalities fusion, and temporal modelling for better performance in the new task of A/H
 141 recognition. Baseline results are also shown for other tasks – zero-shot prediction and personaliza-
 142 tion through subject-based domain adaptation. Our code and dataset is public.

2 THE BAH DATASET

2.1 DATASET COLLECTION AND ANNOTATION

146 **Capture.** The BAH dataset contains Q&A videos. Its is constructed by collecting samples from
 147 participants over the age of 18 across Canada. Data collection and annotation process is presented
 148 in Figure 2. To proceed with the data collection, we developed “Automatic Expression Recognition”
 149 (AER) web-based platform (www.aerstudy.ca) where participants could record their responses to
 150 specific questions using their own computers or devices with camera and microphone. Users receive
 151 secure credentials to access the data collection platform, or they can create their own account. Partic-
 152 ipants first complete a brief survey to provide demographic information and indicate consent prefer-
 153 ences (e.g., inclusion in secure datasets, challenges, or publications). They are then redirected to the
 154 AER platform, where they test their camera and microphone and choose an avatar to interact during
 155 data capture. The avatar guides them through seven questions. The session takes approximately
 156 30 minutes. Participants are recruited and compensated via Prolific company (www.prolific.com),
 157 which also ensures population diversity and allows submission processing.

158 Participants answer seven questions designed by our behavioural team (Table 1), each one intended
 159 to elicit neutral, positive, negative, ambivalent, willing, resistant, and hesitant answers. Once the
 160 question is presented, the recording of the participant response starts. Skipping questions is allowed.
 161 At the end of each question, the participant has the option to rate their emotional response using a
 Likert-like 5-point scale. This self-rating is only employed for our analysis and does not serve as

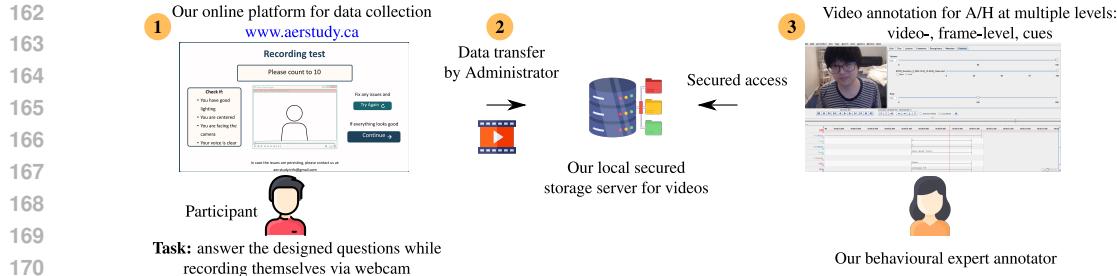


Figure 2: BAH dataset collection and annotation procedure. First, a participant access our web platform. They go through initial test/calibration to ensure the quality of the data. An avatar guides them throughout the entire process. Seven questions are presented to the participant. They are recorded while answering them. Once the data is captured, it is transferred by the Administrator to our local server. It is then annotated at several levels by an expert to determine when A/H occurs.

annotation. The order of the questions is randomized. In addition, participants are not aware what each questions is expected to illicit as emotion. During this capture procedure, several information is gathered including contact information of the participant, their demographics, consent, video recordings, survey responses, and software usage data (such as the time spent on each question). The participants' data is systematically downloaded and transferred to local secured server storage by the team for annotation and further analysis.

The study obtained human ethics approval from the two collaborating universities following all standard ethical practices. The dataset was collected between September 2024 and April 2025 in batches. This allowed us to adjust the targeted population (regarding participants' sex and Canadian province of residency) to ensure the dataset diversity.

We note that while BAH dataset is sourced exclusively from Canadian participants, its sample collection was designed to be representative in terms of province and sex, two key demographic variables relevant to health behaviour research in Canada. Additionally, the dataset includes individuals from a wide range of backgrounds, including different ethnicities and national origins, which reflects the cultural diversity of the Canadian population. This diversity, often lacking in many existing datasets, enhances the relevance and applicability of our findings within the Canadian context. Despite the geographic limitation, we consider this dataset a meaningful starting point for understanding ambivalence and hesitancy in health-related behaviour. our future plan is to expand to other countries and cultural settings to support broader generalizability.

Annotation. Three annotators were trained in expression recognition, specialized in identifying A/H, and in the annotation process of audio-visual data. A two-stage process was used: first, a

Question no.	Response	Prompt
1	Neutral	Tell us about an activity you commonly do after waking up.
2	Positive	Talk about an activity that brings you joy, for example, a hobby. Tell us why.
3	Negative	Talk about an activity you dislike doing, for example, a chore or something you find boring or annoying. Tell us why.
4	Ambivalent	Tell us about something you enjoy doing but wish you stopped doing (like a guilty pleasure) or something you don't do but wish you did.
5	Willing	Tell us about an activity you are almost always willing to do, for example with friends, at work, at home.
6	Resistant	Tell us about something people around you do, but that you would not be willing to do, for example, with friends, at work, at home.
7	Hesitant	Tell us about something you could have done already but haven't done yet, for example, something you are procrastinating or haven't made up your mind about.

Table 1: The 7 questions (prompts) designed by our experts to create our videos for BAH dataset. To avoid influencing the participants answers, they are only shown prompts without indicating the expected emotion/response.

216 global-level annotation determined the presence of A/H in each video; then, a frame-level annotation
 217 identified the precise segments where A/H occurred, specifying the start and end times (i.e., onset
 218 and offset) of each instance. Annotators also provided certainty ratings, and for some segments,
 219 indicated the cues that supported their judgment. To identify A/H, annotators tracked expressions
 220 across well-established modalities, (facial expressions, body language, audio, and language) and
 221 flagged cases where inconsistencies between modalities were observed. **Each A/H segment has a**
 222 **timestamp start/end in addition to its own cues and modalities determined by an annotator allowing**
 223 **for better precision. Multiple A/H segments could be present within a video.** We do not include
 224 an "apex" nor a continuous annotation, as ambivalence and hesitancy do not reliably exhibit a peak
 225 moment of maximum intensity. Instead, they tend to manifest as sustained or fluctuating states,
 226 making the concept of an apex incompatible with their typical temporal structure. The videos were
 227 annotated following a codebook created specifically for the study. Videos were annotated using the
 228 ELAN 8 (archive.mpi.nl/tla/elan) software (Figure 2).

229 The annotation process followed a structured training protocol supported by a detailed training
 230 manual. Annotators first received a conceptual introduction to A/H, followed by hands-on training in
 231 using the ELAN annotation software. Practical application was conducted using a standardized set
 232 of videos from the dataset. This phase also introduced annotators to the codebook, emphasizing the
 233 cue list, with examples spanning facial, vocal, verbal, and bodily expressions. Annotators received
 234 feedback and additional sessions were provided when further alignment was needed. Only after this
 235 training phase, and a final assessment, did annotators proceed to independent annotation. **To ensure**
 236 **large labeled data, BAH dataset is divided among the three annotators where each video is labeled**
 237 **by one annotator. However, we conducted an analysis over 10 random videos with multi-annotator**
 238 **setup to assess inter-annotator agreement. We considered Fleiss's Kappa measure (Fleiss, 1971) for**
 239 **more than 2-annotator case. At global level, the score measure is 0.65 (substantial agreement) while**
 240 **at frame level, we have 0.41 (moderate agreement). When considering only videos where all three**
 241 **annotators agreed they have A/H, the score is 0.50.**

241 To promote consistency, annotators were instructed to flag cases of uncertainty or complexity. These
 242 cases were discussed collaboratively, often through co-annotation. A consistent lead annotator fa-
 243 cilitated resolution efforts, ensuring that decisions reflected a shared interpretation. In parallel, a
 244 comprehensive annotation protocol guided how videos were managed, accessed, and annotated. An-
 245 notators followed standardized procedures: (1) watch the video without taking notes to understand
 246 the participant and context; (2) re-watch the video to identify A/H segments and record start and end
 247 times; (3) reassess and refine selected segments; (4) identify and assign cues using the codebook;
 248 and (5) if needed, watch the video without audio or visual elements to isolate specific signals. Anno-
 249 tators were also encouraged to consult other videos from the same participant to establish expressive
 250 baselines in ambiguous cases.

251 The presence of A/H is assigned a single label (1), while its absence is assigned the label 0. Each
 252 video has a global- and frame-level label which can be used to train and evaluate ML models. The
 253 provided cues can also be used for interpretability aspect as well as to build insights on how people
 254 express A/H. The dataset is structured subject-wise which can be also useful for personalization
 255 training scenarios. **The BAH dataset that is being made public contains only videos of participants**
 256 **consented for their data to be made public.**

257 2.2 DATASET VARIABILITY

259 The dataset is designed to approximate the demographic distribution of sex and provincial re-
 260 presentation in Canada. The BAH dataset is composed of 300 participant across Canada from nine
 261 provinces where 25.7% of participants is from British Columbia followed by Alberta with 19.7%
 262 and Ontario with 17.3% . All participants agreed to be part of this dataset. However, 61 participants
 263 (20.3%)¹ did not consent to be in publications while only seven participants (2.3%) did not consent
 264 to be part of challenges. The recorded videos are majority in English language and very few are
 265 in French language. Each participant can record up to seven videos where 113 participants have
 266 recorded the full seven videos. We obtained an average of ~ 4.75 videos/participant where each
 267 participant has an average of ~ 2.59 videos with A/H which is equivalent to ~ 520.85 frames of
 268 A/H (or ~ 21.49 seconds of A/H). The dataset amounts a total of 1,427 videos (~ 10.60 hours)

269 ¹The list of these participants is provided within the shared files of the BAH dataset.

270 where 778 videos contain A/H (~ 1.79 hours). This amounts to 916,618 total frames where 156,255
 271 contain A/H. Since captured videos represent answers to questions, they are relatively short. BAH
 272 dataset has an average video duration of 26.76 ± 16.47 (seconds) with a minimum and maximum
 273 duration of 3 and 96 seconds.

274 An important characteristic of this dataset is the duration of the A/H segments in videos. BAH counts
 275 a total of 443 videos with multiple A/H segments and 332 videos with only one A/H segment. In
 276 total, there are 1,504 A/H segments. In particular, the duration of segments varies but it is brief with
 277 an average of 4.29 ± 2.45 seconds which is equivalent to 103.89 ± 58.70 frames. The minimum and
 278 maximum A/H segment is 0.004 seconds (1 frame), and 23.8 seconds (572 frames), respectively.
 279

280 In terms of participants age, the dataset covers a large range from 18 to 74 years old. In particular,
 281 37.7% of the participants covers the range 25-34 years, followed by the range of 35-44 years with
 282 24.3%, then the range of 18-24 with 20.7%. In terms of sex, 52.0% are female, while 47.3 are
 283 male. As for ethnicity variation, White comes with 54.0% of the participants, followed by Asian
 284 with 21.0%, and Mixed with 10.7%, then Black with 9.7%. Large part of the participants are not
 285 students (67.0%) which limits common issues in recruit bias.
 286

287 The public BAH dataset contains the raw videos, detailed A/H annotation at video- and frame-level,
 288 cues, and per participant demographic information including age, birth country, Canada province
 289 where the participant lives, ethnicity, ethnicity simplified, sex, student status, consent to use recordings
 290 in publications. More details about the dataset diversity are provided in the appendix.
 291

292 2.3 ETHICAL CONSIDERATION, DATASET ACCESSIBILITY AND INTENDED USES

293 The collected data of human participants follows tightly ethical considerations. The project to collect
 294 BAH data was approved by ethical committees from both collaborating universities. Once recruited,
 295 participants have access to the full consent form prior to accessing the data capture platform and
 296 starting their data capture procedure. They are provided with details of the study, as well as a list
 297 of the potential risks and benefits of participating in the study. They are instructed to read the
 298 consent form thoroughly and they are provided with a clear and simple video that summarizes the
 299 consent form. Participants are then able to decide the type of access they want the researcher to
 300 have to their audiovisual data, including if they want their images to be used for publications and
 301 presentations. In addition, these options are presented again at the end of the data capture procedure,
 302 just in case they change their mind around their participation in the study or the use of their data after
 303 they have finished recording their responses. At the end of the study, participants receive, via email,
 304 a copy of the consent form that includes their choices about data usage and the contact information
 305 for the team should they have any further questions. Note that participants are given numerical codes
 306 for anonymity.
 307

308 Following the guidelines of the funding agency, the BAH dataset is made public with open
 309 credentialed access for research purposes. To access the dataset, users are required to fill in a request
 310 form and sign an End-User License Agreement (EULA) as commonly done to ensure dataset security.
 311 Upon access approval, the user will receive a link to download the full dataset, including raw
 312 videos, detailed annotation, cues, participants' meta-data, cropped-and-aligned-faces, frames, audio
 313 transcripts. BAH uses a proprietary license for research purposes. The dataset is hosted in a secured
 314 server as it is intended for long-term availability. Our public code is under an open-source license
 315 (BSD-3-Clause license). The code website will be used as a permanent page for the dataset that will
 316 reflect any future updates. Despite all our precautions, our dataset may still be misused. We
 317 consider a thorough review of requests before granting data access. Reviewers can directly download
 318 the BAH dataset via the link provided in the appendix. Please read Sec.A in appendix before
 319 proceeding to download the dataset.
 320

321 Our primary goal of building BAH dataset is to make public a first and unique dataset for A/H
 322 recognition in videos. Given the content of the dataset, its multimodal aspect, and the provided
 323 annotation, it can be used to train and evaluate ML models for A/H recognition in videos at frame-
 324 and/or video-level with different learning scenarios. Since data is subject-based, it can also be used
 325 for personalization using domain adaptation, for instance. The provided cues used by annotators can
 326 also be used for interpretability learning, and further analysis to get more insight on our understand-
 327 ing of A/H in human behaviours. Such understanding and recognition of A/H can be leveraged in
 328

324 downstream tasks such as behavioural change, interventions and recommendations in clinics or via
 325 automated systems such as virtual trainers/assistants.
 326

327 2.4 EXPERIMENTAL PROTOCOL 328

329 **Dataset split.** The dataset is divided randomly based on participants into 3 sets: train (195 participants), validation (30 participants) and test (75 participants) set. **We ensured that the 3 splits**
 330 **represent the total data distribution.** The train and validation sets amounts to 3/4 of the total participants, while 1/4 goes to the test set. Videos of one participants belong to one and one set only.
 331 The details of each set is presented in Table 2. The split files are provided along with the dataset
 332 files. They contain the split in terms of videos and frames ready to use. Note that the dataset is
 333 highly imbalanced as depicted in Table 3, especially at frame level where only 17.04% contains
 334 A/H. This factor should be accounted for during training and evaluation. The dataset can be used for
 335 training at video- and/or frame-level. The participant identifiers are provided in the splits allowing
 336 subject-based learning scenarios.
 337

Data subsets	Train	Validation	Test	Total
Number participants	195	30	75	300
Number participants with A/H	144	27	75	246
Number videos	778	124	525	1427
Number videos with A/H	385	75	318	778
Number frames	501,970	79,538	335,110	916,618
Number frames with A/H	76,515	13,984	65,756	156,255
Total duration (hour)	5.80	0.92	3.87	10.60
Total duration with A/H (hour)	0.87	0.16	0.75	1.79

347 Table 2: BAH dataset split into train, validation, and test sets.
 348

Data subsets	Train (%)	Validation (%)	Test (%)	Total (%)
Participants with A/H	73.85	90.00	100.00	82.00
Videos with A/H	49.49	60.48	60.57	54.51
Frames with A/H	15.24	17.58	19.62	17.04
Duration with A/H	15.09	17.41	19.44	16.88

354 Table 3: Imbalance rate of BAH dataset split across train, validation, and test sets:
 355 (Total # items with A/H)/(Total # items).
 356

357 **Evaluation metrics.** We refer here to the positive class as the class with label 1 indicating the
 358 presence of A/H, while negative class is the class 0 indicating the absence of A/H. To account
 359 for the imbalance in BAH dataset, we use adapted standard evaluation metrics: - F1 score of the
 360 positive class. - Average F1 (AVGF1) score which is the unweighted mean of F1 of the positive
 361 and negative class. - Average precision score (AP) of the positive class which accounts for the
 362 performance sensitivity to the model’s confidence. For AP score, a threshold list between 0 and 1 is
 363 used with a step of 0.001. Evaluation code of all measures is provided along with the public code of
 364 this dataset.
 365

366 3 BASELINE RESULTS 367

368 This section provides preliminary results of different baseline models on our BAH dataset. In par-
 369 ticular, we provide performance of models for the supervised frame-level classification task. We
 370 consider a 2-class classification problem where each frame is annotated, and models predict two
 371 outputs: one for the positive class (presence of A/H), and a second for the absence of A/H. Super-
 372 vised video-level classification performance is included in the appendix. In addition, the results of
 373 other tasks – zero-shot prediction, and personalization through unsupervised domain adaptation –
 374 are also included.

375 We initially focus on the impact of using single vs multimodal learning for frame-level classification.
 376 Then, the performance of different individual modalities are explored, along with their multimodal
 377 fusion. In addition, we investigate the impact of temporal modelling and context vs single frame
 learning. In the following, we present the pre-processing of the three different used modalities:

Backbone	Without context		With context (TCN)	
	AVGF1	AP	AVGF1	AP
APViT (Xue et al., 2022)	0.5051	0.1906	0.5019	0.2069
ResNet18 (He et al., 2016)	0.5074	0.1940	0.5079	0.1993
ResNet34 (He et al., 2016)	0.5138	0.1952	0.4998	0.1984
ResNet50 (He et al., 2016)	0.4737	0.1942	0.4985	0.1915
ResNet101 (He et al., 2016)	0.4929	0.1967	0.5165	0.2070
ResNet152 (He et al., 2016)	0.4889	0.1843	0.5084	0.2058

Table 4: Visual modality performance on test set of BAH at frame-level classification: impact of architecture and context.

visual (facial), audio (vocal), and text transcripts (textual), and describe the baseline models used in each case.

