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ABSTRACT

We study the effect of the batch size to the total gradient variance in differentially
private stochastic gradient descent (DP-SGD), seeking a theoretical explanation for
the usefulness of large batch sizes. As DP-SGD is the basis of modern DP deep
learning, its properties have been widely studied, and recent works have empirically
found large batch sizes to be beneficial. However, theoretical explanations of this
benefit are currently heuristic at best. We first observe that the total gradient
variance in DP-SGD can be decomposed into subsampling-induced and noise-
induced variances. We then prove that in the limit of an infinite number of iterations,
the effective noise-induced variance is invariant to the batch size. The remaining
subsampling-induced variance decreases with larger batch sizes, so large batches
reduce the effective total gradient variance. We confirm numerically that the
asymptotic regime is relevant in practical settings when the batch size is not small,
and find that outside the asymptotic regime, the total gradient variance decreases
even more with large batch sizes. We also find a sufficient condition that implies
that large batch sizes similarly reduce effective DP noise variance for one iteration
of DP-SGD.

1 INTRODUCTION

As deep learning models are being trained on ever larger datasets, the privacy of the subjects of these
training datasets is a growing concern. Differential privacy (DP) (Dwork et al., 2006) is a property of
an algorithm that formally quantifies the privacy leakage that can result from releasing the output of
the algorithm. Due to the formal guarantee provided by DP, there is a great deal of interest in training
deep learning models with a DP variant of stochastic gradient descent (DP-SGD) (Song et al., 2013;
Bassily et al., 2014; Abadi et al., 2016).

One of the key properties of DP is so called subsampling amplification (Li et al., 2012; Beimel et al.,
2014). Broadly speaking, subsampling the data before applying a DP mechanism adds an additional
layer of protection to the data samples, leading to stronger privacy guarantees for a fixed amount of
added noise. Quantifying the gains from subsampling amplification (Abadi et al., 2016; Zhu & Wang,
2019; Koskela et al., 2020; Zhu et al., 2022) has been a crucial component in making algorithms such
as DP-SGD work under strict privacy guarantees.

On the other hand, many works have shown that the large batch sizes actually provide better
performance in DP-SGD compared to heavy subsampling of the training data McMahan et al. (2018);
De et al. (2022); Mehta et al. (2023). This would suggest, that maybe the gains from the subsampling
amplification are outweighted by the stronger signal of gradients from larger batches.

In Poisson subsampled DP-SGD, each datapoint is included with probability q, called the subsampling
rate, which is proportional to the expected batch size. The total gradient variance in DP-SGD can be
decomposed into two parts: the subsampling variance and the Gaussian noise variance σ2. A larger q
reduces the subsampling variance, but the effect on the noise variance is not as clear. On one hand, a
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larger q reduces the privacy amplification effect, necessitating a larger σ2, but on the other hand, an
unbiased gradient estimate must be divided by q, so the effective noise variance is σ2

q2 .

We study how the effective noise variance scales with the subsampling rate, making the following
contributions:

1. In Section 5, we prove that in the limit of an infinite number of iterations, there is a linear
relationship σ = cq between q and σ, meaning that the two effects q has on the effective noise
variance cancel each other, leaving the effective noise variance invariant to the subsampling
rate. This means that a larger subsampling rate always reduces the effective total gradient
variance, since the subsampling-induced variance decreases with a larger subsampling rate.

2. In Section 6, we consider the case of a single iteration of the subsampled Gaussian mech-
anism. We find a sufficient condition which implies that large subsampling rates always
reduce the effective injected DP noise variance, hence also reducing the effective total
gradient variance. We check this condition numerically for a wide grid of hyperparameter
values, and find that the condition holds amongst these hyperparameters.

3. We look at the relationship between the subsampling rate and noise standard deviation
empirically in Section 5.1, and find that the asymptotic regime from our theory is reached
quickly with small privacy parameters. Moreover, we find that when we are not in the
asymptotic regime, the effective injected DP noise variance decreases even more with a
large subsampling rate.

1.1 RELATED WORK

The linear relationship between the subsampling rate and noise standard deviation we study has
been suggested as a heuristic rule-of-thumb in previous work (Li et al., 2021; Sander et al., 2023)
to explain why large batch sizes perform better in DP-SGD. The linear relationship also appears
in several works that study Rényi DP (Mironov, 2017) accounting of the subsampled Gaussian
mechanism (Abadi et al., 2016; Bun et al., 2018; Mironov et al., 2019), though these works do not
make the connection with large subsampling rates, and instead assume a small subsampling rate.
Rényi DP-based accounting of the subsampled Gaussian mechanism does not provide tight privacy
bounds anyway, so these results would not imply that the linear relationship holds even asymptotically
with tight accounting.

Sommer et al. (2019) and Dong et al. (2022) prove central limit theorems for privacy accounting,
which essentially show that the privacy loss of any sufficiently well-behaved mechanism after many
compositions is asymptotically like the privacy loss of the Gaussian mechanism. As we study the
asymptotic behaviour of the subsampled Gaussian mechanism after many compositions, it is possible
that these theorems could be used to prove our result. However, we opted for another route in
our proof. Instead of showing that privacy accounting for the subsampled Gaussian mechanism is
asymptotically similar to accounting for the Gaussian mechanism, we show that the subsampled
mechanism itself is asymptotically similar to the Gaussian mechanism.

2 BACKGROUND

In this section, we go through some background material on differential privacy. We start with the
definition and basics in Section 2.1 and introduce DP-SGD in Section 2.2.

2.1 DIFFERENTIAL PRIVACY

Differential privacy (DP) (Dwork et al., 2006; Dwork & Roth, 2014) is a property of an algorithm
that quantifies the privacy loss resulting from releasing the output of the algorithm. In the specific
definition we use, the privacy loss is quantified by two numbers: ϵ ≥ 0 and δ ∈ [0, 1].
Definition 2.1. Let M be a randomised algorithm. M is (ϵ, δ)-DP if, for all measurable A and all
neighbouring x, x′ ∈ X ,

Pr(M(x) ∈ A) ≤ eϵ Pr(M(x′) ∈ A) + δ. (1)

We focus on the add/remove neighbourhood in this work.
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2.2 DIFFERENTIALLY PRIVATE SGD

Differentially private SGD (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016),
uses

GDP =
∑
i∈B

clipC(gi) +N (0, σ2Id) (2)

in place of the non-private sum of gradients. GDP can also be used in adaptive versions of SGD like
Adam.

Privacy bounds for DP-SGD can be computed using numerical privacy accountants (Koskela et al.,
2020; 2021; Gopi et al., 2021; Doroshenko et al., 2022; Alghamdi et al., 2023). For more technical
background on privacy accounting and the composition of DP mechanisms, see Appendix A.

3 ACCOUNTING ORACLES

We use the concept of accounting oracles (Tajeddine et al., 2020) to make formalising properties
of privacy accounting easier. The accounting oracle is the ideal privacy accountant that numerical
accountants aim to approximate.
Definition 3.1. For a mechanism M, the accounting oracle AOM(ϵ) returns the smallest δ such that
M is (ϵ, δ)-DP.

In case M has hyperparameters that affect its privacy bounds, these hyperparameters will also be
arguments of AOM. We write the accounting oracle for the T -fold composition of the Poisson
subsampled Gaussian mechanism with sampling rate q and sensitivity ∆ as AOS(σ,∆, q, T, ϵ), and
the accounting oracle of a composition of the Gaussian mechanism as AOG(σ,∆, T, ϵ).

See Appendix B for properties of accounting oracles.