3.1 PRE-PROCESSING OF MODALITIES

1) Visual. All frames from each video are extracted, and for each frame, faces are located using RetinaFace model (Deng et al., 2019), cropped, then aligned. The face with the highest score is stored in case of multiple faces are detected in a frame. Faces are resized to 256×256 and stored as RGB images with a file name that maintains the order of frames. The video frame rate is 24 FPS. **2) Audio.** We follow standard procedure to process audio data (Praveen & Alam, 2024b; Richet et al., 2024; Zhang et al., 2023b). For audio modality, we first convert videos to single audio channels (mono) with a 16k sampling rate into wav format. The log melspectrograms features are extracted using Vggish model (Hershey et al., 2017)(github.com/harritaylor/torchvggish). A hope of 1/FPS of the raw video is used to extract the spectrograms to synchronize audio with other modalities. **3) Text.** The collected data captures the audio of participants. We consider audio transcripts as an extra modality that can help recognizing A/H since text is a significant cue used by annotators. To this end, we transcribe the audio of each video, and detect the language using Whisper model (Radford et al., 2023) (Whisper large-v3 multilingual: huggingface.co/openai/whisper-large-v3). We provide the timestamp of each transcript. Word-level features are then extracted using BERT Base Uncased model (Devlin et al., 2019)(pypi.org/project/pytorch-pretrained-bert/). A word may span more than one frame. To synchronize with other modalities, a word-level features is repeated per its timestamp for all the frames that correspond to the word.

Note that both cropped and aligned faces, and video transcripts are shipped with the shared public BAH dataset. Researchers can choose to use them or build their own.

3.2 PRE-TRAINING OF VISUAL BACKBONE

For audio and text modality, features are extracted offline and stored as described above. For visual modality, we explore different architectures including CNN- and ViT-based(Dosovitskiy et al., 2021). In particular, we explore ResNet family including ResNet18, 34, 50, 101, and 152 (He et al., 2016). For ViT family, we consider a recent model designed for basic emotion recognition, APViT (Xue et al., 2022). First, we pre-train each model on basic emotion recognition task including these emotions: “Anger”, “Disgust”, “Fear”, “Happiness”, “Sadness”, “Surprise”. To this end, we collected a large mixed dataset composed of 3 public common datasets for emotion recognition using images: RAF-DB (Li et al., 2017), and AffectNet (Mollahosseini et al., 2019), and Aff-wild2 (Kollias & Zafeiriou, 2019). This amounts to more than 0.54 millions training images. Models are trained for basic emotion classification for 60 epochs with a batch size of 1,424 samples using 4 parallel NVIDIA A100 GPUs with 40 GB of memory. Standard cross-entropy loss and Stochastic Gradient descent (SGD) are used for training. Once pretrained, each model is further fine tuned on our BAH train set for A/H recognition. To account for class imbalance, we perform under-sampling of negative class over train set. This is achieved by randomly sampling the negative class samples to be the same as the positive class. The weights of both models will be made public. The backbones of each model are used later for feature extraction of visual modality. **Note that we compared variant visual modalities including, cropped faces, full-frame, and head-pose.** Results show that cropped faces yield better results. Details is included in supplementary materials.

432 3.3 IMPORTANCE OF CONTEXTUAL LEARNING
433

434 In this section, we aim to answer the question whether context modelling can help better A/H recog-
435 nition. This is particularly interesting since A/H does not occur instantly, but within a context.
436 Text and audio modality already capture context in their features making using them to answer this
437 question less efficient. However, we can obtain frame features with and without any context. There-
438 fore, we consider visual modality to answer our question. To this end, we study different visual
439 backbones.

440 In the case of modelling without context, models
441 simply train on independent frames without consid-
442 ering any context or dependency between them. In-
443 ference is done in the same way. In the case of
444 modelling with context, both training and inference
445 leverages temporal dependency between frames. To
446 this end, a window of adjacent frames is fed to the
447 model. We then use temporal convolutional network
448 (TCN) (Bai et al., 2018) after the visual backbone to
449 capture relations between frames embeddings. The
450 window length defines the extent of the context. Ta-
451 ble 4 shows the obtained results. Regardless of the
452 context, we observe a very low performance over AP
453 highlighting the difficulty of recognizing A/H based
454 on images alone. In particular AP is below 0.2070.
455 On the other hand, AVGF1 reaches 0.5138. As a
456 reference, predicting every frame as negative class
457 yields an AVGF1 of 0.4459. We note that overall, using context boost performance of all metrics
458 across all architectures. This is expected as A/H does not usually occur at a single frame but withing
459 a context. This makes its recognition from a single frame challenging. We recall that the aver-
460 age A/H segments spans 103 frames (or 4.29 seconds). Future works should account for temporal
461 context for better performance. However, as we will show in the ablations in the appendix, very
462 large context could lead to poor performance. Note that large ResNet models seems to yield better
463 performance overall. Unless mentioned otherwise, all our next experiments will use ResNet101.
464

465 3.4 MULTIMODAL BASELINES
466

467 Since A/H is multimodal by nature, we ex-
468 plore the impact of using different modalities,
469 including visual, audio, and transcript using
470 the model presented in Figure 3 (Richet et al.,
471 2024). Results are reported in Table 5. Us-
472 ing text modality alone yields better perfor-
473 mance, AP of 0.2510 and AVGF1 of 0.5497,
474 compared to visual or text modalities over both
475 metrics. Combining a pair of modalities im-
476 proves furthermore the performance to 0.5586
477 for AVGF1, and 0.2609 for AP with the case
478 of audio and text. Combing the three modal-
479 ities slightly reduces performance in terms of
480 AP. This may suggest that better and more
481 adapted fusion techniques are needed to recog-
482 nized conflicts between modalities.

483 Table 6 shows the impact of using different feature fusing techniques including simple concatenation
484 (CAN) (Zhang et al., 2023b), co-attention (LFAN) (Zhang et al., 2023b), transformer-based fusion
485 (MT) (Waligora et al., 2024), and cross-attention fusion (JMT) (Waligora et al., 2024). We observe
486 that the way of leveraging the interaction between the three modalities is a key factor. LFAN and
487 CAN fusion lead over both metrics. Future works should pursue more adapted methods to A/H.
488 Ambivalence and hesitancy are usually expressed as a conflict between willingness and resistance.
489 This can be perceived through a parallel affect conflict between modalities and or within modalities.

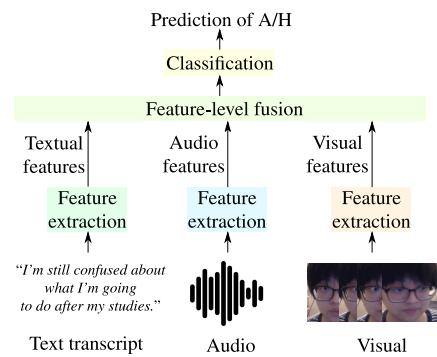


Figure 3: Multimodal model used to produce baseline performance (Richet et al., 2024).

Modalities	AVGF1	AP
Visual	0.5165	0.2070
Audio	0.4658	0.2238
Text	0.5497	0.2519
Visual + Audio	0.5205	0.2225
Visual + Text	0.5547	0.2479
Audio + Text	0.5586	0.2609
Visual + Audio + Text	0.5502	0.2548

Table 5: Multimodal models performance on test set of BAH at frame-level classification. For visual modality, ResNet101 backbone is used.

486 For instance, a participant could say a sentence to convey a meaning but their facial expression, body
 487 behaviour, or tone may carry a contradictory emotion. Understanding such subtly and interconnec-
 488 tion between different cues in different modalities could play an important role in designing robust
 489 methods for A/H recognition in videos.

490 We believe our new and unique dataset has brought a new challenging research direction to better
 491 understand complex and subtle human emotions that is A/H. Given the multimodal nature of A/H,
 492 our BAH dataset provides an essential and valuable toolkit for the research community to design and
 493 evaluate their methods. Important key and critical downstream tasks could potentially benefits from
 494 these methods including but not limited to clinical interviews, interventions, behavioural changes,
 495 and automated assistants such as online trainers. Our preliminary results suggest that leveraging
 496 context, multimodality, and their fusion could lead to better A/H recognition performance.

Fusion type	AVGF1	AP
LFAN (Zhang et al., 2023b) (<i>cvprw,2023</i>)	0.5502	0.2548
CAN (Zhang et al., 2023b) (<i>cvprw,2023</i>)	0.5526	0.2631
MT (Waligora et al., 2024) (<i>cvprw,2024</i>)	0.5137	0.2134
JMT (Waligora et al., 2024) (<i>cvprw,2024</i>)	0.5241	0.2139

503 Table 6: Feature fusion performance on test set of BAH at frame-level classification.

506 4 RECOMMENDATIONS FOR FUTURE WORKS IN A/H RECOGNITION

507 The newly introduced A/H recognition task requires the model to be able to detect affect conflict
 508 cross-modalities in addition to within-modality. Standard multimodal models are trained to yield
 509 predictions aligned with the output supervision. This automatic training may focus on learning
 510 label patterns and miss acquiring a mechanism to understand affect conflict. To build more inter-
 511 pretable A/H recognition systems, we recommend a 2-level framework. The first level should focus
 512 on modelling affect per modality in an independent way. Off-the-shelf pretrained sentiment anal-
 513 ysis (Sharma et al., 2025) models could be used. This first level should be separated from A/H
 514 since we can not detect it at modality level yet, at least for the cross-modality case. At the sec-
 515 ond level, a dedicated fusion mechanism should be used to assess whether there is affect conflict
 516 cross-modalities to make a decision. This module does a deeper work than simply fusing features
 517 as commonly done. It should acquire an understanding of affect conflict to be able to detect it. Such
 518 modular and interpretable framework allows introducing priors about affect conflicts.

519 Statistics extracted from annotators cues could be leveraged to constrain the model find conflicts
 520 cross-modalities. A specialized temporal modelling should be used to detect within-modality con-
 521 flict based on the output of the first level. Statistics from A/H segments durations should be consid-
 522 ered as A/H happens briefly. Context is also important to detect within-modality cases. Segmented
 523 body could help as well since it contains important cues and less noise compared to full frame. Our
 524 results showed that standard multimodal models and fusion technique yield modest performance.
 525 Future works should focus on designing specialized frameworks for A/H recognition.

527 5 CONCLUSION

528 This work introduces a new and unique multimodal and subject-based video dataset, BAH, for A/H
 529 recognition in videos. BAH contains 300 participants across 9 provinces in Canada. Recruited
 530 participants answer 7 designed questions to elicit A/H while recording themselves via webcam and
 531 microphone via our web-platform. The dataset amounts to 1,118 videos for a total duration of 10.60
 532 hours with 1.79 hours of A/H. It was annotated by our behavioural team at video- and frame-level.

533 Our initial benchmarking yielded limited performance highlighting the difficulty of A/H recognition.
 534 Our results showed also that leveraging context, multimodality, and adapted feature fusion is a first
 535 good direction to design robust models. Our dataset and code are made public.

536 The following appendix contains related work, more detailed and relevant statistics about the
 537 datasets and its diversity, dataset limitations, implementation details, and additional results.

540 REFERENCES
541

542 H. Arabian, T. Abdulbaki Alshirbaji, R. Schmid, V. Wagner-Hartl, J. Chase, and K. Moeller. Harnessing wearable devices for emotional intelligence: Therapeutic applications in digital health. *Sensors*, 23(19):8092, 2023.

543

544

545 C. J Armitage and M. Conner. Attitudinal ambivalence: A test of three key hypotheses. *Personality and Social Psychology Bulletin*, 26(11):1421–1432, 2000.

546

547

548 M.H. Aslam, M.O. Zeeshan, S. Belharbi, M. Pedersoli, A.L. Koerich, S. Bacon, and E. Granger. Distilling privileged multimodal information for expression recognition using optimal transport. In *International Conference on Automatic Face and Gesture Recognition (FG)*, 2024.

549

550

551 S. Bai, J.Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *CoRR*, abs/1803.01271, 2018.

552

553

554 S. Belharbi, M. Pedersoli, A. L. Koerich, S. Bacon, and E. Granger. Guided interpretable facial expression recognition via spatial action unit cues. In *International Conference on Automatic Face and Gesture Recognition (FG)*, 2024a.

555

556

557 S. Belharbi, M. Pedersoli, A.L. Koerich, S. Bacon, and E. Granger. Spatial action unit cues for interpretable deep facial expression recognition. In *AI and Digital Health Symposium*, 2024b.

558

559

560 M. Bishay, P. Palasek, S. Priebe, and I. Patras. Schinet: Automatic estimation of symptoms of schizophrenia from facial behaviour analysis. *IEEE Transactions on Affective Computing*, 12(4):949–961, 2019.

561

562

563 J. Bonnard, A. Dapogny, F. Dhombres, and K. Bailly. Privileged attribution constrained deep networks for facial expression recognition. In *ICPR*, 2022.

564

565

566 E.H. Bradley, L.A. Curry, and K.J. Devers. Qualitative data analysis for health services research: developing taxonomy, themes, and theory. *Health services research*, 42(4):1758–1772, 2007.

567

568 C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J.N. Chang, S. Lee, and S.S. Narayanan. Iemocap: Interactive emotional dyadic motion capture database. *Language resources and evaluation*, 42:335–359, 2008.

569

570

571 H. Chaptoukaev, V. Strizhkova, M. Panariello, B. Dalpaos, A. Reka, V. Manera, S. Thummel, E. ISMAILOVA, N. Evans, F. Bremond, M. Todisco, M. A Zuluaga, and L. M. Ferrari. StressID: a multimodal dataset for stress identification. In *NeurIPS*, 2023.

572

573

574

575 J. Choe, S.J. Oh, S. Chun, S. Lee, Z. Akata, and H. Shim. Evaluation for weakly supervised object localization: Protocol, metrics, and datasets. *TPAMI*, pp. 1–1, 2022.

576

577

578 Y. Chu, L. Liao, Z. Zhou, C.-W. Ngo, and R. Hong. Towards multimodal emotional support conversation systems. *CoRR*, abs/2408.03650, 2024.

579

580 M. Conner and C.J. Armitage. Attitudinal ambivalence. 2008.

581

582 M. Conner and P. Sparks. Ambivalence and attitudes. *European review of social psychology*, 12(1):37–70, 2002.

583

584 K.W. Davidson and U. Scholz. Understanding and predicting health behaviour change: a contemporary view through the lenses of meta-reviews. *Health psychology review*, 14(1):1–5, 2020.

585

586

587 M. De-la Torre, E. Granger, P. VW Radtke, R. Sabourin, and D.O. Gorodnichy. Partially-supervised learning from facial trajectories for face recognition in video surveillance. *Information fusion*, 24:31–53, 2015.

588

589

590 J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou. Retinaface: Single-stage dense face localisation in the wild. *CoRR*, abs/1905.00641, 2019.

591

592

593 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In *NAACL-HLT*, pp. 4171–4186, 2019.

594 M. Dhuheir, A. Albaseer, E. Baccour, A. Erbad, M. Abdallah, and M. Hamdi. Emotion recogni-
 595 tion for healthcare surveillance systems using neural networks: A survey. In *2021 International*
 596 *Wireless Communications and Mobile Computing (IWCMC)*, pp. 681–687, 2021.

597

598 L. Dong, X. Wang, S. Setlur, V. Govindaraju, and I. Nwogu. Ig3d: Integrating 3d face representa-
 599 tions in facial expression inference. *CoRR*, abs/2408.16907, 2024.

600 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
 601 M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words:
 602 Transformers for image recognition at scale. In *ICLR*, 2021.

603

604 Y. Fan, J. Lam, and V. Li. Facial action unit intensity estimation via semantic correspondence
 605 learning with dynamic graph convolution. In *AAAI*, 2020.

606 J.L. Fleiss. Measuring nominal scale agreement among many raters. *Psychological bulletin*, 76(5):
 607 378, 1971.

608

609 R. Guo, H. Guo, L. Wang, M. Chen, D. Yang, and B. Li. Development and application of emotion
 610 recognition technology—a systematic literature review. *BMC psychology*, 12(1):95, 2024.

611 X. Guo, B. Zhu, L.F. Polanía, C. Boncelet, and K.E. Barner. Group-level emotion recognition using
 612 hybrid deep models based on faces, scenes, skeletons and visual attentions. In *Proceedings of the*
 613 *20th ACM international conference on multimodal interaction*, pp. 635–639, 2018.

614

615 J.A. Hall, J.A. Harrigan, and R. Rosenthal. Nonverbal behavior in clinician—patient interaction.
 616 *Applied and preventive psychology*, 4(1):21–37, 1995.

617

618 J. Han, L. Xie, J. Liu, and X. Li. Personalized broad learning system for facial expression. *Multi-
 619 media Tools and Applications*, 2020.

620 D. Hayashi, S.D.L. Carvalho, P.A.B. Ribeiro, R.C.M. Rodrigues, T.M. São-João, K. Lavoie, S. Ba-
 621 con, and M. E. Cornelio. Methods to assess ambivalence towards food and diet: a scoping review.
 622 *Journal of Human Nutrition and Dietetics*, 36(5):2010–2025, 2023.

623

624 K. He, X. Zhang, S.g Ren, and J. Sun. Deep residual learning for image recognition. In *CVPR*,
 625 2016.

626

627 Z. He, Z. Li, F. Yang, L. Wang, J. Li, C. Zhou, and J. Pan. Advances in multimodal emotion
 628 recognition based on brain–computer interfaces. *Brain sciences*, 10(10):687, 2020.

629 M.J. Heisel and M. Mongrain. Facial expressions and ambivalence: Looking for conflict in all the
 630 right faces. *Journal of Nonverbal Behavior*, 28:35–52, 2004.

631

632 S. Hershey, S. Chaudhuri, D.P.W. Ellis, J.F. Gemmeke, A. Jansen, R.C. Moore, M. Plakal, D. Platt,
 633 R.A. Saurous, B. Seybold, M. Slaney, R.J. Weiss, and K.W. Wilson. Cnn architectures for large-
 634 scale audio classification. In *ICASSP*, 2017.

635

636 Z.P. Hohman, W.D. Crano, and E.M. Niedbala. Attitude ambivalence, social norms, and behavioral
 637 intentions: Developing effective antitobacco persuasive communications. *Psychology of Addictive
 Behaviors*, 30(2):209, 2016.

638

639 S. Hornstein, K. Zantvoort, U. Lueken, B. Funk, and K. Hilbert. Personalization strategies in dig-
 640 ital mental health interventions: a systematic review and conceptual framework for depressive
 641 symptoms. *Frontiers in digital health*, 5:1170002, 2023.

642

643 G. M. Jacob and B. Stenger. Facial action unit detection with transformers. In *CVPR*, 2021.

644

645 D. Jiang, L. Yan, and F. Mayrand. Emotion expressions and cognitive impairments in the elderly:
 646 review of the contactless detection approach. *Frontiers in Digital Health*, 6:1335289, 2024.

647

H. Jin. A comparative analysis of single and multi-modality-based emotion recognition for disease
 648 prevention. In *International Conference on Artificial Intelligence and Communication (ICAIC)*,
 649 volume 185, pp. 323, 2024.

648 R. Khanna, N. Robinson, M. O'Donnell, H. Eyre, and E. Smith. Affective computing in psychother-
 649 apy. *Advances in Psychiatry and Behavioral Health*, 2(1):95–105, Sep 2022.
 650

651 D. Kollias. Multi-label compound expression recognition: C-expr database & network. In *CVPR*,
 652 2023.

653 D. Kollias and S. Zafeiriou. Expression, affect, action unit recognition: Aff-wild2, multi-task learn-
 654 ing and arcface. *CoRR*, 2019.
 655

656 D. Kollias, P. Tzirakis, A. S. Cowen, S. Zafeiriou, I. Kotsia, E. Granger, M. Pedersoli, S. L. Bacon,
 657 A. Baird, C. Gagne, C. Shao, G. Hu, S. Belharbi, and M. H. Aslam. Advancements in Affective
 658 and Behavior Analysis: The 8th ABAW Workshop and Competition. 3 2025. doi: 10.6084/m9.
 659 figshare.28524563.v4.

660 J. Kossaifi, R. Walecki, Y. Panagakis, J. Shen, M. Schmitt, F. Ringeval, J. Han, V. Pandit, A. Toisoul,
 661 B. Schuller, et al. Sewa db: A rich database for audio-visual emotion and sentiment research in
 662 the wild. *TPAMI*, 43(3):1022–1040, 2019.
 663

664 K. Kraack. A multimodal emotion recognition system: Integrating facial expressions, body move-
 665 ment, speech, and spoken language. *CoRR*, abs/2412.17907, 2024.

666 S. Labb  , I. Colmegna, V. Valerio, V.G. Boucher, S. Pel  ez, A.I. Dragomir, C. Laurin, E.M. Hazel,
 667 S.L. Bacon, and K.L. Lavoie. Training physicians in motivational communication to address
 668 influenza vaccine hesitation: a proof-of-concept study. *Vaccines*, 10(2):143, 2022.
 669

670 I. Lee, E. Lee, and S.B. Yoo. Latent-ofer: Detect, mask, and reconstruct with latent vectors for
 671 occluded facial expression recognition. In *ICCV*, 2023.

672 S. Li and W. Deng. Deep emotion transfer network for cross-database facial expression recognition.
 673 In *ICPR*, 2018.
 674

675 S. Li, W. Deng, and J. Du. Reliable crowdsourcing and deep locality-preserving learning for expres-
 676 sion recognition in the wild. In *CVPR*, 2017.
 677

678 J. Liang, D. Hu, and J. Feng. Do we really need to access the source data? source hypothesis transfer
 679 for unsupervised domain adaptation. In *ICML*, 2020.

680 B. Lin, Y. Ye, B. Zhu, J. Cui, M. Ning, P. Jin, and L. Yuan. Video-llava: Learning united visual
 681 representation by alignment before projection, 2024.

682

683 C. Liu, X. Zhang, X. Liu, T. Zhang, L. Meng, Y. Liu, Y. Deng, and W. Jiang. Facial expression
 684 recognition based on multi-modal features for videos in the wild. In *CVPR*, 2023a.

685 D. Liu, H. Zhang, and P. Zhou. Video-based facial expression recognition using graph convolutional
 686 networks. In *ICPR*, 2021a.

687

688 H. Liu, R. An, Z. Zhang, B. Ma, W. Zhang, Y. Song, Y. Hu, W. Chen, and Y. Ding. Norface:
 689 Improving facial expression analysis by identity normalization. *ECCV*, 2024a.

690

691 X. Liu, L. Jin, X. Han, J. Lu, J. You, and L. Kong. Identity-aware facial expression recognition in
 692 compressed video. In *ICPR*, 2021b.

693

694 Y. Liu, W. Wang, Ch. Feng, H. Zhang, Z. Chen, and Y. Zhan. Expression snippet transformer for
 695 robust video-based facial expression recognition. *Pattern Recognition*, 138:109368, 2023b.

696

697 Y. Liu, Y. Zhang, and Y. Wang. Application of deep learning-based image processing in emotion
 698 recognition and psychological therapy. *Traitement du Signal*, 41(6):2923, 2024b.

699

700 H. Lokhande, C. Garware, T. Kudale, and R. Kumar. Personalized well-being interventions (pwis):
 701 A new frontier in mental health. In *Affective Computing for Social Good: Enhancing Well-being,
 Empathy, and Equity*, pp. 183–200. 2024.

701

I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In *ICLR*, 2017.

702 C. Luo, S. Song, W. Xie, L. Shen, and H. Gunes. Learning multi-dimensional edge feature-based
 703 AU relation graph for facial action unit recognition. In *IJCAI*, 2022.

704

705 N.E. MacDonald. Vaccine hesitancy: Definition, scope and determinants. *Vaccine*, 33(34):4161–
 706 4164, 2015.

707

708 Y. Maki, H. Yoshida, T. Yamaguchi, and H. Yamaguchi. Relative preservation of the recognition of
 709 positive facial expression “happiness” in alzheimer disease. *International Psychogeriatrics*, 25
 710 (1):105–110, 2013.

711

712 J.K. Manuel and T.B. Moyers. The role of ambivalence in behavior change. *Addiction*, 111(11):
 1910–1912, November 2016.

713

714 J. Mao, R. Xu, X. Yin, Y. Chang, B. Nie, A. Huang, and Y. Wang. Poster++: A simpler and stronger
 715 facial expression recognition network. *Pattern Recognition*, pp. 110951, 2024.

716

717 H.P. McDonald, A.X. Garg, and R.B. Haynes. Interventions to enhance patient adherence to medi-
 718 cation prescriptions: scientific review. *Jama*, 288(22):2868–2879, 2002.

719

720 S. Michie, M. Richardson, M. Johnston, C. Abraham, J. Francis, W. Hardeman, M.P. Eccles, J. Cane,
 721 and C.E. Wood. The behavior change technique taxonomy (v1) of 93 hierarchically clustered
 722 techniques: building an international consensus for the reporting of behavior change interven-
 723 tions. *Annals of behavioral medicine*, 46(1):81–95, 2013a.

724

725 S. Michie, R. West, and B. Spring. Moving from theory to practice and back in social and health
 726 psychology. 2013b.

727

728 W.R. Miller and G.S. Rose. Motivational interviewing and decisional balance: contrasting responses
 729 to client ambivalence. *Behavioural and cognitive psychotherapy*, 43(2):129–141, 2015.

730

731 J.A. Miranda Calero, L. Gutiérrez-Martín, E. Rituerto-González, E. Romero-Perales, J.M. Lanza-
 732 Gutiérrez, C. Peláez-Moreno, and C. López-Ongil. Wemac: Women and emotion multi-modal
 733 affective computing dataset. *Scientific data*, 11(1):1182, 2024.

734

735 A. Mollahosseini, B. Hassani, and M. H. Mahoor. Affectnet: A database for facial expression,
 736 valence, and arousal computing in the wild. *IEEE Trans. Affect. Comput.*, 10(1):18–31, 2019.

737

738 S. Murtaza, S. Belharbi, M. Pedersoli, and E. Granger. A realistic protocol for evaluation of weakly
 739 supervised object localization. In *WACV*, 2025.

740

741 J. Nasimzada, J. Kleesiek, K. Herrmann, A. Roitberg, and C. Seibold. Towards synthetic data gen-
 742 eration for improved pain recognition in videos under patient constraints. *CoRR*, abs/2409.16382,
 743 2024.

744

745 A. O’Donnell, M. Addison, L. Spencer, H. Zurhold, M. Rosenkranz, R. McGovern, E. Gilvarry,
 746 M.-S. Martens, U. Verthein, and E. Kaner. Which individual, social and environmental influences
 747 shape key phases in the amphetamine type stimulant use trajectory? a systematic narrative review
 748 and thematic synthesis of the qualitative literature. *Addiction*, 114(1):24–47, 2019.

749

750 C. Ortiz, T. López-Cuadrado, A. Ayuso-Álvarez, C. Rodríguez-Blázquez, and I. Galán. Co-
 751 occurrence of behavioural risk factors for non-communicable diseases and mortality risk in spain:
 752 a population-based cohort study. *BMJ open*, 15(1):e093037, 2025.

753

754 M. Pantic and L.J.M. Rothkrantz. Toward an affect-sensitive multimodal human-computer interac-
 755 tion. *Proceedings of the IEEE*, 91(9):1370–1390, 2003.

756

757 L. Pepa, L. Spalazzi, M. Capecci, and M. G. Ceravolo. Automatic emotion recognition in clinical
 758 scenario: a systematic review of methods. *IEEE Transactions on Affective Computing*, 14(2):
 759 1675–1695, 2021.

760

761 S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea. MELD: A multimodal
 762 multi-party dataset for emotion recognition in conversations. In *Conference of the Association for
 763 Computational Linguistics*, pp. 527–536, 2019.

756 R. G. Praveen and Ja. Alam. Inconsistency-aware cross-attention for audio-visual fusion in dimen-
 757 sional emotion recognition. *CoRR*, abs/405.12853, 2024a.
 758

759 R. G. Praveen, E. Granger, and P. Cardinal. Cross attentional audio-visual fusion for dimensional
 760 emotion recognition. In *International Conference on Automatic Face and Gesture Recognition*
 761 (*FG 2021*), 2021.

762 R. G. Praveen, P. Cardinal, and E. Granger. Audio-visual fusion for emotion recognition in the
 763 valence-arousal space using joint cross-attention. *IEEE Transactions on Biometrics, Behavior,*
 764 *and Identity Science*, 5(3):360–373, 2023.

765 R.G. Praveen and J. Alam. Recursive joint cross-modal attention for multimodal fusion in dimen-
 766 sional emotion recognition. In *ABAW workshop at CVPR*, 2024b.

767 A. Radford, J. Wook Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever. Robust speech
 768 recognition via large-scale weak supervision. In *ICLM*, 2023.

769 N. Richet, S. Belharbi, H. Aslam, O. Zeeshan, A. L. Koerich, M. Pedersoli, S. Bacon, and
 770 E. Granger. Textualized and feature-based models for compound multimodal emotion recognition
 771 in the wild. In *ABAW workshop at ECCV*, 2024.

772 F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. Introducing the recola multimodal corpus
 773 of remote collaborative and affective interactions. In *International conference and workshops on*
 774 *automatic face and gesture recognition (FG)*, pp. 1–8, 2013.

775 E. Sánchez-Lozano, G. Tzimiropoulos, and M. F. Valstar. Joint action unit localisation and intensity
 776 estimation through heatmap regression. In *BMVC*, 2018.

777 D. Sejdinovic, B. Sriperumbudur, A. Gretton, and K. Fukumizu. Equivalence of distance-based and
 778 rkhs-based statistics in hypothesis testing. *The annals of statistics*, pp. 2263–2291, 2013.

779 M. Sharafi, S. Belharbi, H.B. Salem, A. Etemad, A.L. Koerich, M. Pedersoli, S. Bacon, and
 780 E. Granger. Personalized feature translation for expression recognition: An efficient source-free
 781 domain adaptation method. *CoRR*, abs/2508.09202, 2025a.

782 M. Sharafi, E. Ollivier, M.O. Zeeshan, S. Belharbi, M. Pedersoli, A.L. Koerich, S. Bacon, and
 783 E. Granger. Disentangled source-free personalization for facial expression recognition with neu-
 784 tral target data. In *International Conference on Automatic Face and Gesture Recognition (FG)*,
 785 2025b.

786 N.A. Sharma, A.S. Ali, and M.A. Kabir. A review of sentiment analysis: tasks, applications, and
 787 deep learning techniques. *International journal of data science and analytics*, 19(3):351–388,
 788 2025.

789 M. H. Siddiqi, I. Ahmad, Y. Alhwaiti, and F. Khan. Facial expression recognition for healthcare
 790 monitoring systems using neural random forest. *IEEE Journal of Biomedical and Health Infor-*
 791 *matics*, 2024.

792 S. Sinha, S.Kr. Mishra, and S. Bilgaiyan. Emotion analysis to provide counseling to students fighting
 793 from depression and anxiety by using cctv surveillance. In *Machine Learning and Information*
 794 *Processing: Proceedings of ICMLIP 2019*, pp. 81–94, 2020.

795 B. Subramanian, J. Kim, M. Maray, and A. Paul. Digital twin model: A real-time emotion recogni-
 796 tion system for personalized healthcare. *IEEE Access*, 10:81155–81165, 2022.

797 A. Suraj, A. S Kaushik, and K. Bai. Patient monitoring using emotion recognition. *International*
 798 *Journal for Research in Applied Science and Engineering Technology*, 10(8):1197–1201, 2022.

799 I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
 800 in deep learning. In *ICML*, 2013.

801 A.D. Vairamani. *Advancements in Multimodal Emotion Recognition: Integrating Facial Expressions*
 802 *and Physiological Signals*, pp. 217–240. Cham, 2024.

810 M.J. Van Gent, M.C. Onwezen, R.J. Renes, and M. Handgraaf. Betwixt and between: A systematic
 811 review on the role of ambivalence in environmental behaviours. *Journal of Environmental*
 812 *Psychology*, 97:102311, 2024.

813 B. Voisard, A.I. Dragomir, V.G. Boucher, G. Szczepanik, Simon L. Bacon, and K.L. Lavoie. Training
 814 physicians in motivational communication: An integrated knowledge transfer study protocol.
 815 *Health Psychology*, 2024.

816 P. Waligora, H. Aslam, O. Zeeshan, S. Belharbi, A. L. Koerich, M. Pedersoli, S. Bacon, and
 817 E. Granger. Joint multimodal transformer for emotion recognition in the wild. In *ABAW workshop*
 818 *at CVPR*, 2024.

819 S. Walter, S. Gruss, H. Ehleiter, J. Tan, H.C. Traue, P. Werner, A. Al-Hamadi, S. Crawcour, A.O.
 820 Andrade, and G. Moreira da Silva. The biovid heat pain database data for the advancement and
 821 systematic validation of an automated pain recognition system. In *International Conference on*
 822 *Cybernetics (CYBCO)*, pp. 128–131, 2013.

823 J. Wang and L. Kawka. Gimelive: Towards interpretable facial emotion classification. *CoRR*,
 824 abs/2402.15662, 2024.

825 Y. Wang, S. Yan, Y. Liu, W. Song, J. Liu, Y. Chang, X. Mai, X. Hu, W. Zhang, and Z. Gan. A survey
 826 on facial expression recognition of static and dynamic emotions. *CoRR*, abs/2408.15777, 2024.

827 B. Williams. *Practical human behaviour change for the health and welfare of animals*. 2024.

828 Z. Wu and J. Cui. La-net: Landmark-aware learning for reliable facial expression recognition under
 829 label noise. In *ICCV*, 2023.

830 F. Xue, Q. Wang, and G. Guo. Transfer: Learning relation-aware facial expression representations
 831 with transformers. In *ICCV*, 2021.

832 F. Xue, Q. Wang, Z. Tan, Z. Ma, and G. Guo. Vision transformer with attentive pooling for robust
 833 facial expression recognition. *IEEE Transactions on Affective Computing*, 2022.

834 J. Yan, P. Li, C. Du, K. Zhu, X. Zhou, Y. Liu, and J. Wei. Multimodal emotion recognition based on
 835 facial expressions, speech, and body gestures. *Electronics (2079-9292)*, 13(18), 2024.

836 S. Yang, J. Van de Weijer, L. Herranz, and S. Jui. Exploiting the intrinsic neighborhood structure
 837 for source-free domain adaptation. *NeurIPS*, 2021.

838 M.O. Zeeshan, M.H. Aslam, S. Belharbi, A.L. Koerich, M. Pedersoli, S. Bacon, and E. Granger.
 839 Subject-based domain adaptation for facial expression recognition. In *International Conference*
 840 *on Automatic Face and Gesture Recognition (FG)*, 2024.

841 Muhammad Osama Zeeshan, Marco Pedersoli, Alessandro Lameiras Koerich, and Eric Grange.
 842 Progressive multi-source domain adaptation for personalized facial expression recognition. *CoRR*,
 843 2025.

844 D. Zeng, Z. Lin, X. Yan, Y. Liu, F. Wang, and B. Tang. Face2exp: Combating data biases for facial
 845 expression recognition. In *CVPR*, 2022.

846 C. Zhang, H. Liu, Y. Deng, B. Xie, and Y. Li. Tokenhpe: Learning orientation tokens for efficient
 847 head pose estimation via transformers. In *CVPR*, 2023a.

848 S. Zhang, Z. Zhao, and C. Guan. Multimodal continuous emotion recognition: A technical report
 849 for abaw5. In *ABAW workshop at CVPR*, 2023b.

850 Y. Zhang, R. Zhao, W. Dong, B.-G. Hu, and Q. Ji. Bilateral ordinal relevance multi-instance regres-
 851 sion for facial action unit intensity estimation. In *CVPR*, 2018.

852 S. Zhao, G. Jia, J. Yang, G. Ding, and K. Keutzer. Emotion recognition from multiple modalities:
 853 Fundamentals and methodologies. *IEEE Signal Processing Magazine*, 38(6):59–73, 2021.

854 C. Zheng, M. Mendieta, and C. Chen. POSTER: A pyramid cross-fusion transformer network for
 855 facial expression recognition. In *ICCVw*, 2023.

864

865

866

867

Appendix

868

869

870

Table of Contents

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

A To Reviewers: Please Read Before Downloading BAH Dataset	17
B Related Work	18
C BAH Dataset Limitations	20
D BAH Dataset File Structure	21
E BAH Data Collection Web-platform	21
F BAH Dataset Diversity	22
G Demographics Analysis of Train, Validation, and Test Sets	29
H Analysis of Annotators Cues	32
I BAH Dataset Annotation Codebook	34
J Baseline Results	40
J.1 Visual Modality: Cropped Faces vs Full Frame vs Head-pose Features	40
J.2 Supervised Learning Cases (Followup from Main paper)	40
J.3 Zero-shot Inference: Multimodal Large Language Models (M-LLMs)	42
J.4 Personalization using Domain Adaptation	44

A TO REVIEWERS: PLEASE READ BEFORE DOWNLOADING BAH DATASET

You can directly download BAH for review purposes only: Via our newly installed private and anonymous server at our university through this link <https://142.137.245.13/index.php/s/MyY2GyzBwjNXFLq>. For the first time usage, please accept the security certificate on your internet browser before proceeding – we are working to fix that. If this fails, please use the second option.

Please use this password to unzip the file “BAH_DB-shared-public-no-comp-ICLR2026.zip” (and “data.zip”): *@ICRL_oSY5QhGTHH5ckAf3qKCF_2026_Brazil*

For access issues, please reach out to the ICLR organizers so we can help you.