4 DP-SGD NOISE DECOMPOSITION

For now, let us denote the sum on the right in Equation (2), the sum of clipped gradients with
subsampling rate q, as Gq :=

∑
i∈B clipC(gi). In each step of DP-SGD, we are releasing this sum

using Gaussian perturbation. However, due to the subsampling, our gradient sum can comprise of any
number of terms between 0 and N . Therefore, before we do the step, we want to upscale the summed
gradient to approximate the magnitude of the full data gradient G1. We will use 1/q scaling for Gq ,
which also gives an unbiased estimator of G1 (see Appendix C.1). We can decouple the noise-scale
and clipping threshold C and write the DP gradient G̃ used to update the parameters as

G̃ =
1

q
(Gq + Cση) , (3)

where η ∼ N (0, Id). The clipping threshold C affects the update as a constant scale independent of
q, and therefore for notational simplicity we set C = 1. Since the subsampled gradient Gq and the
DP noise are independent, we can decompose the total gradient variance of the jth element of G̃ as

Var(G̃j)︸ ︷︷ ︸
Total

=
1

q2
Var(Gq,j)︸ ︷︷ ︸

Subsampling

+

(
σ

q

)2

︸ ︷︷ ︸
Effective DP Noise

. (4)

The first component on the right in Equation (4), the subsampling variance, arises from the subsam-
pling, so it is easy to see that it is decreasing w.r.t. q (see Appendix C.2) For the rest of the paper, we
will use σ2

eff := σ2/q2 to denote the second component of the variance decomposition in Equation (4),
the effective noise variance.

In order to guarantee (ϵ, δ)-DP, the σ term in σeff needs to be adjusted based on the number of
iterations T and the subsampling rate q. Hence we will treat the σ as a function of q and T , and
denote the smallest σ that provides (ϵ, δ)-DP as σ(q, T ).

In the rest of the paper, we will study how σ(q, T ) behaves w.r.t. q in two settings: (i) when T → ∞
we show that σ(q, T ) becomes a linear function of q (Section 5), and (ii) when T = 1 we derive a
sufficient condition showing that σ(q, 1)/q is decreasing w.r.t q (Section 6).
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5 SUBSAMPLED GAUSSIAN MECHANISM IN THE LIMIT OF MANY
COMPOSITIONS

Using the accounting oracle AOS(σ,∆, q, T, ϵ) to study the privacy accounting of DP-SGD, simpli-
fies the analysis. In the setting we use, there is a single datapoint x ∈ {0, 1}, which is released T
times with the Poisson subsampled Gaussian mechanism:

Mi(x) ∼ xBq +N (0, σ2
T ) (5)

for 1 ≤ t ≤ T , where Bq is a Bernoulli random variable. Since M is a Poisson subsampled
Gaussian mechanism, its accounting oracle is AOS(σ, 1, q, T, ϵ).1 We have E(Mi(x)) = qx and
Var(Mi(x)) = x2q(1 − q) + σ2

T . As σ2
T → ∞, the variance and σ2

T approach each other. As a
result, we can approximate Mi with

M′
i(x) ∼ N (qx, σ2

T ). (6)

To prove this, we first need to find a lower bound on how quickly σ2
T must grow as T → ∞. All

proofs for this section are in Appendix D.
Theorem 5.1. Let σT be such that AOS(σT ,∆, q, T, ϵ) ≤ δ for all T , with δ < 1. Then σ2

T = Ω(T ).

Now we can prove that the approximation is sound.
Theorem 5.2. For 1 ≤ i ≤ T , let

Mi(x) ∼ xBq +N (0, σ2
T ), (7)

M′
i(x) ∼ N (qx, σ2

T ). (8)

be independent for each i. Let M1:T be the composition of Mi, and let M′
1:T be the composition of

M′
i. Then

sup
x

TV(M1:T (x),M′
1:T (x)) → 0. (9)

The mechanism M′
i is nearly a Gaussian mechanism, since

1

q
M′

i(x) ∼ x+N
(
0,

σ2
T

q2

)
. (10)

On the right is a Gaussian mechanism with noise standard deviation σT

q , which has the linear
relationship between σT and q we are looking for. In the next theorem, we use this to prove our main
result.
Theorem 5.3. For any σ, q1, q2, ∆ and ϵ

|AOS(σ,∆, q1, T, ϵ)−AOS(σ · q2/q1,∆, q2, T, ϵ)| → 0 (11)

as T → ∞.

By setting q2 = 1, we see that AOS(σ,∆, q, T, ϵ) behaves like AOS(σ/q,∆, 1, T, ϵ) in the T → ∞
limit, so σ

q must be a constant that does not depend on q to reach a given (ϵ, δ)-bound. We formalise
this in the following corollary.
Corollary 5.4. Let σ(q, T ) be the smallest σ such that AOS(σ,∆, q, T, ϵ) ≤ δ. Then

lim
T→∞

σ(q, T )

qσ(1, T )
= 1. (12)

5.1 EMPIRICAL RESULTS

In order to demonstrate how the σeff converges to qσ(1, T ), we use Google’s open source implemen-
tation2 of the PLD accounting Doroshenko et al. (2022) to compute the σ(q, T ).

1Considering ∆ = 1 suffices due to Lemma B.2.
2Available at https://github.com/google/differential-privacy/tree/main/python
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Figure 1: The σeff := σ(q, T )/q decreases as q grows for all the ϵ and T values. As T grows, σeff
approaches the σ(1, T ), as the asymptotic theory predicts. The privacy parameter δ was set to 10−5

when computing the σ(q, T ).

Figure 1 shows that as the the number of iterations grows, the σeff approaches the σ(1, T ) line. We can
also see, that for smaller values ϵ, the convergence happens faster. This behaviour can be explained
by the larger level of perturbation needed for smaller ϵ values, which will make the components of
the Gaussian mixture in Equation (7) less distinguishable from each other.

We can also see, that for all the settings, the σeff stays above the σ(1, T ) line, and it is the furthest
away when q is the smallest. This would suggest, that our observation in Section 6 hold also for
T > 1, and that smaller values of q incur a disproportionally large DP-induced variance component
in Equation (4).

6 SUBSAMPLED GAUSSIAN MECHANISM WITHOUT COMPOSITIONS

For now, let us consider T = 1, and denote σ(q) := σ(q, 1). We can express the δ as (Koskela et al.,
2020; Zhu et al., 2022)

δ(q) =qPr

(
Z ≥ σ(q) log

(
h(q)

q

)
− 1

2σ(q)

)
− h(q) Pr

(
Z ≥ σ(q) log

(
h(q)

q

)
+

1

2σ(q)

)
,

(13)

where h(q) := eϵ − (1 − q). Recall that we have assumed σ(q, T ) to be a function that returns a
noise-level matching to a particular (ϵ, δ) privacy level for given q and T . Therefore, the derivative
of δ(q) in Equation (13) w.r.t. q is 0, and we can solve the derivative of the RHS for σ′(q). See
Appendix E for missing derivations and proofs in this section.

Let us denote

a :=
1

2
√
2σ(q)

, b :=
σ(q)√

2
log

(
eϵ − (1− q)

q

)
. (14)

We have the following Lemma
Lemma 6.1. For the smallest σ(q) that provides (ϵ, δ)-DP for the Poisson subsampled Gaussian
mechanism, we have

σ′(q) =
σ(q)

q

1

2a

1

erf ′(a− b)
(erf(a− b)− erf(−a− b)). (15)

Now, Lemma 6.1 allows us to establish following result.

Theorem 6.2. If a < b for a and b defined in Equation (14), then d
dq

σ(q)
q < 0.

Now, Theorem 6.2 implies that σeff is a decreasing function w.r.t. q, and therefore larger subsampling
rates should be preferred when a < b. So now the remaining question is, when is a smaller than b.
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Unfortunately, analytically solving the region where a < b is intractable as we do not have a closed
form expression for σ(q). Therefore we make the following Conjecture, which we study numerically.

Conjecture 6.3. For ϵ, q ≥ 4δ, we have a− b < 0.

Verifying the Conjecture 6.3 numerically requires computing the σ(q) values for a range of q and ϵ
values, which would be computationally inefficient. However, computing a, b and δ can be easily
parallelized over multiple values of q and σ. We set δtarget = 10−5 and compute the a, b and δ for
q ∈ [4δtarget, 1.0], σ ∈ [min(q)σ(1, ϵ), σ(1, ϵ)] and ϵ ∈ [4δtarget, 4.0] which would be a reasonable
range of ϵ values for practical use. The σ(1, ϵ) is a noise-level matching (ϵ, δtarget)-DP guarantee
for q = 1, and the lower bound min(q)σ(1, ϵ) for σ was selected based on hypothesis that within
[min(q)σ(1, ϵ), σ(1, ϵ)] we can find a noise-level closely matching the δtarget.

Figure 2 shows the largest a− b value for our target ϵ values among the q and σ pairs that resulted
into δ ≤ δtarget. We can see that among these values there are no cases of a > b. While our evaluation
covers a range of ϵ values, a− b seems to be monotonically decreasing w.r.t. ϵ, which suggests that
the conjecture should hold even for larger values of ϵ. Based on our numerical evaluation, the σ range
resulted into δ values differing from δtarget = 10−5 at most ≈ 2× 10−7 in absolute difference. As a
final remark, the constant 4 in the Conjecture 6.3 was found numerically. With smaller values of this
constant we obtained cases for which a− b > 0. Furthermore, values of q ≈ δ empirically produce
results that even fail to satisfy the claim of Theorem 6.2.
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0.05

0.00
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b

Figure 2: The largest a − b computed for
multiple (q, σ) pairs stays negative for a broad
range of ϵ values. The a and b were selected
so that the corresponding (q, σ) pair satisfies
(ϵ, δ)-DP with δ ≤ 10−5.

Limitations Our analysis for the T = 1 case re-
duced the monotonicity of effective DP noise stan-
dard deviation σeff to a sufficient condition a < b.
We were unable to provide a formal proof of when
this condition is satisfied, but verified numerically
that it appears valid for a broad range of practically
relevant parameters with δ = 10−5, a standard value
suggested by NIST.

7 CONCLUSION

We studied the relationship between the effective
noise variance and the subsampling rate in Poisson
subsampled DP-SGD, and proved that as the num-
ber of iterations approaches infinity, the relationship
becomes linear, which cancels the effect of the sub-
sampling rate in the effective noise variance. This
means that a large subsampling rate always reduces
the effective total gradient variance. Furthermore, we demonstrated that under a wide range of ϵ
values, a single application of the Poisson subsampled Gaussian mechanism actually incurs a mono-
tonically decreasing effective noise variance w.r.t. subsampling rate. Our numerical experiments show
that the asymptotic regime is relevant in practice, and that outside the asymptotic regime, smaller
subsampling rates lead to increasingly large effective total gradient variances. This explains the
observed benefits of large batch sizes in DP-SGD, which has so far had only empirical and heuristic
explanations, furthering the theoretical understanding of DP-SGD.

For future work, it would be important to theoretically study how to interpolate our results between
the T = 1 and the asymptotic case. Based on our numerical evaluations however, we expect our main
conclusion, that the large batches provide smaller effective noise, to hold even for finite T > 1.

In all cases we have studied, less subsampling (larger q) always leads to better privacy–utility trade-
off, at the cost of more compute. Thus the magic of subsampling amplification lies in saving compute,
not in achieving higher utility than without subsampling.

6



Published as a workshop paper at Private ML workshop at ICLR 2024

ACKNOWLEDGEMENTS

This work was supported by the Research Council of Finland (Flagship programme: Finnish Center
for Artificial Intelligence, FCAI as well as Grants 356499 and 359111), the Strategic Research
Council at the Research Council of Finland (Grant 358247) as well as the European Union (Project
101070617). Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Commission. Neither the European
Union nor the granting authority can be held responsible for them.

REFERENCES

Martı́n Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 308–318. ACM, 2016.

Wael Alghamdi, Juan Felipe Gomez, Shahab Asoodeh, Flavio Calmon, Oliver Kosut, and Lalitha
Sankar. The Saddle-Point Method in Differential Privacy. In International Conference on Machine
Learning, 2023.

Borja Balle and Yu-Xiang Wang. Improving the Gaussian Mechanism for Differential Privacy:
Analytical Calibration and Optimal Denoising. In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 394–403.
PMLR, 2018.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In Proceedings of the 2014 IEEE 55th annual symposium on
foundations of computer science, FOCS ’14, pp. 464–473. IEEE Computer Society, 2014.

Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. Machine Learning, 94(3):401–437, 2014.

Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated CDP. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pp. 74–86. ACM, 2018.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L. Smith, and Borja Balle. Unlocking high-
accuracy differentially private image classification through scale. arXiv: 2204.13650, 2022. URL
https://arxiv.org/abs/2204.13650.

Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian Differential Privacy. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(1):3–37, 02 2022.

Vadym Doroshenko, Badih Ghazi, Pritish Kamath, Ravi Kumar, and Pasin Manurangsi. Connect
the dots: Tighter discrete approximations of privacy loss distributions. In Proceedings on Privacy
Enhancing Technologies, volume 4, pp. 552–570, 2022.

Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating Noise to Sensitivity
in Private Data Analysis. In Third Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pp. 265–284. Springer, 2006.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34, 2021.

Mark Kelbert. Survey of Distances between the Most Popular Distributions. Analytics, 2(1):225–245,
2023.
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Ilya Mironov, Kunal Talwar, and Li Zhang. Rényi Differential Privacy of the Sampled Gaussian
Mechanism. arXiv:1908.10530, 2019. URL https://arxiv.org/abs/1908.10530.

Tom Sander, Pierre Stock, and Alexandre Sablayrolles. TAN Without a Burn: Scaling Laws of
DP-SGD. In International Conference on Machine Learning, 2023.

David M. Sommer, Sebastian Meiser, and Esfandiar Mohammadi. Privacy Loss Classes: The Central
Limit Theorem in Differential Privacy. PoPETs, 2019(2):245–269, 2019.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In IEEE Global Conference on Signal and Information Processing,
pp. 245–248. IEEE, 2013.
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A COMPOSITION OF DIFFERENTIAL PRIVACY

Another useful property of DP is composition, which means that running multiple DP algorithms in
succession degrades the privacy bounds in a predictable way. The tight composition theorem we are
interested in is most easily expressed through privacy loss random variables (Sommer et al., 2019)
and dominating pairs (Zhu et al., 2022), which we introduce next. Differential privacy can also be
expressed through hockey-stick divergence.
Definition A.1. For α ≥ 0 and random variables P,Q, the hockey-stick divergence is

Hα(P,Q) = Et∼Q

((
dP

dQ
(t)− α

)
+

)
, (16)

where (x)+ = max{x, 0} and dP
dQ is the Radon-Nikodym derivative, which simplifies to the density

ratio if P and Q are continuous.

Zhu et al. (2022) showed that M is (ϵ, δ)-DP if and only if supx∼x′ Heϵ(M(x),M(x′)) ≤ δ.

Computing the hockey-stick directly for a mechanism can be challenging. Dominating pairs allow
computing privacy bounds for a mechanism from simpler distributions than the mechanism itself.
Definition A.2 (Zhu et al. 2022). A pair of random variables P,Q is called a dominating pair for
mechanism M if for all α ≥ 0,

sup
x∼x′

Hα(M(x),M(x′)) ≤ Hα(P,Q). (17)

Definition A.3 (Sommer et al. 2019). For distributions P,Q, the privacy loss function is L(t) =
ln dP

dQ (t) and the privacy loss random variable (PLRV) is L = L(T ) where T ∼ P .

The PLRV allows computing the privacy bounds of the mechanism with a simple expectation (Sommer
et al., 2019):

δ(ϵ) = Es∼L((1− eϵ−s)+). (18)
PLRVs also allow expressing the tight composition theorem in a simple way.
Theorem A.4 (Sommer et al. 2019). If L1, . . . , LT are the PLRVs for mechanisms M1, . . . ,MT ,
the PRLV of the adaptive composition of M1, . . . ,MT is the convolution of L1, . . . , LT , which is
the distribution of L1 + · · ·+ LT .