To ensure that we are compliant with our ethical requirements we are asking reviewers to read the “0_Read_before_downloading_data.pdf” (which is in the root of the files pointed by the download link of BAH dataset) before downloading the dataset. If you agree to the terms, please proceed to the dataset download. Here is the content of the file “0_Read_before_downloading_data.pdf”:

“
 To be consistent with the ethical requirements of the BAH dataset, by downloading the BAH dataset, you are agreeing to the following terms:
 o Purpose of the access: You are accessing the BAH dataset as a part of a blind review process for the ICLR 2026 purposes.
 o Use of the data: You will not redistribute, republish, or disseminate the BAH dataset.
 o Duration of the access: The dataset must be securely destroyed after the review process has been completed.
 If you have any concerns regarding these terms, please contact the ICLR 2026 organisers.”

918 The download link provides access to the dataset itself for review purposes. Additionally, we in-
 919 cluded other materials such as anonymized EULA, and request forms. We also include a presenta-
 920 tion to our data collection platform www.aerstudy.ca.
 921
 922

923 B RELATED WORK

925 This section provides works in affective computing related to behavioural science.
 926

927 a) Affect Recognition using Machine Learning:

928 **Basic Emotions.** An important line for ML research in affective computing is discrete emotion
 929 recognition in facial image (facial Expression Recognition – FER) (Bonnard et al., 2022; Liu et al.,
 930 2024a; Kollia et al., 2025; Lee et al., 2023; Mao et al., 2024; Wang et al., 2024; Wu & Cui, 2023;
 931 Xue et al., 2021; Zeng et al., 2022; Zheng et al., 2023). This usually involves classifying facial
 932 images into one of seven or eight basic emotions, such as ‘Happy’, ‘Sad’, and ‘Surprised’. Other
 933 works focus on videos (Liu et al., 2023a; 2021a;b; 2023b) as well. There has also a recent interest
 934 in designing robust FER methods that are interpretable (Belharbi et al., 2024a;b; Wang & Kawka,
 935 2024; Xue et al., 2022). They typically produce a heat map that points to relevant regions used by a
 936 model to perform a prediction. This is usually formulated as an attention map or a Class-Activation
 937 Map (CAM) (Choe et al., 2022; Murtaza et al., 2025). Other work aims to predict ordinal levels
 938 (i.e. ordered labels), including pain and stress estimation (Aslam et al., 2024; Chaptoukaev et al.,
 939 2023; Zeeshan et al., 2024; Nasimzada et al., 2024); a task that can be extremely useful in healthcare
 940 applications. Some datasets such as BioVid (Walter et al., 2013) rely on advanced and expensive
 941 modalities such as bio-signals to predict pain for instance. Dimension recognition of emotions,
 942 typically aims to estimate continuous valence and arousal values linked to emotions (Dong et al.,
 943 2024; Praveen & Alam, 2024a; Praveen et al., 2023; 2021). Finally, another task related in emotion
 944 recognition is Action Units (AUs) detection (Jacob & Stenger, 2021; Luo et al., 2022). It aims
 945 to predicting active AUs in the face under a multi-label classification framework. Other works go
 946 further to estimate the intensity of AUs (Fan et al., 2020; Zhang et al., 2018), or both (Sánchez-
 947 Lozano et al., 2018), a much more challenging task.

948 **Compound Emotions.** Real-world scenarios often present complex emotions that combine basic
 949 ones. There has been recent interest in building affective computing models to predict compound
 950 emotions, a case where a mixture of basic emotions are expressed (Kollia, 2023; Richet et al.,
 951 2024). These are show in several practical real-world application since such complex emotions oc-
 952 cur in daily interactions. However, they are more difficult to recognize as they are subtle, ambiguous,
 953 and resemble basic emotions. A recent specialized video-based dataset named C-EXPR-DB (Kol-
 954

Dataset	Affect	Modalities	Subject-based	Num. of participants	Num. of samples	Environment	Annotation
RAF-DB (Li et al., 2017)	Basic/compound emotions	Images	No	–	15,339 images	Wild	Image-level
AffectNet (Mollahosseini et al., 2019)	Basic emotions	Images	No	–	450k images	Wild	Image label
Aff-wild2 (Kollia & Zafeiriou, 2019)	Basic emotions, Valence/Arousal, Action Units	Video, audio	No	–	564 videos	Wild	Frame-level
MELD (Poria et al., 2019)	Basic emotions	Video, audio	No	–	13000 utterances	Actors/TV-show	Frame-level
C-EXPR-DB (Kollia, 2023)	Compound emotions	Video, audio	No	–	400 videos	Wild	Frame-level
UNBC-McMaster (Kollia & Zafeiriou, 2019)	Pain estimation	Frames	Yes	25	200 videos	Lab	Frame-level
BioVid (Walter et al., 2013)	Pain estimation	Frames, biomedical signals (GSR, ECG, and EMG at trapezius muscle)	Yes	90	18017 samples	Lab	Frame-level
RECOLA (Ringeval et al., 2013)	Apparent Emotional Reaction Recognition	physiology (electrocardiogram, and electrodermal activity)	Yes	46	46 videos	Lab	Frame-level
SEWA (Kossaifi et al., 2019)	Apparent Emotional Reaction Recognition	video, audio	Yes	398	1,990 videos	Wild	Frame-level
WEMAC (Miranda Calero et al., 2024)	Discrete, dimensional emotions	Physiology (blood volume pulse, galvanic skin response, and skin temperature), audio	Yes	100	100 records	Lab	Self-reported
StressID (Chaptoukaev et al., 2023)	Stress	EDA, ECG, Respiration, Face video, Speech	Yes	65	587 videos	Lab	Frame-level
SchiNet (Bishay et al., 2019)	Estimation of Symptoms of Schizophrenia	video	Yes	91	91 videos	Wild	Video-level
MESC (Chu et al., 2024)	Emotional Support Conversation	video, audio, text	Yes	–	1,019 dialogues	Wild	Utterance-level
IEMOCAP (Busso et al., 2008)	Improvisations of scripted scenarios for basic emotions	video, audio, text	Yes	10 actors	–	Lab/Actors	Frame-level
BAH (ours)	Ambivalence/Hesitancy	Video, audio, transcript	Yes	300	1,427 videos	Wild	Video-level, Frame-level, A/H cues

967 968 969 970 971 Table 7: Common affective computing datasets for emotion modelling in health contexts.

lias, 2023) has been constructed for the design/evaluation of models. The dataset accounts for the difficulty of the task as different modalities are required to better recognize compound emotions.

Despite the recent progress in affect modelling, Ambivalence/Hesitancy recognition is still unexplored in ML. A possible reason is the lack of specialized dataset for training and evaluation of ML models. As it is implicated in healthcare and interventions, A/H is a common topic in behavioural science (Hohman et al., 2016; Manuel & Moyers, 2016). A/H recognition is related to compound emotion recognition task where intention and attitudes are conflicted or in a in-between state, between willingness and resistance (MacDonald, 2015), or positive and negative affect (Armitage & Conner, 2000). This can manifest in how an individual expresses them self and can be recognized (Hayashi et al., 2023) in their facial expression, tone, verbal, and body language. As a result, A/H exhibits a multimodal nature that comes as the result of subtle interconnection between different cues. Unfortunately, such discord is extremely difficult to spot; a task that requires human training. This is a tedious and expensive procedure, leading to ineffective and less scalable eHealth interventions under limited resources. Assisting healthcare providers with automatic, reliable and inconspicuous tools to help them recognize A/H can have a major impact in improving eHealth interventions.

Our BAH dataset fills in the gap in the literature, and to provide an important resource to design/evaluate ML models for A/H recognition task. It is a video Q&A dataset from which we extract audiovisual information with transcripts, offering multiple modalities. The dataset is fully annotated by behaviour science experts at video- and frame-level. In addition, cues used by annotators to recognize A/H at each segment are provided. This includes facial and vocal expressions, body language, language in addition to highlighting where there is inconsistency between the modalities. As shown in Table 7, our BAH dataset is competitive compared to existing affective computing datasets in terms of modalities, number and diversity of participants, and annotations. While no dataset matches the specific focus on A/H in digital health interventions, datasets like MESC (Chu et al., 2024), SchiNet (Bishay et al., 2019), and IEMOCAP (Busso et al., 2008) contain videos from interviews with psychological relevance. Therefore, BAH provides an important asset for the ML community to begin research in A/H recognition.

b) Behavioural Science:

Health-Related Behaviour Change and Non-Communicable Diseases. High-risk health behaviours, such as tobacco use, physical inactivity, unhealthy diets, and harmful alcohol consumption, are responsible for the vast majority of non-communicable diseases (NCDs), which include cardiovascular disease, type 2 diabetes, cancer, and chronic respiratory illnesses. According to the World Health Organization (WHO) (Ortiz et al., 2025), NCDs account for approximately 74% of global deaths, and these outcomes are disproportionately influenced by modifiable behavioural factors. Evidence suggests that around 80% of chronic disease risk is attributable to these high-risk behaviours.

Consequently, health-related behaviour change has become a primary target for preventive and therapeutic interventions. Traditional methods, such as motivational interviewing (MI) and cognitive behavioural therapy (CBT), rely on face-to-face clinical interviews, which remain foundational to behavioural health practice (O'Donnell et al., 2019). These interactions provide unique opportunities for clinicians to detect ambivalence, hesitancy, and other complex affective states, often through subtle verbal and nonverbal cues (Hall et al., 1995). Despite the growing shift toward digital platforms, clinical interviews remain the gold standard for eliciting meaningful emotional and cognitive responses, insights that are essential to tailoring behaviour change strategies. Efforts to change health behaviours over the long term are inherently complex. Individuals often experience ambivalence and hesitancy, understood as fluctuating between intention and resistance, when attempting to adopt healthier lifestyles. In traditional healthcare contexts, providers rely on both verbal communication and non-verbal cues (e.g., tone, gestures, facial expressions) to recognize and address such motivational conflicts. This in-person interaction allows for nuanced support that can adapt to a patient's readiness for change (Davidson & Scholz, 2020). The purpose of developing multimodal A/H recognition systems is to capture and replicate this nuanced understanding of patient behaviour within digital health interventions, thereby supporting clinicians and scaling behavioural health care.

Multimodal Cues and the Detection of Complex Emotions. Identifying complex emotional states such as ambivalence, resistance, or hesitancy is crucial for tailoring behavioural interventions. Research in psychology and human-computer interaction has shown that complex emotional states,

1026 such as ambivalence, uncertainty, or defensiveness, are communicated through a combination of fa-
 1027 cial expressions, body posture, vocal tone, speech patterns, and physiological responses (Guo et al.,
 1028 2018; Pantic & Rothkrantz, 2003). In digital contexts, however, the absence of physical presence
 1029 makes this task more difficult. Recent research in psychology and computer science has focused on
 1030 the use of multimodal cues, such as facial expressions, voice tone, body posture, and physiological
 1031 responses, as proxies for emotional and motivational states (Kraack, 2024; Yan et al., 2024). These
 1032 cues can reveal underlying emotional conflict or uncertainty that might not be captured by self-
 1033 report alone. Studies have shown that combining multiple input channels (e.g., audio-visual data)
 1034 can enhance the accuracy of emotion recognition systems. For instance, multimodal datasets are be-
 1035 ing used to train models that detect affective states like confusion, frustration, and mixed emotions,
 1036 which are highly relevant in contexts such as education, mental health, and behaviour change. By
 1037 incorporating these data streams, researchers can better approximate the nuanced human capacity
 1038 for reading emotions, paving the way for emotionally aware systems (He et al., 2020; Zhao et al.,
 1039 2021).

1040 **Affective Computing and Personalized Digital Health Interventions** Affective computing, a sub-
 1041 field of artificial intelligence (AI) focused on recognizing, interpreting, and responding to human
 1042 emotions, holds promise for advancing personalized digital health interventions. By leveraging
 1043 emotion-aware algorithms, digital platforms can better understand users' psychological readiness
 1044 and tailor support accordingly (Lokhande et al., 2024; Vairamani, 2024). For example, interventions
 1045 that dynamically respond to detected signs of resistance or disengagement may improve user reten-
 1046 tion and behavioural outcomes. Incorporating affective computing into digital health technologies
 1047 also allows dynamic tailoring of content based on users' real-time affect, responsive dialogue, mim-
 1048 icking the adaptability found in face-to-face interactions. Recent advancements in conversational
 1049 agents, voice analysis, and facial expression recognition have made it possible for digital interven-
 1050 tions to adapt content delivery based on real-time emotional assessments (Khanna et al., 2022). This
 1051 not only improves user engagement but also enhances intervention effectiveness by ensuring mes-
 1052 sages are delivered in an emotionally congruent and contextually appropriate manner (Hornstein
 1053 et al., 2023).

1054 C BAH DATASET LIMITATIONS

1055 While BAH dataset offers a novel contribution to emotion recognition for digital behaviour change,
 1056 several limitations should be considered.

1057 **1) Data collection constraints.** The web-based platform occasionally experienced technical issues,
 1058 preventing some participants from completing all seven videos. As participants used their own
 1059 1060

```

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
  .
  └── cropped-aligned-faces
  └── Frames
  └── split
  └── split-frames
  └── transcription
  └── Videos
      └── BAH_dataset_documentation.pdf
      └── BAH_Dataset_EULA-2.pdf
      └── bah-video.csv
      └── extract_frames_from_videos.py
      └── extract_frames_from_videos.sh
      └── meta_data.yml
      └── readme.md
      └── version.txt
      └── video_annotation_transcript.yaml

```

Figure 4: File structure of the shared BAH dataset.

1080 devices in home settings, video and audio quality varied significantly despite clear instructions and
1081 testing. Response length was participant-determined, leading to high variability in content. Some
1082 environmental noise or visual distractions (e.g., background conversations, movement) were present
1083 in a subset of recordings.

1084 **2) Participant representation.** Although participants were recruited from nine Canadian provinces
1085 with diverse age and ethnic backgrounds, individuals from under-resourced areas or without reliable
1086 internet access were likely underrepresented. Gender identity was collected but not used in sampling,
1087 and no data on socioeconomic status was recorded. Digital literacy and access may have biased
1088 participation toward more tech-savvy individuals.

1089 **3) Multimodal and data balance issues.** The expressiveness of cues (facial, vocal, bodily, verbal)
1090 varied widely by participant, complicating consistent multimodal analysis. Though the dataset is
1091 balanced at the video level, frame-level imbalance exists (fewer A/H frames than non-A/H). Training
1092 strategies that account for class imbalance should be considered.

1094 D BAH DATASET FILE STRUCTURE

1095 Figure 4 shows the file structure of the shared BAH dataset. The file
1096 “BAH_dataset_documentation.pdf” contains the detailed documentation about all files/directory,
1097 including annotation structure.

1098 E BAH DATA COLLECTION WEB-PLATFORM

1100 Alongside the dataset files, we include a slide presentation of our “Automatic Expression Recog-
1101 nition” (AER) web-based platform (www.aerstudy.ca). The presentation is in the file “AER-web-
1102 platform.pdf”. Figure 5 shows an example of the platform.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

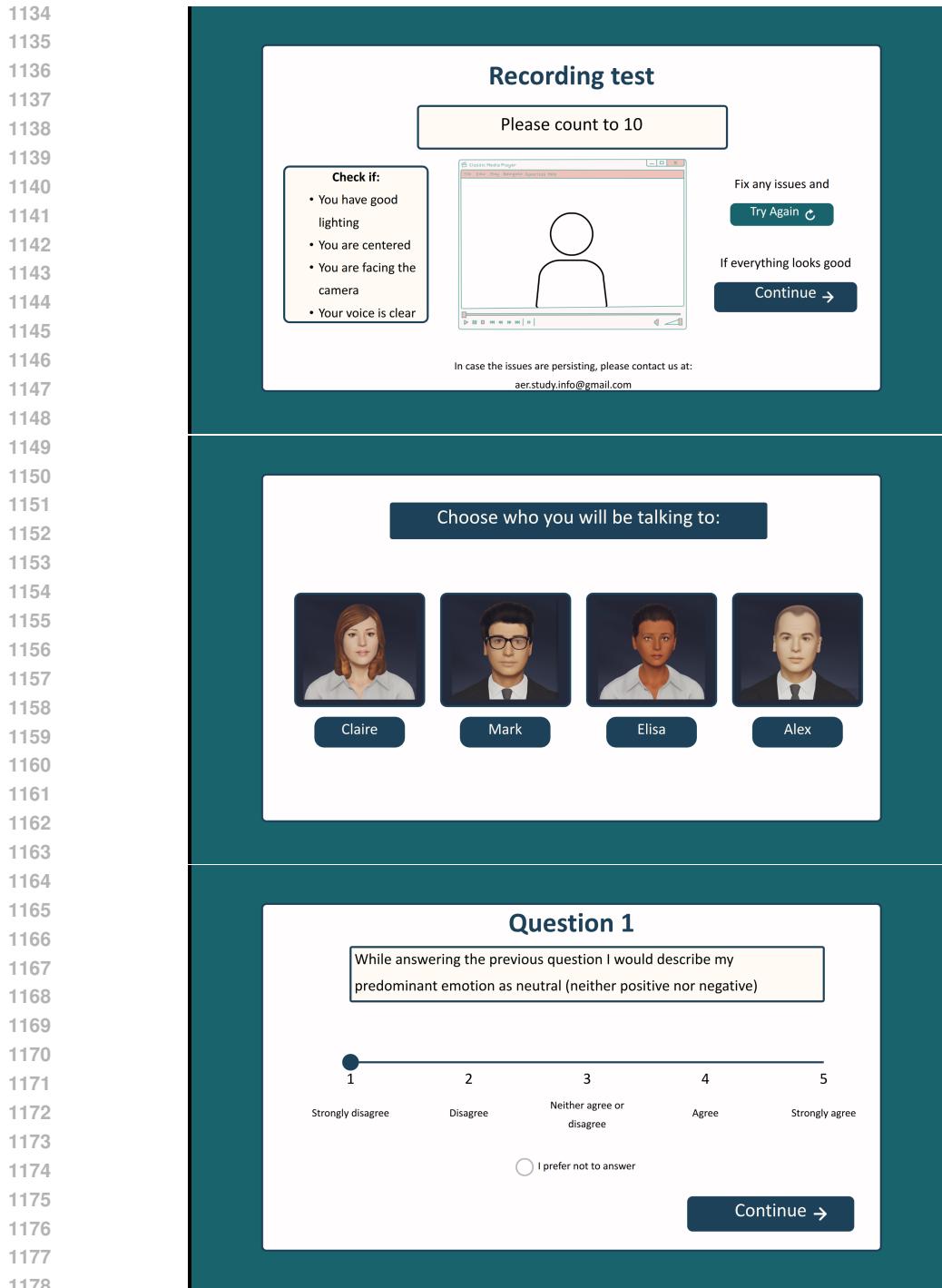


Figure 5: Examples taken from the platform to present our "Automatic Expression Recognition" (AER) web-based platform (www.aerstudy.ca).

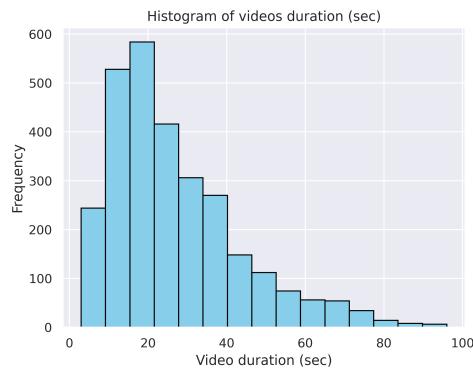
F BAH DATASET DIVERSITY

This section includes more statistics about BAH dataset to highlight its diversity. Figure 11 shows a general overview via a nutrition label. Overall, BAH dataset has significant diversity. It covers different Canadian provinces, age range, ethnicities, and male/female presence. It has a large number

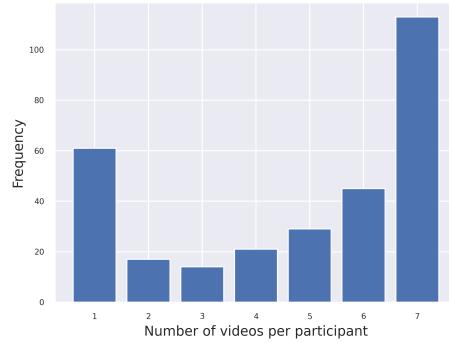
1188 of videos (1,427) where 778 videos contain A/H. Most asked questions elicited A/H, especially
 1189 question-4 (Ambivalent). In addition, since we have less control over the participants, and their
 1190 environment, the dataset is considered in-the-wild. On top of video and audio modality, we provide
 1191 audio transcript which has shown to be an important modality for A/H recognition. BAH is fully
 1192 annotated at video- and frame-level. Moreover, annotators report the used cues to recognize A/H
 1193 at each segment. All these properties make our dataset a realistic and relevant asset to design ML
 1194 model for the task of A/H recognition in videos.

1195 We include the following general information:
 1196

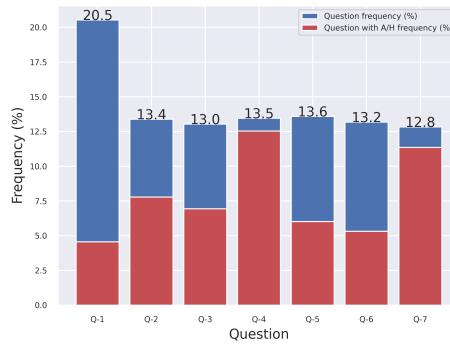
- 1197 • Videos durations distribution (Figure 6a).
- 1198 • Videos per participants distribution. (Figure 6b).
- 1199 • Questions and A/H distribution (Figure 6c).
- 1200 • A/H segments duration (Figure 7).
- 1201 • Participants sex distribution (Figure 6d).



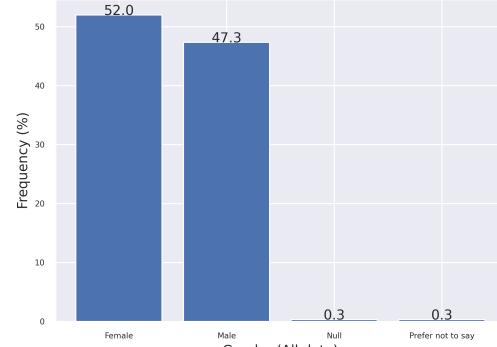
1205 (a) Videos duration histogram.
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216



1205 (b) Distribution of number of videos per participant.
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216



1205 (c) Distribution over 7 questions: Num. videos per
 1206 question (blue), Num. videos with A/H (red).
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216

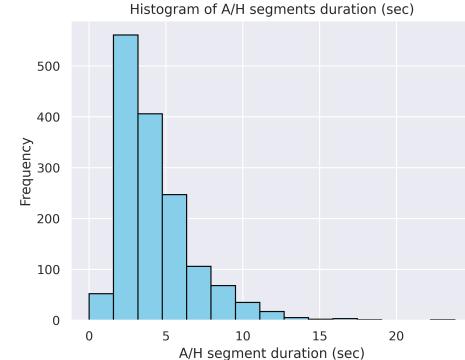


1205 (d) Sex distribution.
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216

1233 Figure 6: Video duration (a), and videos/participant (b), question distribution (c), and sex distribution (d) over BAH dataset.
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242

1243



1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

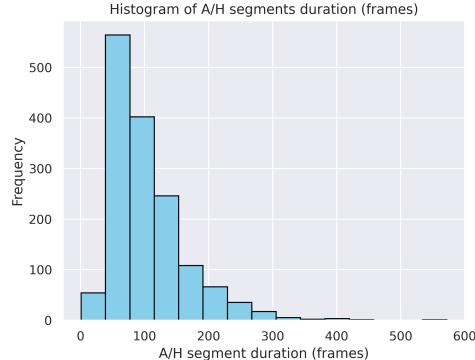
1291

1292

1293

1294

1295



(a) Distribution of A/H segment duration in seconds.

(b) Distribution of A/H segment duration in frames.

Figure 7: Distribution of A/H segment duration in seconds (a), and frames (b) over BAH dataset.

In addition, more demographics statistics are included as well:

- Participants' age distribution (Figure 8).
- Participants' age range distribution (Figure 9a).
- Distribution of Canada provinces where participants live (Figure 9b).
- Participants' simplified ethnicity distribution (Figure 10a).
- Participants' student-status distribution (Figure 10b).
- Participants' consent to use their data in challenges distribution (Figure 10c).
- Participants' consent to use their data in publications distribution (Figure 10d).
- **Participants' birth country distribution (Table 8).**

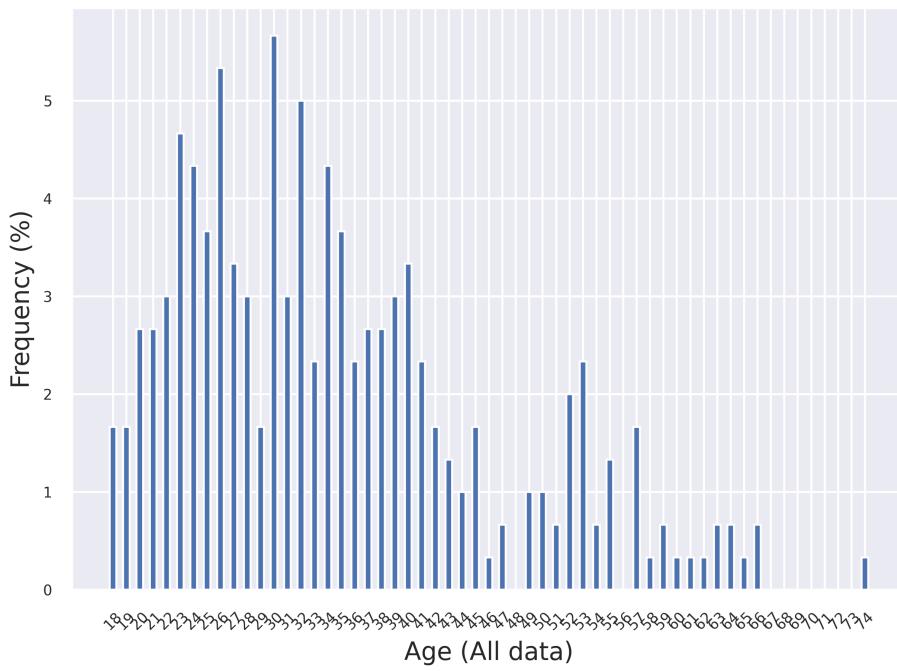
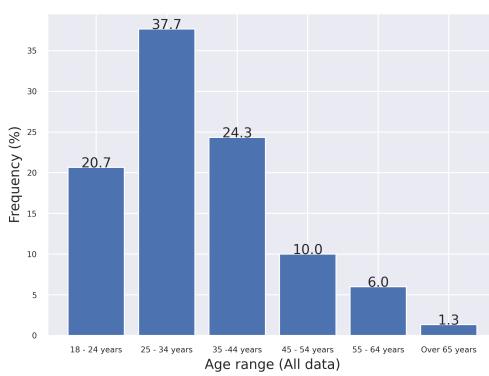
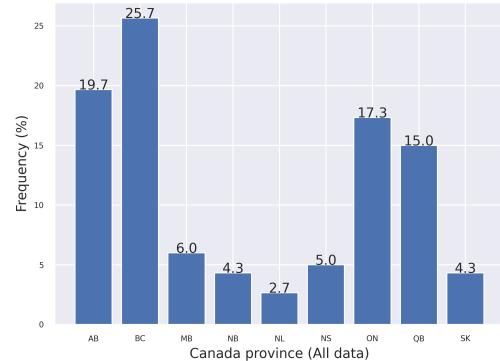


Figure 8: Participants' age distribution in BAH dataset.



(a) Participants' age range distribution.



(b) Distribution of Canada provinces where participants live.

Figure 9: Participants' age range (a), and where the provinces where they live (b) over BAH dataset. Name of provinces: 'Manitoba (MB)', 'Alberta (AB)', 'Nova Scotia (NS)', 'Newfoundland and Labrador (NL)', 'Saskatchewan (SK)', 'New Brunswick (NB)', 'Ontario (ON)', 'Quebec (QC)', 'British Columbia (BC)'.

1350

1351

1352

1353

1354

1355

1356

1357

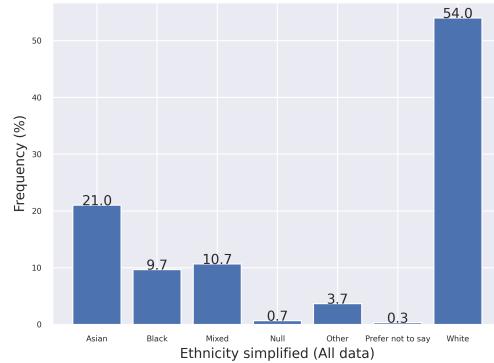
1358

1359

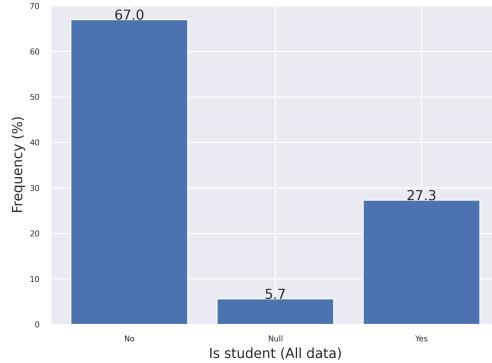
1360

1361

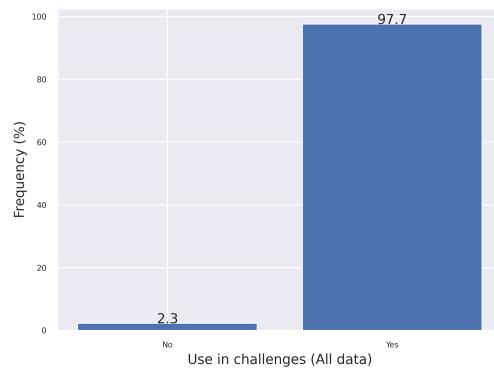
1362



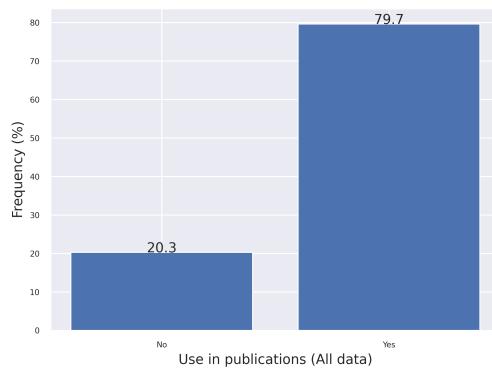
(a) Participants' simplified ethnicity distribution in BAH dataset.



(b) Participants' student-status distribution in BAH dataset.



(c) Participants' consent to use their data in challenges distribution in BAH dataset.



(d) Participants' consent to use their data in publications distribution in BAH dataset.

Figure 10: Distribution of participants' simplified ethnicity (a), their student-status (b), their consent to use their data in challenges (c), and publications (d) over BAH dataset.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413

	Birth country	Number of participants
1414		
1415	Algeria	1
1416	Australia	1
1417	Bangladesh	2
1418	Belize	1
1419	Bulgaria	1
1420	Canada	127
1421	China	8
1422	Colombia	1
1423	France	1
1424	Germany	3
1425	Ghana	1
1426	Hong Kong	1
1427	India	5
1428	Japan	1
1429	Kenya	1
1430	Macedonia	1
1431	New Zealand	1
1432	Nigeria	9
1433	Null	1
1434	Peru	1
1435	Philippines	6
1436	Russian Federation	1
1437	Saint Lucia	1
1438	South Africa	1
1439	Sri Lanka	2
1440	Taiwan	1
1441	Thailand	1
1442	Tunisia	1
1443	Turkey	2
1444	United Arab Emirates	1
1445	United Kingdom	6
1446	United States	3
1447	Vietnam	1

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 8: Distribution of participants' birth country in BAH dataset. Top-3 countries are in bold.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

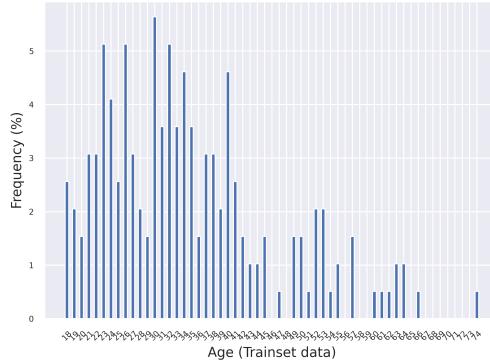
1511

BAH Dataset Facts	
Dataset	BAH (Behavioural Ambivalence/Hesitancy – A/H)
Nature of Dataset	A Dataset for Ambivalence/Hesitancy recognition in videos for participants recruited in Canada
Participants Country	Canada
Number of provinces in Canada	9
Provinces in Canada	'Manitoba (MB)', 'Alberta (AB)', 'Nova Scotia (NS)', 'Newfoundland and Labrador (NL)', 'Saskatchewan (SK)', 'New Brunswick (NB)', 'Ontario (ON)', 'Quebec (QC)', 'British Columbia (BC)'.
Number of participants	224
Number of videos	1,118 where 638 videos contains A/H
Video length	26.58 \pm 16.36 (seconds) with a minimum and maximum duration of 3 and 96 seconds
Total duration	8.26 hours where A/H duration is 1.5 hours
Total number of frames	714,005 where 131,103 frames contains A/H
Total number of A/H video segments	1,274
Length A/H video segment	4.25 \pm 2.47 seconds or 102.92 \pm 59.16 frames. The minimum and maximum A/H segment is 0.01 seconds (1 frame), and 23.8 seconds (572 frames)
Data capture web-platform	www.aerstudy.ca
<hr/>	
Motivation	
Summary	Behavioural Ambivalence/Hesitancy (BAH) is a dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data.
Original Authors	Redacted for anonymity reasons.
<hr/>	
Metadata	
URL	Redacted for anonymity reasons.
Keywords	Ambivalence/hesitancy, eHealth, digital health intervention, video, Deep Learning, Benchmark
Available participants meta-data	Age, birth country, Canada province where the participant lives, ethnicity, ethnicity simplified, sex, student status, consent to use recordings in publications
Video format	*.mp4
Ethical Review	Redacted for anonymity reasons.
License	Custom - for research purposes only.
How to request the data?	Fill in this form, sign, and upload the EULA - Redacted for anonymity reasons.
First release	2025
<hr/>	
Annotation	
Annotators	3 experts in behavioural science
Video- and frame-level	Label "1" for presence of A/H, "0", its absence
Cues provided by annotators for each A/H segment	Facial expressions, body language, audio and language in addition to highlighting where there is inconsistency between the modalities
<hr/>	
Data size	
All files zipped (*.zip)	8.3 GB

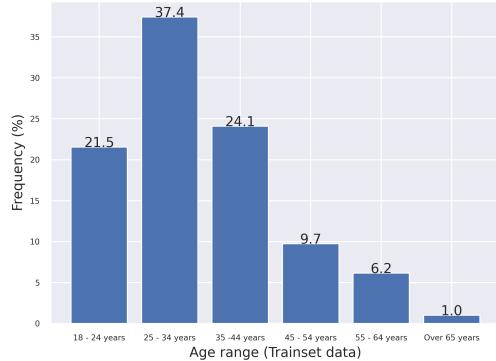
Figure 11: A data card styled (nutrition label) for BAH dataset.

1512 G DEMOGRAPHICS ANALYSIS OF TRAIN, VALIDATION, AND TEST SETS

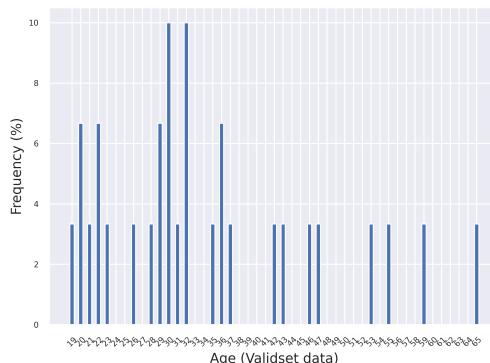
1514
 1515 We provide in Figure 12 and 13 relevant distributions of the splits train (195 participants), validation
 1516 and test (75 participants) sets in BAH dataset. The split participants-based where
 1517 videos of participant belong exclusively to one split. We ensure that all splits have similar distribution
 1518 in terms of 3 main factors that are deemed important in A/H variation across the population:
 1519 gender, age, and ethnicity. We also include provinces distribution in Figure 14.