A.1 DP-SGD PRIVACY ACCOUNTING

To compute the privacy bounds for DP-SGD, we need to account for the subsampling amplification
that comes from the subsampling in SGD. This requires fixing the subsampling scheme. We consider
Poisson subsampling, where each datapoint in B is included in the subsample with probability q,
independently of any other datapoints.

When the neighbourhood relation is add/remove, privacy accounting for the Poisson subsampled
Gaussian mechanism, of which DP-SGD is an instance of, can be done by analysing the following
dominating pair of random variables (Koskela et al., 2020; Zhu et al., 2022)

P = qN (∆, σ2) + (1− q)N (0, σ2), Q = N (0, σ2). (19)

With this dominating pair, we can form the PLRV for the mechanism, take a T -fold convolution
for T iterations, and compute the privacy bounds from the expectation in (18). The computation is
not trivial, but can be done using numerical privacy accountants (Koskela et al., 2020; 2021; Gopi
et al., 2021; Doroshenko et al., 2022; Alghamdi et al., 2023). These accountants are used by libraries
implementing DP-SGD like Opacus (Yousefpour et al., 2021) to compute privacy bounds in practice.

B PROPERTIES OF ACCOUNTING ORACLES

Accounting oracles make it easy to formally express symmetries of privacy accounting. For example,
privacy bounds are invariant to post-processing with a bijection.

9
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Lemma B.1. Let M be a mechanism and f be a bijection. Then AOM(ϵ) = AOf◦M(ϵ).

Proof. This follows by using post-processing immunity for f to show that AOf◦M(ϵ) ≤ AOM(ϵ)
and for f−1 to show that AOf◦M(ϵ) ≥ AOM(ϵ).

We can also formalise the lemma that considering ∆ = 1 is sufficient when analysing the (subsampled)
Gaussian mechanism.
Lemma B.2.

AOG(σ,∆, T, ϵ) = AOG(σ/∆, 1, T, ϵ), (20)
AOS(σ,∆, q, T, ϵ) = AOS(σ/∆, 1, q, T, ϵ). (21)

Proof. Let M be the (subsampled) Gaussian mechanism. Then

M(x) = f(x) + η = ∆

(
1

∆
f(x) +

1

∆
η

)
. (22)

The sensitivity of 1
∆f(x) is 1, so the part inside parenthesis in the last expression is a (subsampled)

Gaussian mechanism with sensitivity 1 and noise standard deviation σ/∆. Multiplying by ∆ is
bijective post-processing, so that mechanism must have the same privacy bounds as the original
mechanism. In a composition, this transformation can be done separately for each individual
mechanism of the composition.

Since considering ∆ = 1 when analysing the subsampled Gaussian mechanism is enough by
Lemma B.2, we occasionally shorten AOS(σ, 1, q, T, ϵ) to AOS(σ, q, T, ϵ).

The next lemma and corollary show that mechanisms close in total variation distance also have similar
privacy bounds.
Lemma B.3. Let M be an (ϵ, δ)-DP mechanism, and let M′ be a mechanism with

sup
x

TV(M(x),M′(x)) ≤ d, (23)

for some d ≥ 0. Then M′ is (ϵ, δ + (1 + eϵ)d)-DP.

Proof. For any measurable set A,

Pr(M′(x) ∈ A) ≤ Pr(M(x) ∈ A) + d

≤ eϵ Pr(M(x′) ∈ A) + δ + d

≤ eϵ(Pr(M′(x′) ∈ A) + d) + δ + d

= eϵ Pr(M′(x′) ∈ A) + δ + (1 + eϵ)d.

(24)

Lemma B.3 can also be expressed with accounting oracles.
Corollary B.4. Let AOM and AOM′ be the accounting oracles for mechanisms M and M′,
respectively. If

sup
x

TV(M(x),M′(x)) ≤ d. (25)

then
|AOM(ϵ)−AOM′(ϵ)| ≤ (1 + eϵ)d. (26)

Proof. Let δ = AOM(ϵ). By Lemma B.3, M′ is (ϵ, (1+eϵ)d+δ)-DP, so AOM′(ϵ) ≤ δ+(1+eϵ)d.
If AOM′(ϵ) < δ − (1 + eϵ)d,

AOM(ϵ) < δ − (1 + eϵ)d+ (1 + eϵ)d = δ (27)

by Lemma B.3, which is a contradiction, so AOM′(ϵ) ≥ δ − (1 + eϵ)d. Putting these together,

|AOM(ϵ)−AOM′(ϵ)| ≤ (1 + eϵ)d. (28)

10
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C GRADIENT VARIANCE AND BIAS IN DP-SGD

C.1 SCALING Gq WITH 1/q GIVES AN UNBIASED ESTIMATOR OF G1

Recall Gq =
∑

i∈B clipC(gi). We have

E
[
1

q
Gq −G1

]
= E

1
q

∑
i∈[N ]

big̃i −
∑
i∈[N ]

g̃i

 =
∑
i∈[N ]

g̃i E
[
bi
q
− 1

]
= 0, (29)

where bi ∼ Bernoulli(q) and g̃i denote the clipped per-example gradients. Thus, Gq/q is an unbiased
estimator of the G1

C.2 THE SUBSAMPLING INDUCED VARIANCE DECREASES W.R.T. q

Recall from Section 4, that we denote the sum of clipped subsampled gradients with Gq:

Gq =
∑
i∈B

clipC(gi). (30)

Now for the subsampling induced variance in noise decomposition of Equation (4) we have

Var

(
1

q
Gq,j

)
=

1

q2
Var

∑
i∈[N ]

bigi,j

 (31)

=
1

q2

∑
i∈[N ]

g2i,j Var (bi) (32)

=
q(1− q)

q2

∑
i∈[N ]

g2i,j (33)

=
1− q

q

∑
i∈[N ]

g2i,j . (34)

Now, it is easy to see that the sum in Equation (34) is a constant w.r.t. q, and the term (1− q)/q is
decreasing w.r.t. q. Thus the subsampling induced variance is decreasing w.r.t. q.

D MISSING PROOFS IN SECTION 5

D.1 KULLBACK-LEIBLER DIVERGENCE AND TOTAL VARIATION DISTANCE

Our proofs use two notions of distance between random variables, total variation distance, and
Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951).
Definition D.1. Let P and Q be random variables.

1. The total variation distance between P and Q is

TV(P,Q) = sup
A

|Pr(P ∈ A)− Pr(Q ∈ A)|. (35)

The supremum is over all measurable sets A.

2. The KL divergence between P and Q with densities p(t) and q(t) is

KL(P,Q) = Et∼P

(
ln

p(t)

q(t)

)
. (36)

The two notions of distance are related by Pinsker’s inequality.
Lemma D.2 (Kelbert, 2023).

TV(P,Q) ≤
√

1

2
KL(P,Q). (37)

11
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D.2 USEFUL LEMMAS

Lemma D.3 (Kullback & Leibler, 1951). Properties of KL divergence:

1. If P and Q are joint distributions over independent random variables P1, . . . , PT and
Q1, . . . , QT ,

KL(P,Q) =

T∑
i=1

KL(Pi, Qi). (38)

2. If f is a bijection,
KL(f(P ), f(Q)) = KL(P,Q). (39)

We will need to analyse the following function:

fx(u) = ln
N (x; 0, 1)

qN (x;u− qu, 1) + (1− q)N (x;−qu, 1)
. (40)

In particular, we need the fourth-order Taylor approximation of Ex(fx(u)) for x ∼ N (0, 1) at u = 0.
We begin by looking at the Taylor approximation of fx(u) without the expectation, and then show
that we can differentiate under the expectation.
Lemma D.4. The fourth-order Taylor approximation of fx at u = 0 is

fx(u) =
1

2
(q − 1)q(x2 − 1)u2

− 1

6
(q − 1)q(2q − 1)x(x2 − 3)u3

+
1

24
q
(
−3 + 6x2 − x4 − 12q2(2− 4x2 + x4) + 6q3(2− 4x2 + x4) + q(15− 30x2 + 7x4)

)
u4

+ rx(u)u
4,

(41)
with limu→0 rx(u) = 0.

Proof. The claim follows from Taylor’s theorem after computing the first four derivatives of fx at
u = 0. We computed the derivatives with Mathematica.

Lemma D.5. When x ∼ N (0, 1),

Ex

(
1

2
(q − 1)q(x2 − 1)u2

)
= 0 (42)

Ex

(
−1

6
(q − 1)q(2q − 1)x(x2 − 3)u3

)
= 0 (43)

Ex

(
f
(4)
x (0)

4!
u4

)
=

1

4
(q − 1)2q2u4. (44)

Proof. It is well-known that E(x) = 0, E(x2) = 1, E(x3) = 0 and E(x4) = 3. The first expectation:

Ex

(
1

2
(q − 1)q(x2 − 1)u2

)
=

1

2
(q − 1)qu2 Ex

(
x2 − 1

)
=

1

2
(q − 1)qu2

(
Ex(x

2)− 1
)

= 0.

(45)

The second expectation:

Ex

(
−1

6
(q − 1)q(2q − 1)x(x2 − 3)u3

)
= −1

6
(q − 1)q(2q − 1)u3 Ex

(
x(x2 − 3)

)
= −1

6
(q − 1)q(2q − 1)u3

(
Ex(x

3)− 3Ex(x)
)

= 0.

(46)

12
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The third expectation:

Ex

(
f
(4)
x (0)

4!
u4

)

= Ex

(
1

24
q
(
−3 + 6x2 − x4 − 12q2(2− 4x2 + x4) + 6q3(2− 4x2 + x4) + q(15− 30x2 + 7x4)

)
u4

)
=

1

24
q
(
−3 + Ex(6x

2)− Ex(x
4)− 12q2 Ex(2− 4x2 + x4) + 6q3 Ex(2− 4x2 + x4) + q Ex(15− 30x2 + 7x4)

)
u4

=
1

24
q
(
−3 + 6− 3− 12q2(2− 4 + 3) + 6q3(2− 4 + 3) + q(15− 30 + 21)

)
u4

=
1

24
q
(
−12q2 + 6q3 + 6q

)
u4

=
1

4
q2
(
−2q + q2 + 1

)
u4

=
1

4
(q − 1)2q2u4.

(47)

Lemmas D.4 and D.5 show that the Taylor approximation of Ex(fx(u)) is

Ex(fx(u)) =
1

4
(q − 1)2q2u4 + r(u)u4 (48)

if we can differentiate under the expectation. Next, we show that this is possible in Lemma D.9,
which requires several preliminaries.

Definition D.6. A function g(x, u) is a polynomial-exponentiated simple polynomial (PESP) if

g(x, u) =

n∑
i=1

Pi(x, u)e
Qi(x,u) (49)

for some n ∈ N and polynomials Pi(x, u) and Qi(x, u), 1 ≤ i ≤ n, with Qi(x, u) being first-degree
in x.

Lemma D.7. If g1 and g2 are PESPs,

1. g1 + g2 is a PESP,

2. g1 · g2 is a PESP,

3. ∂
∂ug1 is a PESP.

Proof. Let

gj(x, u) =

nj∑
i=1

Pi,j(x, u)e
Qi,j(x,u) (50)

for j ∈ {1, 2}. (1) is clear by just writing the sums in g1 and g2 as a single sum. For (2),

g1(x, u) · g2(x, u) =
n1∑
i=1

n2∑
j=1

Pi,1(x, u)Pj,2(x, u)e
Qi,1(x,u)eQj,2(x,u)

=

n1∑
i=1

n2∑
j=1

Pi,1(x, u)Pj,2(x, u)e
Qi,1(x,u)+Qj,2(x,u)

=

n3∑
i=1

Pi,3(x, u)e
Qi,3(x,u)

(51)

13
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since the product of two polynomials is a polynomial, and the sum of two polynomials is a polynomial
of the same degree.

For (3)

∂

∂u
g1(x, u) =

n1∑
i=1

(
∂

∂u
Pi,1(x, u)

)
eQi,1(x,u) +

n1∑
i=1

Pi,1(x, u)

(
∂

∂u
Qi,1(x, u)

)
eQi,1(x,u)

=

n1∑
i=1

Pi,4(x, u)e
Qi,1(x,u)

(52)

since the partial derivatives, products and sums of polynomials are polynomials.

Lemma D.8. When x ∼ N (0, 1), for a > 0, b ∈ R and k ∈ N,

Ex(a|x|keb|x|) < ∞. (53)

Proof.

Ex(a|x|keb|x|) =
∫ ∞

−∞

1√
2π

a|x|keb|x|e− 1
2x

2

dx

∝
∫ ∞

−∞
|x|keb|x|e− 1

2x
2

dx

= 2

∫ ∞

0

xkebxe−
1
2x

2

dx

= 2

∫ ∞

0

xke−
1
2 (x

2−2bx)dx

∝
∫ ∞

0

xke−
1
2 (x

2−2bx+b2)dx

=

∫ ∞

0

xke−
1
2 (x−b)2dx

≤
∫ ∞

−∞
|x|ke− 1

2 (x−b)2dx

< ∞

(54)

since all absolute moments of Gaussian distributions are finite.

Lemma D.9. For any k ∈ N, k ≥ 1, there is a function gk(x) such that |f (k)
x (u)| ≤ gk(x) for all

u ∈ [−1, 1] and x ∈ R, and Ex(gk(x)) < ∞.

Proof. We start by computing the first derivative of fx(u)

fx(u) = ln
e−

1
2x

2

qe−
1
2 ((q−1)u+x)2 + (1− q)e−

1
2 (qu+x)2

= − ln
(
qe−

1
2 ((q−1)u+x)2 + (1− q)e−

1
2 (qu+x)2

)
− x2

2

(55)

f ′
x(u) = −−q(q − 1)((q − 1)u+ x)e−

1
2 ((q−1)u+x)2 − (1− q)q(qu+ x)e−

1
2 (qu+x)2

qe−
1
2 ((q−1)u+x)2 + (1− q)e−

1
2 (qu+x)2

(56)

Since

e−
1
2 ((q−1)u+x)2 = e−

1
2 ((q−1)2u2+2(q−1)xu+x2) = e−

1
2x

2

e−
1
2 ((q−1)2u2+2(q−1)xu) (57)

and
e−

1
2 (qu+x)2 = e−

1
2 (q

2u2+2qux+x2) = e−
1
2x

2

e−
1
2 (q

2u2+2qux) (58)
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we can write the first derivative in the following form:

f ′
x(u) =

P1(x, u)e
Q1(x,u) + P2(x, u)e

Q2(x,u)

qeQ1(x,u) + (1− q)eQ2(x,u)
(59)

for polynomials P1(x, u), P2(x, u), Q1(x, u) and Q2(x, u), with Q1(x, u) and Q2(x, u) being first-
degree in x.

We show by induction that further derivatives have a similar form:

f (k)
x (u) =

∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

(qeQ1(x,u) + (1− q)eQ2(x,u))2k−1 (60)

We also require the Q-polynomials to still be first degree in x, so the numerator must be a PESP. The
claim is clearly true for k = 1. If the claim is true for k, then

f (k+1)
x (u) =

G(x, u) ∂
∂uF (x, u)− F (x, u) ∂

∂uG(x, u)

(qeQ1(x,u) + (1− q)eQ2(x,u))2k
(61)

where

F (x, u) =

nk∑
i=1

Pi,k(x, u)e
Qi,k(x,u) (62)

G(x, u) = (qeQ1(x,u) + (1− q)eQ2(x,u))2
k−1

(63)

by the quotient differentiation rule. The denominator has the correct form, so it remains to show that
the numerator is a PESP. F is clearly a PESP, and so is G due to Lemma D.7. The numerator is a
sum of products of F , G and their derivatives, so it is a PESP by Lemma D.7, which concludes the
induction proof.