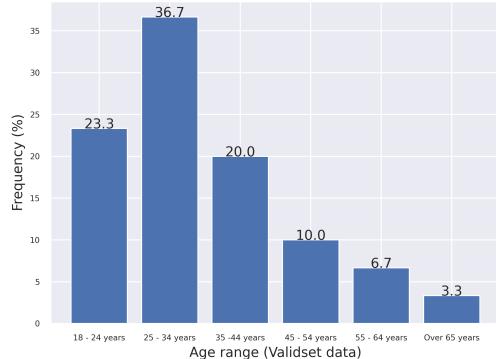
1520
 1521 (a) Train set split participants age distribution.
 1522



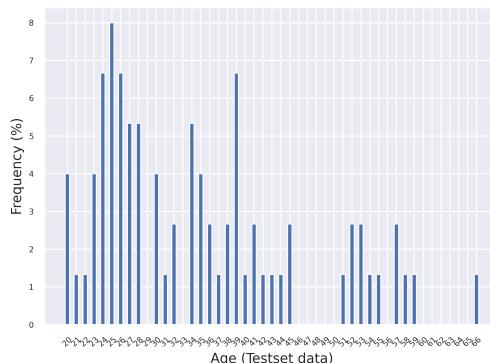
1523
 1524 (b) Train set split participants age-range distribution.
 1525



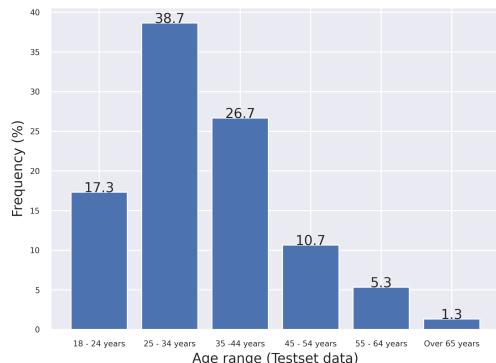
1526
 1527 (c) Validation set split participants age distribution.
 1528



1529
 1530 (d) Validation set split participants age-range distribution.
 1531



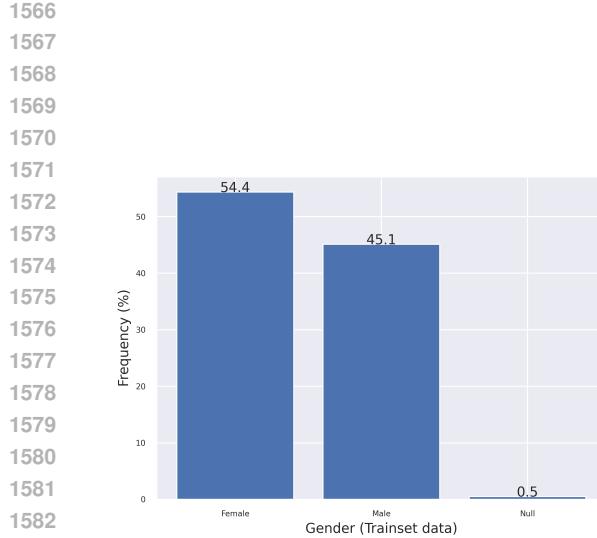
1532
 1533 (e) Test set split participants age distribution.
 1534



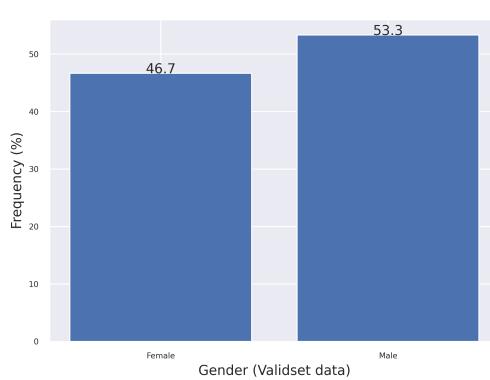
1535
 1536 (f) test set split participants age-range distribution.
 1537

1538 Figure 12: Participants age and age-range distribution across all splits (train, validation, and test) in
 1539 BAH dataset.
 1540

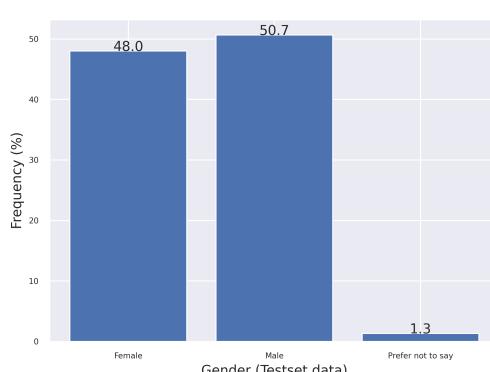
1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565



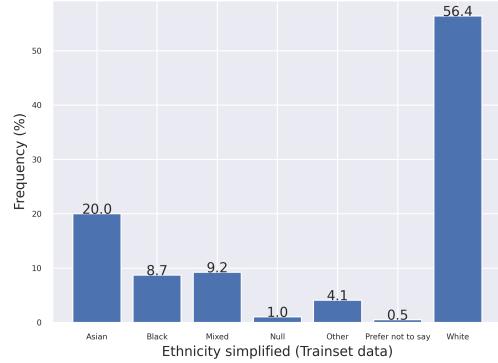
(a) Train set split participants sex distribution.



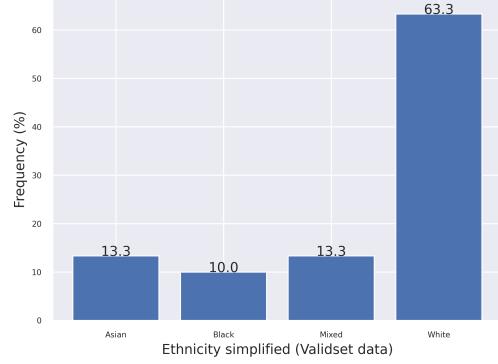
(c) Validation set split participants sex distribution.



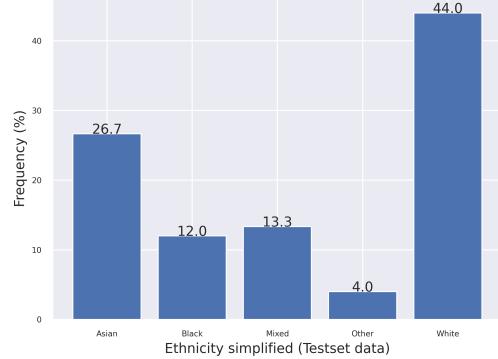
(e) Test set split participants sex distribution.



(b) Train set split participants simplified ethnicity distribution.



(d) Validation set split participants simplified ethnicity distribution.



(f) test set split participants simplified ethnicity distribution.

1614
1615
1616
1617
1618
1619

Figure 13: Participants sex and simplified ethnicity distribution across all splits (train, validation, and test) in BAH dataset.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

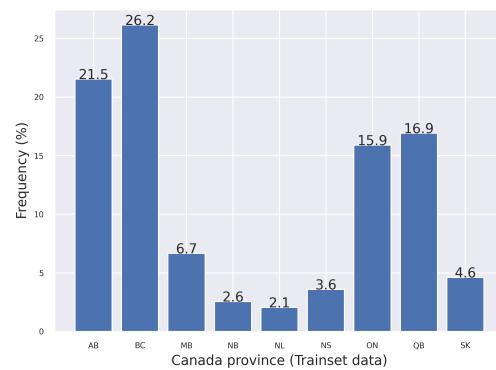
1641

1642

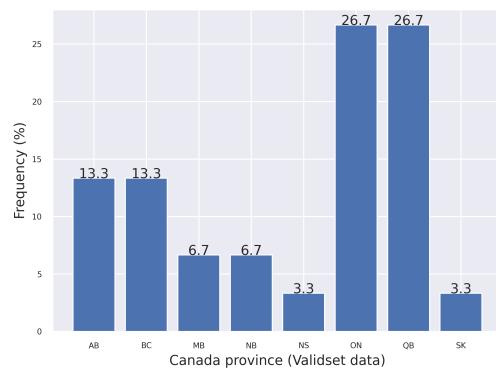
1643

1644

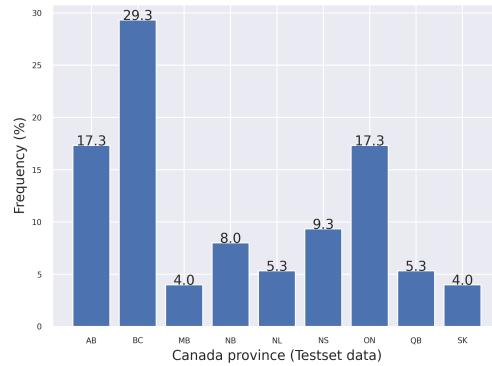
1645



(a) Train set split participants provinces distribution.



(b) Valid set split participants provinces distribution.



(c) Test set split participants provinces distribution.

Figure 14: Participants provinces distribution across all splits (train, validation, and test) in BAH dataset.

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674 H ANALYSIS OF ANNOTATORS CUES

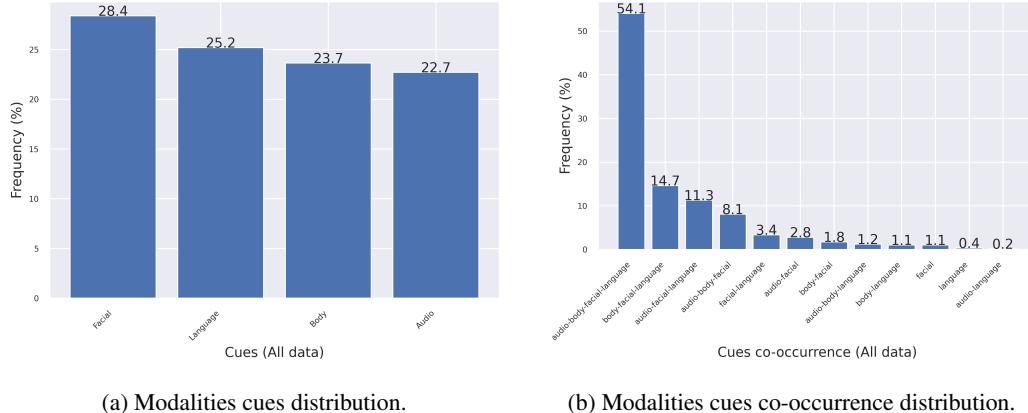
1675
 1676 Figure 15a shows the distribution of modalities used by annotators to assess the presence of A/H.
 1677 Overall, the four modalities contribution almost at the same rate in detecting A/H. Facial cues lead,
 1678 followed by language, then body and audio. This suggests that the four modalities are equally
 1679 important for A/H recognition. When looking to co-occurrence of these cues, we find that the four
 1680 cues at once dominates by 54.1%, followed by "body-facial-language" with 14.7%, and "audio-
 1681 facial-language". This suggest an adapted fusion of these four modalities is necessary to be able to
 1682 assess there is an affect between them.

1683 We include in Figure 16, 17 the distribution of cues used per modality. It shows that "Pause" is the
 1684 dominate cues used in audio modality; "Filler sound" for language; "Gaze" for facial; and "Shake"
 1685 for body.

1686 We also analyzed the inconsistencies between modalities in Figure 18a, 18b. The inconsistencies
 1687 between facial and language cues seem to be the lead by 42.6% of cases followed by language
 1688 and body with 26.6%. This could be used as priors to recognize the case of A/H cross-modalities.
 1689 When looking to co-occurrence, similarly, facial and language dominates alone with 21.4% of cases,
 1690 followed by facial-language and language-body with the same rate. Leveraging these statistics by
 1691 using them as constraints could help designing better A/H frameworks.

1692 A/H can also be present within a single modality alone making it detection much more difficult
 1693 compared to the case of cross-modality. Figure 19a shows that a large part of A/H cases fall into
 1694 the case of within-modality, which is also spread across all questions (Figure 19b). A dedicated
 1695 per-modality temporal modelling could help detect these cases.

1696 These aforementioned statistics show that recognizing A/H requires considering all four modalities,
 1697 and being able to detect affect conflict across pairs and higher combinations of modalities for the
 1698 case of cross-modality. Additionally, a better temporal modelling is required to detect A/H in the
 1699 case of within modality.



(a) Modalities cues distribution.

(b) Modalities cues co-occurrence distribution.

1715 Figure 15: Modalities distribution used by annotators in BAH dataset.
 1716

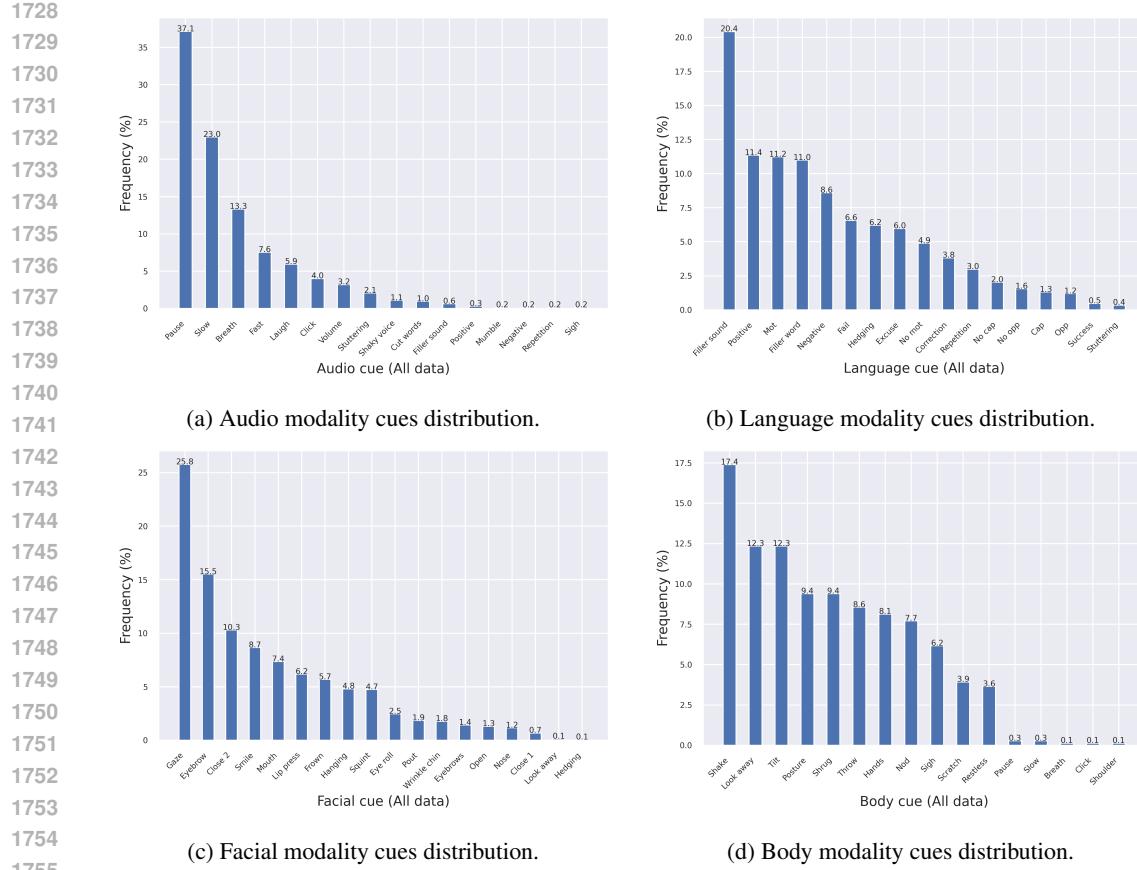


Figure 16: Per-modality cues distribution used by annotators in BAH dataset.

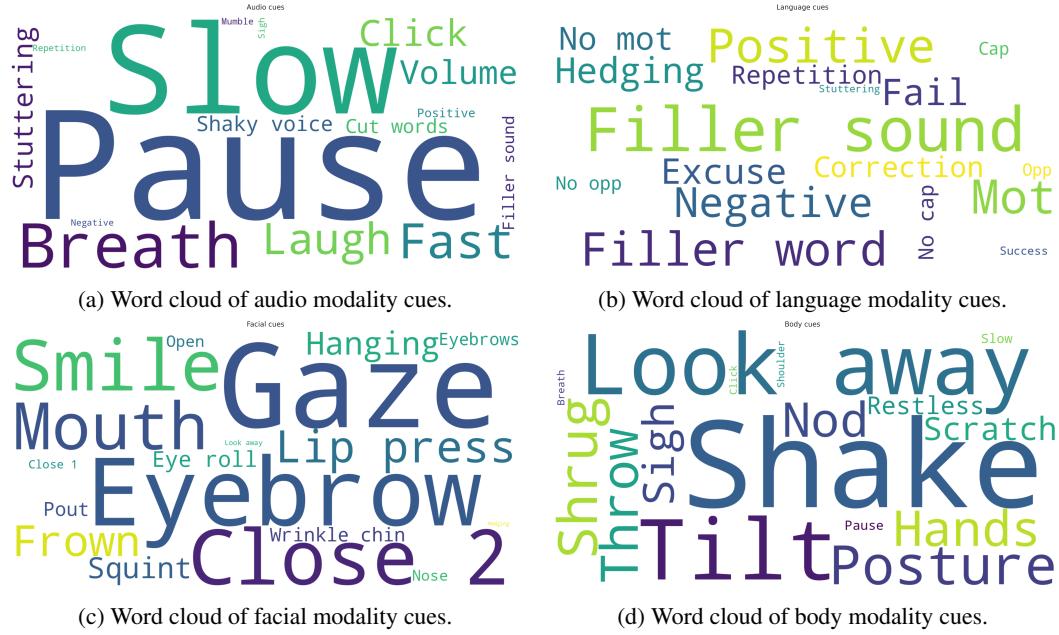


Figure 17: Word cloud of per-modality cues used by annotators in BAH dataset.

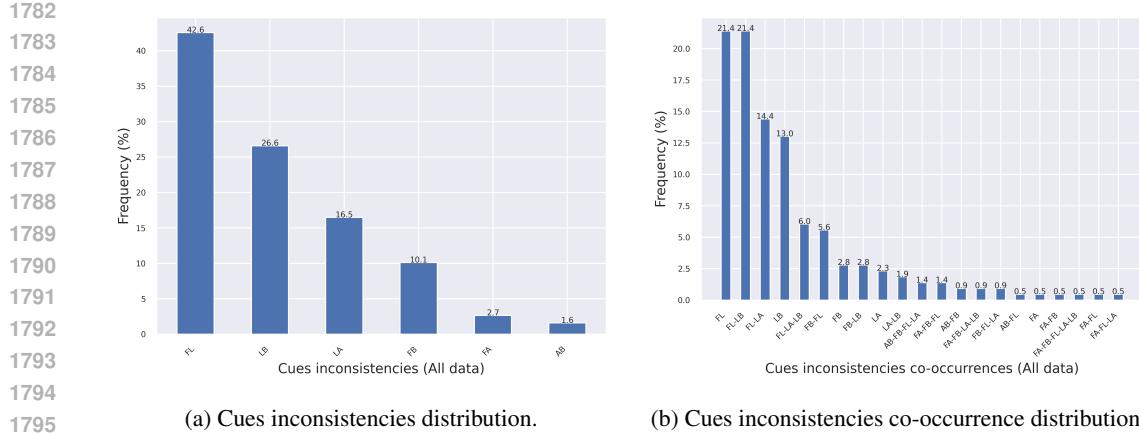
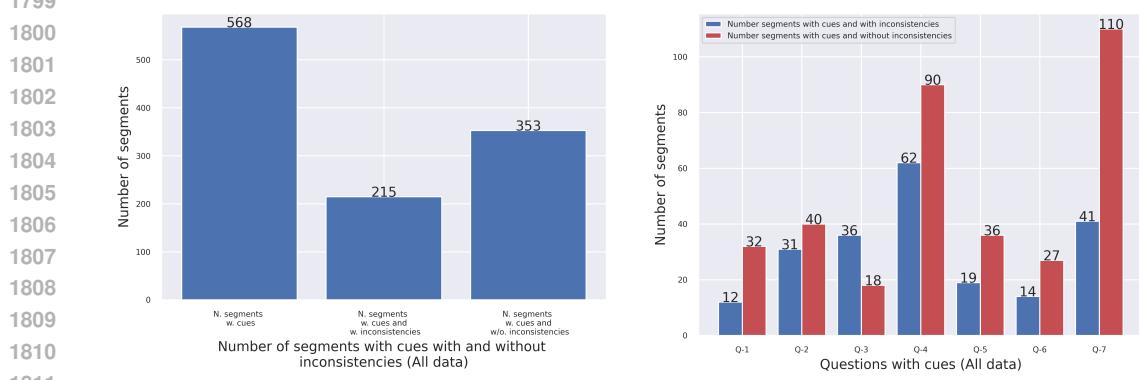


Figure 18: Cues inconsistencies and their co-occurrence distribution used by annotators in BAH dataset.