We have
qeQ1(x,u) + (1− q)eQ2(x,u) ≥ min

(
eQ1(x,u), eQ2(x,u)

)
. (64)

We can split R into measurable subsets A1 and A2 such that

min
(
eQ1(x,u), eQ2(x,u)

)
=

{
eQ1(x,u) x ∈ A1

eQ2(x,u) x ∈ A2
(65)

Now

|f (k)
x (u)| ≤

∣∣∣∣∣
∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

min
(
eQ1(x,u), eQ2(x,u)

)2k−1

∣∣∣∣∣ (66)

=

∣∣∣∣IA1

∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

(eQ1(x,u))2k−1

∣∣∣∣+ ∣∣∣∣IA2

∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

(eQ2(x,u))2k−1

∣∣∣∣ (67)

≤
∣∣∣∣∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

e2k−1Q1(x,u)

∣∣∣∣+ ∣∣∣∣∑nk

i=1 Pi,k(x, u)e
Qi,k(x,u)

e2k−1Q2(x,u)

∣∣∣∣ (68)

≤
mk∑
i=1

|Ri,k(x, u)|eSi,k(x,u) (69)

where Ri,k(x, u) and Si,k(x, u) are further polynomials, with the S-polynomials being of first degree
in x.

Since u ∈ [−1, 1], for a monomial axk1uk2

axk1uk2 ≤ |axk1uk2 | ≤ |axk1 |. (70)

Using this inequality on each monomial of Ri,k(x, u) and Si,k(x, u) gives upper bound polynomials
of |x| R̂i,k(x) and Ŝi,k(x) such that

|f (k)
x (u)| ≤

mk∑
i=1

|Ri,k(x, u)|eSi,k(x,u) ≤
mk∑
i=1

|R̂i,k(x)|eŜi,k(x), (71)

15



Published as a workshop paper at Private ML workshop at ICLR 2024

with the Ŝ-polynomials being first degree.

Let

gk(x) =

mk∑
i=1

|R̂i,k(x)|eŜi,k(x). (72)

We have shown that |fx(u)| ≤ gk(x) for u ∈ [−1, 1] and x ∈ R. The integrability of gk(x) against a
standard Gaussian follows from Lemma D.8, as we can first push the absolute value around R̂i,k(x)

to be around each monomial of R̂i,k(x) with the triangle inequality, and then write the resulting
upper bound as a sum with each term of the form a|x|keb|x|, with a > 0, b ∈ R and k ∈ N.

Now we can put the preliminaries together to use the Taylor approximation of of Ex(fx(u)) to find
its order of convergence.
Lemma D.10. When x ∼ N (0, 1), Ex(fx(u)) = O(u4) as u → 0.

Proof. Since u → 0 in the limit, it suffices to consider u ∈ [−1, 1]. First, we find the fourth-order
Taylor approximation of Ex(fx(u)). Lemma D.9 allows us to differentiate under the expectation four
times. Then Taylor’s theorem, and Lemmas D.4 and D.5 give

Ex(fx(u)) =
1

4
(q − 1)2q2u4 + r(u)u4 (73)

where limu→0 r(u) = 0. Now

lim
u→0

1

u4
E(fx(u)) = lim

u→0

1

u4

(
1

4
(q − 1)2q2u4 + r(u)u4

)
=

1

4
(q − 1)2q2 + lim

u→0
r(u)

=
1

4
(q − 1)2q2

< ∞,

(74)

which implies the claim.

D.3 PROOF OF THEOREM 5.2

Theorem 5.2. For 1 ≤ i ≤ T , let

Mi(x) ∼ xBq +N (0, σ2
T ), (7)

M′
i(x) ∼ N (qx, σ2

T ). (8)

be independent for each i. Let M1:T be the composition of Mi, and let M′
1:T be the composition of

M′
i. Then

sup
x

TV(M1:T (x),M′
1:T (x)) → 0. (9)

Proof. It suffices to show
sup
x

T ·KL(M′
i(x),Mi(x)) → 0 (75)

due to Pinsker’s inequality and the additivity of KL divergence for products of independent random
variables (Lemma D.3). When x = 0, the two mechanism are the same, so it suffices to look at x = 1.

KL-divergence is invariant to bijections, so

KL(M′
i(1),Mi(1)) = KL

(
N (q, σ2

T ), qN (1, σ2
T ) + (1− q)N (0, σ2

T )
)

= KL

(
N
(
q
1

σT
, 1

)
, qN

(
1

σT
, 1

)
+ (1− q)N (0, 1)

)
= KL (N (qu, 1) , qN (u, 1) + (1− q)N (0, 1))

= KL (N (0, 1) , qN (u− qu, 1) + (1− q)N (−qu, 1))

(76)
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where we first divide both distributions by σT , then set u = 1
σT

, and finally subtract qu. As

σ2
T = Ω(T ), u = O

(
1√
T

)
.

From the definition of KL-divergence, u4 = O( 1
T 2 ) and Lemma D.10, when x ∼ N (0, 1) we have

KL(M′
i(1),Mi(1)) = Ex(fx(u)) = O(u4) = O

(
1

T 2

)
. (77)

This implies
lim

T→∞
T ·KL(M′

i(1),Mi(1)) = 0, (78)

which implies the claim.

D.4 PROOF FOR THEOREM 5.3

Theorem 5.3. For any σ, q1, q2, ∆ and ϵ

|AOS(σ,∆, q1, T, ϵ)−AOS(σ · q2/q1,∆, q2, T, ϵ)| → 0 (11)

as T → ∞.

Proof. It suffices to look at ∆ = 1 by Lemma B.2. Let AO′(σ, q, T, ϵ) be the accounting oracle for
M′

1:T . By Lemma B.1 and (10),

AO′(σ, q, T, ϵ) = AOG

(
σ

q
, T, ϵ

)
. (79)

Let σ2 = σ · q2/q1,

d
(1)
T = sup

x
TV(M1:T (x, q1, σ),M′

1:T (x, q1, σ)), (80)

and
d
(2)
T = sup

x
TV(M1:T (x, q2, σ2),M′

1:T (x, q2, σ2)). (81)

Now
|AOS(σ, q1, T, ϵ)−AO′(σ, q1, T, ϵ)| ≤ (1 + eϵ)d

(1)
T (82)

and
|AOS(σ2, q2, T, ϵ)−AO′(σ2, q2, T, ϵ)| ≤ (1 + eϵ)d

(2)
T (83)

by Corollary B.4. Since σ
q1

= σ2

q2
,

AO′(σ, q1, T, ϵ) = AOG

(
σ

q1
, T, ϵ

)
= AOG

(
σ2

q2
, T, ϵ

)
= AO′(σ2, q2, T, ϵ).

(84)

Now

|AOS(σ, q1, T, ϵ)−AOS(σ · q2/q1, q2, T, ϵ)|
≤ |AOS(σ, q1, T, ϵ)−AO′(σ, q1, T, ϵ)|
+ |AOS(σ2, q2, T, ϵ)−AO′(σ2, q2, T, ϵ)|

≤ (1 + eϵ)(d
(1)
T + d

(2)
T ) → 0

(85)

by Theorem 5.2.
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D.5 PROOF OF COROLLARY 5.4

With fixed ∆, T, ϵ, the function σ 7→ AOG(σ,∆, T, ϵ) is strictly decreasing (Balle & Wang, 2018,
Lemma 7) and continuous, so it has a continuous inverse δ 7→ AO−1

G (δ,∆, T, ϵ). To declutter the
notation, we omit the ϵ and ∆ arguments from AOS , AOG and AO−1

G in the rest of this section.
Lemma D.11. For AOG and its inverse,

1. AOG(σ, T ) = AOG

(
σ√
T
, 1
)

,

2. AO−1
G (δ, T ) = AO−1

G (δ, 1)
√
T .

Proof. Recall that the PLRV of the Gaussian mechanism is N (µ1, 2µ1) with µ1 = ∆2

2σ2 (Som-
mer et al., 2019). By Theorem A.4, the PLRV of T compositions of the Gaussian mechanism is
N (Tµ1, 2Tµ1). Denoting µT = Tµ1 = T∆2

2σ2 , we see that the T -fold composition of the Gaussian
mechanism has the same PLRV as a single composition of the Gaussian mechanism with standard
deviation σ√

T
, which proves (1).

To prove (2), first we have

AOG(AO
−1
G (δ, 1)

√
T , T ) = AOG(AO

−1
G (δ, 1), 1) = δ (86)

by applying (1) to the outer AOG. Applying AO−1
G (·, T ) to both sides gives

AO−1
G (δ, 1)

√
T = AO−1

G (δ, T ) (87)

Corollary 5.4. Let σ(q, T ) be the smallest σ such that AOS(σ,∆, q, T, ϵ) ≤ δ. Then

lim
T→∞

σ(q, T )

qσ(1, T )
= 1. (12)

Proof. By definition, AOS(σ(q, T ), q, T ) = δ, so Theorem 5.3 implies

lim
T→∞

AOS

(
σ(q, T )

q
, 1, T

)
= δ. (88)

Since AOS(σ, 1, T ) = AOG(σ, T ) for any σ, we get from Lemma D.11∣∣∣∣AOG

(
σ(q, T )

q
√
T

, 1

)
− δ

∣∣∣∣ = ∣∣∣∣AOG

(
σ(q, T )

q
, T

)
− δ

∣∣∣∣→ 0 (89)

as T → ∞. We have

AO−1
G

(
AOG

(
σ(q, T )

q
√
T

, 1

)
, 1

)
=

σ(q, T )

q
√
T

(90)

and by Lemma D.11,

AO−1
G (δ, 1) =

1√
T
AO−1

G (δ, T ) =
σ(1, T )√

T
. (91)

Now, by the continuity of AO−1
G (·, 1),

1√
T

∣∣∣∣σ(q, T )q
− σ(1, T )

∣∣∣∣→ 0 (92)

as T → ∞.

Since σ(1, T ) = Ω(
√
T ) by Theorem 5.1,∣∣∣∣ σ(q, T )qσ(1, T )

− 1

∣∣∣∣ = |σ(q, T )/q − σ(1, T )|
σ(1, T )

→ 0 (93)

as T → ∞, which implies the claim.
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D.6 σ2
T = Ω(T )

Lemma D.12. Let L be the PLRV of a single iteration of the Poisson subsampled Gaussian mechanism.
Then E(L) ≥ q2

2σ2 .

Proof. Recall, that for Poisson subsampled Gaussian mechanism we have the dominating pair
P = qN (1, σ2) + (1− q)N (0, σ2) and Q = N (0, σ2). Let fP and fQ be their densities. Now the
mean of the PLRV can be written as

E(L) = Et∼P

[
log

fP (t)

fQ(t)

]
= Et∼P [log fP (t)]− Et∼P [log fQ(t)]

= −H(P )−
(
−1

2
log 2πσ2 − 1

2σ2
Et∼P [t

2]

)
= −H(P ) +

1

2

(
log 2π + log σ2 +

1

σ2
(σ2 + q)

)
= −H(P ) +

1

2

(
log 2π + log σ2 +

q

σ2
+ 1
)
,

(94)

where H denotes the differential entropy. The entropy term is analytically intractable for the mixture
of Gaussians (the P ). However, we can upper bound it with the entropy of a Gaussian with the same
variance, as the Gaussian distribution maximises entropy among distributions with given mean and
variance. The variance of P is σ2 + q − q2 = σ2 + q(1− q), and therefore

H(P ) ≤ H(N (0, σ2 + q(1− q)))

=
1

2

(
log 2π(σ2 + q(1− q)) + 1

)
=

1

2

(
log 2π + log

(
σ2 + q(1− q)

)
+ 1
) (95)

Now, substituting this into (94) we get the following lower bound

E(L) ≥ 1

2

(
log

σ2

σ2 + q(1− q)
+

q

σ2

)
=

1

2

(
− log

(
1 +

q − q2

σ2

)
+

q

σ2

)
. (96)

Since for all x ≥ −1,

log(1 + x) ≤ x ⇔ − log(1 + x) ≥ −x, (97)

we have

− log

(
1 +

q − q2

σ2

)
≥ −q − q2

σ2
(98)

which gives

E(L) ≥ 1

2

(
−q − q2

σ2
+

q

σ2

)
=

q2

2σ2
. (99)

Lemma D.13. Let L be the PLRV of a single iteration of the Poisson subsampled Gaussian mechanism.
Then Var(L) ≤ 1

σ2 + 1
4σ4
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Proof.

ln
fP (t)

fQ(t)
= ln

q exp
(
− (t−1)2

2σ2

)
+ (1− q) exp

(
− t

2σ2

)
exp
(
− t2

2σ2

)
= ln

(
q exp

(
t2 − (t− 1)2

2σ2

)
+ (1− q)

)
= ln

(
q exp

(
2t− 1

2σ2

)
+ (1− q)

)
≤ lnmax

{
exp

(
2t− 1

2σ2

)
, 1

}
= max

{
2t− 1

2σ2
, 0

}

(100)

Similarly, we also have

ln
fP (t)

fQ(t)
≥ lnmin

{
exp

(
2t− 1

2σ2

)
, 1

}
= min

{
2t− 1

2σ2
, 0

}
(101)

so ∣∣∣∣ln fP (t)

fQ(t)

∣∣∣∣ ≤ max

{
max

{
2t− 1

2σ2
, 0

}
,−min

{
2t− 1

2σ2
, 0

}}
= max

{
max

{
2t− 1

2σ2
, 0

}
,max

{
−2t− 1

2σ2
, 0

}}
≤
∣∣∣∣2t− 1

2σ2

∣∣∣∣
(102)

Since Et∼P (t) = q and Et∼P (t
2) = σ2 + q,

Var(L(T )) ≤ E((L(T ))2)

= Et∼P

((
ln

fP (t)

fQ(t)

)2
)

≤ Et∼P

(∣∣∣∣2t− 1

2σ2

∣∣∣∣2
)

= Et∼P

((
2t− 1

2σ2

)2
)

=
1

4σ4
Et∼P

(
4t2 − 4t+ 1

)
=

σ2 + q

σ4
− q

σ4
+

1

4σ4

=
1

σ2
+

1

4σ4
.

(103)

Lemma D.14. Let LT be the PLRV of T iterations of the Poisson subsampled Gaussian mechanism,
and let K ∈ N. If σ2

T = Ω(T ) is not true, for any αi > 0, bi > 0 with 1 ≤ i ≤ K, it is possible to
find a T such that,

Pr
s∼LT

(s ≤ bi) ≤ αi (104)

holds simultaneously for all i.

20



Published as a workshop paper at Private ML workshop at ICLR 2024

Proof. If σ2
T = Ω(T ) is not true,

lim inf
T→∞

σ2
T

T
= 0. (105)

By Lemma D.12 and the composition theorem, E(LT ) ≥ T q2

2σ2
T

. By Lemma D.13, Var(LT ) ≤
T
σ2
T
+ T

4σ4
T

.

Let ki = 1√
αi

. Choose T such that

Tq2

σ2
T

− ki

√
T

σ2
T

+
T

4σ4
T

≥ bi. (106)

for all i. This is possible by (105) by choosing T
σ2
T

to be large enough to satisfy all the inequalities.
Now

E(LT )− ki
√
Var(LT ) ≥

Tq2

σ2
T

− ki

√
T

σ2
T

+
T

4σ4
T

≥ bi (107)

for all i, so

Pr
s∼LT

(s ≤ bi) ≤ Pr
s∼LT

(
|s− E(LT )| ≥ ki

√
Var(LT )

)
≤ 1

k2i
= αi (108)

for all i by Chebyshev’s inequality.

This means that it is possible to make Prs∼LT
(s ≤ b) arbitrarily small for any b by choosing an

appropriate T , and to satisfy a finite number of these constraints simultaneously with a single T .