(a) Cues distribution with and without cross-modality inconsistencies over segments. (b) Cues distribution with and without cross-modality inconsistencies over questions.

I BAH DATASET ANNOTATION CODEBOOK

This section contains relevant information regarding our designed annotation codebook for A/H recognition. We provide the definitions of A/H and the types of cues (Table 9), as well as a more detailed description of the most relevant cues in each modality used to detect A/H, which include facial cues (Table 10), language cues (Table 11), audio cues (Table 12), body language cues (Table 13), and cross-modal inconsistency cues (Table 14). The codebook is a working document that continues to evolve in response to relevant insights emerging from expert annotations and contributions from behaviour change experts. Updates on the codebook will be made available and communicated upon request. This iterative approach aligns with established qualitative research practices, where coding frameworks are refined throughout the analysis process to better reflect the complexity and richness of the data (Bradley et al., 2007).

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849

1850	Term	Definition
1851	Ambivalence/Hesitancy	The simultaneous presence of competing positive and negative feelings, ideas, thoughts, or emotions towards one same object or goal. A state in which a person has not entirely made up their mind about doing something; when they aren't fully decided on how to act (towards a behaviour or object; not necessarily the goal behaviour; excluding towards language or answering questions)
1852	Facial Cues	Different motions of the muscles in the face. Facial expressions commonly occur around the mouth and eyes, including changes in a person's gaze. They can be used to assess a person's emotional state.
1853	Language Cues	Includes verbal/speech-based expressions of ambivalence or hesitancy. Some common verbal expressions can include the use of 'I want to... but...', 'mmmm', among others.
1854	Audio Cues	Changes in a person's non-verbal language, such as changes in tone, speed and pitch.
1855	Body Cues	Non-verbal signals that include gestures, body posture and movements. Some of the cues that can be annotated as body language are hand movements, head tilts, shoulders shrugging and sighs (chest movement).
1856	Cross-modal inconsistency Cues	Simultaneous incompatibility between two or more modalities or different types of cues. For example, this could be represented by someone saying 'yes' while shaking their head side to side.
1857		
1858		
1859		
1860		
1861		
1862		
1863		
1864		
1865		
1866		
1867		
1868		
1869		
1870		
1871		
1872		
1873		
1874		
1875		
1876		
1877		
1878		
1879		
1880		
1881		
1882		
1883		
1884		
1885		
1886		
1887		
1888		
1889		

Table 9: BAH dataset annotation codebook: definitions.

Facial cues	Definition
Upper Region	
Close 2	A change in the frequency with which someone blinks or closing one's eyes for a longer period (e.g., either keeping them closed, or blinking for a long time). This excludes normal blinking, it is annotated when there is a difference compared to the participants baseline. Closing of both eyes; "blinking" (with both eyes).
Close 1	Closing one eye at the time; includes winking. The duration of the wink is not relevant, it can be a quick wink or a longer one.
Squint	Partially closing one or both eyes. Significant or identifiable changes or contractions in the muscles around the outer or inner corners of the eyes. It might involve some changes in the eyebrows, forehead and cheeks. Includes squinting eyes, muscles contracting around the eyes.
Frown	To bring your eyebrows together (inner eyebrow) so that there are lines on your face above your eyes. Frown, forehead fold, small frown, tensed forehead, wrinkled forehead, furrowing brows, lowering inside corners of eyebrow
Eyebrow	Lowering/raising external parts of eyebrow(s) (or full eyebrow(s)). [i.e., one or both eyebrows]
Gaze	Changes in the direction of the gaze by moving the eyes. Moving eyes (not face) to look down, up, to the side.
Eye roll	Eye-rolling is a transitory gesture in which a person briefly turns their eyes upward, often in an arcing motion from one side to the other. The eyes do not set on anything in particular and go back to their previous position.
Open	Opening the eyes, looks like an increase in awareness. Eyes look slightly bigger. Engagement of the eyelids, contracting the eyelid muscles to make them look wider.
Lower Region	
Smile	Ends of the mouth/lips curve up, often with the lips moving apart. Includes: Smile, smirking, half a smirk, fake smile, raising both sides of the mouth, side smile, half smile
Pout	Pushing one's lips or one's bottom lip forward; or turning the outer sides of the lips downwards. Pouting, pursed lips, "frowning" with one's mouth
Lip press	Contracting or pressing lips without pushing them forward. Includes: pressed lips, pressing lips together, putting lips together. Excludes pressing lips to pout/purse.
Hanging	Leaving one's mouth open for an extended time (e.g., hanging mouth, gaping mouth).
Mouth	Any other movements of the mouth that (1) are not captured by smile, pout, or pressing lips, and (2) is not a result of the baseline speech patterns. Opening mouth, opened mouth, raising upper lip, rising one side of the mouth, taking the mouth corners back and lower them
Wrinkle Chin	Moving the muscles around the chin to create identifiable lines, folds, ridges or furrows in the chin. Usually seen as a contraction of the chin muscles creating creases around or on the chin.
Nose	Changes in the movement or looks of the nose. Includes significant movements on the nostrils, the tip of the nose, scrunching the nose, or any other muscle movement that would create a change in the nose.

Table 10: BAH dataset annotation codebook: facial cues.

1944		
1945		
1946		
1947		
1948		
1949	Language cues	Definition
1950	Filler sound	Sound made during a pause in speech signalling the person isn't done taking. Examples: "mmm", "umm", "hum", "emmm", "err", "uh", "ah"
1951		
1952	Filler word	Words used that do not contain substantive content, but are used as fillers to fill in space while the person thinks (or to signal they are not done talking, or that they are about to talk): "like", "you know", "I mean", "okay", "so", "actually", "basically"
1953		
1954		
1955		
1956	Hedging	Words/expressions used to express ambiguity about what one is saying (about to say or just said). Examples: "somewhat"; "I'm not an expert, but..."; "... right?"; "... isn't it?"; "I do not know..."; "all I know"; "I think..."
1957		
1958		
1959		
1960	Correction	Corrects something they said. This focuses on the content of what is said, not on a syntax-based error, or speech error.
1961		
1962	Repetition	Emphasizing a phrase by repeating, or repetition of a word, might be related to trying to find the right word or expression
1963		
1964	Com-B Constructs	
1965	Positive	Statement of positive feelings towards a behaviour or action.
1966	Negative	Statement of negative feelings towards a behaviour or action.
1967	Excuse	Statement where the participant mentions an excuse, a reason or justification for something that has happened or hasn't happened. It can also be an expression of regret for doing/not doing something. Use of 'but'. Shows avoidance or lack of responsibility
1968		
1969		
1970		
1971	Success	Statement of success with goal (focused on the behaviour)
1972	Fail	Statement of failure with goal (focused on the behaviour)
1973	Cap	Mentions having the capability to change their behaviour. Includes physical capability (e.g., balance, dexterity) or psychological capability (e.g., knowledge, skills, memory).
1974		
1975		
1976	No cap	Mentions NOT having the capability to change their behaviour. Includes physical capability (e.g., balance, dexterity) or psychological capability (e.g., knowledge, skills, memory).
1977		
1978		
1979	Mot	Mentions having motivation to change their behaviour. Includes reflective motivation (e.g., making plans, having positive attitudes/beliefs) or automatic motivation (e.g., desires, habit, feelings)
1980		
1981		
1982	No mot	Mentions NOT having motivation to change their behaviour OR motivation NOT to change their behaviour. Includes reflective motivation (e.g., making plans, having positive attitudes/beliefs) or automatic motivation (e.g., desires, habit, feelings).
1983		
1984		
1985		
1986	Opp	Mentions having opportunity to change their behaviour. Includes physical opportunities (e.g., access to financial resources, location, time) or social opportunity (e.g., support/encouragement from others; norms)
1987		
1988		
1989	No opp	Mentions NOT having opportunity to change their behaviour. Includes physical opportunities (e.g., access to financial resources, location, time) or social opportunity (e.g., support/encouragement from others; norms)
1990		
1991		
1992		
1993		Table 11: BAH dataset annotation codebook: language cues.
1994		
1995		
1996		
1997		

1998
1999
2000
2001
2002
2003
2004
2005
2006

2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051
Audio cues	Definition																																											
Pause	Briefly interrupting a sentence by having silent pauses in between words or ideas that differ from the usual pace of how the participants speaks. It includes silent pauses, paused speech or ideas.																																											
Cut words	Ending speaking a word before completing the utterance of the word (e.g., say “exer...” instead of “exercise”). Breaking the words or interrupting the words while they are being spoken. Might involve correcting syntax/speech																																											
Slow	Reducing the speed of speaking. There is a perceptible change in the speed while someone is talking, making it slower or de-accelerated. It differs from paused speech or cutting off words since the words, phrases or ideas are not cut off or left in the middle, there are no significant silences in the answers. It can include elongating syllables or words. Speed change is determined in comparison to the person’s own baseline.																																											
Fast	Changes in the speed of the answers, making it faster. Information is given quickly, briskly or lively. Speed change is determined in comparison to the person’s own baseline.																																											
Volume	Changes in volume of speech. Differences in how loud or quiet an answer is shared, or there can be differences in the volume of specific words or syllables. Includes: Raising volume, lowering volume, high volume, low volume, and mumbling. Volume change is determined in comparison to the person’s own baseline.																																											
Shaky voice	When there is an rapid fluctuation or trembling of rhythm or tone (i.e., there is instability) to the way someone is speaking. It includes voice shaking, quivering in voice. Excludes case when shaking is due to laughing																																											
Breath	Audible breath, inhaling or exhaling, it can be while the person is talking or before/after a phrase. It includes changes in the breathing rhythm, intensity or depthness of the person (compared to the baseline) that create a sound. Includes sigh, deep breath																																											
Click	Quick sound made by pressing the tongue against the roof of the mouth or back of the teeth and snapping it downward. It often signals disapproval, unsureness or impatience. The sound resembles a “tsk” or “tsk-tsk.”																																											
Laugh	Engaging in laughter, or variations thereof (e.g., snicker, chortle, giggle)																																											
Stuttering	Involuntary repetition of sounds while speaking. This can be seen as a disruption or blocking of the speech by prolongation sounds or by struggling to say a word or a part of a word. Even though the stutter might cut off a word or phrase it is different since the person will finish the word or idea. Includes stammer, stumble.																																											

Table 12: BAH dataset annotation codebook: audio cues.

2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	Body cues	Definition
Look away	Moving the orientation of the head away from the baseline position such that eyes or the gaze will look away. Includes the head facing down, head facing up, looking down, looking up, looking from side to side, lowering head, raising head.																																																						
Shake	Turning the head from side to side, it can be done with repetitive head movements or with a slight turn of the head to one or both sides. Includes shaking head "no". Rotation is on the horizontal plane																																																						
Tilt	Angling the head to the side without focusing on something else, and holding the position. Changing the position of the head so it is in a sloping position. It can be accompanied by changes in the gaze but not necessarily. Includes head tilting up and down, tilting head to the side, tilted head. Includes bobbling head.																																																						
Throw	Throwing the head in a rapid movement in a particular direction.																																																						
Sigh	Movements of the chest, shoulder or head that accompany a sigh or a deep breath. It includes long sigh, deep breath, sigh, big sigh. Noticeable bringing the chest or diaphragm muscles up and down. Change determined in comparison to the person's own baseline.																																																						
Nod	Moving the head up and down. Lowering and raising the head, it can be done by slight or clearly marked movements. Includes movements such as back and forward or a single small nod.																																																						
Shrug	Raising of the shoulders, it can be a momentary or slight rise or a longer movement where one or both shoulders is raised. It includes shrugging shoulders, shrugs																																																						
Hands	Movements or placement of the hands that differs from baseline																																																						
Posture	Movements in the overall positioning of the spine, body or arms (independent from the head). The changes are determined by each person's baseline. It includes movements like readjusting in the seat, slouching, turning to the sides. Needs to involve more than just the head. Excludes shrugging.																																																						
Scratch	Movements in the hands and arms to scratch or caress another part of the body or face. It includes scratching head, scratching neck, scratching eyes, scratching chin																																																						
Restless	Rhythmic and repeated movements. Can be swaying, shaking, being jittery.																																																						

Table 13: BAH dataset annotation codebook: body cues.

2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	Cross-modal inconsistency	Definition
FL	Face and language/speech do not match. E.g., looking uncomfortable while saying yes, looking annoyed or uncomfortable while saying they are happy, smiling while saying they are worried.																			
FA	Face and audio do not match. E.g., speaks in a sad, energetic tone while smiling.																			
FB	Face and body do not match. E.g., Nodding while looking afraid or concerned, showing disgust but leaning forward																			
LA	Language/speech and audio do not match. E.g., speaks in a sad, energetic tone while saying they are happy.																			
LB	Language/speech and body do not match. E.g., seems like they are about to say something but do not, nod is discrepant with verbal speech, shaking head while saying yes																			
AB	Body and language/speech do not match. E.g., unengaged tone while nodding (in agreement)																			

Table 14: BAH dataset annotation codebook: cross-modal inconsistency cues - occurring simultaneously.

2106 **J BASELINE RESULTS**
2107
2108
2109

Visual features	AVGF1	AP
Cropped faces	0.5028 \pm 0.0078	0.1923 \pm 0.0054
Full frame (body)	0.4781 \pm 0.0209	0.1774 \pm 0.0063
Head-pose	0.4321 \pm 0.0213	0.1915 \pm 0.0021

2114 Table 15: Impact of visual modality type on model performance on test set of BAH at frame-level
2115 classification. ResNet18 backbone is used. We report the average and standard deviation of 5
2116 repetitions with different seeds.
2117
21182119 **J.1 VISUAL MODALITY: CROPPED FACES VS FULL FRAME VS HEAD-POSE FEATURES**
21202121 While cropped faces are the de facto visual modality used in affective computing, other visual fea-
2122 tures could be also relevant in A/H recognition. We explore here two additional visual features
2123 that are related to cues used by annotator to detect A/H. In particular, we consider the full frame
2124 which covers the body which is an important cue. In addition, we use head-pose estimation which
2125 covers the body cue "Look away". To estimate the head pose, we use the pretrained model To-
2126 kenHPE (Zhang et al., 2023a). The backbone is frozen to yield head-pose features, which are fol-
2127 lowed with an A/H classifier layer. Results obtained in Tab.15 show that while cropped faces and
2128 full frame yield competitive results, head-pose features have poor results in terms of AVGF1. This
2129 suggests that using only head-pose is not enough as many other cues are lost. However, it could be
2130 used to model context. Additionally, cropped faces results are more stable. We note also that the
2131 full frame case contains noisy background which may have contributed in decreasing performance.
2132 Segmenting the body alone could yield better performance. In all our experiments, we use cropped
2133 faces for the visual modality.2134 **J.2 SUPERVISED LEARNING CASES (FOLLOWUP FROM MAIN PAPER)**
21352136 **Training details.** For both cases, pretraining visual models on RAF-DB (Li et al., 2017),
2137 AffNet (Mollahosseini et al., 2019), and Aff-wild2 (Kollias & Zafeiriou, 2019), their fine-
2138 tuning, and final training with multimodal setup, we used a learning rate between 0.0009 to 0.001
2139 with multiplying coefficient of 10. When training on BAH, and in the case of using context, we used
2140 a window size between 24 (1 second) to 2880 (2 minutes) with a step of 1 second (24 frames). In
2141 this case, we use a mini-batch size in {2, 4, 8, 16, 32}, where a sample in the mini-batch is a window
2142 of frames; and a single-GPU training. In all trainings, we used a weight decay of 0.0001. All our
2143 experiments were conducted on a server with 4 NVIDIA A100 GPUs with 40 GB of memory, AMD
2144 EPYC 7413 24-Core Processor, and 503GB of RAM. We present in Table 16 the computation time
2145 of the multimodal case.2146 **Ablation over the window length.** We conduct an ablation to study the impact of the context
2147 (window length) on the performance of recognizing A/H. To this end, we use a window length
2148 from 24 to 3264 with a step of 1 second (24 frames). Figure 20 shows the obtained results. By
2149 considering WF1, performance improves with the increase of the context where it can reach above
2150 0.825. However, F1 does not necessarily improve with the increase of the context. On the other
2151 hand, AP prefers small context. Using a small context of few seconds could be a good compromise
2152 for all the metrics. Note that the average length of an A/H segment is around 4 seconds (96 frames).2153 **Video-level classification.** To obtain video level predictions, we resort to a simple post-processing
2154 of frame-level predictions in the main paper. In particular, we follow (De-la Torre et al., 2015),
2155 where a sliding window averages the probability of the positive class at each frame. The case where
2156 high probability in a window suggests the presence of A/H in the video. In our case, we consider
2157 a context of 1 second (24 frame). The maximum probability across all windows is considered the
2158 video probability to have the positive class. The probability of the negative class is the complement
2159 of the probability of the positive one. We then proceed to measure the same performance metrics
AVGF1, and AP. Similar to the main paper, we report the performance at video-level for different
cases: using visual backbone only without and with context (Table 17), multimodal (Table 18),

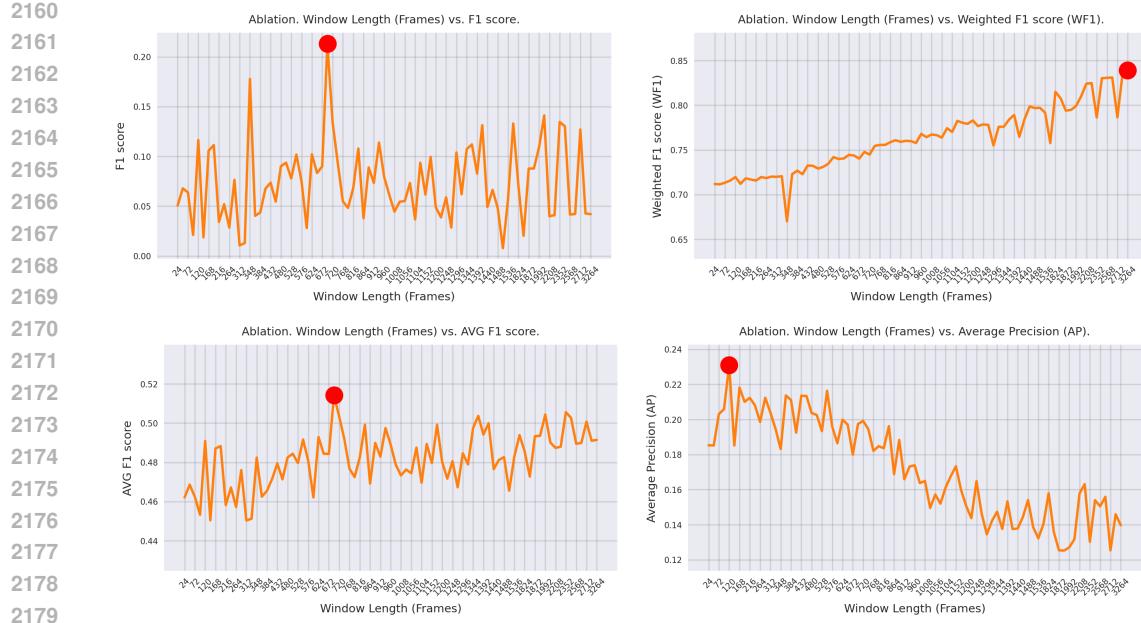


Figure 20: Impact of context (window) length on the performance of frame-level classification when using visual modality alone (ResNet18): F1, WF1, AVGF1, and AP. Best performance is indicated in red dot.

Case	Value
Train time 1 epoch	~ 5mins
Inference time per-frame	~ 0.12ms
Total n. params.	~ 223M
N. learnable params.	~ 5M
N. FLOPs	~ 1.87 TFLOPs
N. MACs	~ 938 GMACs

Table 16: Computation time, number of parameters, number of FLOPs/MACs for multimodal case with visual, audio and text (with ResNet152 for visual backbone). Visual backbone is frozen, while audio and text backbones are used to extract features offline and store them.

Backbone	Without context		With context (TCN)	
	AVGF1	AP	AVGF1	AP
APViT (Xue et al., 2022)	0.5871	0.2882	0.6134	0.3703
ResNet18 (He et al., 2016)	0.4445	0.0993	0.4425	0.1437
ResNet34 (He et al., 2016)	0.4419	0.1598	0.4448	0.2188
ResNet50 (He et al., 2016)	0.4405	0.1456	0.4442	0.1247
ResNet101 (He et al., 2016)	0.4236	0.1315	0.4448	0.1622
ResNet152 (He et al., 2016)	0.4715	0.1852	0.4316	0.2053

Table 17: Visual modality performance on test set of BAH at video-level classification: impact of architecture and context.

and fusion (Table 19). Similar to frame-level results, using context and multimodal yields better performance. In addition, FAN fusion yields the highest performance over both metrics.

Modalities	AVG F1	AP
Visual	0.4448	0.1622
Audio	0.4546	0.5306
Text	0.5589	0.4731
Visual + Audio	0.4428	0.1964
Visual + Text	0.5614	0.3407
Audio + Text	0.4366	0.3148
Visual + Audio + Text	0.5934	0.3219

Table 18: Multimodal models performance on test set of BAH at video-level classification. For visual modality, ResNet152 backbone is used.

Fusion type	AVG F1	AP
LFAN (Zhang et al., 2023b) (cvprw,2023)	0.5934	0.3219
CAN (Zhang et al., 2023b) (cvprw,2023)	0.4011	0.3206
MT (Waligora et al., 2024) (cvprw,2024)	0.4448	0.1069
JMT (Waligora et al., 2024) (cvprw,2024)	0.4448	0.0993

Table 19: Feature fusion performance on test set of BAH at video-level classification.

J.3 ZERO-SHOT INFERENCE: MULTIMODAL LARGE LANGUAGE MODELS (M-LLMs)

Multimodal LLMs (M-LLMs) have gained significant attention in the affective computing space due to their ability to infer cross-modal dynamics across the visual, aural, and textual modalities. The problem of detecting ambivalence and hesitancy in videos is inherently multimodal as it requires also capturing the cross-modal inconsistency. To get out-of-the-box performance of existing SOTA M-LLM, we performed zero-shot inference using the 'Video-LLaVA-7B-hf' (Lin et al., 2024). Since the performance of an M-LLM or LLMs in general can be heavily influenced by the query prompt, we experiment with different variations of the prompts. Table 20 summarizes the different prompt variations used for zero-shot inference.

	Prompt
Simple	'Classify the emotion in the video as either 'Non-Ambivalent' or 'Ambivalent'. Respond with only one word: '
Definition 1	'Definition: Ambivalence is the state of having contradictory or conflicting feelings or attitudes towards something or someone simultaneously. Classify the emotion in the video as either 'Non-Ambivalent' or 'Ambivalent'. Respond with only one word: '
Definition 2	'Definition: Ambivalence and Hesitancy is understood as the simultaneous experience of desires for change and against change. Classify the emotion in the video as either 'Non-Ambivalent' or 'Ambivalent'. Respond with only one word: '
Transcript + Def 1	'Video transcript: {transcript}. Definition: Ambivalence is the state of having contradictory or conflicting feelings or attitudes towards something or someone simultaneously. Classify the emotion in the video as either 'Non-Ambivalent' or 'Ambivalent'. Respond with only one word: '
Transcript + Def 2	'Video transcript: {transcript}. Definition: Ambivalence and Hesitancy understood as the simultaneous experience of desires for change and against change. Classify the emotion in the video as either 'Non-Ambivalent' or 'Ambivalent'. Respond with only one word: '

Table 20: Summary of prompt variations for zero-shot inference.

2268 J.3.1 FRAME-LEVEL PREDICTION
2269

2270 For frame-level prediction, we adopt a segment-wise strategy, where the entire video is divided into
2271 8-frame chunks and passed through the model using a sliding window. This way, the model sees
2272 all the frames in each video. A single prediction is obtained for the window, which is replicated for
2273 the segment to match the total number of frame labels in each video. The model’s output, ‘Non-
2274 Ambivalent’ or ‘Ambivalent’, is mapped to 0 and 1 respectively to match the ground truth.

Prompt	AVGF1
Simple	0.4416
Definition Only 1	0.4456
Definition Only 2	0.1651
Transcript + Def 1	0.4535
Transcript + Def 2	0.1849

2283 Table 21: Frame Level Prediction using M-LLM.
2284

2285 Table 21 shows the results obtained for frame-level predictions using different prompts. The best
2286 results for frame-level prediction are obtained using the ‘Transcript + Def 1’ prompt, where the
2287 actual transcript of the video is also provided, along with a straightforward definition of A/H. The
2288 model performs better with a more straightforward definition of the concept of ambivalence, with
2289 Definition 1.

2290 In the segment-wise approach applied with a sliding window of 8 frames, the model essentially sees
2291 every frame, but this approach limits the context window to be 1/3 of a second, which may not be
2292 enough to capture the temporal dependencies in the visual modality. We investigate the effect of
2293 various lengths context windows on the overall performance.

Context Window	AVGF1
24 Frames	0.4539
48 Frames	0.4542
80 Frames	0.4535
120 Frames	0.4546
192 Frames	0.4540

2303 Table 22: Performance comparison with increasing size context window for frame-level prediction.
2304

2305 We selected the best-performing query prompt from the first experiment (Table 21) to perform the
2306 ablation on the context window size. Table 22 shows the results with different lengths of context
2307 window for the visual modality. 24 frames represent a one-second context window. Increasing the
2308 context window size to 120 frames (5 seconds) only marginally improves the overall performance of
2309 the model, and it plateaus at 120 frames and then starts to drop which is an indicator that the visual
2310 encoder starts losing information with a longer context window.

2312 J.3.2 VIDEO-LEVEL PREDICTION
2313

2314 For video-level prediction, the entire video is fed to the model, and the transcript is embedded in the
2315 prompt. The model selects 8 uniformly spaced frames from the video and predicts a single output.
2316 Similar to frame-level predictions, the model’s output is mapped to 0 and 1, and the performance
2317 metrics are calculated.

2318 Table 23 presents the video-level prediction results. Similar to frame-level predictions, the ‘simple’
2319 prompt without any context on the definition or the transcript performs the worst and predicts all
2320 samples to be ‘Non-Ambivalent’. A similar trend is also observed here, i.e., adding the definition
2321 and the transcript substantially affects the model performance.

Prompt	AVGF1
Simple	0.2827
Definition Only 1	0.3326
Definition Only 2	0.3772
Transcript + Def 1	0.6341
Transcript + Def 2	0.3945

Table 23: Video Level Prediction using M-LLM.

J.3.3 ANALYSIS AND DISCUSSION

The performance of M-LLM with zero-shot inference is substantially influenced by the query prompt. As observed from tables 21 and 23, simply asking the model to predict emotion based on the visual modality only performs the worst, whereas adding only the definition of A/H in the query prompt helps the model better identify the positive(A/H) class. Best results in all cases are obtained with the introduction of the text transcript of the video in the query prompt. We conjecture that this happens for two reasons: i) the textual modality serves a significant role in the identification of the A/H class, and ii) the current M-LLMs’ performance is heavily reliant on the textual modality. This coheres with the overall structure of traditional M-LLMs that are built upon well-trained LLMs with the addition of a visual encoder like ViT, which is used to encode the visual information that is fed to the LLM for downstream tasks. Intuitively, the performance should increase with careful fine-tuning on the BAH dataset.

Further, the idea of textualizing the aural and visual modalities explored in (Richet et al., 2024) can be well-suited for a task like this where the audio and visual modalities essentially summarize the cues detected in the corresponding modalities. Particularly for tasks like subtle emotion recognition or the detection of A/H, where cross-modal inconsistency has to be considered. Textualizing the aural and visual modalities can be done to adequately exploit the reasoning abilities of SOTA LLMs.

J.4 PERSONALIZATION USING DOMAIN ADAPTATION

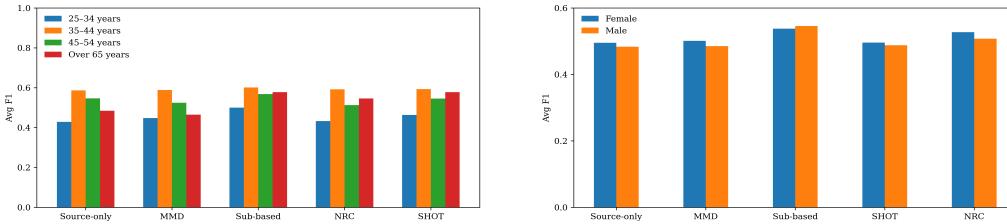
Domain adaptation (DA) (Han et al., 2020; Li & Deng, 2018) has emerged as a promising approach for personalized expression recognition, where the model is trained on diverse labeled source data to generalize to unlabeled target domains representing individual users. Recent research emphasizes on subject-based domain adaptation (Sharafi et al., 2025a,b; Zeeshan et al., 2024; 2025), where each individual is defined as a distinct domain. DA will be employed to personalize ML models by considering each participant in the test set as a separate target domain.

Experimental Protocol. For personalized in BAH, we adopt the standard protocol from prior work (Zeeshan et al., 2024; Sharafi et al., 2025b), which involves partitioning the data of each target individual into train, validation, and test sets. Given the class imbalance in the BAH dataset, we ensure a balanced representation of positive and negative samples within each split. We establish the following baseline methods to evaluate the effectiveness of personalized BAH recognition: **Source-only**: The model trained on the source data is directly evaluated on the target individual test set without any adaptation. This assesses the generalization capability of the source model. **Unsupervised Domain Adaptation (UDA)**: Source data with labels is utilized to adapt the model to each target individual using unlabeled data. This explores the potential of leveraging source knowledge for personalization in the absence of target labels. **Source Free Unsupervised Domain Adaptation (SFUDA)**: Adaptation is performed solely using the unlabeled data from the target individual, without access to the source data. This examines the feasibility of personalization when the source data is unavailable. **Oracle**: The model is fine-tuned using the labeled data from the target individual during training. This provides an upper-bound performance, representing a fully supervised model.

Visual backbone. We employ a ViT-based model for personalization, leveraging its superior performance over ResNet-based architectures for visual tasks without contextual information. In all our experiments, we utilize a ViT-based model pre-trained on the source data.

Methods	AvgF1	AP
Source-only	0.4894 ± 0.0999	0.3565 ± 0.1841
UDA (MMD) (Sejdinovic et al., 2013)	0.4931 ± 0.0943	0.3589 ± 0.1831
UDA (Sub-Based) (Zeeshan et al., 2024) (<i>fg,2024</i>)	0.5417 ± 0.0728	0.3739 ± 0.1789
SFUDA (SHOT) (Liang et al., 2020) (<i>icml,2020</i>)	0.4919 ± 0.1056	0.3520 ± 0.1656
SFUDA (NRC) (Yang et al., 2021) (<i>neurips,2021</i>)	0.5174 ± 0.1041	0.3688 ± 0.1487
Oracle	0.5864 ± 0.0751	0.4181 ± 0.1750

Table 24: Performance of UDA and SFUDA with Source-only and Oracle on BAH. Results are reported as the average over all target subjects (mean \pm standard deviation).



(a) Comparison between different age groups on DA methods. (b) Comparison between different DA methods based on participant Sex.

Figure 21: Comparison between different age groups and sex on DA methods.

J.4.1 UNSUPERVISED DOMAIN ADAPTATION:

We investigated two unsupervised domain adaptation (UDA) approaches for personalized BAH recognition: (i) a discrepancy-based method using Maximum Mean Discrepancy (MMD) (Sejdinovic et al., 2013) to minimize the domain gap and improve performance on the target subject, and (ii) a subject-based (Zeeshan et al., 2024) method using self-supervision that trains the model by generating pseudo-labels for the target domain, followed by reducing the domain shift using MMD that aligns source and target.

Implementation detail. In UDA experiments, we optimize our model using Stochastic Gradient Descent (SGD) (Sutskever et al., 2013) with a learning rate of $2e - 4$, momentum of 0.9, weight decay of $5e - 4$, and a cosine annealing scheduler (Loshchilov & Hutter, 2017) with a minimum learning rate of $2e - 5$. We set the batch size to 64 and run each target adaptation for 10 epochs. For the subject-based method, we introduce a hyperparameter $\gamma_3 = 0.01$ to weight the target loss, computed using pseudo-labels generated by the Augmented Confident Pseudo-Label (ACPL) technique (Zeeshan et al., 2024). This weighting is essential for mitigating noise in the pseudo-labels, in conjunction with a confidence threshold of 0.95 that is updated every 4 epochs.

J.4.2 SOURCE FREE UNSUPERVISED DOMAIN ADAPTATION

Two source-free unsupervised domain adaptation (SFUDA) approaches were explored for personalized BAH recognition: (i) a representation learning strategy inspired by hypothesis transfer (Liang et al., 2020), where information maximization was used to adapt the model to the target domain, and target-specific prototypes guided pseudo-labelling for class-level alignment, and (ii) a neighbourhood-based method (Yang et al., 2021) in which label consistency was encouraged among target features and their reciprocal nearest neighbours, while expanded neighbourhoods were used to aggregate local structure and reduce the impact of noisy supervision through self-regularization and affinity-weighted loss.

Experimental protocol. We optimize the model using SGD with a learning rate of $1e - 4$, momentum of 0.9, and weight decay of $1e - 3$. The model is trained for 30 epochs with a batch size of 64. For NRC-based adaptation, we maintain memory banks of target features and predictions to retrieve $K = 3$ nearest neighbours and $M = 2$ expanded neighbors.

2430 J.4.3 RESULT AND ANALYSIS
2431

2432 The average performance across target participants, along with the standard deviation, is presented
2433 in Table 24. All reported results are based on evaluations of the respective target test sets. Our
2434 analysis demonstrates the effectiveness of domain adaptation for personalized detection of the A/H
2435 class in the BAH dataset. All tested methods surpass the Source-only baseline in AVGF1 and AP
2436 positive-class metrics. Notably, Sub-based achieves the highest AVGF1 (0.5417) and AP (0.3739),
2437 outperforming other domain adaptation techniques. While MMD and SHOT yield only modest
2438 gains, they still lag behind the Sub-based method, underscoring the advantage of pseudo-labeling
2439 for boosting minority-class recall and precision. In contrast, NRC achieves a more substantial im-
2440 provement of around 3 percentage points over Source-only, indicating that even with some sensitiv-
2441 ity to domain shifts, it more effectively exploits target-domain structure. The Oracle upper bound
2442 (AVGF1: 0.5864) underscores the substantial potential for further advancements in positive-class
2443 detection within this context. Even slight degradations in negative-class performance disproportio-
2444 nately impact the overall AP score. For example, Sub-based method emphasizes enhancing positive
2445 class identification, likely incurs a cost in precision or recall on the more frequent negative class, a
2446 necessary compromise to effectively detect the A/H class.

2447 **Age-wise analysis.** Figure 21a illustrates the varying impact of age on DA methods. Overall per-
2448 formance tends to peak in the *35–44 years* group across most methods, while the *25–34 years* group
2449 generally shows the lowest AVGF1. **Sub-based** consistently achieves the highest or near-highest
2450 performance in all age groups, with clear gains over Source-only, and is only slightly outperformed
2451 by **SHOT** in the *Over 65 years* group. **SHOT** remains competitive across all ages and, together
2452 with Sub-based, yields the largest improvements for the youngest (*25–34 years*) and oldest (*Over*
2453 *65 years*) subjects. In contrast, **MMD** and **NRC** provide only modest gains over Source-only in the
2454 *25–34 years* and *35–44 years* groups and can even underperform Source-only for *45–54 years*, high-
2455 lighting their sensitivity to age-related domain shifts. Finally, **Source-only** has consistently lower
2456 Avg F1 across all age groups, confirming the benefit of DA, particularly for the more challenging
2457 age ranges.

2458 **Sex-wise analysis.** In the Figure 21b, we can observe that the *female* category generally exhibits
2459 higher values across most methods compared to the *male*. Specifically, *female* shows the highest
2460 values in **NRC** (0.052), **SHOT** (0.049), and **MMD** (0.050). It can also be noted that the number of
2461 female subjects is equal to the male subjects.

2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483