Theorem 5.1. Let σT be such that AOS(σT ,∆, q, T, ϵ) ≤ δ for all T , with δ < 1. Then σ2
T = Ω(T ).

Proof. By Lemma B.2, it suffices to consider ∆ = 1. To obtain a contradiction, assume that
σ2
T = Ω(T ) is not true. Let LT be the PLRV for T iterations of the Poisson subsampled Gaussian

mechanism.

From (18),

AOS(σT , q, T, ϵ) = Es∼LT
((1− eϵ−s)+)

= Es∼LT
(I(s > ϵ)(1− eϵ−s))

= Es∼LT
(I(s > ϵ))− Es∼L(I(s > ϵ)eϵ−s)

= Pr
s∼LT

(s > ϵ)− Es∼L(I(s > ϵ)eϵ−s)

(109)

By choosing b1 = ϵ and α1 = 1− 1
2 (δ + 1) in Lemma D.14, we get Prs∼LT

(s > ϵ) ≥ 1
2 (δ + 1).
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To bound the remaining term,

Es∼LT
(I(s > ϵ)eϵ−s) = eϵ Es∼LT

(I(s > ϵ)e−s)

= eϵ
∞∑
i=0

Es∼L(I(ϵ+ i < s ≤ ϵ+ i+ 1)e−s)

≤ eϵ
∞∑
i=0

Es∼L(I(ϵ+ i < s ≤ ϵ+ i+ 1)e−ϵ−i)

≤
∞∑
i=0

e−i Es∼L(I(ϵ+ i < s ≤ ϵ+ i+ 1))

≤
∞∑
i=0

e−i Pr
s∼L

(ϵ+ i < s ≤ ϵ+ i+ 1)

=

K∑
i=0

e−i Pr
s∼L

(ϵ+ i < s ≤ ϵ+ i+ 1) +

∞∑
i=K+1

e−i Pr
s∼L

(ϵ+ i < s ≤ ϵ+ i+ 1)

≤
K∑
i=0

e−i Pr
s∼L

(s ≤ ϵ+ i+ 1) +

∞∑
i=K+1

e−i.

(110)

The series
∑∞

i=0 e
−i converges, so it is possible to make

∑∞
i=K+1 e

−i arbitrarily small by choosing
an appropriate K, which does not depend on T .

If we choose K such that
∑∞

i=K+1 e
−i < 1

4 (1 − δ) and then choose T such that
e−i Pr(s ≤ ϵ+ i+ 1) < 1

4K (1− δ) for all 1 ≤ i ≤ K, we have

Es∼LT
(I(s > ϵ)eϵ−s) < K · 1

4K
(1− δ) +

1

4
(1− δ) =

1

2
(1− δ). (111)

Lemma D.14 allows multiple inequalities for a single T , so we can find a T that satisfies all of the
K + 1 inequalities we have required it to satisfy. With this T ,

AOS(σT , q, T, ϵ) = Pr
s∼LT

(s > ϵ)− Es∼L(I(s > ϵ)eϵ−s) >
1

2
(δ + 1)− 1

2
(1− δ) = δ (112)

which is a contradiction.

E MISSING PROOFS IN SECTION 6

E.1 SOLVING σ′(q) FOR T = 1 CASE

Lemma 6.1. For the smallest σ(q) that provides (ϵ, δ)-DP for the Poisson subsampled Gaussian
mechanism, we have

σ′(q) =
σ(q)

q

1

2a

1

erf ′(a− b)
(erf(a− b)− erf(−a− b)). (15)

Proof. Recall Equation (13): for a single iteration Poisson subsampled Gaussian mechanism, we
have

δ(q) =qPr

(
Z ≥ σ(q) log

(
h(q)

q

)
− 1

2σ(q)

)
− h(q) Pr

(
Z ≥ σ(q) log

(
h(q)

q

)
+

1

2σ(q)

)
,

(113)

where h(q) = eϵ − (1− q). Since σ(q) is a function that returns a noise-level matching any (ϵ, δ)-DP
requirement for subsampling rate q, δ′(q) = 0. Using Mathematica, we can solve the derivative of
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the RHS in Equation (113) for σ′(q) and we get

σ′(q) =

√
π
2σ(q)

2e
1
2σ(q)

2 log2
(

q+eϵ−1
q

)
+ 1

8σ(q)2

(
erf
(

1−2σ(q)2 log
(

q+eϵ−1
q

)
2
√
2σ(q)

)
− erf

(
−

2σ(q)2 log
(

q+eϵ−1
q

)
+1

2
√
2σ(q)

))
q
√

q+eϵ−1
q

.

(114)

Note that

exp

(
1

2
σ(q)2 log2

(
q + eϵ − 1

q

)
+

1

8σ(q)2

)
(115)

= exp

(
1

2

(
σ(q)2 log2

(
q + eϵ − 1

q

)
+

1

4σ(q)2

))
(116)

= exp

(
1

2

((
σ(q) log

(
q + eϵ − 1

q

)
− 1

2σ(q)

)2

+ log

(
q + eϵ − 1

q

)))
(117)

= exp

((
1√
2
σ(q) log

(
q + eϵ − 1

q

)
− 1

2
√
2σ(q)

)2
)√

q + eϵ − 1

q
(118)

= exp


1− 2σ(q)2 log

(
q+eϵ−1

q

)
2
√
2σ(q)

2
√q + eϵ − 1

q
(119)

and therefore the derivative becomes

σ′(q) =

√
π
2σ(q)

2e
1
2

(
σ(q) log

(
q+eϵ−1

q

)
− 1

2σ(q)

)2
(

erf
(

1−2σ(q)2 log
(

q+eϵ−1
q

)
2
√
2σ(q)

)
− erf

(
−

2σ(q)2 log
(

q+eϵ−1
q

)
+1

2
√
2σ(q)

))
q

(120)

=

√
π
2σ(q)

2e

(
1−2σ(q)2 log( q+eϵ−1

q )
2
√

2σ(q)

)2 (
erf
(

1−2σ(q)2 log
(

q+eϵ−1
q

)
2
√
2σ(q)

)
− erf

(
−

2σ(q)2 log
(

q+eϵ−1
q

)
+1

2
√
2σ(q)

))
q

(121)

Lets denote

a :=
1

2
√
2σ(q)

(122)

b :=
σ(q)√

2
log

(
eϵ − (1− q)

q

)
. (123)

Using this notation we can write

qσ′(q) =

√
π

2
σ(q)2 exp

(
(a− b)2

)
(erf(a− b)− erf(−a− b)) (124)

=

√
π

2
σ(q)2 exp

(
(a− b)2

)
(erf(a+ b)− erf(b− a)). (125)

Note that we have

erf′(a− b) =
2√
π
exp
(
−(a− b)2

)
(126)

⇔ exp
(
(a− b)2

)
=

2√
πerf′(a− b)

(127)
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Hence

qσ′(q) = σ(q)2
√
2

erf′(a− b)
(erf(a+ b)− erf(b− a)) (128)

= σ(q)2
√
2

erf′(a− b)
(erf(a+ b) + erf(a− b)) (129)

= σ(q)
1

2a

1

erf′(a− b)
(erf(a+ b) + erf(a− b)) (130)

= σ(q)
1

2a

1

erf′(a− b)
(erf(a− b)− erf(−a− b)). (131)

E.2 PROOF FOR THEOREM 6.2

Theorem 6.2. If a < b for a and b defined in Equation (14), then d
dq

σ(q)
q < 0.

Proof. The erf(x) is a convex function for x ∈ R<0. Since a, b ≥ 0 we have −a − b ≤ 0 and if
a− b < 0 we get from the convexity that

erf(a− b)− erf(−a− b) < 2a erf ′(a− b). (132)

Substituting this upper bound into Equation (15) gives

σ′(q) <
σ(q)

q
⇔ qσ′(q)− σ(q)

q2
=

d

dq

σ(q)

q
< 0. (133)
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